Pseudo-differential operators and applications

Exercises 1

1. (Concrete Fourier Transformations)

(a) Compute the Fourier transformation of the following functions:

$$
\begin{aligned}
f_{1}(x) & = \begin{cases}e^{-a x} & \text { for } x \geq 0, \\
0 & \text { else },\end{cases} \\
f_{2}(x) & =e^{-a|x|} \\
f_{3}(x) & =\chi_{[-a, a]}(x)
\end{aligned}
$$

where $a>0$.
(b) Compare the properties of the functions f_{j} (continuity, differentiability, analyticity, and the decay for $|x| \rightarrow \infty)$ with the corresponding properties of \widehat{f}_{j}.
2. In the following, for $f \in \mathcal{S}$ and $m \in N$ let

$$
|f|_{m, \mathcal{S}}:=\sup _{|\alpha|+|\beta| \leq m} \sup _{x \in \mathbb{R}^{n}}\left|x^{\alpha} \partial_{x}^{\beta} f(x)\right| .
$$

Prove that for every $\alpha \in \mathbb{N}_{0}^{n}$ and $m \in \mathbb{N}$ there are constants $C_{m, \alpha}, C_{m, \alpha}^{\prime}>0$ such that

$$
\left|x^{\alpha} f\right|_{m, \mathcal{S}} \leq C_{m, \alpha}|f|_{m+|\alpha|, \mathcal{S}} \quad \text { and } \quad\left|\partial_{x}^{\alpha} f\right|_{m, \mathcal{S}} \leq C_{m, \alpha}^{\prime}|f|_{m+|\alpha|, \mathcal{S}}
$$

uniformly in $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
3. Let $C_{\text {poly }}^{\infty}\left(\mathbb{R}^{n}\right)$ be the set of all smooth functions $m: \mathbb{R}^{n} \rightarrow \mathbb{C}$ of polynomial growth, i.e., for every $\alpha \in \mathbb{N}_{0}^{n}$ there exist a $k(\alpha) \in \mathbb{N}$ and $C_{\alpha}>0$ with

$$
\left|\partial_{x}^{\alpha} m(x)\right| \leq C_{\alpha}(1+|x|)^{k(\alpha)}, \quad \text { for all } x \in \mathbb{R}^{n}
$$

Moreover, let $m \in C_{\text {poly }}^{\infty}\left(\mathbb{R}^{n}\right)$ and let $(M f)(x):=m(x) f(x)$ for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Prove that $M: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ is a bounded operator, i.e., for all $k \in \mathbb{N}$ there exist $n(k) \in \mathbb{N}$ and $C>0$ such that

$$
|M f|_{k, \mathcal{S}} \leq C|f|_{n(k), \mathcal{S}}
$$

As a corollary prove the following:
For any pair of functions $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ the product $f g$ lies in $\mathcal{S}\left(\mathbb{R}^{n}\right)$.
4. (Supplementary exercise)

Let $(M f)(x):=m(x) f(x)$ for $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, where $m: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is a smooth function. Prove that $m \in C_{\text {poly }}^{\infty}\left(\mathbb{R}^{n}\right)$ if $M: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ is a bounded operator. Hint: First of all

$$
\sup _{x \in \mathbb{R}^{n}}|m(x) f(x)| \leq C|f|_{k, \mathcal{S}}, \quad f \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

for some $k \in \mathbb{N}$. Then consider $f(x)=\left(1+|x|^{2}\right)^{-k / 2} e^{-\varepsilon|x|^{2} / 2}, \varepsilon>0$.

