Pseudo-differential operators and applications

Exercises 5

1. (a) Let $p \in S_{1,0}^{m}\left(\mathbb{R}^{2 n} \times \mathbb{R}^{n}\right)$ be a symbol of an operator in (x, y)-form such that $p(x, x, \xi)=0$ for all $x, \xi \in \mathbb{R}^{n}$. Prove that $p\left(x, D_{x}, x\right)=p_{L}\left(x, D_{x}\right)$, where $p_{L} \in S_{1,0}^{m-1}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$.
(b) Prove that the adjoint of an operator $a\left(x, D_{x}, x\right)$ is $a^{*}\left(x, D_{x}, x\right)$ with $a^{*}(x, y, \xi)=\overline{a(y, x, \xi)}$ for all x, y, ξ.
2. Let $p \in S_{1,0}^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. Prove that there exists $q \in S_{1,0}^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ such that

$$
p\left(x, D_{x}\right)=q\left(D_{x}, x\right)
$$

3. Let $X^{s}, s \in \mathbb{R}$, be Banach spaces such that
(i) $\mathcal{S}\left(\mathbb{R}^{n}\right) \subseteq X^{s} \subseteq \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ with continuous embeddings, where functions and regular distributions are identified in the standard way.
(ii) $\left\langle D_{x}\right\rangle^{m}: X^{s+m} \rightarrow X^{s}$ is a bounded linear operator for all $s, m \in \mathbb{R}$.
(iii) $p\left(x, D_{x}\right): X^{0} \rightarrow X^{0}$ for all $p \in S_{1,0}^{0}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$.

Prove that
(a) $X^{s}=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right):\left\langle D_{x}\right\rangle^{s} u \in X^{0}\right\}$ and $X^{s} \subseteq X^{t}$ if $t \leq s$ with continuous embedding.
(b) $p\left(x, D_{x}\right): X^{s+m} \rightarrow X^{s}$ for all $p \in S_{1,0}^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$, $s, m \in \mathbb{R}$.
(c) If $p \in S_{1,0}^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ is an elliptic symbol and

$$
p\left(x, D_{x}\right) u=f
$$

with $f \in X^{s}$ and $u \in X^{-\infty}:=\bigcup_{s \in \mathbb{R}} X^{s}$, then $u \in X^{s+m}$.

