Übungen zur Indextheorie

Universität Regensburg, Wintersemester 2016/17 Prof. Dr. Bernd Ammann/ PD Dr.habil. Olaf Müller Exercise Sheet 11, due to 20.1.2017

Exercise 1

Show that the connected component of the identity $SO_0(n,1)$ of O(n,1) is noncompact. Consequently, in the Lorentzian case we cannot proceed by the Haar measure construction of an invariant scalar product on the spinor module as in the Riemannian case. To that aim, let W be a Cl_n -module and

1. Describe the invariant scalar product: For E being the subgroup of Cl_n^x generated by an orthonormal basis $e_1, ..., e_n$, show that E contains $2 \cdot 2^n$ elements. Let $\langle \cdot, \cdot \rangle_0$ be any Hermitean bilinear form on W and define a Hermitean bilinear form $\langle \cdot, \cdot \rangle$ on W by

$$\langle v, w \rangle := \sum_{e \in E} \langle e \cdot v, e \cdot w \rangle_0.$$

Show that this is an invariant scalar product and that Clifford multiplication is skew-symmetric w.r.t. $\langle \cdot, \cdot \rangle$.

2. Now for n = k + l with $k, l \in \mathbb{N}$ define, for $\phi \in W$,

$$e_j \bullet \phi = \begin{cases} e_j \cdot \phi & \Leftrightarrow j \le k \\ ie_j \cdot \phi & \Leftrightarrow j > k, \end{cases}$$

and $\langle \phi, \psi \rangle_{k,l} := \langle e_{k+1} \cdot \dots \cdot e_{k+l} \cdot \phi, \psi \rangle$. Show that this defines a $\text{Cl}_{k,l}$ -module structure with a Spin(k,l)-invariant bilinear form for which Clifford multiplication with $v \in \mathbb{R}^{k,l} \in \text{Cl}_{k,l}$ satisfies

$$\langle v \bullet \phi, \psi \rangle_{k,l} = i^{l-1} \langle \phi, v \bullet \psi \rangle_{k,l}.$$

What is the signature of this invariant bilinear form in the Lorentzian case?

Exercise 2

Show that if equality holds in Friedrich's estimate on a Riemannian spin manifold (M, g) then (M, g) carries a Killing spinor, i.e. a spinor $\phi \in \Gamma(\Sigma M)$ satisfying $\nabla_X \phi = \alpha X \cdot \phi$ for all $X \in TM$.

Hint: Examine the connection $\tilde{\nabla}$ on the spinor bundle defined by $\tilde{\nabla}_X := \nabla_X - \lambda X$.

Exercise 3

Show that if a Riemannian spin manifold carries a Killing spinor then it is an Einstein manifold. If the spinor is parallel, then it is Ricci-flat.

Hint: Calculate $\sum_{i=1}^{n} e_i \cdot R(e_i, X) \phi$ in two ways.

Bonus question: Which weaker statement holds in the general semi-Riemannian case?