Übungen zur Indextheorie

Universität Regensburg, Wintersemester 2016/17
Prof. Dr. Bernd Ammann/ PD Dr.habil. Olaf Müller

Exercise 1

Let (V, g) be a complex Hermitean vector space fo finite dimension. Let

$$
S:=\Lambda_{\mathbb{C}}^{\bullet} V=\bigoplus_{k=0}^{\operatorname{dim}_{\mathbb{C}} V} \Lambda_{\mathbb{C}}^{k} V
$$

be the exterior product in the sense of complex vector spaces. We define for $v \in V$ in analogy to the real case $v^{b}:=g(\cdot, v)$. Thus v^{b} is an element of the dual space V^{*}, but $v \mapsto v^{b}$ is semilinear, i.e. \mathbb{R}-linear and $(i v)^{b}=-i v^{b}$. For $\alpha \in \Lambda_{\mathbb{C}}^{k} V$ we define $\left.v^{b}\right\lrcorner \alpha \in \Lambda_{\mathbb{C}}^{k-1} V$ by plugging v^{b} in the first argument of α viewed as multilinear map $\alpha: V^{*} \times \cdots \times V^{*} \rightarrow \mathbb{C}$. Further $v\left\llcorner\alpha:=v^{b}\right\lrcorner \alpha$. Show that $\Lambda^{*} V$ is a Clifford module for the Euclidean space ($V, \Re g$) with the Clifford multiplication • defined by

$$
v \cdot \alpha:=v \wedge \alpha-v\llcorner\alpha .
$$

Exercise 2

Let W be a Clifford module for the Euclidean \mathbb{R}^{n} and the standard basis e_{1}, \ldots, e_{n}. We define $\operatorname{vol} \in \operatorname{End}(W)$ by $\operatorname{vol}(w):=e_{1} \cdot \ldots \cdot e_{n} \cdot w$ for all $w \in W$.

- Compute vol ${ }^{2}$.
- Does e_{k}. commute or anticommute with vol?
- For $n \in 2 \mathbb{N}$, show that there is $v_{n} \in\{1, i\}$ such that W is a Clifford module for \mathbb{R}^{n+1} with the Clifford multiplication $\tilde{\sim}: \mathbb{R}^{n+1} \otimes W \rightarrow W$ defined by

$$
e_{k} \tilde{\sim} \cdot w= \begin{cases}e_{k} \cdot w & \forall k \in\{1, \ldots, n\} \\ v_{n} \cdot \operatorname{vol}(w) & \text { for } k=n+1\end{cases}
$$

- For $n \in 2 \mathbb{N}+1$, show that $W^{\prime}=W \oplus W$ is a Clifford module for \mathbb{R}^{n+1} with the Clifford multiplication $\tilde{\sim}: \mathbb{R}^{n+1} \otimes W^{\prime} \rightarrow W^{\prime}$ defined by

$$
e_{k} \tilde{\cdot}\left(w_{1}, w_{2}\right)= \begin{cases}\left(e_{k} \cdot w_{1},-e_{k} \cdot w_{2}\right) & \forall k \in\{1, \ldots, n\} \\ \left(-w_{2}, w_{1}\right) & \text { for } k=n+1\end{cases}
$$

Exercise 3

Let W be a Clifford bundle over a Riemannian manifold (M, g) with Clifford multiplication $\mathrm{cl}: T^{*} M \otimes W \rightarrow W$ (a differential operator of order 0). Compute cl^{\sharp} and $\mathrm{cl}^{\sharp} \circ \mathrm{cl}$.

Exercise 4

1. Assume that there is a constant $C>0$ such that for all 1 -forms ω we have

$$
\left\langle\mathcal{K}^{1} \omega, \omega\right\rangle \geq C\langle\omega, \omega\rangle,
$$

where \mathcal{K}^{1} is the curvature endomorphism. Let $f \in C^{\infty}(M)$ be an eigenfunction of Δ for an eigenvalue $\lambda \neq 0$. Show that

$$
\lambda \geq C
$$

2. Let (M, g) be a Riemannian manifold. The metric g defines a bundle metric on the cotangential bundle $T^{*} M \rightarrow M$ via the product rule. Compute its curvature and the curvature endomorphism \mathcal{K}_{1} on forms!
3. Conclude a lower estimate for the first eigenvalue of the Laplace operator on smooth real-valued functions.
