Differentialgeometrie II 11. Übungsblatt

35. Aufgabe

Sei $\pi:(M,g)\to (N,h)$ eine riemannsche Submersion, $I\subset\mathbb{R}$ ein Intervall, $\gamma:I\to N$ eine Kurve. Man nennt eine Kurve $\tilde{\gamma}:I\to M$ einen horizontalen Lift von γ , falls $\dot{\tilde{\gamma}}(t)$ für alle $t\in I$ horizontal ist, und falls $\pi\circ\tilde{\gamma}=\gamma$.

- (a) Sei $\gamma:[0,b] \to N$ eine Kurve. Zeigen Sie: Für jedes $x \in \pi^{-1}(\gamma(0))$ gibt es ein $\varepsilon \in (0,b]$, so dass $\gamma|_{[0,\varepsilon]}$ einen horizontalen Lift $\tilde{\gamma}$ mit der Eigenschaft $\tilde{\gamma}(0) = x$ besitzt.

 Tipp: Benutzen Sie, dass für geeignete Karten (U,φ) von M^m und (V,ψ) von N^n die Abbildung $\psi \circ \pi \circ \varphi^{-1}$ durch $(x_1,...,x_m) \mapsto (x_1,...,x_n)$ gegeben ist. Reduzieren Sie das Problem in diesen Koordinaten auf ein System gewöhnlicher Differentialgleichungen.
- (b) Geben Sie ein Beispiel einer riemannschen Submersion $\pi:(M,g)\to (N,h)$ und einer Kurve $\gamma:[0,b]\to N$ an, die nicht auf ganz [0,b] einen horizontalen Lift besitzt.

36. Aufgabe

Sei $\pi:(M,g)\to(N,h)$ eine riemannsche Submersion.

- (a) Zeigen Sie: Ist $\gamma:[a,b]\to N$ eine Kürzeste zwischen den Endpunkten, dann ist jeder horizontale Lift $\tilde{\gamma}$ ebenfalls eine Kürzeste zwischen den Endpunkten.
- (b) Folgern Sie: Die horizontalen Lifts von Geodätischen auf (N, h) sind Geodätische auf (M, g).
- (c) Folgern Sie: Ist $\tilde{\gamma}:[a,b]\to M$ eine Geodätische in (M,g) mit $\dot{\tilde{\gamma}}(a)$ horizontal, dann ist $\dot{\tilde{\gamma}}(t)$ für alle t horizontal.
- (d) Folgern Sie: Ist der horizontale Lift $\tilde{\gamma}$ einer Kurve γ eine Geodätische in (M,g), so ist γ eine Geodätische in (N,h).

 Tipp: Vergleichen Sie mit einer Geodätischen γ_1 in (N,h) mit $\dot{\gamma}_1(a) = \dot{\gamma}(a)$. Alternativ können Sie auch Blatt 8, 26. Aufgabe (c) nutzen.

37. Aufgabe

Sei $M \to B$ eine riemannsche Submersion zwischen zusammenhängenden riemannschen Mannigfaltigkeiten und sei M vollständig. Dann ist B vollständig.

Tipp: Nutzen Sie die 36. Aufgabe.

38. Aufgabe.

 $\mathbb{C}P^n$ trage wiederum die Fubini-Study-Metrik, und wieder sei $S^{2n+1} \to \mathbb{C}P^n$, $x \mapsto [x]$ die Hopf-Faserung. Es gilt dann $1 \le K \le 4$ (siehe 34. Aufgabe). Für $X,Y \in \mathbb{C}^{n+1}$ definieren wir $\langle X,Y \rangle_{\mathbb{C}} := \sum_{j=1}^{n+1} X_j \overline{Y_j}$.

- (a) Sei $\tilde{\gamma}$ ein Großkreisbogen auf S^{2n+1} . Zeigen Sie: Ist $\langle \dot{\tilde{\gamma}}(0), \tilde{\gamma}(0) \rangle_{\mathbb{C}} = 0$, so ist das Bild von $\tilde{\gamma}$ unter der Hopf-Faserung eine Geodätische auf $\mathbb{C}P^n$. Alle nichtkonstanten Geodätischen auf $\mathbb{C}P^n$ sind so gegeben.
- (b) Folgern Sie dass alle nichtkonstanten nach Bogenlänge parametrisierten Geodätischen auf $\mathbb{C}P^n$ periodisch mit Periode π sind.
- (c) Zeigen Sie für $z_1, z_2 \in S^{2n+1} \subset \mathbb{C}^{n+1}$: $\langle z_1, z_2 \rangle_{\mathbb{C}} = 0$ gilt genau dann, wenn $d([z_1], [z_2]) = \pi/2$. Zeigen Sie weiter: $\langle z_1, z_2 \rangle_{\mathbb{C}} \neq 0$ gilt genau dann, wenn $d([z_1], [z_2]) < \pi/2$.
- (d) Bestimmen Sie den Schnittort bezüglich $[e_1]$ (mit Begründung).

Abgabe der Lösungen am Dienstag 13.7.2010 vor der Vorlesung