Topologie I 3. Übungsblatt

Aufgabe 1

Für eine natürliche Zahl $n \geq 2$ bezeichne S^n die n-dimensionale Sphäre.

- (a) Zeigen Sie, dass jede stetige Abbildung $\gamma:I\to S^n$ mit $\gamma(0)=\gamma(1)=p$ homotop mit festen Endpunkten zu einer Kurve $\tilde{\gamma}$ ist, die stückweise aus Großkreisen besteht. (Hinweis: Zeigen und benutzen Sie, dass γ gleichmäßig stetig ist).
- (b) Zeigen Sie, dass $\tilde{\gamma}: I \to S^n$ nicht surjektiv ist.
- (c) Folgern Sie hieraus: $\pi_1(S^n, p) = [p]$.

Aufgabe 2

Sei X ein weg-zusammenhängender topologischer Raum und $p \in X$. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- (a) $\pi_1(X, p) = [p]$.
- (b) Jede stetige Abbildung $\alpha: S^1 \to X$ ist homotop zur konstanten Abbildung $p: S^1 \to X$.
- (c) Jede stetige Abbildung $\alpha:S^1\to X$ kann man zu einer stetigen Abbildung $D^2\to X$ fortsetzen.
- (d) Sind $f, g : [0, 1] \to X$ stetige Wege mit f(0) = g(0) und f(1) = g(1), so sind f und g homotop mit festen Endpunkten.

Aufgabe 3

Zeigen Sie, dass eine stetige Abbildung $f: X \to Y$ genau dann eine Homotopie-Äquivalenz ist, wenn es stetige Abbildungen $g, h: Y \to X$ mit $g \circ f \simeq \mathrm{id}_X$ und $f \circ h \simeq \mathrm{id}_Y$ gibt.

Aufgabe 4

Eine topologische Gruppe ist eine Gruppe G zusammen mit einer Topologie derart, dass die Multiplikation $(x,y)\mapsto xy$ sowie die Inversenabbildung $x\mapsto x^{-1}$ stetig sind. Sei G eine topologische Gruppe.

- (a) Sei $x \in G$ beliebig. Zeigen Sie, dass die Linksmultiplication $L_x : G \to G$, $y \mapsto xy$ und die Konjugationsabbildung $C_x : G \to G$, $y \mapsto xyx^{-1}$ Homöomorphismen sind.
- (b) Zeigen Sie, dass die Zusammenhangskomponente des neutralen Elements von G eine normale abgeschlossene Untergruppe von G ist.
- (c) Zeigen Sie: ist G zusammenhängend, so wird G durch jede Umgebung des neutralen Elements erzeugt.

Abgabe der Lösungen am Dienstag 9.11.2010 vor der Vorlesung