Pseudo-differential operators and applications

Exercises 2

1. (Product of Symbols)

Let $p_{j} \in S_{1,0}^{m_{j}}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right), m_{j} \in \mathbb{R}, j=1,2$ and let $p(x, \xi):=p_{1}(x, \xi) p_{2}(x, \xi)$ for all $x, \xi \in \mathbb{R}^{n}$. Prove that $p \in S_{1,0}^{m_{1}+m_{2}}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ and that for every $k \in \mathbb{N}$ one has $|p|_{k}^{\left(m_{1}+m_{2}\right)} \leq C_{k}\left|p_{1}\right|_{k}^{\left(m_{1}\right)}\left|p_{2}\right|_{k}^{\left(m_{2}\right)}$, where C_{k} depends only on k and n.
2. (Special Symbol)

Let $\langle\xi\rangle=\sqrt{1+|\xi|^{2}}$ for $\xi \in \mathbb{R}^{n}$. Prove that for any $m \in \mathbb{R}, \alpha \in \mathbb{N}_{0}^{n}$ there is some $C_{m, \alpha}>0$ such that

$$
\left|\partial_{\xi}^{\alpha}\langle\xi\rangle^{m}\right| \leq C_{m, \alpha}(1+|\xi|)^{m-|\alpha|} \quad \text { for all } \xi \in \mathbb{R}^{n}
$$

Hint: Consider the function $f(a, x):=\left(a^{2}+|x|^{2}\right)^{\frac{m}{2}}$, where $a \in \mathbb{R}, x \in \mathbb{R}^{n}$. Use that f is homogeneous of degree m, i.e., $f(r a, r x)=r^{m} f(a, x)$ for all $r>0$, $a \in \mathbb{R} \backslash\{0\}, x \in \mathbb{R}^{n} \backslash\{0\}$.

3. (A Simple Functional Calculus)

Let $\mathrm{L}^{\infty}\left(\mathbb{R}^{n}\right):=\left\{G: \mathbb{R}^{n} \rightarrow \mathbb{C} \mid G\right.$ is bounded and measurable $\}$. For all functions $G \in \mathrm{~L}^{\infty}\left(\mathbb{R}^{n}\right)$ set

$$
\begin{equation*}
G\left(D_{x}\right) f:=\mathcal{F}^{-1}[G(\xi) \hat{f}(\xi)] \quad \text { for all } f \in L^{2}\left(\mathbb{R}^{n}\right) \tag{1}
\end{equation*}
$$

(a) Prove that for all $G \in \mathrm{~L}^{\infty}\left(\mathbb{R}^{n}\right)$ we have $G\left(D_{x}\right) \in \mathcal{L}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$ and the mapping

$$
\Phi: \mathrm{L}^{\infty}\left(\mathbb{R}^{n}\right) \ni G \mapsto G\left(D_{x}\right) \in \mathcal{L}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)
$$

is linear and bounded. Moreover, show that for every $G_{j} \in \mathrm{~L}^{\infty}\left(\mathbb{R}^{n}\right), j=$ 1,2 , it holds that

$$
\begin{equation*}
G_{1}\left(D_{x}\right) \circ G_{2}\left(D_{x}\right)=\left(G_{1} \cdot G_{2}\right)\left(D_{x}\right) \tag{2}
\end{equation*}
$$

(b) Prove that if $G \in C_{\text {poly }}^{\infty}\left(\mathbb{R}^{n}\right)$, then $G\left(D_{x}\right): \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ (defined similarly as in (1)), is a bounded operator, and for $G_{j} \in C_{\text {poly }}^{\infty}\left(\mathbb{R}^{n}\right), j=1,2$, Equation (2) holds as well.
(c) Let $p \in C_{\text {poly }}^{\infty}\left(\mathbb{R}^{n}\right)$. Prove that for all $\lambda \in \mathbb{C} \backslash \overline{p\left(\mathbb{R}^{n}\right)}$ we have $\left(\lambda-p\left(D_{x}\right)\right)^{-1} \in$ $\mathcal{L}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$ and

$$
\left(\lambda-p\left(D_{x}\right)\right)\left(\lambda-p\left(D_{x}\right)\right)^{-1} f=\left(\lambda-p\left(D_{x}\right)\right)^{-1}\left(\lambda-p\left(D_{x}\right)\right) f=f
$$

for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, where $p\left(D_{x}\right) f=\mathcal{F}^{-1}[p(\xi) \hat{f}(\xi)]$ for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
(d) For which $\lambda \in \mathbb{C}$ there exists $(\lambda-\Delta)^{-1}$ in the sense above?

