Pseudo-differential operators and applications Exercises 6

1. Let $p_j \in S_{1,0}^{m_j}(\mathbb{R}^n \times \mathbb{R}^n)$, j = 0, 1, 2, ..., with $m_0 \ge \cdots \ge m_j \to -\infty$ as $j \to \infty$. Prove that there exists $p \in S_{1,0}^{m_0}(\mathbb{R}^n \times \mathbb{R}^n)$ such that

$$p \sim \sum_{j=0}^{\infty} p_j$$
, i.e. for all $N \in \mathbb{N}$, $p - \sum_{j=0}^{N} p_j \in S_{1,0}^{m_{N+1}}(\mathbb{R}^n \times \mathbb{R}^n)$.

2. Let $p \in S_{1,0}^m(\mathbb{R}^n \times \mathbb{R}^n)$. We define the principal symbol of $p(x, D_x)$ to be the equivalence class of p in $S_{1,0}^m(\mathbb{R}^n \times \mathbb{R}^n)/S_{1,0}^{m-1}(\mathbb{R}^n \times \mathbb{R}^n)$. One also calls any member of this equivalence class a principal symbol of $p(x, D_x)$.

Let A be a pseudodifferential operator on a manifold M with local symbol p.

- (a) Prove that the principal symbol of A transforms under diffeomorphisms like a function on the cotangent bundle T^*M .
- (b) Let p be a polyhomogeneous symbol, i.e. there exist $p_{m-j} \in S_{1,0}^{m-j}(\mathbb{R}^n \times \mathbb{R}^n)$, $j = 0, 1, 2, \ldots$ with

$$p_{m-j}(x,t\xi) = t^{m-j}p_{m-j}(x,\xi)$$
, for all $t > 1$, $|\xi| \ge 1$,

such that $p \sim \sum_{j=0}^{\infty} p_{m-j}$. Show that the principal symbol of A is a well defined function

$$p_m: T^*M \setminus \{0\} \to \mathbb{C}.$$

3. Let $K : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C}$ be a smooth function with compact support. Prove that the operator

$$\mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$$
$$u \mapsto \left(x \mapsto \int_{\mathbb{R}^n} K(x, y) u(y) \, dy \right)$$

is in OP $S_{1,0}^{-\infty}$.

- 4. Let M be a compact manifold. A parametrization $\phi: U \to V \subset M$ is a good parametrization if it can be extended to a parametrization $\tilde{\phi}: \tilde{U} \to \tilde{V}$, such that U is a subset of \tilde{U} with compact closure (and thus the same holds for V and \tilde{V}).
 - (a) Show that a linear map $P: C^{\infty}(M) \to C^{\infty}(M)$ is a pseudo-differential operator if and only if for any good parametrization $\phi: U \to V$ the linear map P^{ϕ} given by the composition

$$C_c^{\infty}(V) \xrightarrow{(\phi^{-1})^*} C_c^{\infty}(U) \hookrightarrow C^{\infty}(M) \xrightarrow{P} C^{\infty}(M) \xrightarrow{\phi^*} C^{\infty}(U)$$

extends to a pseudo-differential operator on \mathbb{R}^n .

(b) Assume that $\{\phi_1, \ldots, \phi_k\}$ is an atlas. Is it sufficient to check whether all P^{ϕ_i} extend to a pseudo-differential operator?