Pseudo-differential operators and applications Exercises 7

- 1. Let M be compact manifold. A parametrization $\phi : U \to V \subset M$ is a good parametrization if it can be extended to a parametrization $\tilde{\phi} : \tilde{U} \to \tilde{V}$, such that U is a subset of \tilde{U} with compact closure (and thus the same holds for V and \tilde{V}).
 - (a) Show that a linear map $P: C^{\infty}(M) \to C^{\infty}(M)$ is a pseudo-differential operator if and only if for any good parametrization $\phi: U \to V$ the linear map P^{ϕ} given by composition

$$C^{\infty}_{c}(V) \stackrel{(\phi^{-1})^{*}}{\to} C^{\infty}_{c}(U) \hookrightarrow C^{\infty}(M) \stackrel{P}{\to} C^{\infty}(M) \stackrel{\phi^{*}}{\to} C^{\infty}(U)$$

extends to a pseudo-differential operator on \mathbb{R}^n .

- (b) Assume that $\{\phi_1, \ldots, \phi_k\}$ is an atlas. Is it sufficient to check whether all P^{ϕ_i} extend to a pseudo-differential operator?
- 2. Let M be a compact manifold with a fixed volume form, and E and F two vector bundles over M. Let $P: \Gamma(E) \to \Gamma(F)$ be a pseudo-differential operator of symbol class $S_{1,0}^m$. Then there exists an pseudo-differential operator P^* : $\Gamma(F^*) \to \Gamma(E^*)$ which is (formally) adjoint to P, i.e.

$$(\psi, P\phi)_{L^2} = (P^*\psi, \phi)_{L^2}.$$

- 3. Let u be a distribution on M, which is a compact manifold or Euclidean space. Show that u is smooth on an open subset U of M in the sense of the lecture if and only if for all $x \in U$ there is an open neighborhood V_x of x in U such that u is smooth on V_x .
- 4. Let P be an elliptic pseudodifferential operator on Euclidean space or on a compact manifold. Show for all $u \in \mathcal{D}'$

sing supp (Pu) = sing supp u.

Note: This property is called *hypo-ellipticity*.