Übungen zur Indextheorie

Universität Regensburg, Wintersemester 2016/17
Prof. Dr. Bernd Ammann/ PD Dr.habil. Olaf Müller

Exercise 1

Let V carry a fixed indefinit symmetric bilinear form. Let W be a $\mathrm{Cl}(V)$ module. A \mathbb{Z}_{2} grading of W is a decomposition $W=W_{+} \oplus W_{-}$, and let ω be the grading operator, i.e. it acts as ± 1 on $W_{ \pm 1}$. We say that the action of $\mathrm{Cl}(V)$ on W is even iff every element of $\mathrm{Cl}(V)$ preserves the grading of W (= commutes with $\omega)$, and odd iff the action any element of V reverses the grading ($=$ anti-commutes with ω). A \mathbb{Z}_{2}-graded Clifford module is a Clifford module with a \mathbb{Z}_{2}-grading such that the Clifford action is odd.

1. Let W be a \mathbb{Z}_{2}-graded $\mathrm{Cl}_{r, s}$-module. We define a new Clifford multiplication by

$$
X \bullet \phi=X \cdot \omega \phi
$$

Show that we obtain a \mathbb{Z}_{2}-graded $\mathrm{Cl}_{s, r}$-module.
2. Show that if we have two \mathbb{Z}_{2}-graded actions on W, one by $\mathrm{Cl}_{r, s}$ and the other by $\mathrm{Cl}_{k, \ell}$, commuting with each other, then we can define a \mathbb{Z}_{2}-graded action of $\mathrm{Cl}_{r+\ell, k+s}$ on W.
3. Show that if there is a even action of $\mathrm{Cl}_{r, s}$ on W and a odd action of $\mathrm{Cl}_{k, \ell}$ on W commuting with each other then this defines an action of $\mathrm{Cl}_{r+k, s+\ell}$.

Exercise 2

Let M be the standard torus. Calculate the spectrum of the Dirac operator on the form bundle $W:=\Lambda^{*} T^{*} M$.

Exercise 3

Let M be an n-dimensional compact oriented manifold, $k \in\{0, \ldots, n\}$.

1. Show that the cup product

$$
S: H^{k}(M) \times H^{n-k}(M) \rightarrow \mathbb{R}, \quad([\alpha],[\beta]) \mapsto \int_{M} \alpha \wedge \beta
$$

is well-defined, i.e. for every two representatives $\alpha^{\prime} \in[\alpha]$ and $\beta^{\prime} \in[\beta]$ we have

$$
\int \alpha^{\prime} \wedge \beta^{\prime}=\int \alpha \wedge \beta
$$

2. Now let $n=2 m$ be even. Show that for $k=m$ we have

$$
S([\beta],[\alpha])=(-1)^{m} S([\alpha],[\beta]) .
$$

Exercise 4

Let $D: \Gamma(W) \rightarrow \Gamma(W)$ be a generalized Dirac operator over a compact n-dimensional manifold and let $V \subset W$ be a parallel subbundle with

$$
\langle\mathcal{K}(v), v)\rangle \geq \alpha\langle v, v\rangle \quad \forall v \in V .
$$

Let λ be an eigenvalue $\left.D^{2}\right|_{\Gamma(V)}$. Show that

$$
\lambda \geq \frac{n}{n-1} \alpha
$$

Hint: Use Exercise 2 on Sheet 3.
Conclude: If $\operatorname{ric}(v, v) \geq(n-1) \kappa\|v\|^{2}$, then the first positive eigenvalue of the LaplaceBeltrami operator $\Delta: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is at least $n \kappa$.

Hint: Use Exercise 4 on Sheet 2.

