Pseudo-differential operators and applications

Exercises 3

1. (Elementary Composition)

Let $p_{1}(x, \xi)=\sum_{|\alpha| \leq m_{1}} c_{\alpha}(x) \xi^{\alpha}$ be the symbol of a differential operator and let $p_{2} \in S_{1,0}^{m_{2}}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. In this special case it is easy to prove that the composition of the assoziated operators is a pseudodifferential operator. Moreover, it is an elementary calculation to determine the symbol of the composition.
More precisely, prove that

$$
\begin{aligned}
p_{1}\left(x, D_{x}\right) p_{2}\left(x, D_{x}\right) & =\left(p_{1} \# p_{2}\right)\left(x, D_{x}\right), \quad \text { where } \\
p_{1} \# p_{2}(x, \xi) & =\sum_{|\beta| \leq m_{1}} \frac{1}{\beta!} \partial_{\xi}^{\beta} p_{1}(x, \xi) D_{x}^{\beta} p_{2}(x, \xi)
\end{aligned}
$$

In order to prove the statement you may use the identity

$$
\binom{\alpha}{\beta} \xi^{\alpha-\beta}=\frac{1}{\beta!} \partial_{\xi}^{\beta} \xi^{\alpha} .
$$

2. (Properties of Amplitudes)

Let $a_{j} \in \mathcal{A}_{\tau_{j}}^{m_{j}}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right), j=1,2, \alpha, \beta \in \mathbb{N}_{0}^{n}$. Prove that:
(a) $a_{1} \cdot a_{2} \in \mathcal{A}_{\tau_{1}+\tau_{2}}^{m_{1}+m_{2}}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ and for every $k \in \mathbb{N}$ there is a constant $C_{k}>0$ independent of a_{1}, a_{2} such that

$$
\left|a_{1} \cdot a_{2}\right|_{\mathcal{A}_{\tau_{1}+\tau_{2}}^{m_{1}+m_{2}}, k} \leq C_{k}\left|a_{1}\right|_{\mathcal{A}_{\tau_{1}, k}^{m_{1}}}\left|a_{2}\right|_{\mathcal{A}_{\tau_{2}}^{m_{2}}, k} .
$$

(b) $y^{\alpha} \cdot a_{1} \in \mathcal{A}_{\tau_{1}+|\alpha|}^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right), \eta^{\alpha} \cdot a_{1} \in \mathcal{A}_{\tau_{1}}^{m+|\alpha|}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$,
(c) $\partial_{y}^{\alpha} \partial_{\eta}^{\beta} a_{1} \in \mathcal{A}_{\tau_{1}}^{m_{1}}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$.

3. (Simple Properties of the Oscillatory Integrals)

(a) Let $A \in \mathbb{R}^{n \times n}$ such that $\operatorname{det} A \neq 0$ and let $a \in \mathcal{A}_{\tau}^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right), m, \tau \in \mathbb{R}$. Prove that

$$
\mathrm{Os}-\iint e^{-i y \cdot A \eta} a(y, A \eta)|\operatorname{det} A| d x d \eta=\mathrm{Os}^{-} \iint e^{-i y \cdot \eta} a(y, \eta) d x d \eta
$$

(b) Let $a_{1} \in \mathcal{A}_{\tau}^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$, $a_{2} \in \mathcal{A}_{\tau}^{m}\left(\mathbb{R}^{k} \times \mathbb{R}^{k}\right), m, \tau \in \mathbb{R}, n, k \in \mathbb{N}$ and let $a\left(\left(y_{1}, y_{2}\right),\left(\eta_{1}, \eta_{2}\right)\right):=a_{1}\left(y_{1}, \eta_{1}\right) a_{2}\left(y_{2}, \eta_{2}\right) \quad$ for all $\left(y_{1}, y_{2}\right),\left(\eta_{1}, \eta_{2}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{k}$.

Prove that

$$
\begin{aligned}
& \text { Os- } \iint_{\left(\mathbb{R}^{n} \times \mathbb{R}^{k}\right)^{2}} e^{-i y \cdot \eta} a(y, \eta) d y d \eta \\
& \quad=\text { Os- }^{-} \iint_{\left(\mathbb{R}^{n}\right)^{2}} e^{-i y_{1} \cdot \eta_{1}} a_{1}\left(y_{1}, \eta_{1}\right) d y_{1} d \eta_{1} \mathrm{Os}-\iint_{\left(\mathbb{R}^{k}\right)^{2}} e^{-i y_{2} \cdot \eta_{2}} a_{2}\left(y_{2}, \eta_{2}\right) d y_{2} d \eta_{2}
\end{aligned}
$$

$$
\text { where } y=\left(y_{1}, y_{2}\right), \eta=\left(\eta_{1}, \eta_{2}\right)
$$

