Pseudo-differential operators and applications Exercises 2

1. (Product of Symbols)

Let $p_j \in S_{1,0}^{m_j}(\mathbb{R}^n \times \mathbb{R}^n)$, $m_j \in \mathbb{R}$, j = 1, 2 and let $p(x,\xi) := p_1(x,\xi)p_2(x,\xi)$ for all $x, \xi \in \mathbb{R}^n$. Prove that $p \in S_{1,0}^{m_1+m_2}(\mathbb{R}^n \times \mathbb{R}^n)$ and that for every $k \in \mathbb{N}$ one has $|p|_k^{(m_1+m_2)} \leq C_k |p_1|_k^{(m_1)} |p_2|_k^{(m_2)}$, where C_k depends only on k and n.

2. (Special Symbol)

Let $\langle \xi \rangle = \sqrt{1 + |\xi|^2}$ for $\xi \in \mathbb{R}^n$. Prove that for any $m \in \mathbb{R}$, $\alpha \in \mathbb{N}_0^n$ there is some $C_{m,\alpha} > 0$ such that

$$|\partial_{\xi}^{\alpha}\langle\xi\rangle^{m}| \leq C_{m,\alpha}(1+|\xi|)^{m-|\alpha|} \quad \text{for all } \xi \in \mathbb{R}^{n}.$$

Hint: Consider the function $f(a, x) := (a^2 + |x|^2)^{\frac{m}{2}}$, where $a \in \mathbb{R}, x \in \mathbb{R}^n$. Use that f is homogeneous of degree m, i.e., $f(ra, rx) = r^m f(a, x)$ for all r > 0, $a \in \mathbb{R} \setminus \{0\}, x \in \mathbb{R}^n \setminus \{0\}$.

3. (A Simple Functional Calculus)

Let $\mathsf{L}^{\infty}(\mathbb{R}^n) := \{ G : \mathbb{R}^n \to \mathbb{C} \mid G \text{ is bounded and measurable} \}$. For all functions $G \in \mathsf{L}^{\infty}(\mathbb{R}^n)$ set

$$G(D_x)f := \mathcal{F}^{-1}[G(\xi)\hat{f}(\xi)] \quad \text{for all } f \in L^2(\mathbb{R}^n).$$
(1)

(a) Prove that for all $G \in L^{\infty}(\mathbb{R}^n)$ we have $G(D_x) \in \mathcal{L}(L^2(\mathbb{R}^n))$ and the mapping

 $\Phi \colon \mathsf{L}^{\infty}(\mathbb{R}^n) \ni G \mapsto G(D_x) \in \mathcal{L}(L^2(\mathbb{R}^n))$

is linear and bounded. Moreover, show that for every $G_j \in L^{\infty}(\mathbb{R}^n)$, j = 1, 2, it holds that

$$G_1(D_x) \circ G_2(D_x) = (G_1 \cdot G_2)(D_x).$$
 (2)

(b) Prove that if $G \in C^{\infty}_{\text{poly}}(\mathbb{R}^n)$, then $G(D_x) \colon \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ (defined similarly as in (1)), is a bounded operator, and for $G_j \in C^{\infty}_{\text{poly}}(\mathbb{R}^n)$, j = 1, 2, Equation (2) holds as well.

(c) Let $p \in C^{\infty}_{\text{poly}}(\mathbb{R}^n)$. Prove that for all $\lambda \in \mathbb{C} \setminus \overline{p(\mathbb{R}^n)}$ we have $(\lambda - p(D_x))^{-1} \in \mathcal{L}(L^2(\mathbb{R}^n))$ and

$$(\lambda - p(D_x))(\lambda - p(D_x))^{-1}f = (\lambda - p(D_x))^{-1}(\lambda - p(D_x))f = f$$

for all $f \in \mathcal{S}(\mathbb{R}^n)$, where $p(D_x)f = \mathcal{F}^{-1}[p(\xi)\hat{f}(\xi)]$ for all $f \in \mathcal{S}(\mathbb{R}^n)$.

(d) For which $\lambda \in \mathbb{C}$ there exists $(\lambda - \Delta)^{-1}$ in the sense above?