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Exercise 1

From the lecture we know that the Lie algebras spin(n) and so(n) are isomorphic. Describe
explicitly the isomorphism between spin(n) as a linear subspace of Cl0n and so(n) as the
subspace of antisymmetric matrices.

Exercise 2

In order to provide the beginning of the inductive proof of Theorem 14.13, show that
there is a Z2-equivariant diffeomorphism D : Spin(3)→ S3.

Exercise3

Conclude from the local formula (for ψ = [ε, φ])
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the local formula
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Exercise 4

Conclude from the Exercise Sheet No 9, Exercises 2 and 3, that the spectrum of the Dirac
operator is reflection-symmetric around 0 in dimension 1 mod 4.
Hint: Construct a complex-antilinear map commuting with D.


