SS 2011 14.7.2011

Topologie II 10. Übungsblatt

Aufgabe 1

Sei V ein 2k-dimensionaler reeller Vektorraum $(k \ge 1)$ und $B: V \times V \longrightarrow \mathbb{R}$ eine reguläre symmetrische Bilinearform auf V. Angenommen, ein k-dimensionaler Unterraum $W \subset V$ existiere mit $B_{|W \times W} = 0$. Zeigen Sie, dass dann eine Basis von V so existiert, dass die Matrix von B in dieser Basis die Gestalt $\begin{pmatrix} \mathbb{I}_k & 0 \\ 0 & -\mathbb{I}_k \end{pmatrix}$ hat.

Aufgabe 2

Sei M eine 2k-dimensionale kompakte orientierbare topologische Mannigfaltigkeit, wobei $k \geq 1$. Zeigen Sie: ist $H_{k-1}(M; \mathbb{Z})$ torsionsfrei, so ist $H_k(M; \mathbb{Z})$ ebenfalls torsionsfrei.

Aufgabe 3

Ziel der Aufgabe ist es, die Ringstruktur von $H^{\bullet}(\mathbb{C}\mathrm{P}^n;\mathbb{Z})$ mit Hilfe der Schnittform zu bestimmen.

- (a) Bestimmen Sie die \mathbb{Z} -Kohomologiemoduln $H^q(\mathbb{C}\mathrm{P}^n;\mathbb{Z})$ für alle $q\in\mathbb{Z}$. Dazu zeigen Sie, dass die Inklusion $\mathbb{C}\mathrm{P}^{n-1} \stackrel{\iota}{\hookrightarrow} \mathbb{C}\mathrm{P}^n$ einen \mathbb{Z} -Modulisomorphismus $H^q(\mathbb{C}\mathrm{P}^n;\mathbb{Z}) \stackrel{H^q(\iota)}{\longrightarrow} H^q(\mathbb{C}\mathrm{P}^{n-1};\mathbb{Z})$ induziert für alle $q\neq 2n-2$. (Hinweis: wenden Sie das universelle Koeffiziententheorem an.)
- (b) Sei α_1 ein Erzeuger von $H^2(\mathbb{C}\mathrm{P}^2;\mathbb{Z})$. Zeigen Sie mit Hilfe der Regularität der Schnittform, dass $\alpha_1 \cup \alpha_1$ ein Erzeuger von $H^4(\mathbb{C}\mathrm{P}^2;\mathbb{Z})$ ist. Weisen Sie damit nach, dass $H^{\bullet}(\mathbb{C}\mathrm{P}^2;\mathbb{Z})$ als Ring zu $\mathbb{Z}[\alpha_1]/(\alpha_1^3)$ isomorph ist.
- (c) Zeigen Sie durch Induktion über n, dass $H^{\bullet}(\mathbb{C}\mathrm{P}^n; \mathbb{Z})$ zu $\mathbb{Z}[\alpha]/(\alpha^{n+1})$ isomorph ist.

Aufgabe 4

Sei R ein kommutativer Ring mit Eins und $n \in \mathbb{N}$ beliebig.

- (a) Bestimmen Sie einen (möglichst expliziten) Erzeuger α von $H^1(\mathbb{R}|0;R)$. Von hier aus bezeichne $\widetilde{\alpha} \in H^1(\mathbb{R}^n|\mathbb{R}^{n-1} \setminus \{0\};R)$ "das" durch Homotopieäquivalenz bestimmte Urbild von α .
- (b) Man akzeptiere folgende Konstruktion ohne Begründung: sind A, B offene Teilmengen eines topologischen Raumes X, so kann das Cap-Produkt $H_{p+q}(X, A \cup B; R) \times H^q(X, A; R) \xrightarrow{\cap} H_p(X, B; R)$ definiert werden (für alle p, q) und ist R-bilinear. Zeigen Sie, dass das Cap-Produkt mit $\widetilde{\alpha}$ einen R-Modulisomorphismus $H_n(\mathbb{R}^n|0; R) \longrightarrow H_{n-1}(\mathbb{R}^{n-1}|0; R)$ liefert.
- (c) Sei U eine offene Teilmenge von \mathbb{R}^n mit $0 \in U$. Zeigen Sie die Existenz eines R-Modulisomorphismus $H_n(U|0;R) \longrightarrow H_{n-1}(U \cap (\mathbb{R}^{n-1} \times \{0\})|0;R)$.
- (d) Sei V eine n-dimensionale topologische Mannigfaltigkeit mit Rand. Leiten Sie aus den obigen Teilaufgaben her, dass jede Orientierung auf $V \setminus \partial V$ eine Orientierung auf ∂V induziert.

Abgabe der Lösungen: **Donnerstag 21.7.2011** vor der Vorlesung.