Pseudo-differential operators and applications Exercises 8

- 1. Examples of wave front sets
 - (a) Determine the wave front set of the delta distribution on \mathbb{R}^n .
 - (b) Let V be a linear subspace of \mathbb{R}^n with the induced volume element dv. Let δ_V be the distribution defined by $\langle \delta_V, f \rangle = \int_V f \, dv$. Determine the wave front set of δ_V .
 - (c) As above, but let V be a submanifold of \mathbb{R}^n or of a manifold with an arbitrary volume form.
- 2. Verify that the definition of a wave front set on a manifold does not depend on the choice of parametrization, see Corollary 4.15-1)-a).
- 3. Let $U_1 \subset \mathbb{R}^n$ and $U_2 \subset \mathbb{R}^m$ be open subsets. Show for $u_1 \in \mathcal{D}(U_1)$ and $u_2 \in \mathcal{D}(U_2)$ and some obvious rearrangement in the coordinates we have

 $WF(u_1 \otimes u_2) \subset (WF(u_1) \times WF(u_2) \cup ((\operatorname{supp} u_1 \times \{0\}) \times WF(u_2))$ $\cup (WF(u_1) \times (\operatorname{supp} u_2 \times \{0\}))$

4. Show that $\delta(|x|^2 - 1)$ is well-defined as the pullback of the delta distribution under the map $\mathbb{R}^n \to \mathbb{R}$, $x \mapsto |x|^2 - 1$. Investigate whether this distribution is related to a distribution studied in Exercise 1.