Differential Geometry II Exercise Sheet no. 9

Exercise 1

Let (M, g) be a connected, complete and simply-connected Riemannian manifold with sectional curvature $K \leq 0$. Show that there is a unique geodesic between any two points on M. Hint: use Cartan-Hadamard Theorem.

Exercise 2

Let M be a connected manifold and $p \in M$. We consider the map defined in the lecture between the fundamental group of M and the set of free homotopy classes of loops:

$$F: \pi_1(M, p) \to \pi_o \mathcal{L}(M),$$

 $[\gamma] \mapsto [\gamma]_{\text{free}}.$

Show the following:

- i) F is surjective.
- ii) F induces a well-defined map on the set of conjugacy classes in $\pi_1(M, p)$, that is $[\gamma \tau \gamma^{-1}]_{\text{free}} = [\tau]_{\text{free}}$, for any $\gamma, \tau \in \pi_1(M, p)$.
- iii) The map induced by F on the set of conjugacy classes in $\pi_1(M, p)$ is injective.

Exercise 3

We consider the Hopf fibration and the Fubini-Study metric on $\mathbb{C}P^n$ introduced in Exercise 2, (iii) on Sheet no. 8. We use the same notation as in this exercise, and again X^v is the vertical part of X. The vertical vectors of the Hopf fibration in the point $z \in S^{2n+1}$ are of the form λiz , $\lambda \in \mathbb{R}$.

For
$$X, Y \in \mathbb{C}^{n+1}$$
, we define $\langle X, Y \rangle_{\mathbb{C}} := \sum_{j=1}^{n+1} X_j \overline{Y}_j$ and $\langle X, Y \rangle_{\mathbb{R}} := \operatorname{Re}(\sum_{j=1}^{n+1} X_j \overline{Y}_j)$.
Then it holds $\langle X, Y \rangle_{\mathbb{C}} = \langle X, Y \rangle_{\mathbb{R}} + i \langle X, iY \rangle_{\mathbb{R}}$. Show the following:

- i) For any $\widetilde{X}_0 \in \mathbb{C}^{n+1}$, the map $w \mapsto \widetilde{X}_w := \widetilde{X}_0 \langle \widetilde{X}_0, w \rangle_{\mathbb{C}} w$ is a well-defined vector field on S^{2n+1} .
- ii) \widetilde{X} is horizontal everywhere.
- iii) Each point $p \in \mathbb{C}P^n$ admits an open neighborhood U and a smooth map $f: \pi^{-1}(U) \to S^1$, such that $f(\lambda z) = \lambda f(z)$, for all $z \in \pi^{-1}(U)$ and $\lambda \in S^1$.
- iv) $f\widetilde{X}$ is a horizontal lift of a vector field $X \in \Gamma(TU)$.

v) For a fixed $z \in S^{2n+1}$ assume that $\langle \widetilde{X}_0, z \rangle_{\mathbb{C}} = \langle \widetilde{Y}_0, z \rangle_{\mathbb{C}} = 0$. For the Levi-Civita connection ∇ of S^{2n+1} it holds:

$$\nabla_{\widetilde{Y}_w}\widetilde{X}_w|_{w=z} = -(\operatorname{Im}(\langle \widetilde{X}_0, \widetilde{Y}_0 \rangle_{\mathbb{C}}))iz$$

- vi) Choose f such that $f(z_0)=1$ for a $z_0\in\pi^{-1}(p)$. Conclude that $[f\widetilde{Y},f\widetilde{X}]^v|_{z_0}=-2(\mathrm{Im}\langle\widetilde{X}_0,\widetilde{Y}_0\rangle_{\mathbb{C}})iz_0$.
- vii) The sectional curvature K of $\mathbb{C}P^n$ satisfies: $1 \leq K \leq 4$. For which planes is K=4 and for which planes is K=1?

Hand in the solutions on Monday, June 17, 2013 before the lecture.