BOTT PERIODICITY IN K-THEORY OF C*-ALGEBRAS

SNIGDHAYAN MAHANTA

ABSTRACT. The aim of this set of talks is to understand the proof of Bott periodicity due to Cuntz [2].

- (1) **Talk 1:** Introduce the category of C^* -algebras. Its objects are C^* -algebras and its morphisms are *-homomorphisms. Explain the notion of positive elements and that of (minimal) C^* -tensor product $\hat{\otimes}$. Establish the following:
 - existence of kernel, cokernel, and (countable) inductive limits,
 - *-homomorphisms are norm decreasing.

Remark. You may need to treat as black-boxes a few results like functional calculus, description of positive elements, spectral radius formula for normal elements, etc..

UPSHOT: In the category of C^* -algebras a sequence $0 \to A \to B \to C \to 0$ is short exact if and only if it is algebraically short exact.

Reference: Chapter 1 of [4]

- (2) Talk 2: Introduce K_0 -theory of C^* -algebras in two steps construct the semigroup of projections $P_{\infty}(A)$ for unital A and then apply the Grothendieck group functor. Explain the extension to nonunital C^* -algebras. Briefly sketch functoriality and then establish the following:
 - half-exactness of K_0 -theory,
 - C^* -stability: $K_0(A \hat{\otimes} \mathbb{K}) \cong K_0(A)$, where $\mathbb{K} = \varinjlim_n M_n(\mathbb{C})$.

If time permits talk about Serre-Swan theorem.

Remark. The K_0 -group can be constructed more generally for arbitrary rings via idempotents. You can also take this approach. You may assume the continuity of K_0 -theory, viz., $K_0(\varinjlim_n A_n) \cong \varinjlim_n K_0(A_n)$.

Reference: The material is scattered across chapters 2, 3 and 4 of [5] (you may also consult [3])

(3) Talk 3: Set $\Sigma A = C_0((0,1)) \hat{\otimes} A$. Establish the Puppe sequence for K_0 -theory, i.e., for every short exact sequence $0 \to A \to B \to C \to 0$ there is a long exact sequence

$$\cdots \to \mathrm{K}_0(\Sigma A) \to \mathrm{K}_0(\Sigma B) \to \mathrm{K}_0(\Sigma C) \to \mathrm{K}_0(A) \to \mathrm{K}_0(B) \to \mathrm{K}_0(C)$$

For this briefly sketch the homotopy invariance of K_0 -theory. Combined with half exactness of K_0 -theory one obtains the desired Puppe sequence (see 21.4 of [1])

Introduce the Toeplitz extension $0 \to \mathbb{K} \to \mathfrak{T} \to \mathrm{C}(S^1) \to 0$. Talk a bit about the theory of universal C^* -algebras; the Toeplitz algebra \mathfrak{T} is the universal unital C^* -algebra generated by one isometry [Coburn].

Reference: Chapter 4 of [3] and chapters 3-4 of [5]

- (4) Talk 4: Set inductively $\Sigma^n A = \Sigma(\Sigma^{n-1}A)$. The Toeplitz extension $0 \to \mathbb{K} \to \mathfrak{T} \to C(S^1) \to 0$ gives rise to a reduced Toeplitz extension $0 \to \mathbb{K} \to \mathfrak{T}_0 \to C_0((0,1)) \to 0$. Now do the following to complete the proof of Bott periodicity:
 - show that $K_0(\Sigma^n A) = 0$,
 - apply $-\hat{\otimes}A$ to the reduced Toeplitz extension and insert the value of $K_0(\Sigma^n A)$ in the Puppe sequence associated with it, and
 - use C^* -stability of K_0 -theory.

Remark. The technique is very general and actually shows that any (abelian group valued) functor F on the category of C^* -algebras that satisfies homotopy invariance, C^* -stability, and half-exactness is Bott periodic, i.e., for any C^* -algebra A one has $F(\Sigma^2 A) \cong F(A)$.

Reference: [2] or Chapter 4 of [3]

References

- [1] B. Blackadar. K-theory for operator algebras, volume 5 of Mathematical Sciences Research Institute Publications. Cambridge University Press, Cambridge, second edition, 1998.
- [2] J. Cuntz. K-theory and C*-algebras. In Algebraic K-theory, number theory, geometry and analysis (Bielefeld, 1982), volume 1046 of Lecture Notes in Math., pages 55–79. Springer, Berlin, 1984.
- [3] J. Cuntz, R. Meyer, and J. M. Rosenberg. *Topological and bivariant K-theory*, volume 36 of *Oberwolfach Seminars*. Birkhäuser Verlag, Basel, 2007.
- [4] G. K. Pedersen. C*-algebras and their automorphism groups, volume 14 of London Mathematical Society Monographs. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1979.
- [5] M. Rørdam, F. Larsen, and N. Laustsen. An introduction to K-theory for C*-algebras, volume 49 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2000.

 $E ext{-}mail\ address: snigdhayan.mahanta@mathematik.uni-regensburg.de}$

FAKULTÄT FÜR MATHEMATIK, UNIVERSITÄT REGENSBURG, 93040 REGENSBURG, GERMANY.