Differential Geometry II Exercise Sheet no. 4

Exercise 1

Let $\pi : \overline{M} \to M$ be a covering of the manifold M, and let g be a Riemannian metric on M. We equip \overline{M} with the metric π^*g defined as

$$\pi^* g_p(X,Y) := g_{\pi(p)}((\mathrm{d}_{\pi(p)}\pi)(X), (\mathrm{d}_{\pi(p)}\pi)(Y)), \quad \forall p \in \overline{M}, \, \forall X, Y \in T_p \overline{M}.$$

$$\tag{1}$$

- i) Show that if M is compact, then (\overline{M}, π^*g) is complete.
- ii) Is it still true that (\overline{M}, π^*g) is complete when $\pi : \overline{M} \to M$ is only locally diffeomorphic and surjective?

Exercise 2

Let $\pi : \overline{M} \to M$ be a surjective map which is locally diffeomorphic and let g, resp. π^*g be Riemannian metrics on M, resp. \overline{M} , that are related by (1). We assume that (\overline{M}, π^*g) is complete. Show that:

- i) (M, q) is also complete.
- ii) The map π is a covering. Hint: Use the Hopf-Rinow Theorem.

Exercise 3

Let G be a Lie group, let g a bi-invariant Riemannian metric on G, and let ad: $\mathfrak{g} \to \operatorname{End}(\mathfrak{g})$ be the map introduced in Exercise 3, ii) on Sheet no. 3.

- i) Show that the map ad takes values into the skew-symmetric endomorphisms of $(\mathfrak{g} = T_{\mathbb{1}}G, g_{\mathbb{1}})$. Moreover, one can show that $\operatorname{ad}(X)(Y) = [X, Y]$, for all $X, Y \in \mathfrak{g}$ (we assume this result, it is not part of the exercise to prove it).
- ii) Use i) and the Koszul formula to show that the Levi-Civita connection of g is given by $\nabla_X Y = \frac{1}{2}[X,Y]$, for all left-invariant vector fields X,Y.
- iii) (Bonus points) Show that the sectional curvature of g is nonnegative. (Hint: First compute the Riemannian curvature tensor using ii): $R(X,Y)Z = -\frac{1}{4}[[X,Y],Z]$, for all left-invariant vector fields X,Y,Z. Use also the Jacobi identity).

Hand in the solutions on Monday, May 13, 2013 before the lecture.