Pseudo-differential operators and applications

Exercises 6

1. Let $p_{j} \in S_{1,0}^{m_{j}}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right), j=0,1,2, \ldots$, with $m_{0} \geq \cdots \geq m_{j} \rightarrow-\infty$ as $j \rightarrow \infty$.

Prove that there exists $p \in S_{1,0}^{m_{0}}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ such that

$$
p \sim \sum_{j=0}^{\infty} p_{j} \text {, i.e. for all } N \in \mathbb{N}, p-\sum_{j=0}^{N} p_{j} \in S_{1,0}^{m_{N+1}}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)
$$

2. Let $p \in S_{1,0}^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. We define the principal symbol of $p\left(x, D_{x}\right)$ to be the equivalence class of p in $S_{1,0}^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right) / S_{1,0}^{m-1}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. One also calls any member of this equivalence class a principal symbol of $p\left(x, D_{x}\right)$.
Let A be a pseudodifferential operator on a manifold M with local symbol p.
(a) Prove that the principal symbol of A transforms under diffeomorphisms like a function on the cotangent bundle $T^{*} M$.
(b) Let p be a polyhomogeneous symbol, i.e. there exist $p_{m-j} \in S_{1,0}^{m-j}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$, $j=0,1,2, \ldots$ with

$$
p_{m-j}(x, t \xi)=t^{m-j} p_{m-j}(x, \xi), \text { for all } t>1,|\xi| \geq 1
$$

such that $p \sim \sum_{j=0}^{\infty} p_{m-j}$. Show that the principal symbol of A is a well defined function

$$
p_{m}: T^{*} M \backslash\{0\} \rightarrow \mathbb{C}
$$

3. Let $K: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{C}$ be a smooth function with compact support. Prove that the operator

$$
\begin{aligned}
\mathcal{S}\left(\mathbb{R}^{n}\right) & \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right) \\
u & \mapsto\left(x \mapsto \int_{\mathbb{R}^{n}} K(x, y) u(y) d y\right)
\end{aligned}
$$

is in $\mathrm{OP} S_{1,0}^{-\infty}$.
4. Let M be a compact manifold. A parametrization $\phi: U \rightarrow V \subset M$ is a good parametrization if it can be extended to a parametrization $\widetilde{\phi}: \widetilde{U} \rightarrow \widetilde{V}$, such that U is a subset of \widetilde{U} with compact closure (and thus the same holds for V and $\widetilde{V})$.
(a) Show that a linear map $P: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is a pseudo-differential operator if and only if for any good parametrization $\phi: U \rightarrow V$ the linear map P^{ϕ} given by the composition

$$
C_{c}^{\infty}(V) \xrightarrow{\left(\phi^{-}-\right)^{*}} C_{c}^{\infty}(U) \hookrightarrow C^{\infty}(M) \xrightarrow{P} C^{\infty}(M) \xrightarrow{\phi^{*}} C^{\infty}(U)
$$

extends to a pseudo-differential operator on \mathbb{R}^{n}.
(b) Assume that $\left\{\phi_{1}, \ldots, \phi_{k}\right\}$ is an atlas. Is it sufficient to check whether all $P^{\phi_{i}}$ extend to a pseudo-differential operator?

