Prof. Dr. H. Abels, Prof. Dr. B. Ammann Dr. C. Neira Jimenez Fakultät für Mathematik Universität Regensburg

Pseudo-differential operators and applications Exercises 4

1. (Ellipticity for homogeneous symbols)

Let $p \in S_{1,0}^m(\mathbb{R}^n \times \mathbb{R}^n)$, $m \in \mathbb{R}$, be a symbol that is homogeneous of degree m for $|\xi| \geq 1$, i.e.,

$$p(x, r\xi) = r^m p(x, \xi)$$
 for all $r, |\xi| \ge 1$.

Show that p is elliptic if and only if $p(x,\xi) \neq 0$ for all $|\xi| = 1$, $x \in \mathbb{R}^n$ and

$$\inf_{x \in \mathbb{R}^n, |\xi| = 1} |p(x, \xi)| > 0.$$

2. (Commutator of Pseudodifferential Operators)

Let $p_j \in S_{1,0}^{m_j}(\mathbb{R}^n \times \mathbb{R}^n)$, j = 1, 2. Show that there is some $r \in S_{1,0}^{m_1+m_2-1}(\mathbb{R}^n \times \mathbb{R}^n)$ such that

$$p_1(x, D_x)p_2(x, D_x) - p_2(x, D_x)p_1(x, D_x) = r(x, D_x).$$

3. (Ellipticity stable under lower order symbols)

Let $p \in S_{1,0}^m(\mathbb{R}^n \times \mathbb{R}^n)$, $m \in \mathbb{R}$, be an elliptic symbol, and let $q \in S_{1,0}^{m-\varepsilon}(\mathbb{R}^n \times \mathbb{R}^n)$ for some $\varepsilon > 0$. Prove that $p(x,\xi) + q(x,\xi)$ is an elliptic symbol of order m.

4. (Products of polyhomogeneous symbols)

A symbol $p \in S_{1,0}^m(\mathbb{R}^n \times \mathbb{R}^n)$ is called *polyhomogeneous* if p admits a symbolic expansion

$$p(x,\xi) \sim \sum_{k=0}^{\infty} p_k(x,\xi) \iff p(x,\xi) - \sum_{k=0}^{N} p_k(x,\xi) \in S_{1,0}^{m-N-1}(\mathbb{R}^n \times \mathbb{R}^n), \forall N \in \mathbb{N},$$

where $p_k \in S_{1,0}^{m-k}(\mathbb{R}^n \times \mathbb{R}^n)$ are homogeneous of degree m-k for $|\xi| \geq 1$. Moreover, $p_0(x,\xi)$ is called *principal symbol* of $p(x,\xi)$.

(a) Show that $p(x,\xi)q(x,\xi)$ is a polyhomogeneous symbol of order $m_1 + m_2$ if p and q are polyhomogeneous symbols of order m_1 , m_2 , respectively and that

$$p(x,\xi)q(x,\xi) \sim \sum_{k=0}^{\infty} \sum_{j+l=k} p_j(x,\xi)q_l(x,\xi),$$

where $p(x,\xi) \sim \sum_{j=0}^{\infty} p_j(x,\xi)$ and $q(x,\xi) \sim \sum_{l=0}^{\infty} q_l(x,\xi)$ and p_j and q_l are homogeneous of degree $m_1 - j$, $m_2 - l$, respectively, in $|\xi| \geq 1$.

(b) Show that $p\#q(x,\xi)$ is a polyhomogeneous symbol of order $m_1 + m_2$ if p and q are polyhomogeneous symbols of order m_1 , m_2 , respectively, and that

$$(p\#q)(x,\xi) \sim \sum_{k=0}^{\infty} \sum_{|\alpha|+j+l=k} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} p_j(x,\xi) D_x^{\alpha} q_l(x,\xi).$$