Vorlesungsskript: Das Atiyah-Singer-Indextheorem

Prof. Bernd Ammann

Wintersemester 2016/17

Universität Regensburg

Version: 16. Juni 2017

INHALTSVERZEICHNIS

Vor	rwort	2
Not	tation	2
1.	Motivation	3
2.	Clifford-Moduln	3
3.	Verallgemeinerte Dirac-Operatoren	4
4.	Differentialoperatoren	6
5.	Der Bochner-Trick	9
6.	Analysis von Dirac-Operatoren auf dem Standard-Torus	13
7.	Analysis von Dirac-Operatoren auf Riemannschen Mannigfaltigkeiten	17
8.	Hodge-Theorie	26
9.	Wärmeleitungs- und Wellen-Geichung	29
10.	Der Wärmekern	33
11.	Der formale Wärmekern/The formal heat kernel	36
12.	Hilbert-Schmidt operators and trace class operators	43
13.	Weyl asymptotic theorem	47
14.	Clifford-Algebren und ihre Darstellungstheorie	49
15.	Lie-Gruppen, Spin-Gruppen, Hauptfaserbündel	52
15.1	1. Lie-Gruppen und ihre Darstellungen	52
15.2	2. Die Spin-Gruppe	53
	1	

15.3. Haup	tfaserbündel und assoziierte Vektorbündel	55
16. Der kla	assische Dirac-Operator	56
17. The ha	rmonic oscillator	59
18. Charak	teristic classes	59
19. Fredho	Im operators and the index problem	59
20. The At	iyah-Singer index theorem	59
21. Filtered	d and graded algebras and symbol maps	59
Reskalierung	gen und Symbole	60
22. Getzler	r-Symbole	61
22.1. Getzl	er-Symbole von Differential-Operatoren	61
22.2. Getzl	er symbols of smoothing operators	63
Weitere Lite	eratur	63
Anhang A.	Das Symbol von Differential-Operatoren	63
Anhang B.	Ideale in Algebren	65
Anhang C.	Lie-Algebren und Zusammenhangs-1-Formen	65
Anhang D.	$\pi_1({ m Spin}(n))$	66
Literatur		66
Literatur		67

VORWORT

Das vorliegende Skript wurde anlässlich einer Vorlesung von Bernd Ammann im Wintersemester 2002/03 an der Universität Hamburg verfasst, und wurde im Rahmen der Vorlesung "Indextheorie" im Wintersemester 2016/17 in Regensburg modifiziert und ergänzt. Inhaltlich beruht es teilweise auch auf einer Vorlesung von Christian Bär in Freiburg, und dort sind viele Ideen aus einem Buch von J. Roe eingegangen. Eine andere wichtige Quelle ist das Buch von Berline, Getzler und Vergne und das Buch von Lawson und Michelsohn.

Da die Vorlesung in Hamburg auf deutsch gelesen wurde und die Vorlesung in Regensburg auf englisch, sind mehrere Teile im Skript englisch ergänzt.

Literaturempfehlungen: Besonders empfehle ich [Roe88] und [LM89].

NOTATION

Eine Metrik auf einem komplexen Vektorbündeln ist in diesem Skript immer ein hermitesches (pos. definites) Skalarprodukt auf jeder Faser, das glatt vom Basispunkt abhängt. Hermitesche Skalarprodukte sind komplex linear im ersten, und komplex antilinear im zweiten Argument.

In diesem Skript gilt $0 \in \mathbb{N}$, und 0 ist weder positiv noch negativ.

Auf Vektorbündeln $V \to M$ bezeichnet |.| eine punktweise Norm, das heißt eine Norm auf jedem V_x , $x \in M$. Normen auf dem Raum aller Schnitte bezeichnen wir mit $\|.\|$ oft mit Indizes versehen, wie zum Beispiel $\|.\|_k$ oder $\|.\|_{L^2}$. Für $\varphi \in \Gamma(V)$ ist also $|\varphi| \in C^0(M)$ und $\|\varphi\| \in \mathbb{R}$. Ist V^* der zu V duale Vektorraum oder das zu V duale Vektorbündel. Dann ist $\langle ., . \rangle$ die punktweise Dualitätspaarung. Die Integrierte Paarung schreiben wir mit $\langle\!\langle ., . \rangle\!\rangle$, d.h. $\langle\!\langle \varphi, \psi \rangle\!\rangle = \int_M \langle \varphi, \psi \rangle$ für $\varphi \in \Gamma(V^*)$, $\psi \in \Gamma(V)$.

1. MOTIVATION

Derzeit leider nicht getext.

2. Clifford-Moduln

Definition 2.1. Sei V ein endlich-dimensionaler reeller Vektorraum, $b: V \times V \to \mathbb{R}$ eine symmetrische Bilinearform. Ein *(komplexer) Clifford-Modul für (V,b)* ist ein (komplexer) Vektorraum S mit einer bilinearen Abbildung

$$cl: V \times S \rightarrow S$$
$$(v, \varphi) \mapsto v \cdot \varphi,$$

komplex linear in φ , so dass

(2.2)
$$v_1 \cdot (v_2 \cdot \varphi) + v_2 \cdot (v_1 \cdot \varphi) + 2b(v_1, v_2)\varphi = 0$$

für alle $v_1, v_2 \in V$ und alle $\varphi \in S$. Die Abbildung cl heißt Clifford-Multiplikation. Die von cl induzierte Abbildung $V \otimes_{\mathbb{R}} S \to S$ bezeichnen wir auch mit cl.

In manchen Anwendungen ist es auch sinnvoll, dass S ein reeller Vektorraum ist. Aus jedem solchen reellen Clifford-Modul $S_{\mathbb{R}}$ erhält man durch Tensorieren mit \mathbb{C} , d.h. $\otimes_{\mathbb{R}} \mathbb{C}$, einen komplexen Clifford-Modul S. Die algebraische Struktur ist im reellen Fall aber komplizierter, deswegen wollen wir uns auf den komplexen Fall beschränken.

LEMMA 2.3. Die Gleichung (2.2) ist genau dann für alle $v_1, v_2 \in V$ und alle $\varphi \in S$ erfüllt, wenn (2.4) $v \cdot (v \cdot \varphi) = -b(v, v) \varphi \quad \forall v \in V, \quad \varphi \in S.$

Beweis. Für $v = v_1 = v_2$ folgt (2.4) direkt aus (2.2). Gilt nun andererseits (2.2) für $v = v_1$, $v = v_2$ und $v = v_1 + v_2$, so folgt durch Addition und Subtraktion der Gleichungen (2.4).

Beispiele 2.5.

(1) $b \equiv 0, S = \bigoplus_{k=0}^{\dim V} (\Lambda^k V) \otimes_{\mathbb{R}} \mathbb{C} =: \Lambda^{\bullet}_{\mathbb{C}} V, \operatorname{cl}(v, \varphi) := v \wedge \varphi.$

(2) Wir können das vorige Beispiel auf allgemeines b verallgemeinern. Hierzu definieren wir

$$v_{\iota}(v_1 \wedge \ldots \wedge v_p) \coloneqq \sum_{i=1}^{p} (-1)^{i+1} b(v, v_i) v_1 \wedge \cdots \wedge \widehat{v_i} \wedge \cdots \wedge v_p \in \Lambda^{p-1} V \otimes_{\mathbb{R}} \mathbb{C},$$

wobei der Hut über v_i bedeuten möge, dass wir das Glied v_i auslassen. Wir definieren nun

$$\operatorname{cl}(v,\varphi) = v \cdot \varphi \coloneqq v \wedge \varphi - v \, \varphi.$$

Um die Relation (2.4) zu verifizieren, überlegen wir uns zunächst, dass

(2.6)
$$v \wedge (v_{\varphi}) + v_{\zeta}(v \wedge \varphi) = b(v, v)\varphi.$$

direkt aus der Definition von , folgt.

Es gilt nun

$$v \cdot (v \cdot \varphi) = \underbrace{v \wedge v \wedge \varphi}_{0} - v \wedge (v \downarrow \varphi) - v \downarrow (v \land \varphi) + \underbrace{v \downarrow (v \downarrow \varphi)}_{0} = -b(v, v)\varphi$$

Definition 2.7. Sei $\mathcal{F}(V)$ die freie (assoziative) Algebra (mit Eins) erzeugt von V, d.h.

$$\mathcal{F}(V) = \mathbb{R} \oplus \bigoplus_{i=1}^{\infty} \underbrace{V \otimes \ldots \otimes V}_{i-\mathrm{mal}}$$

Sei \mathcal{I} das Ideal, das von

$$\{v \otimes v + b(v, v) \,|\, v \in V\}$$

erzeugt wird. Dann heißt die Algebra $Cl(V,b) := \mathcal{F}(V)/\mathcal{I}$ die Clifford-Algebra von (V,b). Ein Clifford-Modul ist eine Darstellung der Clifford-Algebra.

LEMMA 2.8. Die Abbildung $V \ni v \mapsto [v] \in Cl(V, b)$ ist injektiv.

Proof. Wir definieren S und b wie in Beispiel 2.5 (2), und erhalten insbesondere eine Clifford-Multiplikation $V \to \text{End}(S)$. Diese Abbildung ist injektiv denn $\operatorname{cl}(v)(1) = \operatorname{cl}(v, 1) = v \in \Lambda^1 V = V$. Wie in der obigen Definition erklärt, erhalten wir eine Abbildung $Cl(V,b) \rightarrow End(S)$, und die Abbildung $V \rightarrow \text{End}(S)$ stimmt mit der Komposition

$$V \to \operatorname{Cl}(V, b) \to \operatorname{End}(S)$$

 $v \mapsto [v]$

überein. Die Injektivität von $V \rightarrow Cl(V, b)$ folgt also aus der obigen Injektivität.

Notation 2.9.

$$Cl_k \coloneqq Cl(\mathbb{R}^k, g_{eucl})$$
$$Cl_{k,\ell} \coloneqq Cl(\mathbb{R}^{k,\ell}, g^{(k,\ell)})$$

Hierbei ist $g^{(k,\ell)}$ die symmetrische Bilinearform auf $\mathbb{R}^{k+\ell}$, die in der Standardbasis durch die Matrix

$$\operatorname{diag}(\underbrace{1,\ldots,1}_{k\operatorname{-mal}},\underbrace{-1,\ldots,-1}_{\ell\operatorname{-mal}})$$

beschrieben wird.

3. Verallgemeinerte Dirac-Operatoren

Definition 3.1. Sei (M,g) eine riemannsche Mannigfaltigkeit. Ein komplexes Vektorbündel $W \rightarrow$ M mit einer Metrik $\langle \cdot, \cdot \rangle$, einem Zusammenhang ∇^W und einer Clifford-Multiplikation cl: $T^*M \otimes$ $W \rightarrow W$ heißt *Clifford-Bündel*, falls

- (i) Für alle $p \in M$ ist (W_p, cl_p) ein Clifford-Modul für (T_p^*M, g) ,
- (i) I at the p c M be $(\forall p, dp)$ chi constant House House Highly, (ii) $\langle \alpha \cdot w_1, w_2 \rangle = -\langle w_1, \alpha \cdot w_2 \rangle$ $\forall \alpha \in T_p^*M \quad \forall w_1, w_2 \in W_p,$ (iii) ∇^W is metrisch, d.h. $\partial_X \langle w_1, w_2 \rangle = \langle \nabla^W_X w_1, w_2 \rangle + \langle w_1, \nabla^W_X w_2 \rangle.$ (iv) Für alle $X \in \Gamma(TM)$, alle $\alpha \in \Gamma(T^*M)$ und alle $w \in \Gamma(W)$ gift

$$\nabla^W_X(\alpha \cdot w) = (\nabla_X \alpha) \cdot w + \alpha \cdot \nabla^W_X w.$$

Bemerkung 3.2. Alternativ könnten wir anstelle des **komplexen** Vektorbündels W auch diesselben Eigenschaften für ein reelles oder quaternionisches Vektorbündel W fordern, oder mit einer zusätzlichen Cl_k -Operation von rechts. Dies erlaubt interessante Anwendungen und Verallgemeinerungen, zu denen wir später mehr sagen wollen.

Beispiel 3.3. Sei (M, g) eine Riemannsche Mannigfaltigkeit, und $W = \bigoplus_{k=0}^{n} \Lambda^{k} T^{*} M \otimes_{\mathbb{R}} \mathbb{C}$ (=: $\Lambda_{\mathbb{C}}^{\bullet} T^{*} M$), versehen mit dem Levi-Civita-Zusammenhang $\nabla^{W} = \nabla$ und der Riemannschen Metrik ist ein Clifford-Bündel. Auf jeder Faser über $p \in M$ definieren wir die Clifford-Multiplikation wie in Beispiel 2.5 (2) mit b := g. Die Eigenschaften (i) und (iii) sind trivial.

(ii) Sei $\alpha_1, \ldots, \alpha_n$ eine Orthonormal-Basis von $\Lambda^k T^*M$, $v = \alpha_s$. Man prüft dann

$$\langle \alpha_{i_1} \wedge \ldots \wedge \alpha_{i_{k+1}}, \alpha_s \wedge \alpha_{j_1} \wedge \ldots \wedge \alpha_{j_k} \rangle = \langle \alpha_{s_{\perp}}(\alpha_{i_1} \wedge \ldots \wedge \alpha_{i_{k+1}}), \alpha_{j_1} \wedge \ldots \wedge \alpha_{j_k} \rangle$$

für alle möglichen Index-Kombinationen durch. Es folgt hieraus

$$\langle \alpha \wedge w_1, w_2 \rangle = \langle w_1, \alpha, w_2 \rangle,$$

woraus die gewünschte Relation folgt.

(iv) Wir kennen bereits die Produktregel für $\alpha \wedge w$

$$\nabla_X(\alpha \wedge w) = (\nabla_X \alpha) \wedge w + \alpha \wedge \nabla_X w$$

Als Übungsaufgabe zeigen wir die Prod
ktregel für $\alpha_{,w}$

 $\nabla_X(\alpha_{\bot}w) = (\nabla_X\alpha)_{\bot}w + \alpha_{\bot}\nabla_Xw.$

(Tipp: Wenden Sie die Produktregel auf

$$\partial_X \langle \alpha \wedge w_1, w_2 \rangle = \partial_X \langle w_1, \alpha w_2 \rangle$$

an.) Die Relation (iv) folgt daraus.

Für $w \in \Gamma(w)$ ist

$$(X \mapsto \nabla^W_X w) \in T^* M \otimes W \cong \operatorname{Hom}(TM, W).$$

Definition 3.4. Sei (M,g) eine riemannsche Mannigfaltigkeit mit Clifford-Bündel W. Dann ist der *(verallgemeinerte) Dirac-Operator* D^W auf W definiert als die Verkettung

$$\Gamma(W) \xrightarrow{\nabla^W} \Gamma(T^*M \otimes W) \xrightarrow{\mathrm{cl}} \Gamma(W),$$

also $D^W = cl \circ \nabla^W$.

Um die Notation zu vereinfachen, schreiben wir ab jetzt ∇ für ∇^W und D für D^W .

Sei e_1, \ldots, e_n eine Orthonormalbasis von $T_pM, e_1^b, \ldots, e_n^b$ die duale Basis von T_p^*M , so rechnet man leicht nach

$$(Dw)|_p = \sum_{i=1}^n e_i^b \cdot (\nabla_{e_i} w)|_p.$$

Beispiel 3.5. Sei $W = \Lambda_{\mathbb{C}}^{\bullet} T^* M$. Wir wollen $D\omega$ für $\omega \in \Gamma(W)$ berechnen. Wir nehmen einen auf einer offenen Teilmenge U definierten orthonormalen Rahmen (e_1, \ldots, e_n) , und schränken uns zunächst auf den Fall supp $\omega \subset U$, supp ω kompakt ein. Wir erhalten

$$D\omega = \sum e_j^b \cdot \nabla_{e_j} \omega = \sum e_j^b \wedge \nabla_{e_j} \omega - \sum e_j^b \nabla_{e_j} \omega.$$

Der erste Term ist der total antisymmetrische Anteil von $\nabla \omega$ und dies ist bekanntlich $d\omega$. Wir definieren das Kodifferential $\delta \omega \coloneqq -\sum e_{j \downarrow}^b \nabla_{e_j} \omega$.

$$(3.6) D\omega = d\omega + \delta\omega$$

Da sowohl $D\omega$ als auch $d\omega$ nicht von der Wahl von U und der Wahl der e_i abhängt, tut dies auch nicht δ . Da δ zudem lokal ist, kann man δ auch für beliebige $\omega \in \Gamma(W)$ definieren, also auch solche ohne kompakte Träger. Hierzu zerlegen wir zunächst $\omega = \sum \omega_i$, wobei supp ω_i kompakt seien und in einer trivialisierenden offenen Menge U_i liegen. Dann definieren wir $\delta\omega = \sum \delta\omega_i$. Später werden wir sehen, dass δ "formal adjungiert" zu d bezüglich dem L^2 -Skalarprodukt auf $\Gamma(\Lambda^{\bullet}T^*M)$ ist.

Definition 3.7. Den Operator $\Delta := (d + \delta)^2 : \Gamma(\Lambda^{\bullet}_{\mathbb{C}}T^*M) \to \Gamma(\Lambda^{\bullet}_{\mathbb{C}}T^*M)$ nennt man den Hodge-Laplace-Operator.

Wir wissen also, dass für $W = \Lambda^{\bullet}T^*M$ gilt $D^2 = \Delta$. Später werden wir noch andere Clifford-Bündel kennenlernen.

Beispiel 3.8 (Getwistete Clifford-Bündel). Sei W ein Clifford-Bündel über der riemannschen Mannigfaltigkeit (M, g). Sei E ein weiteres reelles oder komplexes Vektorbündel über M mit einer Metrik und einem metrischen Zusammenhang (wir fordern nicht, dass es eine Cliffordmultiplikation auf E gibt). Dann ist auch $W \otimes E$ ein Clifford-Bündel, wobei $W \otimes E$ die Tensor-Metrik und den Tensor-Zusammenhang trägt, und die Clifford-Multiplikation ist gegeben durch

$$\alpha \cdot (w \otimes e) = (\alpha \cdot w) \otimes e.$$

Wir nennen $W \otimes E$ das mit E getwistete Clifford-Bündel.

Der zugehörige Dirac Operator erfüllt die folgende lokale Formel:

$$D^{W \otimes E}(w \otimes e) = \sum e_j^b \cdot \nabla_{e_j}(w \otimes e)$$

$$= \sum e_j^b \cdot (\nabla_{e_j} w \otimes e + w \otimes \nabla_{e_j} e)$$

$$= (D^W w) \otimes e + \sum e_j^b \cdot w \otimes \nabla_{e_j} e$$

Diese Twist-Operation ist in vielen Anwendungen sehr wichtig: im Standard-Modell der Physik (oder auch in der Elektrodynamik) wird der Dirac-Operator mit einem Bündel getwistet, wobei die Krümmung des Bündels den Eichfeldern entpricht. Auch in dieser Vorlesung werden sie noch wichtig werden.

4. Differentialoperatoren

Einige Vorbemerkungen zu Vektorbündeln: Wenn V ein Vektorbündel ist, und v_1, \ldots, v_k auf einer kleinen offenen Umgebung U definierte glatte Schnitte von V sind, so dass für jedes $p \in U$, die Vektoren $v_1(p), \ldots, v_k(p)$ eine Basis von V_p bilden, so nennen wir das Tupel (v_1, \ldots, v_k) einen lokalen Basisschnitt. Jeder lokale Basisschnitt liefert eine lokale Trivialisierung. Und umgekehrt liefert jede lokale Trivialisierung einen lokalen Basisschnitt.

Für ein gegebenes $p_0 \in M$ gibt es immer lokale Basisschnitte auf einer kleinen Umgebung, so dass $(\nabla_X v_i)|_{p_0} = 0$. Solche Basisschnitte heißen synchron in p_0 .

Lokale Basisschnite von TM heißen oft auch Rahmen. Ist die Basis zusätzlich in jedem Punkt orthonormal, so spricht man von orthonormalen lokalen Basisschnitten oder othonormalen Rahmen. **Notation 4.1.** Eine *Multiindex* ist ein Tupel $(\alpha_1, \ldots, \alpha_n), \alpha_i \in \mathbb{N}$.

$$|\alpha| = \sum_{i} \alpha_{i}$$
$$\frac{\partial^{|\alpha|}}{\partial x^{\alpha}} = \frac{\partial^{\alpha_{1}}}{\partial x^{\alpha_{1}}} \cdots \frac{\partial^{\alpha_{n}}}{\partial x^{\alpha_{n}}}$$

Seien $V, W \to M$ reelle oder komplexe Bündel über einer Mannigfaltigkeit. Eine lineare Abbildung $P: \Gamma(V) \to \Gamma(W)$ heißt Differentialoperator der Ordnung $\leq d, d \in \mathbb{N}$, falls gilt: Sei $\psi: U \to \mathbb{R}^n$ eine Karte, und v_1, \ldots, v_l bzw. w_1, \ldots, w_m auf U definierte glatte Schnitte von V bzw. W, die in jedem Punkt eine Basis bilden, dann gibt es glatte Funktionen $A_{ik}^{\alpha}: U \to \mathbb{R}, \alpha$

Multiindex, $|\alpha| \leq d$, so dass für $s \in \Gamma(V)$ mit $s = \sum s^j v_j$ gilt

(4.2)
$$P(s)|_{U} = \sum_{|\alpha| \le d} \sum_{j,k} A_{jk}^{\alpha} \left(\frac{\partial^{|\alpha|}}{\partial \psi^{\alpha}} s^{j} \right) w_{k}$$

Beispiele 4.3. d und δ sind Differentialoperatoren 1. Ordnung, $\Delta = (d+\delta)^2$ ist ein Differentialoperatore 2. Ordnung, und verallgemeinerte Dirac-Operatoren sind Differentialoperatoren 1. Ordnung. Die Differentialoperator 0. Ordnung sind genau die Schnitte von Hom $(V, W) = V^* \otimes W$.

Bemerkung 4.4. Sei $(U_m, \psi_m)_{m \in I}$ eine Überdeckung von M mit Karten, und seien v_i^m und w_i^m auf U_i definierte lokale Basisschnitte. Wenn man (2) für alle (U_m, ψ_m, v_i, w_i) nachweist, so folgt es bereits für alle Karten und lokalen Basisschnitte.

PROPOSITION 4.5. Sei g eine riemannsche Metrik auf M. Die Bündel V und W mögen Metriken $\langle \cdot, \cdot \rangle_V$ und $\langle \cdot, \cdot \rangle_W$ tragen. Dann gibt es zu jedem Differentialoperator $P : \Gamma(V) \to \Gamma(W)$ der Ordnung d, einen eindeutigen Differentialoperator $P^{\#} : \Gamma(W) \to \Gamma(V)$ der Ordnung d, so dass

(4.6)
$$\int_{M} \langle P\varphi, \psi \rangle_{W} \operatorname{dvol}_{g} = \int_{M} \langle \varphi, P^{\#}\psi \rangle_{V} \operatorname{dvol}_{g}$$

für alle $\varphi \in \Gamma(V)$, $\psi \in \Gamma(W)$, wobei supp ψ oder supp φ kompakt ist.

Der Beweis soll hier nur skizziert werden. Die Eindeutigkeit sieht man leicht. Um die Existenz zu zeigen, definieren wir den Operator zunächst in einer kleinen Karte. Auf Grund der Eindeutigkeit, können wir die verschiedenen Karten-Definitionen zu einer globalen Definition zusammenkleben.

Definition 4.7. Der Operator $P^{\#}$ heißt der zu P formal adjungierte Differentialoperator. Gilt $P = P^{\#}$, so heißt P formal selbst-adjungiert.

Offensichtlich gilt $P^{\#\#} = P$.

THEOREM 4.8. Verallgemeinerte Dirac-Operatoren sind formal selbst-adjungiert.

Das Theorem folgt aus der folgenden Proposition für $\Omega = M$.

PROPOSITION 4.9. Sei W ein Clifford-Bündel. Seien $\varphi, \psi \in \Gamma(W)$, Ω ein Gebiet mit (stückweise) glattem Rand, supp $\varphi \cap \text{supp } \psi \cap \overline{\Omega}$ kompakt. Dann gilt

$$\int_{\Omega} \langle D\varphi, \psi \rangle \operatorname{dvol}_{g} - \int_{\Omega} \langle \varphi, D\psi \rangle \operatorname{dvol}_{g} = \int_{\partial \Omega} \langle \nu^{b} \cdot \varphi, \psi \rangle \operatorname{dvol}_{g}$$

In der Proposition bezeichnet ν^b die nach außen gerichtete Normalen-1-Form, d.h. $\nu^b = g(\nu, .)$ für den nach außen gerichteten Einheitsnormalen-Vektor ν .

Beweis. Sei $\varphi, \psi \in \Gamma(W)$ wie oben. Definiere das komplexifizierte Vektorfeld $X \ (X \in \Gamma(TM) \otimes_{\mathbb{R}} \mathbb{C})$ durch

$$\omega(X) = \langle \omega \cdot \varphi, \psi \rangle \qquad \forall \omega \in \Gamma(T^*M).$$

Wir wollen div X in $p \in M$ berechnen. Dazu nehmen wir einen orthonormalen Rahmen e_1, \ldots, e_n in einer kleinen Umgebung von p mit $(\nabla_{e_i} e_j)_p = 0$. Wir rechnen dann

$$\partial_{e_i}(\omega(X)) = (\nabla_{e_i}\omega)(X) + \omega(\nabla_{e_i}X)$$

Wir setzen $\omega = e_i^b$, summieren über *i* und berechnen somit die Divergenz in *p* als

$$\operatorname{div} X = \sum e_i^b(\nabla_{e_i} X) = \sum \left(\partial_{e_i}(e_i^b(X)) - (\underbrace{\nabla_{e_i} e_i^b}_{0})(X) \right)$$
$$= \sum \partial_{e_i}(e_i^b \cdot \varphi, \psi)$$
$$= \sum \langle e_i^b \cdot \nabla_{e_i} \varphi, \psi \rangle + \sum \langle e_i^b \cdot \varphi, \nabla_{e_i} \psi \rangle$$
$$= \sum \langle e_i^b \cdot \nabla_{e_i} \varphi, \psi \rangle - \sum \langle \varphi, e_i^b \cdot \nabla_{e_i} \psi \rangle$$
$$= \langle D\varphi, \psi \rangle - \langle \varphi, D\psi \rangle.$$

Man beachte, dass die Endterme dieser Gleichungskette unabhängig von der Wahl des synchronen Rahmens sind. Insofern gilt div $X = \langle D\varphi, \psi \rangle - \langle \varphi, D\psi \rangle$ in allen Punkten von M.

Wenden wir nun den Divergenzsatz

$$\int_{\Omega} \operatorname{div} X \operatorname{dvol}_g = \int_{\partial \Omega} \nu^b(X) \operatorname{dvol}_g$$

an, so folgt die Behauptung.

FOLGERUNG 4.10. Das Kodifferential δ ist formal adjungiert zu d.

Beweis. Das Kodifferential δ bildet k-Formen auf (k - 1)-Formen ab. Schreiben wir $d + \delta$ in Blockmatrix-Gestalt, wobei die Zeilen und Spalten den Formen-Graden entsprechen, so gilt

Da verallgemeinerte Dirac-Operatoren formal selbstadjungiert sind, folgt $\delta = d^{\#}$.

Um das Bild abzurunden erwähnen wir hier noch:

PROPOSITION 4.11. Für alle Vektorfelder X auf einer Riemannschen Mannigfaltigkeit gilt:

$$\operatorname{div} X = -\delta X^b.$$

-		
-	-	

 $-\delta Z$

$$X^{b} = \sum_{i} e^{b}_{i} \nabla_{e_{i}} X^{b} = \sum (\nabla_{e_{i}} X^{b})(e_{i})$$

$$= \sum_{i} (\partial_{e_{i}} (X^{b}(e_{i})) - X^{b} (\nabla_{e_{i}} e_{i}))$$

$$= \sum_{i} g(\nabla_{e_{i}} X, e_{i}) = \operatorname{div} X.$$

5. Der Bochner-Trick

Ziel: Vergleiche $\nabla^{\#} \nabla$ mit D^2 .

Sei $s \in \Gamma(T^*M \otimes T^*M \otimes W)$, das wir punktweise als bilineare Abbildung $T_pM \times T_pM \to W$ interpretieren. Für solch einen Schnitt definieren wir die metrische Spur tr $_g(s) \in \Gamma(W)$ lokal durch die Formel

$$\operatorname{tr}_g(s) \coloneqq \sum_{j=1} s(e_j, e_j),$$

wobei (e_j) wieder ein lokaler orthonormaler Rahmen ist. Eine gute Notation wäre auch tr_g \otimes id_W anstelle von tr_g zu nutzen um dann anzudeuten, dass dfer Bündel Homomorphismus tr_g : $\Gamma(T^*M \otimes T^*M \to C^{\infty}(M)$ mit der Identität des Bündels W tensoriert wird und wir somit die oben beschriebene Abbildung $\Gamma(T^*M \otimes T^*M \otimes W) \to \Gamma(W)$ erhalten. Ist $X \in \Gamma(TM)$ und $\varphi \in$ $\Gamma(T^*M \otimes W)$, dann ergibt sich durch Einsetzen $\iota_X(\varphi) \coloneqq \varphi(X) \in \Gamma(W)$. Auf $T^*M \otimes W \to M$ wird durch

$$(\nabla_X \varphi)(Y) \coloneqq \nabla_X(\varphi(Y)) - \varphi(\nabla_X Y), \qquad \forall X \in \Gamma(TM), \ \varphi \in \Gamma(T^*M \otimes W)$$

oder — äquivalent formuliert — durch

(5.1)
$$\iota_Y(\nabla_X \varphi) \coloneqq \nabla_X(\iota_Y(\varphi)) - \iota_{\nabla_X Y}(\varphi), \qquad \forall X \in \Gamma(TM), \ \varphi \in \Gamma(T^*M \otimes W)$$

ein Zusammenhang definiert.

LEMMA 5.2. Sei W ein (reelles oder komplexes) Vektorbündel mit einer Metrik und mit einem metrischen Zusammenhang. Für den formal adjungierten Operator $\nabla^{\#} : \Gamma(T^*M \otimes W) \to \Gamma(W)$ gilt

(5.3)
$$(\nabla^{\#}\varphi)_p = -\mathrm{tr}_g(\nabla\varphi)$$

für alle $\varphi \in \Gamma(T^*M \otimes W)$. Sei zudem (e_j) ein auf U definierter lokaler orthonormaler Rahmen, dann ergibt sich

(5.4)
$$\nabla^{\#}\varphi = -\sum_{j} \nabla_{e_{j}} \left(\iota_{e_{j}}(\varphi) \right) + \sum_{j} \iota_{\nabla_{e_{j}}e_{j}}(\varphi).$$

Im Spezialfall, dass W ein triviales Vektorbündel von Rang 1 mit trivialem Zusammenhang ist, übersetzt sich dieses Lemma offensichtlich in die Aussage von Folgerung 4.10.

Beweis. Gegeben seien $\psi \in \Gamma(W)$ und $\varphi \in \Gamma(T^*M \otimes W)$ mit $\operatorname{supp} \varphi \cap \operatorname{supp} \psi \subset U$ kompakt. Für einen lokalen auf U definierten orthonormalen Rahmen (e_j) definieren wir $\varphi_j \coloneqq \iota_{e_j}(\varphi)$ und erhalten somit $\varphi|_U = \sum_j e_j^b \otimes \varphi_j \in \Gamma((T^*M \otimes W)|_U)$.

Sei X das komplexifizierte Vektorfeld, so dass

 $\omega(X) = \langle \omega \otimes \psi, \varphi \rangle$

für alle 1-Formen ω . Dann ist supp X eine kompakte Teilmenge von U. Wir nehmen nun zusätzlich an, dass (e_j) in p synchron ist und rechnen im Punkt p:

$$(\operatorname{div} X)_{p} = \sum_{j} e_{j}^{b} (\nabla_{e_{j}} X)_{p} = \sum_{j} g(e_{j}, \nabla_{e_{j}} X)_{p}$$

$$= \sum_{j} (\partial_{e_{j}} (g(e_{j}, X))_{p} - g(\underbrace{\nabla_{e_{j}} e_{j}|_{p}}_{=0}, X))$$

$$= \sum_{j} \partial_{e_{j}} (e_{j}^{b}(X))_{p} = \sum_{j} (\partial_{e_{j}} \langle e_{j}^{b} \otimes \psi, \varphi \rangle)|_{p}$$

$$= \sum_{j} (\partial_{e_{j}} \langle \psi, \varphi_{j} \rangle)_{p}$$

$$= \sum_{j} (\langle \nabla_{e_{j}} \psi, \varphi_{j} \rangle + \langle \psi, \nabla_{e_{j}} \varphi_{j} \rangle)|_{p}$$

$$\stackrel{(5.1)}{=} \langle \nabla \psi, \varphi \rangle|_{p} + \langle \psi, \operatorname{tr}_{g} (\nabla \varphi) \rangle|_{p}$$

Da der erste und letzte Ausdruck dieser Gleichungskette nicht von dem gewählten lokalen orthonormalen Rahmen abhängt, gilt div $X = \langle \nabla \psi, \varphi \rangle + \langle \psi, \operatorname{tr}_g(\nabla \varphi) \rangle$ auf ganz M, und aus dem Divergenzsatz $\int_M \operatorname{div} X \operatorname{dvol}_g = 0$ folgt dann Gleichung (5.3). Die lokale Formel (5.4) folgt dann aus der Gleichung (5.1).

KOROLLAR 5.5. Ist e_1, \ldots, e_n einen auf U definierter lokaler orthonormaler Rahmen, der synchron in $p \in U$ ist und $\psi \in \Gamma(W)$, dann gilt in U

$$\nabla^{\#} \nabla \psi|_{p} = -(\sum_{j} \nabla_{e_{j}} \nabla_{e_{j}} \psi)|_{p}$$

Beweis. Wir wenden das Lemma für $\varphi = \nabla \psi$ an, dann gilt $\varphi_j = \nabla_{e_j} \psi$, woraus die Behauptung folgt.

PROPOSITION 5.6 (Bochner-Formel). Sei (M,g) eine Riemannsche Mannigfaltigkeit, W ein Clifford-Bündel über M. Sei D der verallgemeinerte Dirac-Operator, und \mathbb{R}^W die Krümmung des Bündels W. Dann gilt für alle $\varphi \in \Gamma(W)$

$$D^2\varphi = \nabla^{\#}\nabla\varphi + \mathcal{K}(\varphi),$$

wobei der Krümmungsendomorphismus K lokal definiert gegeben ist durch

$$\mathcal{K}(\varphi) = \sum_{i < j} e_i^b \cdot e_j^b \cdot R^W(e_i, e_j)\varphi.$$

Der Krümmungsendomorphismus \mathcal{K} ist ein symmetrischer ¹ Endomorphismus.

¹Wir verwenden den Begriff "symmetrisch" im Sinne der Funktionalanalysis, d.h. im Sinne von $\langle Ax, y \rangle = \langle x, Ay \rangle = \overline{\langle Ay, x \rangle}$ für alle x, y im Definitionsbereich von A. Dies entpricht dem Begriff "hermitesch" der Linearen Algebra. [HS71]

Beweis. In $p \in M$ nehmen wir einen in p synchronen Rahmen und rechnen:

$$D^{2}\varphi = \sum_{i,j} e_{i}^{b} \cdot \nabla_{e_{i}} (e_{j}^{b} \cdot \nabla_{e_{j}}\varphi)_{p}$$

$$= \sum_{i} \underbrace{e_{i}^{b} \cdot e_{i}^{b}}_{-1} \cdot \nabla_{e_{i}} \nabla_{e_{i}}\varphi + \sum_{i < j} e_{i}^{b} \cdot e_{j}^{b} \cdot \left(\nabla_{e_{i}} \nabla_{e_{j}} - \nabla_{e_{j}} \nabla_{e_{i}}\right)\varphi$$

$$= \nabla^{\#} \nabla \varphi + \sum_{i < j} e_{i}^{b} \cdot e_{j}^{b} \cdot R^{W}(e_{i}, e_{j})\varphi$$

Da sowohl D^2 als auch $\nabla^{\#} \nabla$ formal selbstadjungiert sind, ist auch \mathcal{K} symmetrisch.

KOROLLAR 5.7 (Bochner-Trick). Sei M eine kompakte zusammenhängende Riemannsche Mannigfaltigkeit mit Clifford-Bündel W.

- (1) Gilt für alle $p \in M$ und $w \in W_p$, dass $\langle \mathcal{K}w, w \rangle \ge 0$, so ist jedes $\varphi \in \ker D$ parallel.
- (2) Gibt es zusätzlich ein $p \in M$ mit

$$\langle \mathcal{K}w, w \rangle > 0 \qquad \forall w \in W_p, w \neq 0,$$

so ist ker $D = \{0\}$.

Beweis. Zu (1): Sei $D\varphi = 0$.

$$\begin{array}{lll} 0 &=& \displaystyle \int_{M} \langle D\varphi, D\varphi \rangle \operatorname{dvol}_{g} \\ &=& \displaystyle \int_{M} \langle D^{2}\varphi, \varphi \rangle \operatorname{dvol}_{g} \\ &=& \displaystyle \int_{M} \langle \nabla^{\#} \nabla \varphi, \varphi \rangle \operatorname{dvol}_{g} + \displaystyle \int_{M} \langle \mathcal{K}\varphi, \varphi \rangle \operatorname{dvol}_{g} \\ &=& \displaystyle \int_{M} \underbrace{\langle \nabla \varphi, \nabla \varphi \rangle}_{\geq 0} \operatorname{dvol}_{g} + \displaystyle \int_{M} \underbrace{\langle \mathcal{K}\varphi, \varphi \rangle}_{\geq 0} \operatorname{dvol}_{g} \end{array}$$

Wir schließen daraus, dass $\nabla \varphi = 0$ und $\langle \mathcal{K}\varphi, \varphi \rangle = 0$. Im Fall (2) folgt aus letzterem $\varphi(p) = 0$. Da φ parallel, ist seine Länge konstant. Im Fall (2) also $\varphi \equiv 0$.

Im Falle des Dirac-Operators $d + \delta$ auf den Formen können wir diese Aussage noch verstärken. Man beachte hierzu, dass der Hodge-Laplace-Operator $\Delta := D^2 = (d + \delta)^2 = d\delta + \delta d$ den Formen-Grad bewahrt, ebenso der Operator $\nabla^{\#} \nabla$. Das heißt \mathcal{K} bildet punktweise $\Lambda^k T \mathbb{C}^* M$ auf sich selber ab. Mit analogen Argumenten (oder mit Blick auf die Definition von \mathcal{K} kann man auch argumentieren, dass \mathcal{K} die reellen k-Formen $\Lambda^k T^* M \subset \Lambda^k T \mathbb{C}^* M$ erhält. Wir erhalten somit

KOROLLAR 5.8 (Bochner-Trick für k-Formen). Sei M eine kompakte zusammenhängende Riemannsche Mannigfaltigkeit. Sei \mathcal{K}^k der Krümmungsendomorphismus von $\Lambda^{\bullet}_{\mathbb{C}}T^*M$, eingeschränkt auf die (reellen) k-Formen.

- (1) Gilt $\langle \mathcal{K}^k w, w \rangle \ge 0$ $\forall p \in M, w \in W_p$ so ist jedes $\varphi \in \ker(d + \delta) \cap \Gamma(\Lambda^k T^*M)$ parallel.
- (2) Gibt es zusätzlich ein $p \in M$ mit

 $\langle \mathcal{K}^k w, w \rangle > 0 \qquad \forall w \in W_p, w \neq 0,$

so ist $\ker(d+\delta) \cap \Gamma(\Lambda^k T^*M) = \{0\}.$

Beweis. Wie oben.

Wir werden diese Technik später verfeinern, und die Lücke im Spektrum um die 0 genauer zu bestimmen.

Übung: Berechnen Sie \mathcal{K}^1 .

Bemerkung 5.9. Wir betrachten wieder getwistete Dirac-Operatoren, siehe Beispiel 2.5. Wir nutzen die lokale Formel (3.9). Dann

$$\begin{aligned} \mathcal{K}^{W \otimes E}(w \otimes e) &= \sum_{i < j} e_i^b \cdot e_j^b \cdot R^{W \otimes E}(e_i, e_j)(w \otimes e) \\ &= \sum_{i < j} e_i^b \cdot e_j^b \cdot \left(R^W(e_i, e_j)w \otimes e + w \otimes R^E(e_i, e_j)e \right) \\ &= \left(\mathcal{K}^W w \right) \otimes e + \sum_{i < j} e_i^b \cdot e_j^b \cdot w \otimes R^E(e_i, e_j)e \end{aligned}$$

Diese Formel wird später benötigt.

Einschub: Formel für Twist mit Tangentialbündel

Wir wollen hier noch eine ähnliche Rechnung mit getwisteten Dirac-Operatoren anfügen, die im nächsten Kapitel benötigt wird, aber keinen unmittelbaren Bezug zum aktuellen Kapitel hat.

LEMMA 5.10 (Twist mit dem Tangentialbündel). Sei $W \to M$ ein Clifford-Bündel und D der Dirac-Operator. Sei $D^{W \otimes T^*M}$ der Dirac-Operator des mit T^*M getwisteten Clifford-Bündels. Um die Notation einfach zu halten identifizieren wir hier $T^*M \otimes W$ mit $W \otimes T^*M$ vermöge der Abbildung $\alpha \otimes w \mapsto w \otimes \alpha$. Dann gilt

$$D^{W \otimes T^*M} \circ \nabla \varphi - \nabla \circ D\varphi = \sum_{i,j=1}^n e_i^b \cdot R^W(e_i, e_j) \varphi \otimes e_j^b$$

für einen lokalen orthonormalen Rahmen e_1, \ldots, e_n .

Die rechte Seite der Gleichung ist zunächst nur lokal definiert. Man sieht aber leicht durch Nachrechnen, dass der Ausdruck der rechten Seite nicht von der Wahl des orthonormalen Rahmens abhängt, also global definiert ist. Etwas eleganter sieht man dies, indem man R^W als Element von $T^*M \otimes T^*M \otimes W \to W$ interpretiert. Dann ist

(5.11)
$$T^*M \otimes W \ni (\mathrm{id} \otimes \mathrm{cl}) \circ R^W = \sum_{i,j=1}^n e_i^b \otimes (e_j^b \cdot R^W(e_i, e_j))$$

bis auf ein Vorzeichen und Vertauschung der Reihenfolge gleich der rechten Seite. Offensichtlich ist $(id \otimes cl) \circ R^W$ unabhängig von der Wahl der e_i .

Beweis des Lemmas. Nach dem soeben gesagten können wir annehmen, dass e_1, \ldots, e_n ein orthonormaler Rahmen ist, der in $p \in M$ synchron ist. Wir rechnen für $\varphi \in C^{\infty}(W)$

$$D^{W \otimes T^*M} \circ \nabla \varphi - \nabla \circ D\varphi = \sum_j D^{W \otimes T^*M} (\nabla_{e_j} \varphi \otimes e_j^b) - \sum_i \nabla (e_i^b \cdot \nabla_{e_i} \varphi)$$
$$= \sum_{i,j} \left((e_i^b \cdot \nabla_{e_i} \nabla_{e_j} \varphi) \otimes e_j^b - e_i^b \cdot \nabla_{e_j} \nabla_{e_i} \varphi \otimes e_j^b \right)$$
$$= \sum_{i,j} e_i^b \cdot R^W(e_i, e_j) \varphi \otimes e_j^b$$

Man beachte, dass diese Gleichungskette nur *im Punkt* p gilt. Die Gleichung (5.11) ist also zunächst nur in p für in p synchrone Rahmen gezeigt. Da die rechte Seite von Gleichung (5.11) — wie oben

bemerkt — gar nicht von der Wahl des lokalen orthonormalen Rahmens abhängt, gilt sie für beliebige lokale orthonormale Rahmen. $\hfill \Box$

6. Analysis von Dirac-Operatoren auf dem Standard-Torus

In diesem Kapitel werden uns einige Begriffe und Sätze aus der Funktionalanalysis begegnen. Das meiste, was wir benötigen werden, kann zum Beispiel in [HS71] gefunden werden.

In diesem Kapitel ist (M, g) immer eine kompakte riemannsche Mannigfaltigkeit. Sei zunächst W ein reelles oder komplexes Vektorbündel über M mit Metrik und metrischem Zusammenhang.

Definition 6.1. Sei $\Gamma_{C^k}(M, W)$ der Vektorraum der k-mal stetig differenzierbaren Schnitte von W. Wir schreiben auch oft $C^k(M, W)$ oder $C^k(W)$, falls aus dem Kontext heraus klar ist, dass Schnitte von $W \to M$ gemeint sind. Für $\varphi \in C^k(M, W)$ definieren wir

$$\|\varphi\|_{C^k} \coloneqq \max_{j=0,\dots,k} \max_{p \in M} \Big| \underbrace{\nabla \dots \nabla}^{j-\text{mal}} \varphi(p) \Big|.$$

Bemerkung 6.2. Ist P ein Differentialoperator der Ordnung $m \in \mathbb{N}$, dann ist

$$C^k(M, W) \to C^{k-m}(M, W)$$

beschränkt.

 $(C^k(M, W), \|\cdot\|_{C^k})$ ist ein Banach-Raum. Es wird aber hilfreich sein, mit Hilberträumen zu arbeiten. Wir führen deswegen die Sobolevräume W_s ein. Wir werden hierfür zunächst auf dem *n*-dimensionalen Standard-Torus arbeiten, Sobolevräume H_s definieren, und wichtige Sätze zeigen, und diese Definitionen und Sätze dann auf beliebige kompakte riemannsche Mannigfaltigkeiten hinüber transportieren. Insbesondere werden wir dann zeigen, dass die normierten Vektorräume H_s und W_s auf dem Torus äquivalent zueinander sind.

Wir betrachten also nun den Standard-Torus $T^n = \mathbb{R}^n/(2\pi\mathbb{Z})^n$. Die von den Standard-Koordinaten des \mathbb{R}^n induzierten Koordinaten nennen wir x_1, \ldots, x_n .

Definition 6.3. Eine formale Fourier-Reihe ist eine Familie $\{u_{\xi} | \xi \in \mathbb{Z}^n\}, u_{\xi} \in \mathbb{C}$, die wir in der Form

$$u = \sum_{\xi \in \mathbb{Z}^n} u_{\xi} e^{i \langle x, \xi \rangle}$$

schreiben und interpretieren wollen.

Wir definieren das Sobolev-s-Skalarprodukt für $s \in \mathbb{R}$

$$(u,v)_s \coloneqq \sum_{\xi \in \mathbb{Z}^n} \left(1 + |\xi|^2\right)^s u_{\xi} \overline{v}_{\xi},$$

das für alle formalen Fourier-Reihen u, v definiert ist, für die die Reihe absolut konvergiert.

Die Sobolev-s-Norm ist dann definiert als

$$\|u\|_s \coloneqq \sqrt{(u,u)_s} \in \mathbb{R}^{\geq} \cup \{\infty\}.$$

Der Sobolev-Raum H_s auf T^n ist die Menge aller formalen Fourier-Reihen u auf T^n , für die $||u||_s < \infty$.

Mit Hilfe der Cauchy-Ungleichung sieht man: Falls $||u||_s < \infty$ und $||v||_s < \infty$, dann konvergiert die obige Reihe absolut. Also definiert $(\cdot, \cdot)_s$ ein Skalarprodukt auf H_s .

LEMMA 6.4. $(H_s, \|\cdot\|_s)$ ist vollständig.

Beweis. Sei $(u_k)_k$ eine Cauchy-Folge in H_s . Für jedes $\epsilon > 0$ gibt es also ein N > 0, so dass

$$\|u_k - u_\ell\|_s < \epsilon \qquad \forall k, \ell \ge N.$$

Für festes $\xi \in \mathbb{Z}^n$ gilt somit:

$$|u_{k,\xi} - u_{\ell,\xi}| \le \frac{\|u_k - u_\ell\|_s}{(1+|\xi|^2)^{s/2}} < \frac{\epsilon}{(1+|\xi|^2)^{s/2}}$$

und somit ist $(u_{k,\xi})_k$ eine Cauchy-Folge. Wir setzen $v_{\xi} \coloneqq \lim_{k \to \infty} u_{k,\xi}$. Zu zeigen ist nun $||u_k - v||_s \to 0$. Zunächst gilt

$$|u_{k,\xi} - v_{\xi}|^{2} \le (|u_{k,\xi} - u_{\ell,\xi}| + |u_{\ell,\xi} - v_{\xi}|)^{2} \le 2(|u_{k,\xi} - u_{\ell,\xi}|^{2} + |u_{\ell,\xi} - v_{\xi}|^{2}).$$

Für R > 0 gilt somit

$$\sum_{|\xi| \le R} (1+|\xi|^2)^s |u_{k,\xi} - v_{\xi}|^2$$

$$\le 2 \sum_{|\xi| \le R} (1+|\xi|^2)^s |u_{k,\xi} - u_{\ell,\xi}|^2 + 2 \sum_{|\xi| \le R} (1+|\xi|^2)^s |u_{\ell,\xi} - v_{\xi}|^2$$

$$\le \epsilon^2 \quad \text{für genügend großes } \ell = \ell(R,\epsilon)$$

$$\leq 2 \|u_k - u_\ell\|_s^2 + 2\epsilon^2 \leq 4\epsilon^2$$

für $k \ge N = N(\epsilon)$, wobei N wie zu Beginn des Beweises definiert ist. In den letzten beiden Ungleichungen müssen wir ℓ von R abhängig wählen, die Gesamt-Ungleichung gilt aber für alle $k \ge N(\epsilon)$ gleichmäßig in R > 0. Also somit

$$\|u_k - v\|_s \le 2\epsilon.$$

LEMMA 6.5.

$$\begin{array}{rcl} C^k(T^n) & \to & H_k \\ f & \mapsto & \sum_{\xi \in \mathbb{Z}^n} f_{\xi} e^{i\langle x, \xi \rangle} \end{array}$$

mit

$$f_{\xi} = (2\pi)^{-n} \int_{T^n} f(x) e^{-i\langle x,\xi \rangle} \operatorname{dvol}_g(x)$$

ist injektiv und beschränkt.

Beweis. Die Funktionen $\varphi_{\xi} : x \mapsto e^{i\langle x, \xi \rangle}$ bilden eine Hilbert-Raum-Basis des Hilbert-Raums $L^2(T^n)$ der komplex-wertigen L^2 -Funktionen, versehen mit dem (reskalierten) L^2 -Skalarprodukt

$$(f_1, f_2)' := (2\pi)^{-n} \int_{T^n} f_1 \overline{f_2}.$$

In Folge dessen gilt die Parsevalsche Gleichung für alle $f \in L^2(T^n)$:

$$(2\pi)^{-n} \int f\overline{f} = \sum_{\xi \in \mathbb{Z}^n} f_{\xi} \overline{f_{\xi}},$$
$$f_{\xi} \coloneqq (2\pi)^{-n} \int_{T^n} f(x) e^{-i\langle x, \xi \rangle}$$

Daraus folgt nun die Aussage wie folgt im Fall k = 0:

$$\|f\|_{0}^{2} = \sum_{\xi \in \mathbb{Z}^{n}} |f_{\xi}|^{2} = (2\pi)^{-n} \int_{T^{n}} |f|^{2} \le \|f\|_{C^{0}}^{2}.$$

Wenn f im Kern liegt, so folgt daraus $\int |f|^2 = 0$, und da f stetig ist, bedeutet dies $f \equiv 0$. Die Injektivität folgt somit für k = 0 und deswegen auch für alle k.

Für den Fall k > 0 berechnen wir zunächst

$$\begin{pmatrix} \frac{\partial f}{\partial x^j} \end{pmatrix}_{\xi} = \int_{T^n} \frac{\partial f}{\partial x^j}(x) e^{-i\langle x,\xi \rangle}$$

= $-(2\pi)^{-n} \int_{T^n} f(x)(-i\xi_j) e^{-i\langle x,\xi \rangle}$
= $i\xi_j f_{\xi}$

Durch Induktion zeigen wir daraus:

$$\left(\frac{\partial^{|\alpha|}}{\partial x^{\alpha}}f\right)_{\xi} = i^{|\alpha|}\xi^{\alpha}f_{\xi},$$

wobe
i $\xi^{\alpha} \coloneqq \xi_1^{\alpha_1} \cdots \xi_n^{\alpha_n}$. Man beachte $\xi^{2\alpha} = (\xi^{\alpha})^2 \ge 0$. Wir nutzen nun

$$\sum_{|\alpha| \le k} \xi^{2\alpha} \le \left(1 + |\xi|^2\right)^k \le C_k \sum_{|\alpha| \le k} \xi^{2\alpha}$$

und erhalten

(6.6)
$$\sum_{|\alpha| \le k} \left\| \frac{\partial^{|\alpha|}}{\partial x^{\alpha}} f \right\|_{0}^{2} \le \|f\|_{k}^{2}$$
$$\le C_{k} \sum_{|\alpha| \le k} \left\| \frac{\partial^{|\alpha|}}{\partial x^{\alpha}} f \right\|_{0}^{2}$$
$$\le C_{k}' \sum_{|\alpha| \le k} \left\| \frac{\partial^{|\alpha|}}{\partial x^{\alpha}} f \right\|_{C^{0}}^{2}$$
$$\le C_{k}'' \|f\|_{C^{k}}^{2}$$

г		
L		
-	-	

Aus dem Beweis können wir sogar noch einige Folgerungen ziehen:

FOLGERUNGEN 6.7. 1.) $C^{\infty}(T^n)$ liegt dicht in H_s

2.)
$$H_0 = L^2(T^n)$$

3.) Für $k \in \mathbb{N}$ ist $\|\cdot\|_k$ äquivalent zu $\sum_{|\alpha| \le k} \left\| \frac{\partial^{|\alpha|}}{\partial x^{\alpha}} f \right\|_{L^2}$. 4.) Ist $P : C^{\infty}(T^n) \to C^{\infty}(T^n)$ ein Differentialoperator der Ordnung k, dann setzt sich P zu einer beschränkten linearen Abbildung $H_s \to H_{s-k}$ fort (für alle $s \in \mathbb{R}$).

Beweis. 1.) Die (endlichen) Teilsummen der Fourier-Reihen liegen dicht in H_s . Da die endlichen Summen aber Bilder glatter Funktionen sind, ist das Bild von $C^{\infty}(T^n)$ dicht.

2.) Die Abbildung des Lemmas bewahrt die L^2 -Norm bis auf eine Konstante. Wir sehen also, dass H_0 die L^2 -Vervollständigung der glatten Funktionen ist.

3.) folgt aus (6.6)

4.) jetzt klar

SATZ 6.8 (Sobolevscher Einbettungssatz für T^n). Sei s > n/2. Dann konvergiert jede formale Fourier-Reihe $u \in H_{k+s}$ in der C^k -Norm und die Abbildung

$$H_{k+s} \to C^k(T^n)$$

ist injektiv und beschränkt.

Beweis. O.B.d.A. sei k = 0. Sei $u = \sum_{\xi} u_{\xi} e^{i\langle x,\xi \rangle} \in H_s$. Setze $S_R \coloneqq \sum_{|\xi| \le R} u_{\xi} e^{i\langle \cdot,\xi \rangle} \in C^{\infty}(T^n)$. Für $R \le R'$ gilt

$$\begin{aligned} |S_R(x) - S_{R'}(x)| &\leq \sum_{|\xi| \ge R} |u_{\xi}| \\ &= \sum_{|\xi| \ge R} \frac{\left(1 + |\xi|^2\right)^{s/2} |u_{\xi}|}{\left(1 + |\xi|^2\right)^{s/2}} \\ &\leq \underbrace{\left\{\sum_{|\xi| \ge R} \left(1 + |\xi|^2\right)^s |u_{\xi}|^2\right\}^{1/2}}_{\leq ||u||_s} \left\{\sum_{|\xi| \ge R} \left(1 + |\xi|^2\right)^{-s}\right\}^{1/2} \end{aligned}$$

Mit Hilfe des Integralreihen-Kriteriums sieht man nun, dass

(6.9)
$$C \coloneqq \sum_{|\xi| \in \mathbb{Z}^n} \left(1 + |\xi|^2 \right)^{-s} < \infty,$$

da s > n/2. Es folgt daraus, dass $(S_{R_j}|R_j \to \infty)$ eine Cauchy-Folge in $C^0(T^n)$ ist. Außerdem sehen wir $(R = 0, R' \to \infty)$, dass dann die Abbildung beschränkt ist.

Die Injektivität ist klar.

SATZ 6.10 (Rellichscher Einbettungssatz). Für $s_1 < s_2$ ist die Einbettung $H_{s_2} \Rightarrow H_{s_1}$ kompakt.

Beweis. Sei $(u_k)_k$ eine beschränkte Folge in H_{s_2} , d.h. es existiert ein C mit

$$\|u_k\|_{s_2} \le C \qquad \forall k$$

Für festes $\xi \in \mathbb{Z}^n$ bildet $(u_{k,\xi})_k$ eine beschränkte Folge in \mathbb{C} . Nach Übergang zu einer Teilfolge konvergiert somit $(u_{k,\xi})_k$. Indem wir nun nacheinander alle $\xi \in \mathbb{Z}^n$ durchlaufen, erhalten wir neue Teilfolge und wählen letztendlich die Diagonalfolge. Dies ist dann eine Teilfolge, so dass $(u_{k,\xi})_k$ für alle $\xi \in \mathbb{Z}^n$ konvergiert.

Zu gegebenem $\epsilon > 0$ wählen wir R so groß, dass

$$\frac{1}{\left(1+R^2\right)^{s_2-s_1}} < \epsilon.$$

Wir erhalten somit:

$$= \underbrace{\sum_{|\xi| \le R} (1+|\xi|^2)^{s_1} |u_{k,\xi} - u_{l,\xi}|^2}_{\le \epsilon \text{ für } k, l \ge N(\epsilon, R)} + \sum_{|\xi| > R} \underbrace{\frac{1}{(1+|\xi|^2)^{s_2-s_1}}}_{<\epsilon} (1+|\xi|^2)^{s_2} |u_{k,\xi} - u_{l,\xi}|^2$$

$$\le \epsilon + \epsilon ||u_k - u_l||^2_{s_2} \le (1+4C^2) \epsilon$$

7. Analysis von Dirac-Operatoren auf Riemannschen Mannigfaltigkeiten

Wir wollen nun die Definitionen, Normen und Ungleichungen auf eine beliebige kompakte Riemannsche Mannigfaltigekeit mit einem Vektorbündel $E \to M$ übertragen. Da wir nun sehr bedacht auf die Regularität von Schnitten bedacht sein müssen, schreiben wir für den Raum aller glatten Schnitte von E hier zumeist $C^{\infty}(E)$ an Stelle von $\Gamma(E)$.

Wir wählen eine offene Überdeckung U_1, \ldots, U_r von M und Diffeomorphismen

$$\varphi_i: U_i \to V_i \subset T^n$$

Auf jedem U_j wählen wir eine Trivialisierung von E, d.h. eine Abbildung $\psi_j : E|_{U_j} \to \mathbb{C}^m, \psi_j = (\psi_j^1, \ldots, \psi_j^m)$. Wir wählen eine zu U_1, \ldots, U_r passende Partition χ_j der Eins.

Definition 7.1. Wir definieren nun für alle $v, w \in C^{\infty}(E)$ und $k \in \mathbb{N}$ das Sobolev-k-Skalarprodukt

$$(v,w)_k \coloneqq \sum_{j=1}^r \sum_{\ell=1}^m (\psi_j^\ell \circ (\chi_j v) \circ \varphi_j^{-1}, \psi_j^l \circ (\chi_j \overline{w}) \circ \varphi_j^{-1})_k.$$

und die Sobolev-k-Norm auf M

$$\|w\|_{k} := \sqrt{\sum_{j=1}^{r} \sum_{\ell=1}^{m} \|\psi_{j}^{\ell} \circ (\chi_{j}w) \circ \varphi_{j}^{-1}\|_{k}} = \sqrt{(w,w)_{k}}.$$

Den Sobolev-Raum $W^k(E)$ definieren wir als Vervollständigung von $C^{\infty}(E)$ bzgl. $\|\cdot\|_k$.

Die Norm und das Skalarprodukt sind bis auf Äquivalenz nicht von der Wahl der U_j , φ_j , ψ_j und χ_j abhängig. Dies folgt aus Exercise 3, Exercise Sheet 3 (Regensburg 2016/17) und einigen darauf aufbauenden Rechnungen, die für $k \in \mathbb{N}$ gut funktionieren.

Insbesondere folgt dann auch $H_k = W^k(T^n)$.

Zu bemerken ist, dass wir in der obigen Definition nur an der Äquivalenzklasse der Norm interessiert sind. Für geometrische Anwendungen, in denen der Wert der Sobolev-Norm (z.B. im Yamabe-Problem) eine entscheidende Rolle spielt, sollte man die Normen anders (aber äquivalent) definieren, um einfach handhabbare Aussagen zu erhalten. Für die Zwecke der aktuellen Vorlesung ist es aber ausreichend, entscheiden zu können, ob ein Schnitt in einem Sobolevraum enthalten ist und ob die Operatoren zwischen den gegebenen Sobolev-Räumen beschränkt sind oder nicht. Ein Ausnahme bildet hier die L^2 -Norm, die zur W_0 -Norm äquivalent ist, und deren genauen Wert

$$||w||_{L^2} = \sqrt{\int_M |w|^2 \operatorname{dvol}^g}.$$

Die Formel gilt dann auch für alle $w \in L^2(M)$, für die der Leser die rechte Seite sinnvoll definieren kann.

Desweiteren ist zu sagen, dass es in der Literatur auch viele andere Arten gibt, Sobolev-Räume einzuführen und dass es auch weitere Typen von Sobolev-Räumen gibt. Konzeptioneller ist es Distributionentheorie zu nutzen, um Sobolev-Räume zu definieren, oder alternativ Pseudodifferentialoperatoren. Modifikationen gibt es zum Beispiel dahingehend, dass man beliebige reelle Zahlen s in H^s erlaubt, dass man die L^2 -Bedingungen durch L^p -Bedinungen ersetzen kann, man Randbedinungen auf verschiedene Arten einführt, dass man bei nicht-kompakten Mannigfaltigkeiten einen Abfall im Unendlichen vorschreibt und vieles mehr. Es gibt hier kein universelles Konzept und man sollte die Räume immer entsprechend der Verwendung definieren und gleichzeitig sehen, dass verschiedene Definitionen äquivalent sind.

Bemerkungen 7.2.

(1) Ist $P: C^{\infty}(E) \to C^{\infty}(F)$ ein Differentialoperator der Ordnung *m*, dann setzt sich *P* zu einer beschränkten Abbildung

$$P: W^{k+m}(E) \to W^k(F)$$

fort. Insbesondere ist dann auch die Formel (4.6) für alle $\varphi \in W^d(E)$ und $\psi \in W^d(F)$ gültig. (2) Die Identität $\mathrm{Id}_{C^{\infty}(E)}$ setzt sich zu einer beschränkten injektiven Abbildung

$$C^k(E) \to W^k(E)$$

fort.

(3) (Sobolev) Für $s>n/2,\,s\in\mathbb{N}$ setzt sich die Identität $\mathrm{Id}_{C^\infty(E)}$ zu einer beschränkten injektiven Abbildung

$$W^{k+s}(E) \to C^k(E)$$

fort.

(4) (Rellich) Für $s_1 < s_2$ setzt sich $\mathrm{Id}_{C^{\infty}(E)}$ zu einer kompakten injektiven Abbildung

$$W^{s_2}(E) \to W^{s_1}(E)$$

fort. (5) Es gilt

$$\bigcap_{k\in\mathbb{N}}W^k(E)=C^\infty(E).$$

(6) Wähle einen Zusammenhang ∇ auf E und eine Metrik. Sei $k \in \mathbb{N}$. Dann sind die Normen

$$\|w\|'_{k} \coloneqq \sum_{j=0}^{k} \|\underbrace{\nabla \dots \nabla}_{j-\mathrm{mal}} w\|_{L^{2}}, \qquad w \in C^{\infty}(E)$$

zu $\|\cdot\|_k$ äquivalente Normen.

Die Aussagen in der Bemerkung kann man zeigen, in dem man sie auf Aussagen in Karten reduziert und dann die Aussagen des letzten Kapitels nutzt. Dies ist einige formale Arbeit, aber inhaltlich nicht kompliziert, so dass wir detailierte Beweise überspringen. Etwas subtil ist hierbei allerdings, die Injektivität der Abbildungen $W^{k+s}(E) \to C^k(E)$ und $W^{s_2}(E) \to W^{s_1}(E)$ zu zeigen, und dies wird oft in der Literatur nicht ganz korrekt wiedergegeben. Deswegen wollen wir es im folgenden Lemma im Detail zeigen.

LEMMA 7.3. Set $T: W^{s_2}(E) \to W^{s_1}(E)$, $s_i \in \mathbb{N}$, $s_2 > s_1$, die stetige lineare Abbildung, die die Identität $\mathrm{Id}_{C^{\infty}(E)}$ fortsetzt. Dann ist T injektiv.

Aus dem Lemma folgt dann auch die Injektivität von $W^{k+s}(E) \to C^k(E)$, denn die Komposition $W^{k+s}(E) \to C^k(E) \to W^k(E)$ setzt die Identität stetig fort und stimmt deswegen mit der Abbildung T im Lemma für $s_2 = k + s$ und $s_1 = k$ überein.

Beweis des Lemmas. Man zeigt zunächst die Existenz einer Konstanten C, so dass für alle $\varphi \in C^{\infty}(E)$ gilt:

$$\|\varphi\|_{W^{s_1}} \le C \|\varphi\|_{W^{s_2}}.$$

Dies ist wie oben angedeutet, einige formale Arbeit ohne inhaltlich kompliziert zu sein. Aus dieser Ungleichung folgt, dass Cauchy-Folgen in $(C^{\infty}(E), \|\cdot\|_{W^{s_2}})$ auf Cauchy-Folgen in $(C^{\infty}(E), \|\cdot\|_{W^{s_1}})$ abgebildet werden und somit die Abbildung wohldefiniert ist. Auch die Beschränkheit der Abbildung folgt aus der Ungleichung. Der oben erwähnte subtile Punkt im Beweis der Injektivität ist nun: Elemente von W^{s_2} sind in Bijektion zu Äquivalenzklassen von Cauchy-Folgen, und deswegen müssen wir ausschließen, dass es Cauchy-Folgen in $(C^{\infty}(E), \|\cdot\|_{W^{s_2}})$ gibt, die Nullfolge in $(C^{\infty}(E), \|\cdot\|_{W^{s_1}})$ sind.

Nehmen wir also an, (w_i) wäre eine Cauchy-Folge in $(C^{\infty}(E), \|\cdot\|_{W^{s_2}})$ mit $\|w_i\|_{W^{s_1}} \to 0$. Aus der Definition ergibt sich dann für jedes j und ℓ , dass auch $\|\psi_j^{\ell} \circ (\chi_j w_i) \circ \varphi_j^{-1}\|_{s_1}$ für $i \to \infty$ gegen Null konvergiert. Somit ist für fixiertes j die Folge v_i mit $v_i \coloneqq \psi_j^{\ell} \circ (\chi_j w_i) \circ \varphi_j^{-1}$ eine Nullfolge im Raum H_{s_1} , der im letzten Kapitel definiert wurde. Gleichzeitig ist es eine Cauchy-Folge im Banachraum H_{s_2} , konvergiert also auch hier, sagen wir gegen ein $v_{\infty} \in H_{s_2}$. Entscheidend ist nun, dass wir im letzten Kapitel H_{s_2} als *Teilmenge* von H_{s_1} definiert haben, was uns erlaubt v_{∞} auch als Element in H_{s_1} zu sehen. Die Konvergenz von (v_i) gegen v_{∞} in H_{s_2} impliziert die Konvergenz von (v_i) gegen v_{∞} in H_{s_1} , also muss $v_{\infty} = 0$ gelten.

Die Injektivität von $C^k(E) \to W^k(E)$ ist einfacher. Wenn ein w im Kern läge, dann zeigt man zunächst, dass dann auch χw im Kern läge für alle Funktionen $\chi \in C^k(W)$. Nun wählen wir eine geeignete Karte $\varphi : U \to V$ eine geeignete Trivialisierung $\psi = (\psi^1, \dots, \psi^m)$ und eine geeignete Abschneide-Funktion und erhalten ein nicht-triviales Element $\psi^{\ell} \circ (\chi w) \circ \varphi^{-1}$ im Kern der Abbildung $C^k(V) \to W^k(V)$. Dies widerspricht Lemma 6.5.

Sei nun $W \to M$ ein Clifford-Bündel über der kompakten riemannschen Mannigfaltigkeit M. Den dazugehörigen (verallgemeinerten) Dirac-Operator bezeichnen wir mit D.

PROPOSITION 7.4 (Gårding-Ungleichung). Es existiert eine Konstante C > 0, so dass

$$\|\varphi\|_1 \le C \left(\|\varphi\|_0 + \|D\varphi\|_0 \right) \qquad \forall \varphi \in C^{\infty}(W).$$

Beweis. Wir können annehmen, dass $\|\,.\,\|_0$ die $L^2\operatorname{-Norm}$ ist. Aus der Bochner-Formel

$$D^2\varphi = \nabla^\# \nabla \varphi + \mathcal{K}\varphi$$

folgt

$$\nabla \varphi \|_0^2 = (\nabla^\# \nabla \varphi, \varphi)_0 = (D^2 \varphi, \varphi)_0 - (\mathcal{K} \varphi, \varphi)_0 \le \|D\varphi\|_0^2 + C' \|\varphi\|_0^2.$$

Beweis. Die rechte Ungleichung ist bereits klar. Zu zeigen ist also die Existenz von C_k . Für k = 1 ist dies gerade die Gårding-Ungleichung. Für alle k > 1 zeigen wir die Behauptung durch Induktion über k. Nach Induktionsvoraussetzung gelte die Aussage für k - 1 für alle Clifford-Bündel.

$$\begin{aligned} \|\varphi\|_{k} &\leq C_{1} \left\{ \|\varphi\|_{0} + \|\nabla\varphi\|_{k-1} \right\} \\ &\leq C_{2} \left\{ \|\varphi\|_{0} + \|\nabla\varphi\|_{0} + \|D\nabla\varphi\|_{0} + \dots + \|D^{k-1}\nabla\varphi\|_{0} \right\} \\ &\leq C_{3} \left\{ \|\varphi\|_{k-1} + \|\nabla\varphi\|_{0} + \|\nabla D\varphi\|_{0} + \dots + \|\nabla D^{k-1}\varphi\|_{0} \right\} \\ &\leq C_{4} \left(\|\varphi\|_{0} + \|D\varphi\|_{0} + \dots + \|D^{k}\varphi\|_{0} \right) \end{aligned}$$

Die zweite und letzte Ungleichung beruhen auf der Induktionsvoraussetzung. In der dritten Ungleichung haben wir D^r und ∇ vertauscht, und nach Lemma (5.10) wissen wir

$$\|D^{s+1}\nabla D^r\varphi - D^s\nabla D^{r+1}\varphi\|_0 = \|D^s(D\nabla - \nabla D)D^r\varphi\|_0 \le C'\|\varphi\|_{r+s}.$$

Definition 7.6. Seien H_1, H_2 Hilbert-Räume, $\mathcal{D} \subset H_1$ ein dichter Unterraum. Ein linearer Operator $A : \mathcal{D} \to H_2$ heißt unbeschränkter Operator. Der Graph von A ist

$$\Gamma_A = \{(x, Ax) \mid x \in \mathcal{D}\} \subset H_1 \oplus H_2.$$

Der Operator A heißt abgeschlossen, falls der Graph Γ_A abgeschlossen ist.

Überall definierte Operatoren ($\mathcal{D} = H_1$) sind genau dann stetig, wenn sie abgeschlossen sind. Unser wichtigstes Beispiel ist $H_1 = H_2 = L^2$, $\mathcal{D} = C^{\infty}(W)$ und A eine Differentialoperator, insbesondere A = D.

LEMMA 7.7. Sei M kompakt und P ein Differentialoperator auf M. Der Abschluss des Graphen Γ_P in $L^2 \oplus L^2$ ist wieder ein Graph.

Die lineare Abbildung die durch $\overline{\Gamma_P}$ beschrieben wird, heißt der Abschluss von P.

Beweis. Sei (0, y) im Abschluss von Γ_P . Dann gibt es eine Folge (x_j) in C^{∞} mit $(x_j, Px_j) \to (0, y)$ in $L^2 \oplus L^2$, also $x_j \to 0$ und $Px_j \to y$ in L^2 . Es folgt für alle glatten φ :

$$\begin{array}{cccc} (x_j, P^{\#}\varphi)_{L^2} & \to & 0 \\ & \parallel & \\ (Px_j, \varphi)_{L^2} & \to & (y, \varphi)_{L^2}. \end{array}$$

Da die glatten Schnitte dicht liegen, folgt y = 0.

Bemerkung 7.8. Sei P ein Differentialoperator der Ordnung k. Dann ist der Sobolevraum W^k im Definitionsbereich des Abschlusses von P enthalten.

Ein Unterraum eines vollständigen metrischen Raumes ist genau dann abgeschlossen, wenn er vollständig in der induzierten Metrik ist. Sei $A : \mathcal{D} \subset H_1 \to H_2$ ein unbeschränkter Operator. Wir folgern, dass A genau dann abgeschlossen ist, wenn der Graph in der induzierten Topologie vollständig ist. Vermöge des Isomorphismus $\mathcal{D} \to \Gamma_A$ definiert die induzierte Norm eine Norm auf \mathcal{D} , die Graphen-Norm auf \mathcal{D}

$$\|\varphi\|_{A}^{2} \coloneqq \|\varphi\|_{H_{1}}^{2} + \|A\varphi\|_{H_{2}}^{2}$$

Beispiel 7.9. Die Gårding-Ungleichung für Dirac-Operatoren besagt, dass die Graphen-Norm äquivalent zur W^1 -Norm ist. Insofern ist die stetige Fortsetzung von D zu einer Abbildung $W^1(W) \rightarrow W^1$ $L^{2}(W)$ ein abgeschlossener Operator, und stimmt deswegen mit dem Abschluss von D überein. Somit haben wir einen Operator $\mathcal{D}_{\overline{D}} = W^1(W) \to L^2(W)$.

Definition 7.10. Sei M eine kompakte Mannigfaltigkeit. Sei P ein Differentialoperator der Ordnung m, der Schnitte von $E \to M$ auf Schnitte von $F \to M$ abbildet. Sei $f \in L^2(F)$. Man sagt, die Differential gleichung Pu = f ist

(a) im klassischen Sinn erfüllt, falls u ∈ C^m(E), f ∈ C⁰(F), und Pu = f,
(b) im starken Sinn erfüllt, falls es u_j ∈ C^m(E) gibt mit u_j → u und Pu_j → f in L²,

(c) im schwachen Sinn erfüllt, falls $(u, P^{\#}\varphi)_0 = (f, \varphi)_0$ für alle $\varphi \in C^{\infty}(F)$.

Offensichtlich ist (b) äquivalent zu $(u, f) \in \overline{\Gamma_P}$, oder anders ausgedrückt: (b) besagt, dass u im Definitionsbereich des Abschlusses von P liegt, und der Abschluss von P die Funktion u auf fabbildet. Es ist deswegen klar, dass aus der Gültigkeit im klassischen Sinn, die Gültigkeit im starken Sinn folgt. Ist andererseit u eine starke Lösung, so folgt

$$(u, P^{\#}\varphi)_0 \leftarrow (u_j, P^{\#}\varphi)_0 = (Pu_j, \varphi)_0 \rightarrow (f, \varphi)_0.$$

Also ist auch u eine schwache Lösung.

Wir wollen nun umgekehrt zeigen, dass im Falle des Dirac-Operators jede schwache Lösung u von Du = f bereits eine starke Lösung ist.

PROPOSITION 7.11. Ist für u, f die Gleichung Du = f im schwachen Sinn erfüllt, so ist sie auch im starken Sinn erfüllt.

Definition 7.12. Sei M kompakt. E, F Bündel über M. Sei $\pi_{1/2} : M \times M \to M$ die Projektion auf die erste bzw. zweite Komponente. Eine lineare Abbldung

$$A: L^2(E) \to L^2(F)$$

heißt Glättungsoperator, falls es einen glatten Schnitt k von $\pi_1^* F \otimes \pi_2^* E^*$ gibt mit

$$(A\varphi)(x) = \int_M k(x,y)\varphi(y) \operatorname{dvol}(y).$$

Solch ein k heißt Glättungskern.

Bemerkung 7.13. Für Glättungsoperatoren A gilt $A(L^2(E)) \subset C^{\infty}(F)$, und $A: L^2(E) \to C^k(F)$ ist für alle k beschränkt.

Definition 7.14. Sei nun E = F. Eine Familie $\{\mathcal{F}_{\epsilon} | \epsilon \in (0, \epsilon_0]\}$ von selbstadjungierten Glättungsoperatoren heißt Friedrichs-Glätter, falls gilt

- (1) $\mathcal{F}_{\epsilon}: L^2 \to L^2$ ist gleichmäßig in ϵ beschränkt, (2) $[B, \mathcal{F}_{\epsilon}]: L^2 \to L^2$ ist gleichmäßig in ϵ beschränkt für alle Differential operatoren B der Ordnung 1.
- (3) \mathcal{F}_{ϵ} konvergiert in der schwachen Operator-Topologie gegen id, d.h. für alle $u, v \in L^2$ gilt

$$(\mathcal{F}_{\epsilon}u, v)_0 \to (u, v)_0 \qquad \text{für } \epsilon \to 0.$$

LEMMA 7.15. Auf kompakten Mannigfaltigkeiten existieren Friedrichs-Glätter.

Beweis (Skizze). Sei ϵ_0 der Injektivitätsradius von M. Wähle eine glatte Funktion $\chi : \mathbb{R} \to \mathbb{R}$ mit $\chi \ge 0 \ \chi(t) \equiv 0$ falls $t \ge 1$, die konstant ist in einer Umgebung von 0 und

$$\int_0^1 \chi(t) t^{n-1} dt = 1/\operatorname{vol}(S^{n-1}).$$

Dann gilt $\int_{\mathbb{R}^n} \chi(|x|) dx = 1$. Wir definieren für $d(x, y) < \epsilon_0$

$$k_{\epsilon}(x,y) = \epsilon^{-n} \chi(d(x,y)/\epsilon) P_{x,y}$$

wobei $P_{x,y}$ der Paralleltransport längs der Kürzesten von y nach x ist. Für alle anderen x, y kann man k_{ϵ} durch 0 glatt fortsetzen.

Eine Rechnung liefert dann, dass die zugehörigen Operatoren Friedrichs-Glätter sind.

Beweis von Proposition 7.11. Sei also $u, f \in L^2$, Du = f schwach. Zu zeigen ist dann $u \in W^1$, siehe Beispiel 7.9. Daraus folgt dann nämlich für alle glatten φ , dass

$$(Du,\varphi)_0 = (u, D\varphi)_0 = (f,\varphi)_0,$$

und somit $\overline{D}u = f$, und ist ist nach Definition die Aussage, dass Du = f im starken Sinn gilt. Wir definieren

$$u_{\epsilon} \coloneqq \mathcal{F}_{\epsilon} u \in C^{\infty}$$

Für alle glatten φ gilt somit

$$\begin{aligned} (Du_{\epsilon},\varphi)_{0} &= (u_{\epsilon},D\varphi)_{0} = (u,\mathcal{F}_{\epsilon}D\varphi)_{0} \\ &= (u,D\mathcal{F}_{\epsilon}\varphi)_{0} + (u,[\mathcal{F}_{\epsilon},D]\varphi)_{0} \\ &= (f,\mathcal{F}_{\epsilon}\varphi)_{0} + (u,[\mathcal{F}_{\epsilon},D]\varphi)_{0} \end{aligned}$$

Daraus folgt dann (alle C_i sind unabhängig von ϵ)

$$|(Du_{\epsilon},\varphi)_{0}| \leq ||f||_{0}C_{1}||\varphi||_{0} + ||u||_{0}C_{2}||\varphi||_{0} \leq C_{3}||\varphi||_{0},$$

also $\|Du_{\epsilon}\|_{0} \leq C_{3}$ und $\|u_{\epsilon}\|_{0} \leq \|\mathcal{F}_{\epsilon}u\|_{0} \leq C_{1}\|u\|_{0} \leq C_{4}$. Folglich $\|u_{\epsilon}\|_{1} \leq C_{5}$.

Nach [HS71, Satz 14.9] sind abgeschlossene Bälle in einem Hilbert-Raum schwach folgenkompakt. Da W^1 ein Hilbert-Raum ist, und u_{ϵ} beschränkt in W^1 ist, gibt es also eine Folge $\epsilon_j \to 0$, so dass u_{ϵ_j} schwach ² gegen ein $\tilde{u} \in W^1$ konvergiert. Für jedes glatte φ ist $(\cdot, \varphi)_0$ stetig auf L^2 und W^1 . Es gibt also ein $w \in W^1$ mit $(\cdot, \varphi)_0 = (\cdot, w)_1$, und somit gilt für alle glatten φ

$$(u_{\epsilon_i} - \tilde{u}, \varphi)_0 \to 0.$$

Da $u_{\epsilon_i} \to u$, folgt hieraus $(u - \tilde{u}, \varphi)_0 = 0$ für alle φ und somit $u = \tilde{u}$.

Wir können hieraus den folgenden stärkeren Satz herleiten

SATZ 7.16 (Regularität der Lösungen). Sei W ein Clifford-Bündel über einer kompakten riemannschen Mannigfaltigkeit M. Sind $u \in L^2(W)$ und $f \in W^k(W)$ und gilt Du = f schwach, dann gilt $u \in W^{k+1}(W)$.

Bemerkung 7.17. Man kann sogar auch zeigen, dass es eine Konstante C = C(M) gibt mit

 $||u||_{k+1} \le C ||f||_k.$

²Die schwache Konvergenz ist definiert als: Für alle $w \in W^1$ gilt $(u_{\epsilon_j} - \tilde{u}, w)_0 \to 0$ für $j \to 0$.

Beweis. Für k = 0 haben wir es gezeigt. Wir wollen die Aussage durch Induktion über k zeigen. Wir nehmen also nach Induktionsvoraussetzung an, dass der Satz für k-1 gelte, $k \ge 1$. Sei $X \in \Gamma(TM)$. Man rechnet leicht nach, dass der Kommutator $[\nabla_X, D]$ wieder ein Differentialoperator erster Ordnung ist (entweder in lokalen Koordinaten oder indem man zeigt, dass die Hauptsymbole von ∇_X und D kommutieren, denn das Hauptsymbol von ∇_X ist gegeben durch $T^*M \ni \alpha \mapsto$ $\alpha(X)$ Id \in End(W)). footnoteEs gilt sogar allgemein: ist P ein Differentialoperator vo Ordnung $\le k$, dann ist auch $[\nabla_X, P]$ Differentialoperator von Ordnung $\le k$. Folglich sind $[\nabla_X, D]$ und $[\nabla_X, D]^{\#} = -[\nabla_X^{\#}, D]$ Differentialoperatoren erster Ordnung. Wir wissen bereits, dass $u \in W^k(W)$ und somit $[\nabla_X, D]u \in W^{k-1}(W)$. Für die schwache Lösung Du = f gilt:

$$(u, D\nabla_X \varphi)_0 = (f, \nabla_X \varphi)_0 \qquad \varphi \in C^{\infty}(W)$$

Wir rechnen dann nach

$$(\nabla_X u, D\varphi)_0 = (u, D\nabla_X^{\#}\varphi)_0 + (u, [\nabla_X^{\#}, D]\varphi)_0$$

= $(\nabla_X f, \varphi)_0 - (\underbrace{[\nabla_X, D]u}_{\in W^{k-1}(W)}, \varphi)_0$

Also ist $\nabla_X u$ eine schwache Lösung von

(

$$D(\nabla_X u) = \nabla_X f - [\nabla_X, D] u \in W^{k-1}(W),$$

und somit nach Induktionsvoraussetzung $\nabla_X u \in W^k(W)$. Da dies für alle Vektorfelder X gilt, folgt $u \in W^{k+1}(W)$.

LEMMA 7.18. Setze $J: L^2(W) \oplus L^2(W) \to L^2(W) \oplus L^2(W)$, J(u, v) = (v, -u). Dann gilt $L^2(W) \oplus L^2(W) = \overline{\Gamma_D} \oplus J(\overline{\Gamma_D})$.

Beweis. Man rechnet direkt nach, dass für jeden Differential
operator P gilt

$$J(\overline{\Gamma_P}) \perp \overline{\Gamma_{P^{\#}}}.$$

Sei nun $(u, v) \perp \overline{\Gamma_D}$, so gilt für alle glatten φ , dass $((u, v), (\varphi, D\varphi)) = 0$, also $(u, \varphi)_0 = -(v, D\varphi)_0$. Insofern ist Dv = -u schwach erfüllt, also auch stark, also $v \in W^1$ und Dv = -u, also $(v, -u) \in \overline{\Gamma_D}$ und schließlich $(u, v) \in J(\overline{\Gamma_D})$.

Sei Q nun die Verkettung

$$L^{2}(W) \xrightarrow{\iota_{1}} L^{2}(W) \oplus L^{2}(W) = \overline{\Gamma_{D}} \oplus J(\overline{\Gamma_{D}}) \xrightarrow{\pi_{\overline{\Gamma_{D}}}} \overline{\Gamma_{D}} \oplus J(\overline{\Gamma_{D}}) \xrightarrow{\pi_{1}} L^{2}(W)$$

wobei ι_1 die Inklusion in die erste Komponente, π_A die Orthogonalprojektion auf den abgeschlossenen Unterraum A, und π_1 die Projektion auf die erste Komponente bezeichnet.

der zweite Pfeil Orthogonalprojektion und der dritte Pfeil Projektion auf die erste Komponente bedeutet. Also gilt somit

$$u \mapsto (u,0) \mapsto (Qu, \overline{D}Qu) \mapsto Qu$$

und $Qu \in W^1(W)$. Nach dem vorangegangenen Lemma gibt es ein $v \in W^1(W)$ mit

$$(u,0) = (Qu, \overline{D}Qu) + (\overline{D}v, -v).$$

Wir erhalten $u = Qu + \overline{D}v$ und $v = \overline{D}Qu$, insgesamt somit

$$u = (\operatorname{Id} + \overline{D}^2)Qu.$$

Offensichtlich ist $(\overline{D}v, -v)$ die Projektion von (u, 0) auf $J(\overline{\Gamma_D})$, also sind die Abbildungen $u \mapsto Qu$, $u \mapsto \overline{D}Qu$ und $u \to \overline{D}v = \overline{D}^2Qu$, im Sinne von $L^2 \to L^2$ -Funktionen beschränkt, also

$$||Qu||_2 \le C_1 \left(||Qu||_0 + ||\overline{D}Qu||_0 + ||\overline{D}^2Qu||_0 \right) \le C_2 ||u||_0,$$

also $Q: L^2(W) \to W^2(W)$ stetig.

Zusammen mit Rellich (Satz 6.10) folgt, dass Q ein kompakter Operator $L^2(W) \rightarrow L^2(W)$ ist. Wir berechnen nun den zu Q adjungierten Operator Q^* . Offensichtlich ist $\iota_1^* = \pi_1$ und $\pi_1^* = \iota_1$. Und für einen abgeschlossenen Unterraum A ist die Orthogonalprojektion auf A selbst-adjungiert. Zusammen mit $Q = \pi_1 \circ \pi_{\overline{\Gamma_D}} \circ \iota_1$ ergibt sich $Q^* = Q$.

Wir zitieren nun den Spektralsatz für kompakte selbstadjungierte Operatoren (siehe zum Beispiel [HS71, Satz 26.3]

SATZ 7.19 (Spektralsatz für selbstadjungierte kompakte Operatoren). Sei H ein komplexer Hilbert-Raum und $Q: H \rightarrow H$ kompakt und selbstadjungiert. Dann gilt

$$H = \overline{\bigoplus_{\lambda \in spec(Q)} H_{\lambda}},$$

wobei H_{λ} der Eigenraum zu $\lambda \in \mathbb{R}$ ist, und für $\lambda \neq 0$ gilt dim $H_{\lambda} < \infty$. Insbesondere ist spec(Q) abzähbar und der einzige mögliche Häufungspunkt ist 0.

Unser Q von oben ist injektiv, also ist $H_0 = \{0\}$. Wir erhalten somit eine Zerlegung on L^2 in endlich-dimensionale Räume H_{λ} auf denen \overline{D}^2 den Eigenwert $\lambda^{-1} - 1$ hat. Offensichtlich bewahrt \overline{D} diese Zerlegung, und jedes H_{λ} zerfällt in die beiden Eigenräume von \overline{D} zu den Eigenwerten $\pm \sqrt{\lambda^{-1} - 1}$. Die Eigenwert von \overline{D} sind reell, da \overline{D} selbstadjungiert ist. Mit dem Regularitäts-Satz (Satz 7.16) folgt, dass alle Eigenvektoren in

$$\bigcap_{k \in N} W^k(W) = C^{\infty}(W)$$

liegen.

THEOREM 7.20 (Spektralsatz für verallgemeinerte Dirac-Operatoren). Sei $W \to M$ ein Clifford-Bündel über der kompakten Mannigfaltigkeit (M,g). Dann gibt es endlich-dimensionale Räume $E_{\lambda} \subset C^{\infty}(W)$, so dass

$$L^2(W) = \overline{\bigoplus_{\lambda \in spec(D)} E_{\lambda}}$$

mit $D\varphi = \lambda \varphi$ für alle $\varphi \in E_{\lambda}$. Und spec(D) ist eine diskrete Teilmenge von \mathbb{R} , und die einzigen potentiellen Häufungspunkte sind $\pm \infty$.

PROPOSITION 7.21. Sowohl $+\infty$ als auch $-\infty$ sind Häufungspunkte des Spektrums von D.

Beweis. Die Aussage gilt trivialerweise für n = 1 (Nachrechnen) und für orientierte 2-dimensionale-Mannigfaltigkeiten (folgende Proposition). Wir zeigen es hier für $n \ge 3$. Der verbleibende Fall n = 2, nicht orientiert, wird hier nicht gezeigt, und kann zum Beispiel aus [Bär00] gefolgert werden.

Sei also $n \ge 3$.

Da $L^2(W)$ unendlich dimensional ist, ist zumindest ∞ oder $-\infty$ ein Häufungspunkt. Wir wollen annehmen, dass $-\infty$ kein Häufungspunkt des Spektrums ist und daraus einen Widerspruch herleiten. Für $+\infty$ ist die Argumentation völlig analog. Sei $-\infty$ kein Häufungspunkt. Dann ist das Spektrum von Dnach unten, aber nicht nach oben beschränkt, sagen wir

$$(D\varphi,\varphi)_0 \ge \lambda_{\min}(\varphi,\varphi)_0 \quad \forall \varphi \in W^1(W).$$

Wir nehmen eine offene Überdeckung von M mit offenen Mengen U_1, \ldots, U_k , die alle zu einem Ball diffeomorph sind. Wir finden auf jedem U_j einen orthonormalen Rahmen e_1^j, \ldots, e_n^j . Sei χ_j eine Partition der Eins, passend zur Überdeckung U_j . Wir können annehmen, dass $\sqrt{\chi_j}$ glatt ist. Wir setzen

$$\alpha_i^j \coloneqq \begin{cases} \sqrt{\chi_j} \left(e_i^j \right)^b & \text{auf } U_j \\ 0 & \text{sonst} \end{cases}$$

Sei nun $D\varphi = \lambda \varphi$. Wir rechnen nun zunächst

$$\sum_{i,j} (\alpha_i^j \cdot \varphi, \alpha_i^j \cdot \varphi)_0 = n(\varphi, \varphi)_0.$$

Es gilt dann zum einen

$$\sum_{i,j} (D\alpha_i^j \cdot \varphi, \alpha_i^j \cdot \varphi)_0 \ge n\lambda_{\min}(\varphi, \varphi)_0.$$

und zum andern

$$\begin{split} \sum_{i,j} (D\alpha_i^j \cdot \varphi, \alpha_i^j \cdot \varphi)_0 \\ &= \sum_{i,j,k} (e_k^j \cdot \nabla_{e_k^j} (\alpha_i^j \cdot \varphi), \alpha_i^j \cdot \varphi)_0 \\ &\leq \sum_{i,j,k} (e_k^j \cdot \alpha_i^j \cdot \nabla_{e_k^j} \varphi, \alpha_i^j \cdot \varphi)_0 + C \|\varphi\|_0^2 \\ &= -\sum_{\substack{i,j,k \\ i \neq k}} (\alpha_i^j \cdot e_k^j \cdot \nabla_{e_k^j} \varphi, \alpha_i^j \cdot \varphi)_0 + \sum_{j,i} (\alpha_i^j \cdot e_i^j \cdot \nabla_{e_i^j} \varphi, \alpha_i^j \cdot \varphi)_0 + C \|\varphi\|_0^2 \\ &= -(n-2)(D\varphi, \varphi)_0 + C \|\varphi\|_0^2, \end{split}$$

wobei C durch $\max_{i,j} |a_i^j|_{C^1}$ nach oben abgeschätzt werden kann.

Insgesamt folgt

$$(n-2)\lambda \le C - n\lambda_{\min}$$

Da wirCunabhängig von λ wählen konnten, erhalten wir für genügend großes λ einen Widerspruch. $\hfill\square$

PROPOSITION 7.22. Ist die Dimension von M gerade und ist M orientiert, so ist das Spektrum von D symmetrisch, d.h. ist λ ein Eigenwert, so ist auch $-\lambda$ ein Eigenwert und die Dimensionen der Eigenräume stimmen überein.

Zunächst überlegen wir, wie wir eine Clifford-Multiplikation für Formen erklären. Sei $\alpha \in \Gamma(\Lambda^k T_p^* M)$ und $\varphi \in W_p$. Wir schreiben lokal

$$\alpha = \sum_{i_1 < \dots < i_k} \alpha_{i_1 \dots i_k} e^b_{i_1} \wedge \dots \wedge e^b_{i_k}$$

für einen lokalen orthonormalen Rahmen e_1, \ldots, e_n von T_pM . Dann definieren wir

$$\alpha \cdot \varphi \coloneqq \sum_{i_1 < \dots < i_k} \alpha_{i_1 \cdots i_k} e^b_{i_1} \cdot \dots \cdot e^b_{i_k} \cdot \varphi.$$

Diese Definition ist uabhängig von der Wahl der Umgebung und ist deswegen global definiert. Wir erhalten somit eine glatte bilineare Funktion

$$\Lambda^{\bullet}T_p^*M \times W_p \to W_p.$$

Sei M orientiert. Die Volumenform ist dann lokal $\omega = e_1^b \wedge \ldots \wedge e_n^b$, wobei e_1, \ldots, e_n eine positiv orientierte Orthonormalbasis ist. Man rechnet nach, dass

$$\omega \cdot \omega \cdot \varphi = (-1)^{\frac{n(n+1)}{2}} \varphi.$$

Wir definieren das komplexe Volumenelement als

(7.23) $\omega_{\mathbb{C}} \coloneqq i^{\left[\frac{n+1}{2}\right]}\omega.$

In den Übungen zeigen wir das Lemma:

LEMMA 7.24.

$$D(\omega_{\mathbb{C}} \cdot \varphi) = (-1)^{n-1} \omega_{\mathbb{C}} \cdot (D\varphi).$$

Beweis von Proposition 7.22. Es gelte $D\varphi = \lambda\varphi$. somit folgt also

$$D(\omega_{\mathbb{C}} \cdot \varphi) = (-1)^{n-1} \omega_{\mathbb{C}} \cdot (D\varphi) = -\lambda \omega_{\mathbb{C}} \cdot \varphi$$

. 6		

Zum Abschluss noch eine Proposition, die im nächsten Kapitel wichtig werden wird:

PROPOSITION 7.25. Es gilt im $D|_{C^{\infty}} \oplus \ker D = C^{\infty}(W)$ und die Summe ist orthogonal.

Beweis. Offensichtlich bestehen beide Summanden aus glatten Schnitten, und die Summe ist direkt. Zu zeigen ist also, dass sich jeder Schnitt in $C^{\infty}(W)$ zerlegen lässt. Hierzu schreiben wir

$$\varphi = \sum_{\lambda \in spec(D)} \varphi_{\lambda}, \qquad D\varphi_{\lambda} = \lambda \varphi_{\lambda}.$$

Wir setzen $\psi \coloneqq \sum_{\lambda \neq 0} \frac{1}{\lambda} \varphi_{\lambda}$. Diese Reihe konvergiert in $W^1(W)$, und D kann gliedweise reingezogen werden, also

$$D\psi + \varphi_0 = \varphi.$$

8. Hodge-Theorie

Im folgenden sei immer (M^n, g) eine kompakte riemannsche Mannigfaltigkeit ohne Rand. Das punktweise Skalarprodukt bezeichnen wir mit $\langle \cdot, \cdot \rangle$ und das L^2 - bzw. Sobolev-0-Skalarprodukt mit (\cdot, \cdot) .

Definition 8.1. Seien S_0, \ldots, S_N komplexe Vektorbündel über M zusammen mit Differentialoperatoren $d_j : C^{\infty}(S_j) \to C^{\infty}(S_{j+1})$ mit $d_{j+1} \circ d_j = 0$ heißt *Dirac-Komplex*, falls $S = \bigoplus_{j=0}^N S_j$ eine Clifford-Bündel-Struktur trägt, so dass für den zugehörigen Dirac-Operator gilt

 $D = d + d^*.$

Beispiele 8.2. 1.) $S_j = \Lambda^j T^* M \otimes_{\mathbb{R}} \mathbb{C}, d_j$ sei die äußere Ableitung.

2.) $S_0 = \Lambda^{gerade} T^* M \otimes_{\mathbb{R}} \mathbb{C}$ und $S_1 = \Lambda^{ungerade} T^* M \otimes_{\mathbb{R}} \mathbb{C}$,

$$d_0 = d|_{\Lambda^{gerade}T^*M} + (d|_{\Lambda^{ungerade}T^*M})^*$$

Der zugehörige Dirac-Operator heißt Euler-Operator.

3.) Signatur-Operator, Dolbeault-Operator, klassischer Dirac-Operator (= Atiyah-Singer-Operator), *spin^c*-Dirac-Operator (kommt später).

Die *j*-te Kohomologie des Komplexes definieren wir als

$$H^j(S_*, d_*) \coloneqq \frac{\ker d_j}{\operatorname{im} d_{j-1}}.$$

Harmonische Schnitte sind definiert als die Elemente von

$$\mathcal{H}^j \coloneqq \{\varphi \in C^{\infty}(S_j) \,|\, D\varphi = 0\} = \{\varphi \in C^{\infty}(S_j) \,|\, D^2\varphi = 0\}.$$

THEOREM 8.3 (Hodge-Theorem). Sei M kompakt mit Dirac-Komplex. Dann ist die kanonische Abbildung

$$\Phi: \mathcal{H}^j \to H^j(S_*, d_*)$$

eine Isomorphismus.

Beweis. Nach 7.25 wissen wir bereits dass

$$^{\infty}(S) = \ker(D) \oplus \operatorname{im}(D|_{C^{\infty}(S)})$$

und die Zerlegung ist orthogonal. Der erste Summand ist gerade $\ker(D) = \ker(D^2)$ and as D^2 maps $C^{\infty}(S_j)$ to itself, we see $\ker(D^2) = \bigoplus \mathcal{H}_j$. Ebenso splittet $\operatorname{im}(D|_{C^{\infty}(S)}) = \operatorname{im}(D^2|_{C^{\infty}(S)})$ bezüglich der Graduierung von $S = \bigoplus S_j$. Für $\varphi \in \Gamma(S_{j-1})$ und $\alpha \in \Gamma(S_{j+1})$ gilt

$$(d\varphi, d^*\alpha) = (d^2\varphi, \alpha) = 0,$$

d.h. als orthogonale Summe haben wir

$$\operatorname{m}(D|_{C^{\infty}}) \cap \Gamma(S_i) = \operatorname{im} d_{i-1} \oplus \operatorname{im} d_i^*.$$

Wir sehen ker $d_j = \operatorname{im} d_{j-1} \oplus \mathcal{H}_j$ orthogonal, also folgt die Aussage.

C

FOLGERUNG 8.4.

 $\dim H^j < \infty.$

Beispiele 8.5. (1) $S_j \coloneqq \Lambda^j T^* M \otimes_{\mathbb{R}} \mathbb{C}$. Dann heißt $H^j_{dR}(M, \mathbb{C}) = H^j_{dR}(M, \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} = H^j$ deRham-Kohomologie von M. Außerdem heißt $b_j(M) \coloneqq \dim_{\mathbb{C}} H^j_{dR}(M, \mathbb{C})$ die *j-te Betti-Zahl*.

(2) Gilt *M* kompakt und ric > 0, so folgt daraus $\mathcal{K}^1(X, X) > 0$ für alle $X \neq 0$, d.h. ker $D|_{\Gamma(\Lambda^1 T^*M)} = \{0\}$, also $b_1(M) = 0$.

Hodge-*-operator Let V an oriented vector space of finite dimension n with scalar product. We choose a basis e_1, \ldots, e_n of V.

For $I \subset \{1, 2, \ldots, n\}$ define $e_I \in \Lambda^{\bullet} V$ by

$$e_{\varnothing} = 1, \qquad e_I \coloneqq e_{i_1} \land \dots \land e_{i_k} \text{ for } I = \{i_1 < \dots < i_k\}.$$

Recall that the scalar product on $\Lambda^{\bullet}V$ is defined in such a way that $(e_I)_{I \in \{1,2,\dots,n\}}$ is an orthonormal basis of $\Lambda^{\bullet}V$. This scalar product does not depend on the choice of basis.

Also recall that we define vol := $e_1 \wedge \cdots \wedge e_n$ if (e_i) is a positively oriented orthonormal basis and this is also independent on the choice of this basis.

The Hodge-*-operator is then the operator

$$*: \Lambda^k V \to \Lambda^{n-k} V$$

such that for all $\alpha, \beta \in \Lambda^k V$ we have

$$\langle \alpha, \beta \rangle$$
 vol = $\alpha \land \ast \beta$.

On $\Lambda^k V$ we have $* \circ * = (-1)^{(n-k)k} = (-1)^{(n+1)k}$.

Now if M is an oriented Riemannian manifold, we use this definition for $V=T_p^*M$ for every $p\in M$ and we obtain a map

$$*: \Omega^k(M) \to \Omega^{n-k}(M).$$

If $X \in T_p M$ then we calculate

$$*(\iota_X e_I^b) = (-1)^{k-1} X^b \wedge * e_I^b$$

and this implies

$$\iota_X e_I^b = (-1)^{(k-1)+(k-1)(n+1)} * (X^b \wedge * e_I^b) = (-1)^{(k-1)n} * (X^b \wedge * e_I^b).$$

LEMMA 8.6. On an oriented Riemannian manifold we have

$$\delta\omega = (-1)^{nk+n+1} * d(*\omega)$$

for all $\omega \in \Omega^k(M)$.

Proof. Both δ and *d* are linear, so it suffices to prove the equality for $\omega = fe_I^b$, $\#I = k, f \in C^{\infty}(M)$, (e_i) is a positively orthonormal local frame, synchronous in $p \in M$. We calculate in p:

$$\delta\omega = -\sum_{i} \iota_{e_i} (\partial_{e_i} f) e_I^b$$

= -(-1)^{(k-1)n} $\sum_{i} (\partial_{e_i} f) * (e_i \wedge *e_I^b)$
= (-1)^{nk+n+1} * $\left(\underbrace{\sum_{i} e_i \wedge (\partial_{e_i} f) * e_I^b}_{d(*\omega)}\right)$

_		
г		
L		
L		

COROLLARY 8.7. On a compact oriented Riemannian manifold the star operator yields an isomorphism from \mathcal{H}^k to \mathcal{H}^{n-k} .

SATZ 8.8 (Poincaré-Dualität). Sei M^n kompakt orientiert. Die Abbildung

$$S: H^k_{dR}(M, \mathbb{R}) \times H^{n-k}_{dR}(M, \mathbb{R}) \to \mathbb{R}$$
$$([\alpha], [\beta]) \mapsto \int_M \alpha \wedge \beta$$

ist eine nicht ausgeartete Bilinearform. Insbesondere gilt

$$b_k(M) = b_{n-k}(M)$$

S heißt Schnittform.

Beweis. S ist wohldefiniert (Übung). If α, γ are harmonic k-forms, then

$$\int_{M} \alpha \wedge *\gamma = \int_{M} \langle \alpha, \gamma \rangle \operatorname{dvol} = (\alpha, \gamma).$$

Composing S with the isomorphism $\mathcal{H}^k \to H^k_{dR}(M,\mathbb{R})$ in the first entry and with

$$\mathcal{H}^k \xrightarrow{*} \mathcal{H}^{n-k} \longrightarrow H^{n-k}_{dB}(M,\mathbb{R})$$

in the second entry yields the standard scalar product on \mathcal{H}^k , and thus non-degeneracy is now clear.

9. Wärmeleitungs- und Wellen-Geichung

In diesem Abschnitt sei W immer ein Clifford-Bündel über M und D der verallgemeinerte Dirac-Operator auf W.

Ziel dieses Abschnittes ist es, Lösungen der Wärmeleitungsgleichung

$$\frac{\partial s}{\partial t} + D^2 s = 0$$

und der Wellengleichung

$$\frac{\partial s}{\partial t} - iDs = 0$$

zu vorgegebenem Anfangswert zu finden.

Wir müssen zunächst definieren, wie wir D in beschränkte Funktionen einsetzen können. Wir definieren deswegen wie im letzten Kapitel $E_{\lambda} := \ker(D - \lambda \operatorname{id}).$

Wir definieren

$$CB(\operatorname{spec}(D)) \coloneqq \{f : \operatorname{spec}(D) \to \mathbb{C} \mid f \text{ beschränkt}\}$$

Dieser Raum ist zusammen mit der Supremumsnorm ein Banachraum. Zusammen mit der punktweise Multiplikation und der komplexen Konjugation $(*f)(\lambda) \coloneqq \overline{f(\lambda)}$ ist es auch eine *-Algebra.

Sei \mathcal{H} ein Hilbertraum, z.B. $\mathcal{H} = L^2(W)$ oder $\mathcal{H} = W^k(W)$, dann schreiben wir:

 $\mathcal{B}(\mathcal{H}) \coloneqq \{A : \mathcal{H} \to \mathcal{H} \mid A \text{ linear und beschränkt} \}.$

Verschen mit der Operator-Norm ist $\mathcal{B}(\mathcal{H})$ ein Banachraum. Zusammen mit der Verkettung und der Adjunktion $*A \coloneqq A^*$ ist es eine *-Algebra.

Für $f \in CB(\operatorname{spec}(D))$ sei f(D) die eindeutige beschränkte lineare Abbildung $f(D) : L^2(W) \to L^2(W)$, so dass

$$f(D)|_{E_{\lambda}} = f(\lambda) \operatorname{Id}|_{E_{\lambda}}.$$

PROPOSITION 9.1. (1) $\iota_D : CB(\operatorname{spec}(D)) \to \mathcal{B}(L^2(W)), f \mapsto f(D)$ ist ein unitärer *-Ring-Homomorphismus

- (2) ι_D ist stetig.
- (3) D kommutiert mit f(D).
- (4) f(D) bildet die $C^{\infty}(W)$ auf $C^{\infty}(W)$ ab.
- (5) Ist f reell-wertig, so ist f(D) selbstadjungiert.

Beweis. Eigenschaft (1) kann man einfach kontrollieren. Die Stetigkeit (2) ist dann klar, da die Operator-Norm von f(D) mit der Supremums-Norm von f übereinstimmt. (3) ist ebenfalls klar. Nun zeigen wir (4). Es gilt für $\varphi \in C^{\infty}(W)$: $D^k f(D)\varphi = f(D)D^k\varphi \in L^2$. Also $f(D)\varphi \in W^k(W)$, und somit $f(D)\varphi \in C^{\infty}(W)$. (5) ist eine direkt Folgerung von (1).

Bemerkung 9.2. Die systematische Betrachtung solcher Algebren und von Abbildungen, die diese Struktur erhalten (wie zum Beispiel die Auswertungsabbildung ι_D) führt zum Studium der C^* -Algebren und ihrer Homomorphismen.

Beispiele 9.3. Die Funktionen $\lambda \mapsto e^{-t\lambda^2}$, $t \ge 0$ und $\lambda \mapsto e^{it\lambda}$, $t \in \mathbb{R}$, sowie alle ihre Ableitungen nach t sind Elemente von $CB(\operatorname{spec}(D))$.

KOROLLAR 9.4. Sei $I \subset \mathbb{R}$ ein Intervall und $I \to CB(\operatorname{spec}(D)), t \mapsto f_t$ eine glatte Abbildung, so dass $\frac{\partial^k}{\partial t^k} f_t \in CB(\operatorname{spec}(D))$, für alle $k = 0, \ldots, k_0$, dann ist die Abbildung

$$F_t: I \to \mathcal{B}(L^2(W))$$
$$t \mapsto f_t(D)$$

ebenfalls glatt (im Sinne von banachraumwertigen Funktionen) und es gilt für alle $k = 0, \ldots, k_0$:

$$\left(\frac{\partial}{\partial t}\right)^k F_t = \left(\left(\frac{\partial}{\partial t}\right)^k f_t\right)(D)$$

Beweis. Die Abbildung ι_D ist beschränkt und linear und somit ist bereits die 2. Ableitung (im Fréchet-Sinne) von ι_D gleich 0. Also ist ι_D glatt im Fréchet-Sinn. Das Korollar folgt dann aus der Kettenregel.

KOROLLAR 9.5. Set $I \subset \mathbb{R}$ ein Intervall und $I \to CB(\operatorname{spec}(D), t \mapsto f_t$ eine glatte Abbildung, so dass $\frac{\partial^k}{\partial t^k} f_t \in CB(\operatorname{spec}(D))$, für alle $k = 0, \ldots, k_0$ dann ist die Abbildung

$$F_t : I \to \mathcal{B}(W^r(W))$$
$$t \mapsto f_t(D)$$

für alle $r \in \mathbb{N}$ wohldefiniert und ebenfalls glatt (bezüglich der Operator-Topologie von $\mathcal{B}(W^r(W))$), und es gilt für alle $k = 0, ..., k_0$

$$\left(\frac{\partial}{\partial t}\right)^k F_t = \left(\left(\frac{\partial}{\partial t}\right)^k f_t\right)(D).$$

Beweis. Für alle $r \in \mathbb{N}_0$ (auch die ungeraden!) ist die Norm $\varphi \mapsto \| (\mathrm{Id} + D^2)^{r/2} \varphi \|_{L^2}$ äquivalent zur W^r -Norm. Alle Operatoren $((\partial/\partial t)^k f_t)(D)$ kommutieren mit D. Kommutiert ein Operator A mit D, so berechnet sich seine Operator-Norm $\|A\|_{W^r \to W^r}$ als Operator von $W^r \to W^r$ bis auf Äquivalenz wie folgt:

$$\begin{split} \|A\|_{W^r \to W^r} &:= \inf_{\substack{\varphi \in W^r \\ \varphi \neq 0}} \frac{\|(\mathrm{Id} + D^2)^{r/2} A\varphi\|_{L^2}}{\|(\mathrm{Id} + D^2)^{r/2} \varphi\|_{L^2}} = \inf_{\substack{\varphi \in W^r \\ \varphi \neq 0}} \frac{\|A(\mathrm{Id} + D^2)^{r/2} \varphi\|_{L^2}}{\|(\mathrm{Id} + D^2)^{r/2} \varphi\|_{L^2}} \\ &= \inf_{\substack{\psi \in L^2 \\ \psi \neq 0}} \frac{\|A\psi\|_{L^2}}{\|\psi\|_{L^2}} = \|A\|_{L^2 \to L^2}, \end{split}$$

wobei wir nutzen, dass die beschränkte Abbildung $(\mathrm{Id} + D^2)^{r/2} : W^r \to L^2$ das beschränkte Inverse $(\mathrm{Id} + D^2)^{-r/2}$ besitzt und sich deswegen jedes $\psi \in L^2$ auf eindeutige Art und Weise als $(\mathrm{Id} + D^2)^{r/2}\varphi$ schreiben lässt.

Der Rest des Beweises geht nun fast wie für das vorangehende Korollar.

Definition 9.6. Eine Lösungen der Wärmeleitungsgleichung (für D) ist eine Abbildung $s: M \times [0, \infty) \to W$, so dass $s_t := s(\cdot, t) \in \Gamma(W)$ für alle $t \ge 0$, die

$$\frac{\partial s}{\partial t} + D^2 s = 0$$

erfüllt. Eine Lösung der Wellengleichung (für D) ist eine Abbildung $s : M \times \mathbb{R} \to W$, so dass $s_t := s(\cdot, t) \in \Gamma(W)$ für alle $t \in \mathbb{R}$, die

$$\frac{\partial s}{\partial t} - iDs = 0$$

erfüllt.

Wir wollen nun solche Lösungen mit vorgegebenem $s_0 \in \Gamma(W)$ finden. Man nennt s_0 oft die Anfangsdaten der Gleichung.

Beispiele 9.7. (1) $f_t(\lambda) = e^{i\lambda t}$. Sei $s_0 \in \Gamma(W)$. Dann gilt $\frac{\partial^k}{\partial t^k} f_t \in CB(\operatorname{spec}(D))$ für alle $k \in \mathbb{N}$. Als Folgerung hiervon ist dann $t \mapsto f_t(D)s_0$ glatt als Abbildung $I \to W^k(W)$ für alle k, und somit ist nach den Sobolevschen Einbettungs-Sätzen auch $I \to C^r(W)$, $t \mapsto f_t(D)s_0$ glatt. Somit ist

$$s(x,t) \coloneqq \left(e^{itD}s_0\right)(x)$$

eine glatte Lösung der Wellengleichung.

(2) Analoge Betrachtungen für $f_t(\lambda) = e^{-t\lambda^2}$ liefern, dass für glatte Anfangsdaten $s_0 \in \Gamma(W)$ auch

$$s(x,t) \coloneqq \left(e^{-tD^2}s_0\right)(x)$$

eine glatten Schnitt auf $M \times [0, \infty)$ liefert, der eine Lösung der Wärmeleitungsgleichung ist.

Wir wollen nun die Eindeutigkeit der Lösungen klären.

PROPOSITION 9.8 (Endliche Ausbreitungsgeschwindigkeit). Sei s_t eine Lösung der Wellengleichung. Dann gilt

(9.9)
$$\operatorname{supp} s_t \subset \{y \in M \,|\, d(y, \operatorname{supp} s_0) \le |t|\}.$$

Um die Behauptung zunächst für $0 \le t < injrad(M, g)$ zu zeigen, benötigen wir ein Lemma. Hierbei ist $B_r(x)$ der Ball von Radius r um x und $S_r(x)$ ist der Rand von $B_r(x)$.

LEMMA 9.10 (Energie-Abschätzung). Sei 0 < R < injrad(M,g) und $m \in M$. Dann ist

$$\int_{B_{R-t}(m)} |s_t|^2$$

eine monoton in t fallende Funktion $[0, R] \rightarrow [0, \infty)$.

Beweis des Lemmas. Die Ableitung des Integrals liefert zwei Terme: ein erster aus der Ableitung des Integranden, ein zweiter aus der Ableitung der Integrationsmenge.

$$\begin{aligned} \frac{d}{dt} \int_{B_{R-t}(m)} |s_t|^2 &= \int_{B_{R-t}(m)} \left(\left\langle \frac{\partial}{\partial t} s_t, s_t \right\rangle + \left\langle s_t, \frac{\partial}{\partial t} s_t \right\rangle \right) - \int_{S_{R-t}(m)} |s_t|^2 \\ &= \int_{B_{R-t}(m)} \left(\left\langle iDs_t, s_t \right\rangle + \left\langle s_t, iDs_t \right\rangle \right) - \int_{S_{R-t}(m)} |s_t|^2 \\ &= i \int_{B_{R-t}(m)} \left(\left\langle Ds_t, s_t \right\rangle - \left\langle s_t, Ds_t \right\rangle \right) - \int_{S_{R-t}(m)} |s_t|^2 \end{aligned}$$

Mit Proposition 4.9 formen wir den ersten Term in

$$i \int_{S_{R-t}(m)} \langle \nu^b \cdot s_t, s_t \rangle$$

um. Es gilt mit Cauchy-Schwartz

$$\left| \left\langle \nu^b \cdot s_t, s_t \right\rangle \right| \le \left| \nu^b \cdot s_t \right| \left| s_t \right|.$$

Da Clifford-Multipikation mit ν^b e
ine punktweise Isometrie ist, ist die rechte Seite hiervon gleic
h $|s_t|^2.$ Somit

$$\left|i\int_{S_{R-t}(m)}\langle\nu^b\cdot s_t,s_t\rangle\right|\leq \int_{S_{R-t}(m)}|s_t|^2.$$

Da wir wissen, dass $\frac{d}{dt} \int_{B_{R-t}(m)} |s_t|^2$ reell ist, sehen wir dann $\frac{d}{dt} \int_{B_{R-t}(m)} |s_t|^2 \leq 0$, woraus sich das Lemma unmittelbar ergibt.

Beweis der Proposition. O.B.d.A. können wir annehmen, dass $t \ge 0$.

Sei zunächst $t \in (0, \rho_M)$, $\rho_M := injrad(M, g)$. Für $x \notin \{y \in M | d(y, \operatorname{supp} s_0) \leq |t|\}$ gilt $B_t(x) \cap \operatorname{supp}(s_0) = \emptyset$, also mit dem Lemma

$$\int_{B_0(x)} |s_t|^2 \le \int_{B_t(x)} |s_0|^2 = 0.$$

Also auch $x \notin \operatorname{supp}(s_t)$. Die Aussage ist somit bewiesen für alle $t < \rho_M$.

Sei nun t_0 das Supremum über alle $\tau \in [0, \infty)$, so dass (9.9) für alle $t \in [0, \tau]$ gilt. Falls $t_0 < \infty$, dann ist $\tilde{s}_t := s_{t+t_0-(\rho_M/2)}$ ebenfalls eine Lösung der Wellengleichung und zwar zu den Anfangswerten $s_{t_0-(\rho_M/2)}$. Da (9.9) für $\tilde{s}_t \quad \forall t \in (0, \rho_M)$ gilt, folgt (9.9) auch für alle $t \leq t_0 + (\rho_M/2)$. Also ist $t_0 = \infty$.

Bemerkung 9.11. Dieser Beweis gilt auch noch dann, wenn M nicht kompakt ist.

KOROLLAR 9.12. Zu gegebenem glatten Anfangswerten s_0 existiert eine eindeutige Lösung der Wellengleichung.

Beweis. Die Existenz haben wir bereits gesehen. Sind s_t , \tilde{s}_t Lösungen zu den gleichen Anfangswerten, so ist $\hat{s}_t \coloneqq s_t - \tilde{s}_t$ eine Lösung zu den Anfangswerten 0. Wegen supp $\hat{s}_0 = \emptyset$ gilt supp $\hat{s}_t = \emptyset$ für alle t.

PROPOSITION 9.13. Set s_t eine Lösung der Wärmeleitungsgleichung. Dann gilt für t > 0

$$\frac{d}{dt}\int_M |s_t|^2 \le 0.$$

Beweis.

$$\frac{d}{dt} \int_{M} |s_t|^2 = \int_{M} (\langle -D^2 s_t, s_t \rangle + \langle s_t, -D^2 s_t \rangle) = -2 \|Ds_t\|^2 \le 0.$$

KOROLLAR 9.14. Zu gegebenem glatten Anfangswerten s_0 existiert eine eindeutige Lösung der Wärmeleitungsgleichung.

10. Der Wärmekern

From now on we use $(\cdot, \cdot)_{L^2}$ with the same meaning as $(\cdot, \cdot)_0$.

Seien V_1 und V_2 Vektorbündel über
 M.Sei $\pi_j:M\times M\to M,\,j=1,2,$ die Projektion auf die
 j-teKomponente. Wir definieren

$$V_1 \circledast V_2 \coloneqq \pi_1^* V_1 \otimes \pi_2^* V_2$$

Dies ist ein Bündel über $M \times M$.

Ist k ein C^r -Schnitt von $V_1 \otimes V_2^*$, so bildet der Operator

$$(A_k\varphi)(x) \coloneqq \int_M k(x,y)\varphi(y) \operatorname{dvol}_y$$

 $L^2(V_2)$ auf $C^r(V_1)$ ab. Dieses k heißt Intergrationskern von A_k .

Sind $(\varphi_i^*)_{i\in\mathbb{N}}$ und $(\psi_i)_{i\in\mathbb{N}}$ L^2 -Orthonormalbasen von $L^2(V_1^*)$ und $L^2(V_2)$, so ist $(\varphi_i^* \otimes \psi_j)_{(i,j)\in\mathbb{N}\times\mathbb{N}}$ eine L^2 -Orthonormalbasis von $L^2(V_1^* \otimes V_2)$.

Daraus folgt

$$\langle \varphi_i \circledast \psi_j, k \rangle = \langle \varphi_i, A_k \psi_j \rangle$$

wobei die Klammern die (bilinearen) Dualitätsprodukte sind. Hiermit sehen wir insbesondere, dass $A_k \neq A_\ell$, falls $k \neq \ell$.

Das Ziel ist es nun, den Integrationskern des Wärmeleitungs-Operators $t \mapsto e^{-tD^2}$ zu bestimmen.

Wir benötigen zunächst eine grobe Abschätzung dafür, wie schnell die Eigenwerte gegen ∞ konvergieren. Später wird diese Abschätzung dann deutlich verfeinert werden, allerdings unter Verwendung des Integrationskerns des Wärmeleitungs-Operators.

In the following let $(\varphi_j)_{j \in \mathbb{N}}$ be an orthonormal basis of $L^2(W)$ with $D^2 \varphi_j = \lambda_j \varphi_j$, where $\lambda_1 \leq \lambda_2 \leq \dots$ Denote the dual basis of the dual bundle by $(\varphi_j^*)_{j \in \mathbb{N}}$.

LEMMA 10.1. Let $W \to M$ be Clifford bundle over an n-dimensional compact manifold M. Let $k := \lfloor (n+1)/2 \rfloor$ be the least integer strictly greater than n/2. Then there is a constant C such that for any $j \in \mathbb{N}$ and any $\lambda \ge \lambda_j$ we have

$$j \le C(1+\lambda)^k \operatorname{vol}(M).$$

Remark 10.2. The same statement holds — with almost the same proof — if we replace D^2 by an operator of the form $\nabla^*\nabla + K$ where ∇ is a connection on a vector bundle V and where $K \in \text{End}(V)$ is self-adjoint.

Proof. The Sobolev embedding theorem provides a constant $C_1 > 0$ such that

 $\|\psi\|_{C^0} \le C_1 \|\psi\|_k.$

We apply it to $\psi \coloneqq \sum_{i=1}^{j} a_i \varphi_i \in W^k(W)$. Thus from the elliptic estimates we see

$$|\psi(x)| \le C_2 (1+\lambda)^{k/2} \Big(\sum_{i=1}^j |a_i|^2\Big)^{1/2}$$

We use this equation for $a_i \coloneqq \overline{\varphi_i(x)}$:

$$\sum_{i=1}^{j} |\varphi_i(x)|^2 \le C_2 (1+\lambda)^{k/2} \left(\sum_{i=1}^{j} |a_i|^2\right)^{1/2}$$

and get

$$\sum_{i=1}^{j} |\varphi_i(x)|^2 \le C_2^2 (1+\lambda)^k.$$

After integration over M we get

$$j = \int_{M} \sum_{i=1}^{j} |\varphi_i(x)|^2 \le C_2^2 (1+\lambda)^k \operatorname{vol}(M).$$

-	-	۱.

Definition 10.3. The infinite sum

$$k_t(x,y) \coloneqq \sum_{j=1}^{\infty} e^{-t\lambda_j} \varphi_j(x) \otimes \varphi_j^*(y),$$

 $x, y \in M, t > 0$, is called the *heat kernel* of D^2 on M.

PROPOSITION 10.4. Let $t_0 > 0$. Then the heat kernel and all its t-derivatives converge uniformly in $t \ge t_0$ in all W^k -norms and all C^k -norms. In particular, $k_t(x, y)$ is smooth in t, x, and y, and we can differentiate term by term.

Proof. Let $\tilde{\Delta} : \Gamma(W \circledast W^*) \to \Gamma(W \circledast W^*)$ be the operator $\tilde{\Delta} = D_1^2 + D_2^2$ where acts as D_1 as the Dirac operator along the first component and using the identification $W \cong W^*$ the operator D_2 shall denote this operator along the second component. An alternative description is given by

$$\tilde{\Delta} \coloneqq \nabla^* \nabla + \pi_1^* \mathcal{K}^W + \pi_2^* \mathcal{K}^{W^*}$$

For this operators elliptic estimates hold on $M \times M$, similar to the estimates for D^2 on M.

In view of the Sobolev embedding theorem it is sufficient to prove the proposition for the W^k -norms. All but finitely many λ_j fulfill $\lambda_j \ge 1$. By the elliptic estimates we then have

$$\| e^{-t\lambda_{j}}\varphi_{j} \circledast \varphi_{j}^{*} \|_{W^{2k}} \leq c_{1} \cdot e^{-t\lambda_{j}} \cdot \left(\| \varphi_{j} \circledast \varphi_{j}^{*} \|_{L^{2}} + \| \Delta^{k}(\varphi_{j} \circledast \varphi_{j}^{*}) \|_{L^{2}} \right)$$

$$= c_{1} \cdot e^{-t\lambda_{j}} \cdot \left(1 + (2\lambda_{j})^{k} \right)$$

$$\leq c_{2} \cdot \lambda_{j}^{k} \cdot e^{-t\lambda_{j}}$$

$$\leq c_{2} \cdot \lambda_{j}^{k} \cdot e^{-t_{0}\lambda_{j}}.$$

For $x \in \mathbb{R}$ is sufficiently large we have $x^k e^{-t_0 x/2} \leq 1$. Thus we have for almost all j:

$$\| e^{-t\lambda_j} \varphi_j \circledast \varphi_j^* \|_{W^{2k}} \le c_2 \cdot e^{-t_0\lambda_j/2}$$

By Proposition 10.1 we have

$$\lambda_j \geq c_3 \cdot j^{\alpha} + c_4, \qquad \alpha = \frac{1}{\lceil (n+1)/2 \rceil},$$

and therefore

$$\| e^{-t\lambda_j} \varphi_j \circledast \varphi_j^* \|_{W^{2k}} \le c_5 \cdot e^{-c_6 \cdot j^{\alpha}}.$$

Convergence of the series $\sum_{j} e^{-c_6 \cdot j^{\alpha}}$ follows from finiteness of the integral

$$\int_{0}^{\infty} e^{-c_{6} \cdot t^{\alpha}} dt \stackrel{s=c_{6} t^{\alpha}}{=} c_{7} \cdot \int_{0}^{\infty} e^{-s} \cdot s^{\frac{1-\alpha}{\alpha}} ds = c_{7} \cdot \Gamma\left(\frac{1}{\alpha}\right),$$

using $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$. We have shown that

$$\sum_{j=1}^{\infty} e^{-t\lambda_j} \varphi_j \circledast \varphi_j^*$$

converges in each W^k -norm, uniformly in $t \ge t_0$. This holds for any $k \in \mathbb{N}$, and thus by the Sobolev embedding theorem also in the C^k -norm for any $k \in \mathbb{N}$.

The same argument applies to the t-derivatives

$$\sum_{j=1}^{\infty} \left(\frac{d}{dt}\right)^m \left(e^{-t\lambda_j}\varphi_j \circledast \varphi_j^*\right) = \sum_{j=1}^{\infty} (-\lambda_j)^m e^{-t\lambda_j}\varphi_j \circledast \varphi_j^*.$$

Since we are allowed to differentiate term by term we compute for y fixed

$$\frac{\partial}{\partial t}k_t(x,y) = \frac{\partial}{\partial t}\sum_j e^{-t\lambda_j}\varphi_j \circledast \varphi_j^*$$
$$= \sum_j \frac{\partial}{\partial t} e^{-t\lambda_j}\varphi_j \circledast \varphi_j^*$$
$$= \sum_j (-\lambda_j) e^{-t\lambda_j}\varphi_j \circledast \varphi_j^*$$
$$= -\sum_j e^{-t\lambda_j} (D^2\varphi_j) \circledast \varphi_j^*$$
$$= -D_x^2 k_t(x,y).$$

For $u_0 \in L^2(W)$ we put $u_t(x) \coloneqq \int_M k_t(x, y) u_0(y) \operatorname{dvol}(y)$ and we see

$$\frac{\partial u_t}{\partial t} + D^2 u_t = 0$$

Hence u_t solves the heat equation. Moreover,

$$\int_{M} k_{t}(x, y)\varphi_{\ell}(y) \operatorname{dvol}(y) = \int_{M} \sum_{j=1}^{\infty} e^{-t\lambda_{j}}\varphi_{j}(x) \otimes \underbrace{\varphi_{j}^{*}(y)\varphi_{\ell}(y)}_{=\langle\varphi_{j}^{*}(y),\varphi_{\ell}(y)\rangle} \operatorname{dvol}(y)$$
$$= \sum_{j=1}^{\infty} e^{-t\lambda_{j}}\varphi_{j}(x) \cdot \underbrace{\langle\!\langle\varphi_{j}^{*},\varphi_{\ell}\rangle\!\rangle}_{=\delta_{j\ell}}$$
$$= e^{-t\lambda_{\ell}}\varphi_{\ell}(x).$$

Thus $k_t(x, y)$ is the integral kernel of the operator e^{-tD^2} .

In particular it follows from Corollary 9.4 that $u_t \to u_0$ for $t \searrow 0$ in the W^k -norm if $u_0 \in W^k$. By the Sobolev embedding this shows that $u_t \to u_0$ for $t \searrow 0$ in the C^k -norm if $u_0 \in C^{\infty}$.

As $t \searrow 0$ the heat kernel becomes singular. Indeed, since $e^{-0 \cdot D^2}$ = id we expect the heat kernel to concentrate along the diagonal $\{(y, y) \in M \times M \mid y \in M\}$. We next want to examine the asymptotic behavior of $k_t(x, y)$ for $t \searrow 0$.

11. Der Formale Wärmekern/The Formal heat kernel

In this section we mainly follow [AB02, Section 2], and was worked out by C. Bär, building on related literature such as [BGV91].

We will often write Δ instead of D^2 , as the results directly generalize to arbitrary generalized Laplacians with potential, see [AB02, Section 2] for details. As this operator no longer has to act on sections of a Clifford bundle, we also write E instead of W.

We write for the diagonal:

$$\operatorname{diag}_M \coloneqq \{(x, x) \mid x \in M\} \subset M \times M.$$

We equip M with the standard product metric and the induced distance function. Then the ϵ neighborhoods of the diagonal satisfy

$$B_{\epsilon}(\operatorname{diag}_{M}) = \{(x, y) \in M \times M \mid \operatorname{dist}(x, y) < \epsilon\}.$$

The Euclidean heat kernel is defined as

$$q_t: M \times M \to \mathbb{R}, \ q_t(x,y) = (4\pi t)^{-\frac{n}{2}} \exp\left(-\frac{\operatorname{dist}(x,y)^2}{4t}\right).$$

Let ϵ_M be the injectivity radius of M. Then q_t is smooth $(0, \infty) \times B_{\epsilon_M}(\operatorname{diag}_M)$.

Example 11.1. In the case of $M = \mathbb{R}^n$ with its euclidean metric, one easily calculates that

$$\left(\frac{\partial}{\partial t} + \Delta\right)q_t = 0.$$

From now on let M be compact.

Definition 11.2. A formal series³

$$\tilde{k}_t(x,y) = q_t(x,y) \cdot \sum_{j=0}^{\infty} t^j \cdot \Phi_j(x,y)$$

³If we want to properly formalize this concept, then should define such a formal series as a sequence $(\Phi_j)_{j \in \mathbb{N}_0}$ written as terms in an infinite sum as in the definition. Or alternative as a sequence of the partial sums.

 $\Phi_j \in C^{\infty}(E \otimes E^*|_{B_{\epsilon_M}(\operatorname{diag}_M)})$, is called a *formal heat kernel* if for each $N \in \mathbb{N}$ such that for all $m \geq N$

(11.3)
$$\left(\frac{\partial}{\partial t} + \Delta_x\right) \left\{ q_t \cdot \sum_{j=0}^m t^j \cdot \Phi_j \right\} = q_t \cdot O(t^N).$$

PROPOSITION 11.4. Let ϵ_M be the injectivity radius of M. Then there exists a unique formal heat kernel with Φ_j defined and smooth on $B_{\epsilon_M}(\operatorname{diag}_M) \coloneqq \{(x, y) \in M \times M \mid \operatorname{dist}(x, y) < \epsilon_M\}$ such that

$$\Phi_0(x,x) = \mathrm{id}_{E_x} \in \mathrm{Hom}(E_x,E_x) = E_x \otimes E_x^*$$

LEMMA 11.5. Let Δ_0 denote the standard Laplace-Beltrami operator acting on functions. Then

$$\left(\frac{\partial}{\partial t} + \Delta_{0,x}\right)q_t(x,y) = \frac{a(x,y)}{t} \cdot q_t(x,y)$$

where a is smooth on $B_{\epsilon_M}(\operatorname{diag}_M)$ and a vanishes along the diagonal, a(x, x) = 0. In geodesic polar coordinates centered in y we have

$$a(x,y) = \frac{r}{2} \frac{d}{dr} \left(\ln \det(d \exp_y(rX)) \right),$$

 $x = \exp_y(rX), X \in T_yM, |X| = 1$. Hence a is essentially given by the radial logarithmic derivative of volume distortion of the exponential map.

Here $\exp_y: T_y M \to M$ denotes the Riemannian exponential map.

Proof of the Lemma. Fix $y \in M$. We express Δ_0 in polar coordinates centered in y:

$$\Delta_0 = \Delta^{S_r} - \frac{\partial^2}{\partial r^2} + (n-1) \cdot H \cdot \frac{\partial}{\partial r}.$$

Here S_r denotes the distance sphere of radius r, $S_r = \{x \in M \mid \text{dist}(x, y) = r\}$, and H is its mean curvature. We will carry put some calculations for $x \neq y$, i.e. r > 0. We start with

$$\left(\frac{\partial}{\partial t} + \Delta_{0,x}\right) q_t$$

$$= \left(\frac{\partial}{\partial t} + \Delta^{S_r} - \frac{\partial^2}{\partial r^2} + (n-1) \cdot H \cdot \frac{\partial}{\partial r}\right) \left((4\pi t)^{-\frac{n}{2}} \exp\left(-\frac{r^2}{4t}\right)\right)$$

$$= -(n-1)\frac{1+Hr}{2t} \cdot q_t.$$

Hence $a(x, y) = -\frac{n-1}{2}(1 + Hr).$

In order to identify this term we fix $X \in T_y M$, |X| = 1, and let $c(r) = \exp_y(rX)$ be the unit speed geodesic emanating from y in direction X. Let $e_1 = X, e_2, \ldots, e_n$ be an orthonormal basis of $T_y M$. Let V_i be the Jacobi field along c determined by the initial condition $V_i(0) = 0$ and $\frac{\nabla}{dr}V_i(0) = e_i$, $i = 1, \ldots, n$. It is well-known from the study of the Riccati equation in Riemannian geometry as explained [Kar89, 1.2.2], [Bal16] or [1] the differential of the exponential map at the point rX is given by

$$d\exp_y(rX)(e_i) = \frac{1}{r}V_i(r).$$

Thus $\left(\frac{\nabla}{dr}d\exp_y(rX)\right)(e_i) = -\frac{1}{r^2}V_i(r) + \frac{1}{r}\frac{\nabla}{dr}V_i(r).$

In particular, $V_1(r) = rc'(r)$ and hence $\left(\frac{\nabla}{dr}d\exp_y(rX)\right)(e_1) = 0$. For i = 2, ..., n we have $\frac{\nabla}{dr}V_i(r) = -B(V_i(r))$ where B is the Weingarten map of S_r [?, 1.2.6]. We calculate

$$\left(\frac{\nabla}{dr}d\exp_y(rX)\right)(e_i) = \left(-\frac{1}{r^2}\operatorname{id}-\frac{1}{r}B\right)V_i(r) = \left(-\frac{1}{r}\operatorname{id}-B\right)d\exp_y(rX)(e_i)$$

and thus

$$\begin{aligned} \frac{d}{dr} \det(d \exp_y(rX)) &= \det(d \exp_y(rX)) \operatorname{tr}\left(\left(\frac{\nabla}{dr} d \exp_y(rX)\right) \cdot (d \exp_y(rX))^{-1}\right) \\ &= \det(d \exp_y(rX)) \operatorname{tr}\left(-\frac{1}{r} \operatorname{id}_{X^\perp} - B\right) \\ &= \det(d \exp_y(rX)) \left(-\frac{n-1}{r} - (n-1)H\right) \\ &= \frac{2}{r} \cdot \det(d \exp_y(rX)) \cdot a. \end{aligned}$$

Hence

$$\begin{aligned} a(x,y) &= \frac{r}{2} \det(d\exp_y(rX))^{-1} \cdot \frac{d}{dr} \det(d\exp_y(rX)) \\ &= \frac{r}{2} \frac{d}{dr} \ln \det(d\exp_y(rX)) \\ &= \frac{1}{2} \partial_r \frac{\partial}{\partial r} \ln \det(d\exp_y(\exp_y^{-1}(x))). \end{aligned}$$

So far we we have assume r > 0, i.e. $x \neq y$ or equivalently away from the diagonal. Now we argue that a extends smoothly to the diagonal. Obviously $(x, y) \mapsto \ln \det(d \exp_y(\exp_y^{-1}(x)))$ is a smooth function on $B_{\epsilon_M}(\operatorname{diag}_M)$. Identifying $T_y M$ with \mathbb{R}^n we see that $r \frac{\partial}{\partial r} = \sum_{i=1}^n x^i \frac{\partial}{\partial x^i}$ is a smooth vector field, depending smoothly on y. This yields the smooth extension of a to a function defined on $B_{\epsilon_M}(\operatorname{diag}_M)$.

Proof of the Proposition. We first show uniqueness of the Φ_j . To do this we differentiate the formal series $\tilde{k}_t(x, y)$ term by term, order the result by powers of t and equate the resulting coefficients to zero. We use the formula

$$\Delta(f \cdot \varphi) = (\Delta_0 f) \cdot \varphi - 2\nabla_{\mathrm{grad}f} \varphi + f \Delta \varphi$$

where f is a function and φ a section in E. Now we have in the sense of formal power series in t (and all equality signs should be interpreted similarly to (11.3), i.e. up to $q_t O(t^N)$ -terms.)

. .

$$\left(\frac{\partial}{\partial t} + \Delta_x\right)\tilde{k}_t$$

$$= \left(\left(\frac{\partial}{\partial t} + \Delta_{0,x}\right)q_t\right) \cdot \sum_{j=0}^{\infty} t^j \Phi_j - 2\nabla_{\operatorname{grad}_x q_t} \sum_{j=0}^{\infty} t^j \Phi_j + q_t \left(\frac{\partial}{\partial t} + \Delta_x\right) \sum_{j=0}^{\infty} t^j \Phi_j$$

$$= \frac{a}{t} q_t \cdot \sum_{j=0}^{\infty} t^j \Phi_j + \frac{1}{2t} \cdot q_t \cdot \nabla_{\operatorname{grad}_x (r^2)} \sum_{j=0}^{\infty} t^j \Phi_j + q_t \cdot \sum_{j=0}^{\infty} j t^{j-1} \Phi_j + q_t \cdot \sum_{j=0}^{\infty} t^j \Delta_x \Phi_j$$

$$= q_t \cdot \sum_{j=-1}^{\infty} t^j \cdot \{a \cdot \Phi_{j+1} + r \nabla_{\operatorname{grad}_x r} \Phi_{j+1} + (j+1) \Phi_{j+1} + \Delta_x \Phi_j\}$$

where again $r = \operatorname{dist}(x, y)$, y fixed, and with the convention that $\Phi_{-1} \coloneqq 0$. Along any unit speed geodesic $c(r) = \exp_y(rX)$ emanating from y we obtain singular ordinary differential equations $(\Phi_j(r) \coloneqq \Phi_j(\exp_y(rX), y) \text{ and } (\Delta_x \Phi_j)(r) \coloneqq (\Delta_x \Phi_j)(\exp_y(rX), y))$:

(11.6)
$$(j+1+a(r)) \Phi_{j+1}(r) + r \frac{\nabla}{dr} \Phi_{j+1}(r) + (\Delta_x \Phi_j) (r) = 0.$$

To solve this equation we introduce the *integrating factor*

$$R_j(r) = r^{j+1} \cdot \exp\left(\int_0^r \frac{a(\rho)}{\rho} d\rho\right),$$

 \mathbf{SO}

$$\frac{\partial}{\partial r}R_j(r) = \left(\frac{j+1}{r} + \frac{a(r)}{r}\right)R_j(r).$$

Then we have

$$\frac{r}{R_j(r)} \cdot \frac{\nabla}{dr} \left(R_j(r) \Phi_{j+1}(r) \right)$$

$$= \frac{r}{R_j(r)} \cdot \left\{ \frac{j+1+a(r)}{r} R_j(r) \Phi_{j+1}(r) + R_j(r) \frac{\nabla}{dr} \Phi_{j+1}(r) \right\}$$

$$= -\left(\Delta_x \Phi_j \right)(r).$$

We denote parallel translation along c(r) from $c(r_1)$ to $c(r_2)$ by π_{r_1,r_2} and we obtain

$$R_{j}(r)\Phi_{j+1}(r) = -\int_{0}^{r} \frac{R_{j}(\rho)}{\rho} \pi_{\rho,r} \left(\Delta_{x} \Phi_{j}\right)(\rho) d\rho + \pi_{0,r} C_{j}.$$

Evaluating this equation for j = -1 at r = 0 yields

$$1 \cdot \mathrm{id}_{E_y} = 0 + C_{-1}.$$

Hence $C_{-1} = \mathrm{id}_{E_y}$ and

$$\Phi_{0}(r) = \frac{1}{R_{-1}(r)} \cdot \pi_{0,r} \cdot C_{-1} = \exp\left(-\int_{0}^{r} \frac{a(\rho)}{\rho} d\rho\right) \pi_{0,r} \operatorname{id}_{E_{y}}$$
Lemma 11.5 $\det\left(d\exp_{y}(rX)\right)^{-\frac{1}{2}} \cdot \pi_{0,r}.$

We have computed Φ_0 :

$$\Phi_0(x,y) = \det \left(d(\exp_y^{-1})(x) \right)^{\frac{1}{2}} \cdot \pi_{y,x}$$

where $\pi_{y,x}$ denotes parallel translation from y to x (along the unique shortest geodesic connecting y and x).

For $j \ge 0$ we get at r = 0:

$$0 \cdot \Phi_{j+1}(0) = 0 + C_j.$$

Hence $C_j = 0$ and

$$\Phi_{j+1}(r) = -\frac{1}{R_j(r)} \int_0^r \frac{R_j(\rho)}{\rho} \pi_{\rho,r} \left(\Delta_x \Phi_j \right)(\rho) \, d\rho.$$

This way we can recursively determine the Φ_j and uniqueness is proven. For the existence part simply use the above equations to define the Φ_j recursively.

Example 11.7. By assumption we have

$$\Phi_0(y,y) = \mathrm{id}_{E_y} \,.$$

Plugging r = 0 into (11.6) for j = 0 we obtain

$$\Phi_1(y,y) = \Phi_1(0) = -(\Delta_x \Phi_0)(0).$$

Let us compute this term. We use the Taylor expansion of the metric in normal coordinates centered in $y(\widehat{=}0)$:

(11.8)
$$g_{ij}(x) = \delta_{ij} + \frac{1}{3} \sum_{kl} R_{ikjl}(0) x^k x^l + O''(|x|^3),$$

where $R_{ikjl} = g(R(\partial_i, \partial_k)\partial_j, \partial_l)$ and $\partial_i = \partial/\partial x^i$. In this context we define $h \in O''(|x|^k)$ if $|h| + |x||\nabla h| + |x|^2 |\nabla \nabla h| \le C|x|^k$. Hence

$$\det (d \exp_y) = \det ((g_{ij})_{i,j=1,...,n})^{\frac{1}{2}}$$

= $\left[1 + \operatorname{tr}_g \left(\frac{1}{3} \sum_{kl} R_{ikjl}(0) x^k x^l + O''(|x|^3)_{ij} \right) + O''(|x|^4) \right]^{\frac{1}{2}}$
= $1 - \frac{1}{6} \sum_{kl} \operatorname{ric}_{kl}(0) x^k x^l + O''(|x|^3)$

Here $\operatorname{ric}_{kl} = \sum_{ij} g^{ij} R_{iklj} = -\sum_{ij} g^{ij} R_{ikjl}$ denotes *Ricci curvature*. Thus $\det(d \exp_y)^{-\frac{1}{2}} = 1 + \frac{1}{12} \sum_{kl} \operatorname{ric}_{kl}(0) x^k x^l + O''(|x|^3)$ and therefore

$$\Delta_{0,x} \left(\det(d \exp_y)^{-\frac{1}{2}} \right) = -\frac{1}{6} \sum_k \operatorname{ric}_{kk}(0) + O(|x|)$$
$$= -\frac{1}{6} \operatorname{scal}(0) + O(|x|).$$

Here scal = $\sum_{k} \operatorname{ric}_{kk}$ denotes the scalar curvature.

Now $(\Delta_x \Phi_0)(x, y) = \left(\Delta_{0,x} \left(\det(d \exp_y)^{-\frac{1}{2}}\right)\right) \cdot \pi_{y,x} + \det(d \exp_y)^{-\frac{1}{2}} \cdot \mathcal{K}_x \circ \pi_{y,x}$ and therefore $\Delta_x \Phi_0(y, y) = -\frac{1}{6}\operatorname{scal}(y) + \mathcal{K}_y$.

We have shown

$$\Phi_1(y,y) = \frac{1}{6}\operatorname{scal}(y) \cdot \operatorname{id}_{E_y} - \mathcal{K}_y$$

It remains to see what the formal heat kernel and the true heat kernel have to do with each other.

Definition 11.9. Pick a smooth cut-off function $\chi : \mathbb{R} \to \mathbb{R}$, such that $\chi(r) = 1$ for $r \leq \frac{\epsilon_M}{3}$, $\chi(r) = 0$ for $r \geq \frac{2\epsilon_M}{3}$, and $0 \leq \chi \leq 1$ everywhere. We define

$$\widehat{k}_t^{(m)}(x,y) \coloneqq \begin{cases} \chi(\operatorname{dist}(x,y)) \cdot q_t(x,y) \cdot \sum_{j=0}^m t^j \Phi_j(x,y) & \text{if } \operatorname{dist}(x,y) < \epsilon_M \\ 0 & \text{else} \end{cases}$$

and \hat{k}_t as the corresponding formal series. Hence \hat{k}_t coincides with the formal heat kernel \tilde{k}_t on a neighborhood of the diagonal, but the finite partial sums $\hat{k}_t^{(m)}$ are defined and smooth on all of $M \times M$.

PROPOSITION 11.10. \hat{k}_t is asymptotic to k_t , in symbols

$$k_t \overset{t \ \searrow \ 0}{\overbrace{}} \widehat{k}_t,$$

in the following sense: For each $N \in \mathbb{N}$ there exists $m_0 \in \mathbb{N}$ and $t_0 > 0$ such that for all $m \ge m_0$ there is a constant $C_{N,m} > 0$ with

$$|k_t(x,y) - \widehat{k}_t^{(m)}(x,y)| \le C_{N,m} \cdot t^N$$

for all $t \in (0, t_0)$, $x, y \in M$.⁴

Proof. Recall that the following is a consequence of Corollary 9.4: For all $\varphi \in L^2(E)$ we have

$$\varphi_t \coloneqq e^{-t\Delta} \varphi \to \varphi \text{ in } L^2(E)$$

for $t \to 0$. This reads as

(11.11)
$$\lim_{t \to 0} \left\| \int_{M} k_t(.,y)\varphi(y) \operatorname{dvol}(y) - \varphi \right\|_{L^2} = 0.$$

Further φ_t is the unique solution of the heat equation with initial value φ , i.e. $\left(\frac{\partial}{\partial t} + \Delta\right)\varphi_t = 0$, and

(11.12)
$$\frac{d}{dt} \|\varphi_t\|_{L^2}^2 \le 0.$$

see Proposition 9.13, and its corollary for details.⁵

For a function $f \in C^0(M \times M)$, the Euclidean heat kernel satisfies

$$\lim_{t \to 0} \int_M q_t(x, y) f(x, y) \operatorname{dvol}(y) = f(x, x).$$

This implies for $\varphi \in C^0(E)$.

$$\lim_{t \to 0} \int_{M} \widehat{k}_{t}^{(0)}(x, y)\varphi(y) \operatorname{dvol}(y) = \lim_{t \to 0} \int_{B_{\epsilon_{M}}(x)} \chi(\operatorname{dist}(x, y)) \cdot q_{t}(x, y) \cdot \Phi_{0}(x, y)\varphi(y) \operatorname{dvol}(y)$$
$$= \Phi_{0}(x, x)\varphi(x) = \varphi(x).$$

Since higher powers of t do not contribute to the limit for $t \searrow 0$ we have

$$\lim_{t \searrow 0} \int_{M} \widehat{k}_{t}^{(m)}(x, y) \varphi(y) \operatorname{dvol}(y) = \varphi(x)$$

for all $m \in \mathbb{N}$. As the convergence is uniform in x it follows that

$$\lim_{t \to 0} \left\| \int_{M} \widehat{k}_{t}^{(m)}(.,y)\varphi(y) \operatorname{dvol}(y) - \varphi \right\|_{L^{2}} = 0.$$

Therefore, if we put $\delta_t^{(m)} \coloneqq k_t - \widehat{k}_t^{(m)}$ and use (11.11), then we obtain

$$\lim_{t \to 0} \left\| \int_{M} \delta_t^{(m)}(.,y) \varphi(y) \operatorname{dvol}(y) \right\|_{L^2} = 0.$$

⁴The careful reader will realize that there is no factor q_t on the right hand side, so away from the diagonal the proved asymptotic behavior is much weaker than one would naively assume.

⁵This holds for $\Delta =: D^2$ and should be slightly modified for other connection Laplacians.

Now we define and calculate using the abbreviation $\chi(x,y) = \chi(\operatorname{dist}(x,y))$

$$\eta_t^{(m)} := \left(\frac{\partial}{\partial t} + \Delta_x\right) \delta_t^{(m)} \\ = -\left(\frac{\partial}{\partial t} + \Delta_x\right) \widehat{k}_t^{(m)} = -\left(\frac{\partial}{\partial t} + \Delta_x\right) \left(\chi \cdot \widetilde{k}_t^{(m)}\right) \\ = -\chi \cdot \left(\frac{\partial}{\partial t} + \Delta_x\right) \widetilde{k}_t^{(m)} + \underbrace{2\nabla_{\operatorname{grad}_x\chi} \widetilde{k}_t^{(m)} - (\Delta_{0,x}\chi) \cdot \widetilde{k}_t^{(m)}}_{=:R_t^{(m)}} \\ \overset{\text{Def. 11.2}}{=} q_t \cdot O(t^m) + R_t^{(m)}.$$

Note that $R_t^{(m)} = q_t \times r_t^{(m)}$ for a smooth section $r_t^{(m)}$ which vanishes on

$$B_{\epsilon_M/3}(\operatorname{diag}_M) = \{(x, y) \in M \times M \mid \operatorname{dist}(x, y) < \frac{\epsilon_M}{3}\}.$$

For dist $(x, y) \ge \frac{\epsilon_M}{3}$ we have

$$q_t(x,y) \le c_1 \cdot \exp\left(-\frac{c_2}{t}\right) \cdot q_{2t}(x,y)$$

for constants $c_1=2^{n/2}$ and $c_2=\epsilon_M^2/36>0.$ Therefore

$$\eta_t^{(m)} = q_{2t} \cdot O(t^m)$$

From the asymptotics of $\eta_t^{(m)}$ we want to get to the asymptotics of $\delta_t^{(m)}$. For this purpose, we define $\widetilde{\delta}_t^{(m)} \coloneqq \int_0^t e^{-(t-\tau)\Delta_x} \eta_\tau^{(m)} d\tau$, and we want to show that $\widetilde{\delta}_t^{(m)} = \delta_t^{(m)}$.

We have

$$\begin{split} \lim_{t \to 0} \left\| \widetilde{\delta}_t^{(m)}(\cdot, y) \varphi(y) \right\|_{L^2} &= \lim_{t \to 0} \left\| \int_0^t e^{-(t-\tau)\Delta_x} \eta_\tau^{(m)}(\cdot, y) \varphi(y) d\tau \right\|_{L^2} \\ &\leq \lim_{t \to 0} \left\| \int_0^t \eta_\tau^{(m)}(\cdot, y) \varphi(y) d\tau \right\|_{L^2} = 0 \end{split}$$

uniformly in y and therefore

$$\lim_{t \searrow 0} \left\| \int_{M} \widetilde{\delta}_{t}^{(m)}(.,y) \varphi(y) \operatorname{dvol}(y) \right\|_{L^{2}} = 0.$$

It follows that

$$\lim_{t \to 0} \left\| \int_{M} \left(\widetilde{\delta}_{t}^{(m)}(.,y) - \delta_{t}^{(m)}(.,y) \right) \varphi(y) \operatorname{dvol}(y) \right\|_{L^{2}} = 0.$$

From the definition of $\widetilde{\delta}_t^{(m)}$ we have

$$\frac{\partial}{\partial t}\widetilde{\delta}_t^{(m)} = e^{-(t-t)\Delta_x}\eta_t^{(m)} + \int_0^t -\Delta_x e^{-(t-\tau)\Delta_x}\eta_\tau^{(m)}d\tau$$
$$= \eta_t^{(m)} - \Delta_x \widetilde{\delta}_t^{(m)}.$$

is a solution to the heat equation with

$$\lim_{t \to 0} \|\alpha_t^{(m)}\|_{L^2} = 0,$$

Equation (11.12) implies $\alpha_t^{(m)} \equiv 0$ for every φ , and the continuity of $\widetilde{\delta}_t^{(m)} - \delta_t^{(m)}$ then provides $\widetilde{\delta}_t^{(m)} = \delta_t^{(m)}$.

This allows us to get bounds for $\delta_t^{(m)}$

$$\delta_t^{(m)} = \widetilde{\delta}_t^{(m)} = \int_0^t e^{-(t-\tau)\Delta_x} \eta_\tau^{(m)} d\tau$$

and hence

$$\| \delta_t^{(m)} \|_{H^k} \leq t \cdot \sup_{\tau \in [0,t]} \| e^{-(t-\tau)\Delta_x} \|_{H^k, H^k} \cdot \sup_{\tau \in [0,t]} \| \eta_{\tau}^{(m)} \|_{H^k} = O(t^{N+1}).$$

Here the evaluation of the H^k -norm needs some space derivative, which requires some additional powers of t. Thus this holds in the sense that for $N \in \mathbb{N}$ there is a $m_0 \in \mathbb{N}$ such that the statement holds for all $m \geq m_0$. The Sobolev embedding theorem implies for $k > \frac{n}{2}$

$$|| k_t - \widehat{k}_t^{(m)} ||_{C^0} = || \delta_t^{(m)} ||_{C^0} = O(t^{N+1}).$$

COROLLARY 11.13.

$$k_t(x,x) \stackrel{t \searrow 0}{\longrightarrow} \widehat{k}_t(x,x) = \widetilde{k}_t(x,x)$$
$$= (4\pi t)^{-\frac{n}{2}} \cdot \left\{ \operatorname{id}_{E_x} + t \cdot \left(\frac{1}{6} \operatorname{scal}(x) \cdot \operatorname{id}_{E_x} - \mathcal{K}_x \right) + O(t^2) \right\}.$$

12. HILBERT-SCHMIDT OPERATORS AND TRACE CLASS OPERATORS

This section is close to the book [Roe88].

Definition 12.1. Let \mathcal{H} and \mathcal{H}' be separable Hilbert spaces with orthornormal bases $(e_i)_i$ and $(e'_i)_j$. For $A, B \in \mathcal{B}(\mathcal{H}, \mathcal{H}')$ we set

If $||A||_{HS} < \infty$, then we say that A is a *Hilbert-Schmidt operator*. The set of all Hilbert-Schmidt operators is denoted by $\mathcal{HS}(\mathcal{H}, \mathcal{H}')$.

LEMMA 12.2. (a) $\langle ., . \rangle_{HS}$ and $\|.\|_{HS}$ are independent of the choices of orthonormal bases (b) $\|A\|_{HS} = \|A^*\|_{HS}$

(c) $(\mathcal{HS}(\mathcal{H},\mathcal{H}'),\langle .\,,\,.\,\rangle_{HS})$ is a Hilbert space

- (d) For $A \in \mathcal{HS}(\mathcal{H}, \mathcal{H}')$ we have $||A||_{\mathcal{H}, \mathcal{H}'} \leq ||A||_{HS}$.
- (e) $\mathcal{HS}(\mathcal{H},\mathcal{H}') \subset \mathcal{K}(\mathcal{H},\mathcal{H}')$, where $\mathcal{K}(\mathcal{H},\mathcal{H}')$ denotes the compact operators from \mathcal{H} to \mathcal{H}' .

(f) If $A \in \mathcal{HS}(\mathcal{H}, \mathcal{H}')$ and $B \in \mathcal{B}(\mathcal{H}', \mathcal{H}'')$, then $B \circ A \in \mathcal{HS}(\mathcal{H}, \mathcal{H}'')$. If $A \in \mathcal{HS}(\mathcal{H}', \mathcal{H}'')$ and $B \in \mathcal{B}(\mathcal{H}, \mathcal{H}')$, then $A \circ B \in \mathcal{HS}(\mathcal{H}, \mathcal{H}'')$.

Proof. (a) and (b)

$$\|A\|_{HS}^{2} = \sum_{ij} |\langle Ae_{i}, e'_{j} \rangle|^{2}$$

$$= \sum_{ij} \langle Ae_{i}, \langle Ae_{i}, e'_{j} \rangle e'_{j} \rangle$$

$$= \sum_{i} \langle Ae_{i}, Ae_{i} \rangle = \sum_{i} \|Ae_{i}\|^{2}$$

So it is independent of the choice of the basis (e'_i) . Now we modify the argument

$$\|A\|_{HS}^{2} = \sum_{ij} |\langle e_{i}, A^{*}e_{j}'\rangle|^{2}$$
$$= \sum_{j} \|A^{*}e_{j}'\|^{2}$$
$$= \|A^{*}\|_{HS}^{2}$$

Thus it is also independent of the basis (e_i) . The statement for the norm is then evident. (c) Obvious

(d) If e is a unit vector in \mathcal{H} , then we can find an orthonormal basis $(e_i)_{i \in \mathbb{N}}$ with $e_0 = e$. Then

$$||A||_{HS}^2 = \sum_i ||Ae_i||^2 \ge ||A(e)||^2,$$

and thus

$$\frac{\|Ax\|}{\|x\|} \leq \left\|A\left(\frac{x}{\|x\|}\right)\right\| \leq \|A\|_{HS}.$$

- (e) An operator $A \in \mathcal{B}(\mathcal{H}, \mathcal{H}')$ is a called *finite-rank operator* if it has finite rank. It is classically known (and not hard to prove) that the vector space $\mathcal{K}(\mathcal{H}, \mathcal{H}')$ of compact operators is the closure of the vector space of finite-rank operators with respect to the operator norm. On the other hand $\mathcal{HS}(\mathcal{H}, \mathcal{H}')$ is the closure of the vector space of finite-rank operators with respect to the Hilbert-Schmidt-norm. Thus (d) implies the statement.
- (f) The estimate

$$\|B \circ A\|_{HS}^{2} = \sum_{i} \|B \circ A(e_{i})\|^{2} \le \|B\|_{\mathcal{H}',\mathcal{H}''}^{2} \sum_{i} \|A(e_{i})\|^{2} = \|B\|_{\mathcal{H}',\mathcal{H}''}^{2} \|A\|_{HS}^{2}$$

shows the first statement and the second one is proven analogously.

PROPOSITION 12.3. Let M be a closed Riemannian manifold and $E \to M$ a vector bundle over M. Let $A: L^2(E) \to L^2(E)$ be an integral operator with continuous integral kernel k, i.e.

$$Au(x) = \int_M k(x,y)u(y) \operatorname{dvol}(y).$$

 $Then \ A \ is \ a \ Hilbert \hbox{-} Schmidt \ operator \ and$

$$||A||_{HS}^2 = \int_{M \times M} |k(x,y)|^2 \operatorname{dvol}(x) \operatorname{dvol}(y).$$

Proof. Exercise

Proof. Let $(e_i)_{i \in \mathbb{N}}$ be an orthonormal basis of $L^2(E)$.

$$\begin{split} \|A\|_{HS}^{2} &= \sum_{j} \|Ae_{j}\|^{2} = \sum_{j} \int_{M} \left| \int_{M} k(x,y) e_{j}(y) \operatorname{dvol}(y) \right|^{2} \operatorname{dvol}(x) \\ &= \int_{M} \sum_{j} |\langle k(x,\cdot), e_{j} \rangle |^{2} \operatorname{dvol}(x) \\ &= \int_{M} \|k(x,\cdot)\|_{L^{2}}^{2} \operatorname{dvol}(x) \\ &= \int_{M} \int_{M} |k(x,y)|^{2} \operatorname{dvol}(y) \operatorname{dvol}(x). \end{split}$$

Definition 12.4. Let \mathcal{H} be a separable Hilbert space, $A \in \mathcal{B}(\mathcal{H}, \mathcal{H})$. We say that A is a *trace class operator* on \mathcal{H} , if there are $B, C \in \mathcal{HS}(\mathcal{H}, \mathcal{H})$ such that $A = B \circ C$. Then we define the *trace of* A as

$$\operatorname{Tr} A \coloneqq \langle C, B^* \rangle_{HS}.$$

Let $\mathcal{TC}(\mathcal{H})$ be the space of all trace class operators on \mathcal{H} . It is obviously an algebra, the *algebra* of trace-class operators, it is even an ideal in the algebra $\mathcal{B}(\mathcal{H},\mathcal{H})$.

The trace TrA is well-defined. The complex number $(C, B^*)_{HS} \in \mathbb{C}$ is a well-defined and the calculation

$$\begin{aligned} \langle C, B^* \rangle_{HS} &= \sum_{ij} \langle Ce_i, e'_j \rangle \overline{\langle B^* e_i, e'_j \rangle} \\ &= \sum_i \langle Ce_i, B^* e_i \rangle = \sum_i \langle Ae_i, e_i \rangle \end{aligned}$$

shows that TrA does not depend on how we write it as $B \circ C$.

Notation 12.5. Often our Hilbert space will be $L^2(E)$ where $E \to M$ is a vector bundle over a compact manifold M, and A an operator given by an integral kernel $k \in \Gamma(E \otimes E)$. As one often "identifies" A and k to properly distinguish between the trace of A as an operator from $L^2(E)$ to $L^2(E)$ which will be denoted by $\operatorname{Tr} A = \operatorname{Tr} k$, and the (pointwise) trace of $k(x,x) \in \operatorname{End}(E_x)$, denoted by $\operatorname{tr} k(x,x) \in \mathbb{R}$ or by $\operatorname{tr} k \in C^{\infty}(M)$. See below how they are related.

We also should say that in parts of the literature, the definition of a trace is much more general, as e.g. in the discussion of the Wozicki residue, or "regularized" traces. This will not be part of the lecture, though.

So we have the inclusions

$$\mathcal{TC}(\mathcal{H}) \subset \mathcal{HS}(\mathcal{H},\mathcal{H}) \subset \mathcal{K}(\mathcal{H},\mathcal{H}) \subset \mathcal{B}(\mathcal{H},\mathcal{H}).$$

This corresponds to the inclusions

 $\ell^1 \subset \ell^2 \subset \{\text{sequences converging to } 0\} \subset \{\text{bounded sequences}\}.$

Example 12.6. Using the notation from the last sections we see that for t > 0 the operator

$$e^{-tD^2} = e^{-(t/2)D^2} \circ e^{-(t/2)D^2}$$

is trace class as an operator form $L^2(W)$ to itself, as $e^{-(t/2)D^2}$ is compact.

LEMMA 12.7. Let A be of trace class and selfadjoint with eigenvalues $(\lambda_i)_{n \in \mathbb{N}}$, counted with multiplicities. Then

$$\operatorname{Tr} A = \sum_{i=1}^{\infty} \lambda_i.$$

Proof. We choose an orthonormal basis consisting of eigenvectors. Then the lemma follows from the calculation below Lemma 12.4. $\hfill \Box$

Remark 12.8. Every operator A given by a smooth integral kernel k is of trace class, and

$$\operatorname{Tr}(A) = \int_M \operatorname{tr} k(x, x) \operatorname{dvol}(x).$$

(We will not prove it as we do not need it).

Example 12.9 (Continued Example 12.6). For t > 0 we have

$$Tre^{-tD^{2}} = \left\| e^{-(t/2)D^{2}} \right\|_{HS}^{2}$$

= $\int_{M} \int_{M} |k_{t/2}(x,y)|^{2} \operatorname{dvol}(x) \operatorname{dvol}(y)$
= $\int_{M} \int_{M} \operatorname{tr} \left(k_{t/2}(x,y) \circ k_{t/2}(x,y)^{*} \right) \operatorname{dvol}(y) \operatorname{dvol}(x)$
= $\int_{M} \left(\int_{M} \operatorname{tr} \left(k_{t/2}(x,y) \circ k_{t/2}(y,x) \right) \operatorname{dvol}(y) \right) \operatorname{dvol}(x)$
= $\int_{M} \operatorname{tr} k_{t}(x,x) \operatorname{dvol}(x)$

With the results from the last section we conclude:

PROPOSITION 12.10. *For* t > 0*:*

$$\sum_{i=1}^{\infty} e^{-t\lambda_i} = \operatorname{Tr}\left(e^{-t\Delta}\right) = \int_M \operatorname{tr}\left(k_t(x,x)\right) \operatorname{dvol}(x) \xrightarrow{t \searrow 0} \mathcal{L}(x) + t \cdot \left(\frac{\operatorname{rk}(E)}{6} \int_M \operatorname{scal}(x) \operatorname{dvol}(x) - \int_M \operatorname{tr}\left(\mathcal{K}_x\right) \operatorname{dvol}(x)\right) + O(t^2) \right\}.$$

COROLLARY 12.11. The dimension of M and the product of the rank of E and the volume of M is determined by the spectrum of Δ , where Δ can be the Laplace-Beltrami operator, the Hodge-Laplacian or the square of the Dirac operator or any other generalized Laplacian with potential.

Example 12.12. Without knowing $\operatorname{rk}(E)$ one cannot get the volume out of the spectrum, as seen in the following example. Let $E = W \to M$ be a Clifford bundle. Then the Dirac operators on $W \sqcup W \to M \amalg M$ and the one on $W \oplus W \to M$ have the same spectrum, namely the spectrum of the Dirac operator on $W \to M$ with doubled multiplicities.

Again this section should be read in the special case that $\Delta = D^2$, where D is a generalized Dirac operator, but the results hold if Δ is an arbitrary generalized Laplacian. We write again $E \to M$ for the Clifford bundle.

THEOREM 13.1 (Weyl). Let $\Delta : C^{\infty}(E) \to C^{\infty}(E)$ be a generalized Laplace operator over an *n*dimensional compact Riemannian manifold. For each $\lambda \in \mathbb{R}$ let $N(\lambda)$ be the number of eigenvalues of Δ less than λ . Then

$$\lim_{\lambda \to \infty} \frac{N(\lambda)}{\lambda^{\frac{n}{2}}} = \frac{\operatorname{rk}(E) \cdot \operatorname{vol}(M)}{(4\pi)^{\frac{n}{2}} \cdot \Gamma\left(\frac{n}{2} + 1\right)}$$

If we consider the spectrum of D, then one proves similarly to the proof of Proposition 7.21 that negative and positive eigenvalues grow comparably fast to infinity. So we get:

COROLLARY 13.2. Let D be a generalized Dirac operator over a compact manifold M. If $N_+(\lambda)$ resp. $N_-(\lambda)$ is the number of eigenvalues of D in the interval $[0, \lambda)$ resp. $(-\lambda, 0]$ for $\lambda \in \mathbb{R}_{>0}$, then

$$\lim_{\lambda \to \infty} \frac{N_{\pm}(\lambda)}{\lambda^n} = \frac{\operatorname{rk}(E) \cdot \operatorname{vol}(M)}{2(4\pi)^{\frac{n}{2}} \cdot \Gamma\left(\frac{n}{2} + 1\right)}.$$

For the proof of Theorem 13.1 we need the following tool:

LEMMA 13.3 (Karamata). Let $d\mu$ be a measure on $(0, \infty)$, let $\alpha > 0$ and C > 0. We assume

$$\int_{0}^{\infty} e^{-t\lambda} d\mu(\lambda) < \infty$$

for all t > 0 and

$$\lim_{t \to 0} t^{\alpha} \int_{0}^{\infty} e^{-t\lambda} d\mu(\lambda) = C.$$

Then for all continuous functions f on [0,1] the following holds:

$$\lim_{t \to 0} t^{\alpha} \int_{0}^{\infty} f\left(e^{-t\lambda}\right) e^{-t\lambda} d\mu(\lambda) = \frac{C}{\Gamma(\alpha)} \int_{0}^{\infty} f\left(e^{-t}\right) t^{\alpha-1} e^{-t} dt.$$

Proof of Theorem 13.1. Since a shift of the spectrum by a constant will not alter the limit $\lim_{\lambda \to \infty} \frac{N(\lambda)}{\lambda^{\frac{n}{2}}}$ we may w.l.o.g. assume that all eigenvalues λ_i are positive. We apply Karamata's lemma with $\alpha = \frac{n}{2}$, $C = (4\pi)^{-\frac{n}{2}} \operatorname{rk}(E) \operatorname{vol}(M)$, and the spectral measure $d\mu = \sum_{i=1}^{\infty} \delta_{\lambda_i}$. Since

$$\int_{0}^{\infty} e^{-t\lambda} d\mu(\lambda) = \sum_{i=1}^{\infty} e^{-t\lambda_{i}} = \operatorname{Tr}\left(e^{-t\Delta}\right) < \infty$$

and

$$\lim_{t \to 0} t^{\alpha} \cdot \int_{0}^{\infty} e^{-t\lambda} d\mu(\lambda) = \lim_{t \to 0} t^{\frac{n}{2}} \cdot \operatorname{Tr}\left(e^{-t\Delta}\right) = C$$

by Proposition 12.10 the assumptions in Karamata's lemma are satisfied.

$$\lim_{t \to 0} t^{\frac{n}{2}} \int_{0}^{\infty} f\left(e^{-t\lambda}\right) e^{-t\lambda} d\mu(\lambda) = \lim_{t \to 0} t^{\frac{n}{2}} \int_{0}^{(1+\epsilon)t^{-1}} f\left(e^{-t\lambda}\right) e^{-t\lambda} d\mu(\lambda)$$

$$\geq \limsup_{t \to 0} t^{\frac{n}{2}} \int_{0}^{t^{-1}} d\mu(\lambda)$$

$$= \limsup_{t \to 0} t^{\frac{n}{2}} N(t^{-1})$$

$$= \limsup_{\lambda \to \infty} \frac{N(\lambda)}{\lambda^{\frac{n}{2}}}.$$

For the right hand side we obtain

$$\frac{C}{\Gamma(\alpha)} \int_{0}^{\infty} f\left(e^{-t}\right) t^{\alpha-1} e^{-t} dt = \frac{C}{\Gamma(\alpha)} \int_{0}^{1+\epsilon} f\left(e^{-t}\right) t^{\alpha-1} e^{-t} dt$$
$$\leq \frac{C}{\Gamma(\alpha)} \int_{0}^{1+\epsilon} t^{\alpha-1} dt$$
$$= \frac{C \cdot (1+\epsilon)^{\alpha}}{\Gamma(\alpha) \cdot \alpha} = \frac{C \cdot (1+\epsilon)^{\alpha}}{\Gamma(\alpha+1)}.$$

Thus

$$\limsup_{\lambda \to \infty} \frac{N(\lambda)}{\lambda^{\frac{n}{2}}} \leq \frac{C \cdot (1+\epsilon)^{\alpha}}{\Gamma(\alpha+1)}$$

and $\epsilon\searrow 0$ yields

$$\limsup_{\lambda \to \infty} \frac{N(\lambda)}{\lambda^{\frac{n}{2}}} \le \frac{C}{\Gamma(\alpha+1)} = \frac{\operatorname{rk}(E) \cdot \operatorname{vol}(M)}{(4\pi)^{\frac{n}{2}} \Gamma(\frac{n}{2}+1)}.$$

The proof of $\liminf_{\lambda \to \infty} \frac{N(\lambda)}{\lambda^{\frac{n}{2}}} \ge \frac{C}{\Gamma(\alpha+1)}$ is completely analogous. One uses continuous functions $f : [0,1] \to \mathbb{R}$ satisfying f(x) = 0 for $x \le e^{-1}$, $f(x) = x^{-1}$ for $x \ge e^{-1+\epsilon}$ and $0 \le f(x) \le x^{-1}$ everywhere.

Proof of the lemma. By Weierstrass' theorem the polynomials lie dense in $C^0([0,1])$ (w.r.t. the C^0 -norm). Hence it is sufficient to prove the lemma for f a polynomial. Then we can assume w.l.o.g. that $f(x) = x^k$. For the left hand side we get

$$\lim_{t \to 0} t^{\alpha} \int_{0}^{\infty} f\left(e^{-t\lambda}\right) e^{-t\lambda} d\mu(\lambda) = \lim_{t \to 0} t^{\alpha} \int_{0}^{\infty} e^{-(k+1)t\lambda} d\mu(\lambda)$$
$$= \lim_{s \to 0} \left(\frac{s}{k+1}\right)^{\alpha} \int_{0}^{\infty} e^{-s\lambda} d\mu(\lambda)$$
$$= \frac{C}{(k+1)^{\alpha}}.$$

The right hand side turns out to be the same

$$\frac{C}{\Gamma(\alpha)} \int_{0}^{\infty} f(e^{-t}) t^{\alpha-1} e^{-t} dt = \frac{C}{\Gamma(\alpha)} \int_{0}^{\infty} t^{\alpha-1} e^{-(k+1)t} dt$$
$$= \frac{C}{\Gamma(\alpha)} \int_{0}^{\infty} \left(\frac{s}{k+1}\right)^{\alpha-1} \cdot e^{-s} \cdot \frac{ds}{k+1}$$
$$= \frac{C}{\Gamma(\alpha)} \cdot \frac{\Gamma(\alpha)}{(k+1)^{\alpha}}.$$

14. Clifford-Algebren und ihre Darstellungstheorie

Sei (V,g) ein euklidischer Vektorraum der Dimension n. Wir wollen nun die Struktur der Clifford-Moduln klassifizieren. Sei

$$\mathbb{Cl}(V,g) \coloneqq \mathbb{Cl}(V,g) \otimes_{\mathbb{R}} \mathbb{C}$$

die komplexifizierte Clifford-Algebra. Die Multiplikation in $\mathbb{Cl}(V,g)$ bzw. $\mathbb{Cl}(V,g)$ bezeichnen wir mit \cdot .

Nach den Bemerkungen aus dem ersten Abschnitt wissen wir, dass jeder Clifford-Modul W einen Algebra-Homomorphismus $Cl(V,g) \rightarrow End(W)$ induziert, und umgekehrt definiert jeder solche Algebra-Homomorphismus eine Multiplikation $V \otimes W \rightarrow W$, die die Clifford-Relationen (2.2) erfüllt.

Es gilt deswegen die Algebren-Homomorphismen $Cl(V,g) \to End(W)$, also die Darstellungstheorie der Clifford-Algebren zu studieren. Ist V orientiert, so wurde das komplexe Volumenelement $\omega_{\mathbb{C}}$ in (7.23) definiert.

Seien W_1 und W_2 Clifford-Moduln. Ein Homomorphismus $A: W_1 \to W_2$ ist ein *Clifford-Homomorphismus*, falls für alle $X \in V, \varphi \in W_1$ gilt:

$$X \cdot A(\varphi) = A(X \cdot \varphi),$$

und ein Anti-Clifford-Homomorphismus, falls für alle $X \in V, \varphi \in W_1$ gilt:

$$X \cdot A(\varphi) = -A(X \cdot \varphi).$$

Ist A zusätzlich ein Epi-, Mono-, Iso-, Endo-, oder Automorphismus, so nennen wir ihn einen (Anti-)Clifford- Epi-, Mono-, Iso-, Endo-, oder Automorphismus.

Für viele Überlegung kann man o.B.d.A. $V = \mathbb{R}^n$, versehen mit der euklidischen Metrik, annehmen.

Wir konstruieren zunächst induktiv (wie in den Übungen) (komplexe) Clifford-Modul
n für $\mathbb{R}^n.$ Fürn= 1 definieren wir

$$\Sigma_1 \coloneqq \mathbb{C}$$

und die Clifford-Multiplikation ist

$$_1 \cdot \varphi \coloneqq -i\varphi.$$

Dies ist offensichtlich ein Clifford-Modul der komplexen Dimension 1 für \mathbb{R}^1 . Ein anderer Clifford-Modul ist gegeben durch

$$\widehat{\Sigma}_1 \coloneqq \mathbb{C}, \qquad e_1 \cdot \varphi \coloneqq i\varphi$$

Es gilt $\omega_{\mathbb{C}}|_{\Sigma_1} = \text{Id und } \omega_{\mathbb{C}}|_{\widehat{\Sigma}_1} = -\text{Id}$, insbesondere sind die beiden Clifford Moduln Σ_1 und $\widehat{\Sigma}_1$ nicht isomorph. Σ_1 bzw. $\widehat{\Sigma}_1$ heißt die *positive* bzw. *negative Spinor-Darstellung der Clifford-Algebra*.

Die Identität id : $\mathbb{C} \to \mathbb{C}$ schreiben wir als $A : \Sigma_1 \to \widehat{\Sigma}_1$. Es ist ein Anti-Clifford-Isomorphismus.

Wir definieren nun induktiv auch für alle höheren n die Spinor-Darstellungen, und zwar für gerade n einen Clifford-Modul Σ_n , und für ungerade n zwei Clifford-Moduln Σ_n und $\widehat{\Sigma}_n$ zusammen mit einem Anti-Clifford-Isomorphismus $A: \Sigma_n \to \widehat{\Sigma}_n$.

Schritt von n auf n + 1 für ungerade n: Wir setzen $\Sigma_{n+1} := \Sigma_n \oplus \widehat{\Sigma}_n$, und die Clifford-Multiplikation ist hierauf definiert als

$$\mathbb{R}^{n+1} \otimes (\Sigma_n \oplus \widehat{\Sigma}_n) \rightarrow \Sigma_n \oplus \widehat{\Sigma}_n$$

$$e_k \cdot (\sigma_1, \sigma_2) := (e_k \cdot \sigma_1, e_k \cdot \widehat{\sigma}_2) \qquad k = 1, \dots, n$$

$$e_{n+1} \cdot (\sigma_1, \sigma_2) := (-A^{-1}\sigma_2, A\sigma_1)$$

Schritt von n auf n + 1 für gerade n: Wir setzen $\Sigma_{n+1} \coloneqq \widehat{\Sigma}_{n+1} \coloneqq \Sigma_n$ und

 $\mathbb{R}^{n+1} \otimes \Sigma_n \quad \rightarrow \quad \Sigma_n \\ e_k \cdot_{n+1} \sigma \quad \coloneqq \quad e_k \cdot_n \sigma \qquad k = 1, \dots, n \\ e_{n+1} \cdot \sigma \quad \coloneqq \quad -i\omega_{\mathbb{C},n} \sigma \\ e_k \cdot_{n+1} \sigma \quad \coloneqq \quad -e_k \cdot_n \sigma \qquad k = 1, \dots, n \\ e_{n+1} \cdot \sigma \quad \coloneqq \quad i\omega_{\mathbb{C},n} \sigma$

Die Identität von Σ_n , kann nun als Anti-Clifford-Isomorphismus $A: \Sigma_{n+1} \to \widehat{\Sigma}_{n+1}$ aufgefasst werden.

Offensichtlich gilt dim $\Sigma_n = 2^{[n/2]}$. Und für *n* ungerade gilt $\omega_{\mathbb{C}}|_{\Sigma_n} = \mathrm{Id}$ und $\omega_{\mathbb{C}}|_{\widehat{\Sigma}_n} = -\mathrm{Id}$.

We use Clifford modules equivalently to the word Clifford representations.

Let W, V be $\mathbb{C}l_n$ -modules. In the following we denote by $\operatorname{Hom}_{\mathbb{C}l}(V, W)$ the linear maps $V \to W$ commuting with the action of $\mathbb{C}l_n$.

THEOREM 14.1 (Classification of Clifford modules for n even). Let n = 2m. Then for any Clifford module W the linear map given by evaluation

$$\Sigma_n \otimes \operatorname{Hom}_{\mathbb{C}l}(\Sigma_n, W) \to W$$

is an isomorphism of Clifford modules.

Proof. To come

Dies heißt also, dass jeder Clifford-Modul ein getwisteter Modul von Σ_n ist. Anschaulich gesprochen ist dieser Modul deswegen der fundamentale Baustein um einen beliebigen Clifford-Modul zu konstruieren. Wir nennen Σ_n die Spinor-Darstellung der Clifford-Algebra.

Falls *n* gerade, kommutiert das komplexe Volumenelement $\omega_{\mathbb{C}}$ mit X für alle $X \in \mathbb{R}^n$. Deswegen hat $\omega_{\mathbb{C}}$ die Eigenwerte ±1, und die Dimension der Eigenräume Σ_n^+ und Σ_n^- ist $2^{(n-2)/2}$.

A representation W is called decomposable, if it can be written as the sum of two non-trivial representations W_1 and W_2 :

 $W = W_1 \oplus W_2.$

 ${\cal W}$ is called indecomposable, if it is not decomposable.

50

COROLLARY 14.2. In even dimensions n = 2m, Σ_n is the unique indecomposable representation of $\mathbb{C}l_n$.

THEOREM 14.3. n = 2m. The maps $\mathbb{C}l_n \to \mathrm{End}(\Sigma_n) \to \mathbb{C}^{m \times m}$ are isomorphisms of algebras.

THEOREM 14.4 (Classification of Clifford modules for n odd). Let n = 2m + 1. Then for any $\mathbb{C}l_n$ module W the linear map given by evaluation

$$\Sigma_n \otimes \operatorname{Hom}_{\mathbb{C}l}(\Sigma_n, W) \oplus \widehat{\Sigma}_n \otimes \operatorname{Hom}_{\mathbb{C}l}(\widehat{\Sigma}_n, W) \to W$$

is an isomorphism of Clifford modules.

COROLLARY 14.5. In even dimensions n = 2m + 1, Σ_n and $\widehat{\Sigma}_n$ are the unique indecomposable representations of $\mathbb{C}l_n$.

THEOREM 14.6. n = 2m + 1. The maps $\mathbb{C}l_n \to \operatorname{End}(\Sigma_n) \oplus \operatorname{End}(\Sigma_n) \to \mathbb{C}^{m \times m} \oplus \mathbb{C}^{m \times m}$ are isomorphisms of algebras.

Beweis. Alternativer Beweis der Klassifikationen der Clifford-Algebren.

Sei $\rho_n : \mathbb{Cl}(\mathbb{R}^n) \to \operatorname{End}(\Sigma_n)$, falls *n* gerade und $\rho_n : \mathbb{Cl}(\mathbb{R}^n) \to \operatorname{End}(\Sigma_n) \oplus \operatorname{End}(\widehat{\Sigma}_n)$, falls *n* ungerade. Aus der induktiven Konstruktion der Σ_n sieht man induktiv über *n*, dass ρ_n surjektiv ist. Die Injektivität folgt dann aus Dimensionsgründen.

Jede Isometrie $A : \mathbb{R}^n \to \mathbb{R}^n$ setzt sich zu einem Algebren-Homomorphsmus $A : \mathbb{Cl}(\mathbb{R}^n) \to \mathbb{Cl}(\mathbb{R}^n)$ fort. Insbesondere gilt dies für die Punktspiegelung am Ursprung $\mathcal{P} : \mathbb{R}^n \to \mathbb{R}^n, X \mapsto -X$. Wir schreiben

$$\mathbb{Cl}(\mathbb{R}^n) = \mathbb{Cl}_0(\mathbb{R}^n) \oplus \mathbb{Cl}_1(\mathbb{R}^n)$$

wobei $\mathbb{C}l_i(\mathbb{R}^n)$ der Eigenraum von \mathcal{P} zum Eigenwert $(-1)^j$ ist. Der Isomorphismus

$$\begin{aligned} \mathbb{Cl}(\mathbb{R}^n) &\to \Lambda^{\bullet}\mathbb{R}^n \\ A &\mapsto A \cdot 1 \end{aligned}$$

bildet $\mathbb{C}l_0(\mathbb{R}^n)$ auf $\Lambda^{even}\mathbb{R}^n$ und $\mathbb{C}l_1(\mathbb{R}^n)$ auf $\Lambda^{odd}\mathbb{R}^n$ ab.

PROPOSITION 14.7. Sei n ungerade. Wir betrachten nur noch eine der beiden Spinor-Darstellungen und schränken Sie auf $\mathbb{Cl}_0(\mathbb{R}^n)$ bzw. $\mathbb{Cl}_1(\mathbb{R}^n)$ ein. Dann sind

$$\mathbb{Cl}_0(\mathbb{R}^n) \to \operatorname{End}(\Sigma_n) \qquad \mathbb{Cl}_1(\mathbb{R}^n) \to \operatorname{End}(\Sigma_n)$$

und

$$\mathbb{C}l_0(\mathbb{R}^n) \to \operatorname{End}(\widehat{\Sigma}_n) \qquad \mathbb{C}l_1(\mathbb{R}^n) \to \operatorname{End}(\widehat{\Sigma}_n)$$

Vektor raum isomorphismen.

Beweis. Die Surjektivität kann man wiederum durch Induktion zeigen, und die Injektivität folgt dann aus Dimensionsgründen. $\hfill \Box$

PROPOSITION 14.8. Jeder Clifford-Modul W über einem euklidischen Vetorraum V trägt ein hermitesches Skalarprodukt, so dass

$$\langle X \cdot \varphi, \psi \rangle = -\langle \varphi, X \cdot \psi \rangle$$

für alle $X \in V$ und alle $\varphi, \psi \in W$.

$$\langle X,Y\rangle = \sum_{I \subset \{1,\dots,n\}} \langle e_I \cdot X, e_I \cdot Y\rangle_0.$$

Dann gilt $\langle e_j \cdot X, e_j \cdot Y \rangle = \langle X, Y \rangle$ Daraus folgt für $Y \coloneqq e_j \cdot Z$

$$\langle e_j \cdot X, Z \rangle = -\langle X, e_j \cdot Z \rangle$$

und daraus wiederum die Behauptung.

15. LIE-GRUPPEN, SPIN-GRUPPEN, HAUPTFASERBÜNDEL

15.1. Lie-Gruppen und ihre Darstellungen. Wir wollen ein paar Definitionen und Sachverhalte über Lie-Gruppen zusammentragen, die wir im folgenden brauchen werden. Man beachte auch die Ergänzungen in Abschnitt C.

Definition 15.1. Eine *Lie-Gruppe* ist ein Gruppe *G* zusammen mit einer Mannigfaltigkeitsstruktur auf *G*, so dass die Multiplikation $G \times G \to G$ und die Inversenabbildung $G \to G$ glatte Abbildungen sind.

Beispiele 15.2. $GL(n,\mathbb{R})$, SO(n), SU(m), $GL(m,\mathbb{C})$. Man kann zeigen [War83, Theorem 3.42], dass jede abgeschlossene Untergruppe von $GL(n,\mathbb{R})$ eine Untermannigfaltigkeit ist und deswegen ist es eine Lie-Gruppe. Es gibt aber auch Lie-Gruppen, die man nicht als abgeschlossene Untergruppe eines $GL(n,\mathbb{R})$ erhält.

SATZ 15.3. Ist G eine Lie-Gruppe, so trägt die universelle Überlagerung \tilde{G} eine eindeutige Gruppenstruktur, so dass $\tilde{G} \to G$ ein glatter Gruppenhomomorphismus ist.

Beweisskizze siehe Vorlesung.

Definition 15.4. Eine *reelle (oder komplexe) Darstellung* einer Lie-Gruppe G besteht aus einem reellen (oder komplexen) Vektorraum V zusammen mit einem glatten Gruppenhomomorphismus $\rho: G \to GL(V)$.

Wir wollen uns hier auf endlich-dimensionale Darstellung beschränken. $^{\rm 6}$

Beispiele 15.5. (1) Die *triviale* Darstellung: $V = \mathbb{R}$, $\rho(g) = \text{Id für alle } g \in G$.

- (2) Sei G eine Untergruppe von GL(V). Dann ist (V, ρ) mit $\rho(g) = g$ die kanonische Darstellung von G.
- (3) Die Adjungierte Darstellung aus Abschnitt C

Als Literatur zu Lie-Gruppen ist [War83] zu empfehlen. Wer noch mehr über Darstellungstheorie wissen will, kann auch in [Hum80] und [BtD95] viel Interessantes finden.

 $^{^{6}\}mathrm{In}$ der Quantenmechanik sind auch unendlich-dimensionale Darstellungen sehr wichtig.

15.2. **Die Spin-Gruppe.** Die Lie-Gruppe SO(n) ist für $n \ge 2$ nicht einfach zusmmenhängend. die Dimension n = 2 ist hierbei ein Spezialfall: SO(2) $\cong U(1) \cong S^1$, also $\pi_1(SO(2)) \cong \mathbb{Z}$. Die universelle Überlagerung von SO(2) ist \mathbb{R} .

Für $n \ge 3$ gilt hingegen $\pi_1(SO(n)) = \mathbb{Z}/(2\mathbb{Z})$.

Wir konstruieren nun für alle $n \ge 2$ die Spin-Gruppe Spin(n), und zeigen anschließend, dass es eine zweifache zusammenhängende Überlagerung ist. Hieraus folgt dann direkt, dass Spin(n) für alle $n \ge 3$ die universelle Überlagerung von SO(n) ist.

Definition 15.6. Sei $\mathbb{Cl}(\mathbb{R}^n)$ wieder die komplexifizierte Clifford-Algebra. Die Elemente von $\mathbb{Cl}(\mathbb{R}^n)$, die ein Inverses besitzen, bilden eine Gruppe, die Einheiten-Gruppe $\mathbb{Cl}(\mathbb{R}^n)^*$ von $\mathbb{Cl}(\mathbb{R}^n)$. Die Spin-Gruppe Spin(n) ist definiert als die Untergruppe die von den Elementen

$$\left\{ \underbrace{X \cdot Y}_{\in \mathbb{Cl}(\mathbb{R}^n)} \mid X, Y \in \mathbb{R}^n, \quad |X| = |Y| = 1 \right\}$$

erzeugt wird.

Wir bezeichnen mit s_X die Spiegelung $\mathbb{R}^n \to \mathbb{R}^n$ an X^{\perp} .

SATZ 15.7. Die Abbildung

$$\Theta: \operatorname{Spin}(n) \to \operatorname{SO}(n) (X \cdot Y \cdot) \mapsto s_X \circ s_Y$$

ist ein wohldefinierter Gruppenhomomorphismus und eine glatte 2-fache Überlagerung. Es gilt kern $\Theta = \{\pm 1\}$.

Beweis. Wie bisher betten wir \mathbb{R}^n in $\mathbb{Cl}(\mathbb{R}^n)$ ein. Die Punktspiegelung $\mathbb{R}^n \to \mathbb{R}^n$, $X \mapsto -X$ setzt sich zu einem Algebren-Isomorphismus $\mathcal{P} : \mathbb{Cl}(\mathbb{R}^n) \to \mathbb{Cl}(\mathbb{R}^n)$ fort. Für alle $B \in \mathbb{Cl}(\mathbb{R}^n)^*$ definieren wir

$$S_B : \mathbb{Cl}(\mathbb{R}^n) \to \mathbb{Cl}(\mathbb{R}^n)$$
$$A \mapsto \mathcal{P}(B) \cdot A \cdot B^{-1}$$

Es gilt $S_{B_1 \cdot B_2} = S_{B_1} \circ S_{B_2}$. Für alle $X \in \mathbb{R}^n$, |X| = 1 ist S_X eine Forsetzung von s_X zu einem Endomorphismus S_X von $\mathbb{Cl}(\mathbb{R}^n)$. (Übung!) Hieraus folgt, dass Θ ein wohldefinierter Gruppenhomomorphismus ist. Offensichtlich ist Θ surjektiv. Als Übung, zeigen wir, dass der Kern von Θ nur aus $\pm 1 \in \mathbb{Cl}(\mathbb{R}^n)$ besteht, d.h.

$$B \in \text{Spin}(n), \Theta(B) = 1 \Rightarrow B = \pm 1.$$

Wir werden nun zeigen, dass es eine Umgebung U der Eins 1 in SO(n) und eine injektive glatte Abbildung $f: U \to \mathbb{Cl}(\mathbb{R}^n)^*$ gibt mit $f(U) \subset \text{Spin}(n)$ und $\Theta \circ f = \text{Id}|_U$. Durch Komposition mit den Links-Translation $l_A, A \in \text{Spin}(n)$ und $l_{\Theta(A)}$ erhalten wir dann eine Familie

$$(l_A \circ f \circ l_{\Theta(A)^{-1}} | A \in \operatorname{Spin}(n))$$

von lokalen Diffeomorphismen, die den Gruppenhomorphismus Θ : Spin $(n) \rightarrow$ SO(n) in einer Umgebung der Eins umkehren und auf $l_{\Theta(A)}(U)$ definiert sind. Hieraus folgen dann alle Aussagen.

Der Tangentialraum T_1 SO(n) besteht aus den schiefsymmetrischen Matrizen und diese wiederum identifizieren wir mit $\Lambda^2 \mathbb{R}^n$ mittels

$$e_i \wedge e_j \mapsto (\delta_{il}\delta_{jk} - \delta_{ik}\delta_{jl})_{lk} \in \operatorname{Mat}(n, \mathbb{R}).$$

Sei nun $J: \Lambda^2 \mathbb{R}^n \to \mathbb{Cl}(\mathbb{R}^n), J(e_i \wedge e_j) = (1/2)e_i \cdot e_j$. Wir wählen zunächst eine Umgebung U_1 von $0 \in T_1$ SO(n) so klein, dass die Exponential-Abbildung von Matrizen

$$T_1$$
SO $(n) \ni A \mapsto \exp^{SO(n)}(A) \coloneqq \sum_{k=0}^{\infty} \frac{1}{k!} A^k \in SO(n)$

ein Diffeomorphismus von U_1 auf das Bild ist. Sei außerdem

$$\mathbb{Cl}(\mathbb{R}^n) \supset \widetilde{U} \ni B \mapsto \exp^{\mathbb{Cl}(\mathbb{R}^n)^*}(B) \coloneqq \sum_{k=0}^{\infty} \frac{1}{k!} B^k \in \mathbb{Cl}(\mathbb{R}^n)^*$$

LEMMA 15.8. Es gilt

$$\exp^{\mathbb{Cl}(\mathbb{R}^n)^*} \circ J(A) \in \operatorname{Spin}(n)$$

und

$$\Theta \circ \exp^{\mathbb{Cl}(\mathbb{R}^n)^*} \circ J(A) = \exp^{\mathrm{SO}(n)} A$$

Beweis des Lemmas. Nach einer euklidischen Koordinatentransformation hat A die Gestalt

$$\sum_{j=1}^{[n/2]} a_j e_{2j-1} \wedge e_{2j},$$

also $J(A) = B = (1/2) \sum_{j} a_j e_{2j-1} \cdot e_{2j}$. Daraus folgt dann

$$\exp^{\mathbb{Cl}(\mathbb{R}^n)^*}(B) = \prod e_{2j-1}\left(\cos\frac{a_j}{2}e_{2j-1} + \sin\frac{a_j}{2}e_{2j}\right)$$

Die ist offensichtlich ein Element von Spin(n) und das Lemma folgt dann durch eine kurze Überlegung.

Also ist

$$f \coloneqq \exp^{\mathbb{Cl}(\mathbb{R}^n)^*} \circ J \circ \left(\exp^{\mathrm{SO}(n)}\right)^{-1}$$

eine Abbildung, die das Gewünschte liefert.

Aus dem Beweis folgt auch direkt:

FOLGERUNG 15.9. Spin(n) ist eine Untermannigfaltigkeit von $\mathbb{Cl}(\mathbb{R}^n)$ und somit eine Lie-Gruppe. Es gilt

$$T_1 \operatorname{Spin}(n) = \operatorname{span} \{ e_j \cdot e_k \, | \, 1 \le j < k \le n \} \, .$$

Man sieht leicht, dass Spin(n) für alle $n \ge 2$ zusammenhängend ist.

Beispiele 15.10.

- (1) $\operatorname{Spin}(2) \cong S^1 \cong U(1), \ \vartheta: S^1 \to S^1, \ z \mapsto z^2,$ (2) $\operatorname{Spin}(3) \subset \operatorname{Cl}_0(\mathbb{R}^3) = \operatorname{End}\Sigma_3 = \operatorname{End}\mathbb{C}^2$ und man rechnet nach, dass $\operatorname{Spin}(3) = SU(2)$. Identifizieren wir \mathbb{C}^2 mit den Quaternionen, so besteht SU(2) aus den Einheits-Quaternionen. Also ist Spin(3) = SU(2) diffeomorph zu S^3 . Insbesondere ist Spin(3) einfach zusammenhängend und somit $\pi_1(SO(3)) = \mathbb{Z}/(2\mathbb{Z})$.
- (3) $\operatorname{Spin}(4) \cong SU(2) \times SU(2)$. (ohne Beweis)
- (4) Alle Spin(n) für $n \ge 3$ sind einfach zusammenhängend. Beweis siehe Anhang D.

KOROLLAR 15.11. Für $n \ge 3$ ist Spin(n) die universelle Überlagerung von SO(n).

15.3. Hauptfaserbündel und assoziierte Vektorbündel. Das Ziel dieses Abschnitt ist es, lokale Basisschnitte etwas konzeptioneller zu verstehen als bisher. Wir wollen ein Bündel konstruieren, dessen lokale Schnitte gerade lokale Basisschnitte sind. Da es im allgemeinen keine globalen Basisschnitte gibt, erwarten wir auch, dass dieses Bündel im allgemeinen keine global definierten Schnitte hat. Da aber jedes Vektorbündel mindestens einen globalen Schnitt besitzt, den Nullschnitt, kann dieses Bündel kein Vektorbündel sein. Wir werden nun Bündel konstruieren, dessen Fasern nicht mehr Vektorräume sind, sondern Lie-Gruppen. Solche Faserbündel heißen Hauptfaserbündel. Wir benötigen Hauptfaserbündel zur Konstruktion des klassischen Dirac-Operators. Hauptfaserbündel sind außerdem zentral im Standard-Modell der Elementarteilchen-Physik.

Definition 15.12. Sei G eine Lie-Gruppe und M eine Mannigfaltigkeit. Ein G-Hauptfaserbündel über M ist eine Mannigfaltigkeit P, zusammen mit einer glatten Abbildung $\pi: P \to M$ und einer glatten Abbildung $P \times G \rightarrow P$, $(p,g) \mapsto pg$ so dass gilt

- (1) $(pg_1)g_2 = p(g_1g_2)$ für alle $p \in P, g_1, g_2 \in G, (G \text{ operiert von rechts auf } P)$ (2) Für jedes $m \in M$ gibt es eine Umgebung U von m in M, und einen Diffeomorphismus φ : $\pi^{-1}(U) \to U \times G$, so dass $\pi \circ \varphi^{-1}(u, g) = u$ für alle $(u, g) \in U \times G$ und $(\varphi^{-1}(u, g))g' = \varphi^{-1}(u, gg')$.

Wir nennen P den Totalraum des Bündels, φ heißt lokale Trivialisierung, G heißt Strukturgruppe, und Mengen der Form $\pi^{-1}(m)$, $m \in M$ heißen Fasern.

Dies impliziert insbesondere, dass die Operation von G frei ist $(pg \neq p, \text{ falls } g \neq e)$, und auf den Fasern transitiv operiert (gilt $\pi(p_1) = \pi(p_2)$, so gibt es ein $g \in G$ mit $p_1 = p_2 g$).

Beispiele 15.13. (1) Sei *M* eine *n*-dimensionale differenzierbare Mannigfaltigkeit. Dann ist

$$P_{GL}(M) \coloneqq \{(m, E_m) \mid m \in M, E_m \text{ Basis von } T_m M\}$$

ein GL(n)-Hauptfaser-Bündel.

(2) Sei (M,q) eine *n*-dimensionale Riemannsche Mannigfaltigkeit. Dann ist

$$P_O(M,g) := \{(m, E_m) \mid m \in M, E_m \text{ Orthonormal basis von } T_m M\}$$

ein O(n)-Hauptfaser-Bündel,

(3) Sei (M, g) eine *n*-dimensionale orientierte Riemannsche Mannigfaltigkeit mit Orientierung ω . Dann ist

 $P_{SO}(M, g, \omega) \coloneqq \{(m, E_m) \mid m \in M, E_m \text{ positiv orientierte Orthonormalbasis von } T_m M\}$

ein SO(n)-Hauptfaser-Bündel,

(4) Sei V ein k-dimensionales reelles Vektorbündel über M mit einer Metrik. Dann ist

 $P_{SO}(V) \coloneqq \{(m, E_m) \mid m \in M, E_m \text{ komplexe Orthonormal basis von } V\}$

ein SO(k)-Hauptfaserbündel.

(5) Sei V ein k-dimensionales komplexes Vektorbündel über M mit einer hermiteschen Metrik. Dann ist

 $P_U(V) \coloneqq \{(m, E_m) \mid m \in M, E_m \text{ komplexe Orthonormal basis von } V\}$

ein U(k)-Hauptfaserbündel. Wenn wir V zugleich als 2k-dimensionales reelles Vektorbündel ansehen, so gilt

$$P_U(V) \subset P_O(V),$$

wobei die Inklusion (e_1, \ldots, e_k) auf $(e_1, ie_1, \ldots, e_k, ie_k)$ abbildet.

Definition 15.14. Sei $P \to M$ ein *G*-Hauptfaserbündel. Eine *G*-äquivariante Distribution von Horizontalräumen ist ein Familie von Vektorräumen $(H_p)_{p \in P}$, so dass

(1) H_p ist ein Unterraum von T_pP und

$$T_p P = H_p \oplus T_p \pi^{-1}(\pi(p)),$$

(2) Sei $\mu_g: P \to P, p \mapsto pg$. Dann gilt

$$(d\mu_g)(H_p) = H_{pg}.$$

Beispiele 15.15.

(1) V trage einen Zusammenhang. Dann ist ... eine GL(n)-äquivariante Distribution von Horizontalräumen.

Definition 15.16. Sei $P \to M$ ein *G*-Hauptfaserbündel. Sei außerdem $\rho : G \to GL(V)$ eine reelle (bzw. komplexe) Darstellung von *G*, dim V = k. Dann operiert *G* von links auf $P \times V$ wie folgt

$$g(p,v) \coloneqq (pg^{-1}, \rho(g)v).$$

Der Quotient von $P \times V$ nach dieser Gruppen-Operation heißt das assoziierte Vektor-Bündel

 $P \times_{o} V.$

Es ist ein reelles (bzw. komplexes) Vektorbündel über M vom Rang k.

Nun trage P zusätzlich eine G-äquivariante horizontale Distribution $(H_p | p \in P)$. Wir wollen einen Zusammenhang auf $P \times_{\rho} V$ definieren.

16. DER KLASSISCHE DIRAC-OPERATOR

Definition 16.1. Eine *Spin-Struktur* auf einer orientierten Riemannschen Mannigfaltigkeit (M, g, ω) besteht aus einem Spin(n)-Hauptfaser-Bündel P_{Spin} und einer Abbildung $\vartheta : P_{\text{Spin}} \to P_{SO}(M, g, \omega)$, so dass das Diagramm kommutiert

$$\begin{array}{cccc} P_{\mathrm{Spin}} \times \mathrm{Spin}(n) & \to & P_{\mathrm{Spin}} \\ & \downarrow \vartheta \times \Theta & & \downarrow \vartheta & & \\ P_{SO}(M,g,\omega) \times \mathrm{SO}(n) & \to & P_{SO}(M,g,\omega) \end{array} \xrightarrow{\times} M \ .$$

Das Spinor-Bündel, Spinoren....

Es gibt eine nützliche Klasse von Invarianten von Vektorbündeln, die *charakteristische Klassen* genannt werden. Diese Klassen ordnen Vektorbündeln Kohomologie-Klassen zu. Einige dieser Klassen werden wir später kennenlernen.

Hier an dieser Stelle wollen wir uns darauf beschränken, zu sagen, dass es auch eine solche Klasse gibt, die mißt, ob eine Spin-Struktur auf (M, g, ω) existiert. Diese Klasse heißt 2. Stiefel-Whitney-Klasse $w_2(TM)$, und $w_2(TM) \in H^2(M, \mathbb{Z}_2)$. Zum Vergleich: Die 1. Stiefel-Whitney-Klasse $w_1(TM) \in H^2(M, \mathbb{Z}_2)$ ist genau dann 0, wenn M orientierbar ist. Für weitergehende Aussagen zu Stiefel-Whitney-Klassen liest man am besten in [MS74], §4.

Bemerkung 16.2. Insbesondere folgt daraus, dass die Eigenschaft, ob eine Spin-Struktur existiert oder nicht, nicht von der Wahl der Riemannschen Metrik abhängt.

Beispiele 16.3. (1) T^n ist spin,

- (3) $\mathbb{C}P^m$ ist spin, genau dann wenn $m \equiv 1 \mod 2$,
- (4) $\mathbb{R}P^n$ ist spin, genau dann wenn $n \equiv 3 \mod 4$.

Bemerkung 16.4. Sei M eine triangulierte Mannigfaltigkeit. Dann ist das k-Skelett $(M)_k$ die Vereinigung der Zellen der Dimension von 0 bis k.

Wir zitieren zwei Sätze ohne Beweis.

SATZ 16.5. Sei M eine Mannigfaltigkeit. Dann sind äquivalent

- (1) M ist orientierbar,
- (2) $w_1(TM) = 0$,
- (3) es gilt dim M = 2 oder es gibt einen globalen Basisschnitt auf dem 1-Skelett $(M)_1$ von M, d.h. es gibt eine Funktion $(M)_1 \rightarrow P_{GL}(M)$, so dass die Verkettung $(M)_1 \rightarrow P_{GL}(M) \rightarrow M$ die Inklusion ist.

SATZ 16.6. Sei (M, ω) eine orientierte Mannigfaltigkeit. Dann sind äquivalent:

(1) $auf(M,\omega)$ existient eine Spin-Struktur,

- (2) $w_2(TM) = 0$,
- (3) es gilt dim M = 2 oder es gibt einen globalen Basisschnitt auf dem 2-Skelett $(M)_2$ von M, d.h. es gibt eine Funktion $(M)_2 \rightarrow P_{GL}(M)$, so dass die Verkettung $(M)_2 \rightarrow P_{GL}(M) \rightarrow M$ die Inklusion ist.

Wir wollen nun annehmen, dass eine Spin-Struktur existiert, und fragen uns dann, ob diese auch eindeutig ist.

 Sei

$$\alpha: \pi_1(M) \to \mathbb{Z}_2 \hookrightarrow \ker \Theta \subset \operatorname{Spin}(n).$$

Die universelle Überlagerung $\pi: \widetilde{M} \to M$ ist ein $\pi_1(M)$ -Hauptfaserbündel über M. Das assoziierte Bündel

$$P_{\alpha} \coloneqq \widetilde{M} \times_{\alpha} \mathbb{Z}_2 \to M$$

ist ein \mathbb{Z}_2 -Hauptfaserbündel über M. Sei nun P_{Spin} eine Spin-Struktur. Das faserweise Produkt $P_{\text{Spin}} \times P_{\alpha}$ ist ein $\text{Spin}(n) \times \mathbb{Z}_2$ -Hauptfaserbündel. Wir schrieben

$$m : \operatorname{Spin}(n) \times \mathbb{Z}_2 \to \operatorname{Spin}(n), \qquad m(g,h) = gh.$$

Dann ist

$$P_{\mathrm{spin}}^{\alpha} \coloneqq (P_{\mathrm{Spin}} \times P_{\alpha}) \times_m \mathrm{Spin}(n)$$

wieder eine Spin-Struktur über M.

PROPOSITION 16.7. Falls eine Spin-Struktur P auf M existiert, so ist die Abbildung

$$\operatorname{Hom}(\pi_1(M), \mathbb{Z}_2) \to \{Spin-Strukturen \ auf \ M\}/Isomorphie \\ \alpha \mapsto P_{\operatorname{spin}}^{\alpha}$$

eine Bijektion.

Der Beweis wird ausgelassen⁷.

 $^{^7\}mathrm{Der}$ Beweis ist nicht schwierig und wird zusammen mit der Isomorphie von Spin-Strukturen vielleicht noch nachgeliefert.

Bemerkung 16.8. Es gilt $\text{Hom}(\pi_1(M), \mathbb{Z}_2) = \text{Hom}(H_1(M, \mathbb{Z}), \mathbb{Z}_2) = H^1(M, \mathbb{Z}_2).$

Lokale Formel für den Zusammenhang des Spinor-Bündels.

Seien Γ_{ij}^k die Christoffelsymbole bezüglich eines orthonormalen Rahmens e_1, \ldots, e_n . Sei q ein lokaler Schnitt von P_{Spin} mit $\vartheta \circ q = (e_1, \ldots, e_n)$, der definiert auf U ist. Sei $\psi \in \Gamma(\Sigma M)$. Es gibt dann eine induzierte glatte Funktion $\tau : U \to \Sigma_n$, so dass

$$\psi|_U = [q, \tau]$$

LEMMA 16.9.

$$\nabla_X^{\Sigma M}[q,\tau] = [q,\partial_X \tau + \frac{1}{4} \sum_{i,j,k=1}^n \langle X, e_i \rangle \Gamma_{ij}^k e_j^b \cdot e_k^b \cdot \tau].$$

Beweis. ...

PROPOSITION 16.10. (i) Die Krümmung von ΣM ist gegeben durch

$$R^{\Sigma M}(X,Y)\varphi = -\frac{1}{4}\sum_{k} (R^{TM}(X,Y)e_k)^b \cdot e_k^b \cdot \varphi.$$

(ii) Für den Krümmungsendomorphismus \mathcal{K} von ΣM gilt

$$\mathcal{K}(\varphi) = \frac{1}{4}\operatorname{scal}\varphi.$$

Diese Formel von Lichnerowizc ?? gezeigt. Th. Friedrich hat entdeckt, dass diese Formel auch schon in den Werken von Schrödinger ?? zu finden ist, allerdings in nicht leicht lesbarer Form.

Beweis. (i) Nachrechnen in Koordinaten.

Zusammen mit der Bochner-Formel (??)

KOROLLAR 16.11 (Schrödinger, Lichernowicz). Für den klassischen Dirac-Operator gilt

$$D^2\varphi = \nabla^* \nabla \varphi + \frac{\operatorname{scal}}{4} \varphi.$$

KOROLLAR 16.12. Sei M eine kompakte orientierte Riemannsche Spin-Mannigfaltigkeit, sei $s_0 = \min_M \operatorname{scal} > 0$. Dann erfüllt jeder Eigenwert λ des klassischen Dirac-Operators auf M die Abschätzung

$$\lambda^2 \geq \frac{s_0}{4}$$

Insbesondere gilt $ker(D) = \{0\}.$

Beweis. Sei φ ein Spinor der Eigenvektor von D zum Eigenwert λ ist. (Solche Spinoren nennen wir ab sofort Eigenspinoren.) Dann gilt

$$\lambda^{2}(\varphi,\varphi) = (D^{2}\varphi,\varphi) = \underbrace{(\nabla\varphi,\nabla\varphi)}_{\geq 0} + \frac{s_{0}}{4}(\varphi,\varphi) \geq \frac{s_{0}}{4}(\varphi,\varphi).$$

Bemerkung 16.13. Man kann zeigen [Sem99], dass für alle Spinoren $(\nabla \varphi, \nabla \varphi) \geq \frac{1}{n}(D\varphi, D\varphi)$, wobei $n = \dim M$. Hieraus folgt die folgende stärkere Abschätzung von Thomas Friedrich [Fri80].

$$\lambda^2 \ge \frac{n}{n-1} \frac{s_0}{4}$$

Diese Abschätzung ist *scharf*, (das heißt die Konstante kann nicht ohne weitere Annahmen verbessert werden), da für den betragsmäßig kleinsten Eigenwert λ_1 des klassischen Dirac-Operators auf S^n (mit Standardmetrik) gilt

$$\lambda_1^2 = \frac{n}{n-1} \frac{\text{scal}}{4}.$$

17. The harmonic oscillator

similar to Roe's book, 2nd edition.

18. Charakteristic classes

Wir folgen einem Crashkurs über charakeristische Klassen von Christian Bär. (Kann von seiner Homepage runtergeladen werden.)

19. Fredholm operators and the index problem

(Notes from the lecture)

20. The Atiyah-Singer index theorem

Statement and some applications (Notes from the lecture)

21. FILTERED AND GRADED ALGEBRAS AND SYMBOL MAPS

The following is an old version which does not coincide with the lecture.

Cl(V): nicht komplexifizierte Clifford-Algebra Cl(V): komplexifizierte Clifford-Algebra

Wir wollen einen Formalismus entwickeln, mit dem wir $str(\Phi_{n/2})$ berechnen können.

Definition 21.1. Filtrierte und graduierte Algebren, Symbolabbildung, assoziierte graduierte Gr(A)

LEMMA 21.2. Set A eine filtrierte Algebra und G eine graduierte Algebra, und $\sigma : A \to G$ eine Symbol-Abbildung, so dass

(1) $\sigma_k(A_k) = G_k$, (2) ker $\sigma_k = A_{k-1}$.

Dann ist G = Gr(A).

Beweis. ...

Beispiel 21.3. Sei V eine euklidischer Vektorraum. Die Abbildungen

$$\sigma_k : \operatorname{Cl}(V)_k \to \Lambda^k V, \quad v_1 \cdot \ldots \cdot v_k \mapsto v_1 \wedge \ldots \wedge v_k$$

sind wohldefiniert und bilden eine Symbol-Abbildung, die die obigen Eigenschaften (1) und (2) erfüllen. Somit gilt

$$\Lambda^{\bullet}(V) = \operatorname{Gr}(\operatorname{Cl}(V)).$$

Incompletely typed

Reskalierungen und Symbole. Als Vorstufe zum Verständnis der Getzler-Reskalierung wollen wir zeigen wie durch Reskalierung eine filtrierte Algebra zu seiner assoziierten graduierten Algebra konvergiert.

LEMMA 21.4. Sei A eine filtrierte Algebra, $A = \bigcup A_{\ell}$, so dass es Vektorräume C_{ℓ} , $\ell \in \mathbb{Z}$ gibt, so dass als Vektorräume gilt

$$A_k = \bigoplus_{\ell \le k} C_\ell.$$

Wir definieren auf C_{ℓ}

$$R_{\lambda}|_{C_{\ell}} \coloneqq \lambda^{-\ell} \operatorname{Id}_{C_{\ell}}$$

und setzen es linear zu einem Vektorraum-Endomorphismus von A fort, der die Algebra-Struktur i.a. nicht erhält. Wir definieren für a und b

$$a \bullet b \coloneqq \lim_{\lambda \to 0} R_{\lambda}(R_{\lambda}^{-1}(a)R_{\lambda}^{-1}(b))$$

und (A, \bullet) ist als Algebra isomorph zu Gr(A).

Beweis. Sei σ . die kanonische Symbol-Abbildung $A \to \operatorname{Gr}(A)$. Wir setzen

$$\tau|_{C_{\ell}} \coloneqq \sigma_{\ell}|_{C_{\ell}} \colon C_{\ell} \to \operatorname{Gr}(A)^{\ell} \subset \operatorname{Gr}(A)$$

zu einer linearen Abbildung $A \to Gr(A)$ fort. Man sieht, dass τ bijektiv ist. Es bleibt zu zeigen, das τ die Multiplikation erhält. Wegen Linearität reicht zu zeigen, dass

 $\tau(a \bullet b) = \tau(a)\tau(b) \qquad \forall a \in C_k, b \in C_\ell.$

Wir zerlegen ab in seine C_j -Komponenten:

$$ab = c_{k+\ell} + \ldots + c_{k+\ell-s} \qquad c_j \in C_j.$$

Dann gilt

$$R_{\lambda}^{-1}\left(R_{\lambda}(a)R_{\lambda}(b)\right) = c_{k+\ell} + \lambda c_{k+\ell}^{-1} \dots + \lambda^{s} c_{k+\ell-s}$$

Und somit

$$a \bullet b \coloneqq \lim_{\lambda \to 0} R_{\lambda}(R_{\lambda}^{-1}(a)R_{\lambda}^{-1}(b)) = c_{k+\ell}.$$

Es ergibt sich

$$\tau(a \bullet b) = \sigma_{k+\ell}(a \bullet b) = \sigma_{k+\ell}(c_{k+\ell}) = \sigma_{k+\ell}(ab) = \sigma_k(a)\sigma_\ell(b) = \tau(a)\tau(b).$$

Identifizieren wir $\operatorname{Cl}(V) \cong \Lambda^{\bullet} V$ als Vektorraum, dann konvergiert die Clifford-Multiplikation gegen die äußere Multiplikation \wedge . Man sieht dies auch direkt, da ι_X gegen Null konvergiert, wenn wir die Metrik g auf V durch $\lambda^2 g$ ersetzen und den Limes $\lambda \to 0$ betrachten.

22. Getzler-Symbole

In this section the script is incomplete. The logic follows the second edition of John Roe's book. However, I cannot follow his sign conventions, probably he uses some other convention. The best reference for this part I currently know is Hanke's script.

22.1. Getzler-Symbole von Differential-Operatoren. Die Idee des Getzler-Formalismus ist nun, sowohl die Zeitkoordinate als auch die Raumrichtung im Wärmekern so zu reskalieren, dass die wichtigen Terme im Limes überleben. Die filtrierte Algebra der Differentialoperatoren auf $\Gamma(W)$ konvergiert hierbei gegen eine graduierte Algebra konvergiert. Der Filtrierungs-Grad ist dabei die Summe der Differentiationsordnung und des Filtrierungs-Grad des Clifford-Elements.⁸

Sei $W \to M$ ein Clifford-Bündel über einer Mannigfaltigkeit Mgerader Dimensionn=2m. Wir definieren

$$\operatorname{End}_{\mathbb{C}l} = \{ A \in \operatorname{End}_{\mathbb{C}}(W), \text{ so dass } A(X \cdot \varphi) = X \cdot A(\varphi) \quad \forall X \in \Gamma(TM), \varphi \in \Gamma(W) \}$$

Es gilt kanonisch $\operatorname{End}_{\mathbb{C}}(W) = \operatorname{Cl}(TM) \otimes_{\mathbb{R}} \operatorname{End}_{\mathbb{Cl}}(W)$. Die Algebra $\mathcal{D}(W)$ der Differentialoperatoren auf $\Gamma(W)$ wird deswegen von den folgenden Operatoren erzeugt

(1) Schnitte von $\Gamma(\operatorname{End}_{\mathbb{C}l}(W))$

(2) Clifford-Multiplikationen $\gamma_X = X^b$, wobei X ein beliebiges Vektorfeld ist,

(3) kovarianten Ableitungen ∇_X , wobei X ein beliebiges Vektorfeld ist.

Die Getzler-Filtrierung ist definiert als

 σ

$$\mathcal{D}(W)_{-n} \coloneqq \{0\} \qquad \forall n > 0.$$

$$\mathcal{D}(W)_0 \coloneqq \Gamma(\operatorname{End}_{\mathbb{C}l}(W)).$$

$$\mathcal{D}(W)_1 \coloneqq \operatorname{span} \{\mathcal{D}(W)_0, \text{ Operatoren vom Typ (2) und (3)} \}$$

$$\mathcal{D}(W)_{k+1} \coloneqq \operatorname{span} \{\mathcal{D}(W)_k \circ \mathcal{D}(W)_1 \}.$$

Sei V ein euklidischer Vektorraum und $\mathcal{P}(V)$ die graduierte Algebra der polynomialen Differentialoperatoren auf V, wobei der grad von $x^{\alpha} \frac{\partial^{|\beta|}}{\partial x^{\beta}}$ als $|\beta| - |\alpha|$ definiert ist.

$$\mathcal{P}(TM) = \bigcup_{p \in M} \mathcal{P}(T_pM)$$

Sei $X \in \Gamma(TM)$. Wir betrachten V^* als Unterraum von $\mathcal{P}(V)$, jede Linear-Form auf V ist ein polynomialer Differential-Operator der Ordnung 0. Dann definieren wir:

$$R_X \in \Gamma(T^*M \otimes \Lambda^2 T^*M) \subset \Gamma(\mathcal{P}(TM) \otimes \Lambda^2 T^*M)$$
$$(R_X)_p \coloneqq \{T_pM \ni v \mapsto g(R(.,.)X,v) \in \Lambda^2 T^*M\}$$

Wenn $X \in T_p M$ notieren wir mit ∂_X^F die Derivation von Funktionen auf $T_p M$ in Richtung X, wobei *p* festgehalten wird. Ist X also ein Vektorfeld, so ist ∂_X^F eine Ableitungen von Funktionen auf dem Totalraum von TM in Richtung der Fasern von TM.

THEOREM 22.1. Es gibt genau eine Symbol-Abbildung, das sogenannte Getzler-Symbol

$$\mathcal{L}: \mathcal{D}(W) \to C^{\infty}(\mathcal{P}(TM) \otimes \Lambda^* T^* M \otimes \operatorname{End}_{\mathbb{Cl}}(W)),$$

so dass

 $^{^{8}}$ Allerdings werden wir in dieser Idee nicht strikt folgen, um die Darstellung einfach zu halten. U.a. arbeiten wir mit einer Symbolabbildung an Stelle der oben erwähnten graduierten Algebra.

(1) $\sigma_0(F) = \operatorname{id} \otimes 1 \otimes F$ für alle $F \in \Gamma(\operatorname{End}_{\mathbb{Cl}}(W),$ (2) $\sigma_1(\gamma_X) = \operatorname{id} \otimes X^b \otimes \operatorname{Id},$ (3) $\sigma_1(\nabla_X) = \partial_X^F - \frac{1}{4}R_X.$

Als Beweis dieses Theorems wollen wir das Getzler-Symbol durch eine Reskalierung definieren, und danach zeigen, dass es die obigen Relationen erfüllt.

Wir fixieren $p \in M$ und wollen das Symbol eines Differentialoperators Q auf $\Gamma(W)$ im Punkte p definieren. Wir betrachten dazu eine Umgebung U von p in Gaussschen Normalkoordinaten und trivialisieren W durch Paralleltransport entlang der radialen Geodäten. Wir wählen eine Basis $(e_{\rho})_{\rho=1,...,n}$ von T_pM und verschieben sie in radiale Richtung parallel. Dies liefert uns eine Trivialisierung von TM auf U und damit auch von ΣM und W. Wir identizeren von nun ab T^*M mit TM mit Hilfe der Metrik.

Einen Schnitt f von $\operatorname{Cl}(TM)$ interpretieren wir deswegen als Abbildung in $U \to \operatorname{Cl}(T_pM)$. Wir definieren auf dem Raum

$$\mathcal{F} \coloneqq C^{\infty}(T_p M, \operatorname{Cl}(T_p M) \otimes \operatorname{End}_{\mathbb{Cl}}(W_p))$$

eine Reskalierungsabbildung durch

$$(R_{\lambda}f)(x) \coloneqq (R_{\lambda} \otimes \mathrm{id})(f(\lambda x))$$

wobei auf der rechten Seite R_{λ} die oben benutzte Reskalierung von $\operatorname{Cl}(T_pM)$ ist und mit der Identität auf $\operatorname{End}_{\mathbb{Cl}}(W_p)$ tensoriert wird.

Ein Differential operator Q operiert auf Elementen von \mathcal{F} .

Dann ist

$$R_{\lambda} \circ Q \circ R_{\lambda}^{-1}$$

ein auf $\frac{1}{\lambda}U$ definierter Differentialoperator. Wir schreiben falls der Limes (im Sinne von C^{∞} -Konvergenz der Koeffizieten der Differentialoperatoren)

$$\sigma_{\ell}(Q)(p) \coloneqq \lim_{\lambda \to 0} \lambda^m R_{\lambda} \circ Q \circ R_{\lambda}^{-1}$$

und nach Identifikation $\operatorname{Cl}(T_pM) \cong \Lambda^{\bullet}T_pM$ ist

$$\sigma_{\ell}(Q)(p) \in \mathcal{P}(T_p M) \otimes \Lambda^{\bullet} T_p M \otimes \operatorname{End}_{\mathbb{C}l}(W_p).$$

LEMMA 22.2. Die folgenden Symbole sind definiert und es gilt:

- (1) $\sigma_0(F)(p) = \operatorname{id} \otimes 1 \otimes F \ f \ddot{u} r \ alle \ F \in \operatorname{End}_{\mathbb{C}l}(W_p),$
- (2) $\sigma_1(\gamma_X) = \operatorname{id} \otimes X^b \otimes \operatorname{Id} f \ddot{u} r \ alle \ X \in T_p M$,
- (3) $\sigma_1(\nabla_X) = \partial_X (1/4)R_X$ für alle $X_{\epsilon}T_pM$.

Beweis. (1) und (2) sind bereits klar.

(3) Hierzu berechnen wir den Termin höchster Getzler-Ordnung in der Koordinaten-Darstellung von ∇_X . Wir berechnen zunächst $\nabla_X \varphi$ für $X = \frac{\partial}{\partial x^i}$ und radial paralleles⁹ $\varphi \in \mathcal{F}$. Wir setzen $Y \coloneqq \sum x^j \frac{\partial}{\partial x^j}$. Es gilt dann [X, Y] = X und $\partial_Y x^{\alpha} = |\alpha| x^{\alpha}$. Die Taylorentwicklung von $\nabla_X \varphi$ sei $\nabla_X \varphi \sim \sum x^{\alpha} \varphi_{\alpha}$.

$$R^{W}(X,Y)\varphi = \nabla_{X}\nabla_{Y}\varphi - \nabla_{Y}\nabla_{X}\varphi - \nabla_{[X,Y]}\varphi$$
$$\sim \sum_{\alpha} (|\alpha|+1)x^{\alpha}\varphi_{\alpha}$$

⁹Dies Eigenschaft wird oft auch als synchron bezeihnet. In unserem Kontext bedeutet es $\nabla_Y \varphi = 0$

Es gilt $R^W = R^{\Sigma} + R^{W/\Sigma}$, wobei der Clifford-Grad von R^{Σ} 2 ist und der Clifford-Grad von $R^{W/\Sigma}$ 0 ist. Wir betrachten nur die Terme von höchstem Getzler-Grad und erhalten modulo Terme niedrigerer Ordnung

$$\nabla_X \varphi \equiv -\frac{1}{2} \sum x^j R^{\Sigma} (\partial/\partial x^i, \partial/\partial x^j) \varphi = \frac{1}{4} R^{TM} (\partial/\partial x^i, \partial/\partial x^j) \cdot \varphi = \frac{1}{4} R_X \varphi$$

Hierbei wurde Proposition ?? zur Umformung von R^{Σ} und der Isomorphismus $\operatorname{Cl}(T_p^*M) \cong \Lambda^{\bullet}T_p^*M$ benutzt. Es gilt somit (3) für $X = \frac{\partial}{\partial x^i}$ und konstantes $\varphi \in \mathcal{F}$. Der allgemeine Fall folgt aus den Axiomen von Zusammenhängen.

LEMMA 22.3. Hat Q Getzler-Ordnung $\leq m$ dann existient

$$\sigma_m(Q) = \lim_{\lambda \to 0} \lambda^m R_\lambda \circ Q \circ R_\lambda^{-1},$$

wobei die Konvergenz C^{∞} -Konvergenz der Koeffizienten des Differentialoperators ist. Außerdem ist σ . eine Symbolabbildung.

Beweis. Die Existenz des Limes für $F \in \text{End}_{\mathbb{C}l}(W_p)$, γ_X und ∇_X haben wir bereits im letzten Lemma gezeigt. Sind $\sigma_k(Q_1)$ und $\sigma_l(Q_2)$ definiert, so ist auch $\sigma_{k+\ell}(Q_1 \circ Q_2)$ definiert und es gilt

$$\sigma_{k+\ell}(Q_1 \circ Q_2) = \sigma_k(Q_1)\sigma_l(Q_2).$$

Hieraus folgt rekursiv, dass σ_k auf den Operatoren von Getzler-Grad $\leq k$ wohldefiniert ist, und es folgt die multiplikative Eigenschaft von σ ..

22.2. Getzler symbols of smoothing operators.

WEITERE LITERATUR

Several books and references have appeared since the first version of this script was written, in particular [Fri00], Roe 2nd edition, [Gin09], [BHM⁺15],

Anhang A. Das Symbol von Differential-Operatoren

Definition 1.1. Der Differentialoperator P sei lokal durch Formel (4.2) gegeben. Dann definieren wir das *totale Symbol von* P bezüglich der Trivialisierung (U, v_i, w_i) als

$$\sigma_{tot}: T^*U \to \operatorname{Hom}(V, W)|U$$

$$T_{(q^1, \dots, q^n)}U \ni (q^1, \dots, q^n, \xi_1, \dots, \xi_n) = \sum \xi_i \, dx_q^i \mapsto (v_j \mapsto \sum_{\alpha|\leq d} \sum_k i^{|\alpha|} A_{jk}^{\alpha} \underbrace{\xi_1^{\alpha_1} \cdots \xi_n^{\alpha_n}}_{=:\epsilon^{\alpha}} w_k.$$

Für die Definition des Hauptsymbols von $\sigma(P)$ summieren wir nur über die höchste Ordnung:

$$\sigma: T^*U \to \operatorname{Hom}(V, W)|U$$

$$\sum \xi_i \, dx_q^i \mapsto \left(v_j \mapsto \sum_{\alpha|=d} \sum_k i^{|\alpha|} A_{jk}^{\alpha} \underbrace{\xi_1^{\alpha_1} \cdots \xi_n^{\alpha_n}}_{=:\xi^{\alpha}} w_k \right).$$

PROPOSITION 1.2. Das Hauptsymbol ist unabhängig von der Wahl von U und ψ und von der Wahl der v_i und w_i . Es ist deswegen eine wohldefinierte Abbildung

$$\sigma(P): T^*M \to \operatorname{Hom}(V, W).$$

Der Beweis folgt durch nachrechnen.

Man beachte aber, dass das totale Symbol von der Wahl von ψ und der Wahl der v_i und w_i abhängt.

PROPOSITION 1.3. Seien

$$\Gamma(V) \xrightarrow{P,P'} \Gamma(W) \xrightarrow{Q} \Gamma(Z)$$

Differential operatoren ord P = ord P' = d_P, ord Q = d_Q. Dann ist Q \circ P ein Differential operator der Ordnung d_P + d_Qund es gilt für alle $\xi \in T^*M$

$$\sigma_{\xi}(Q \circ P) = \sigma_{\xi}(Q) \circ \sigma_{\xi}(P),$$

$$\sigma_{\xi}(tP + t'P') = t\sigma_{\xi}(P) + t'\sigma_{\xi}(P')$$

Definition 1.4. Ein Differential operator heißt *elliptisch*, falls für alle $p \in M$ und alle $\xi \in T_pM$ mit $\xi_p \neq 0$ das Hauptsymbol $\sigma_{\xi} \in \text{Hom}_p(V, W)$ invertier bar ist.

PROPOSITION 1.5. Das Symbol eines verallgemeinerten Dirac-Operators D auf einem Clifford-Bündel W ist gegeben durch

$$\sigma: T^*M \to \operatorname{Hom}(W, W)$$

$$\xi \mapsto (w \mapsto i\xi \cdot w).$$

Insbesondere ist D elliptisch.

Beweis. Wir rechnen in Koordinaten und $v_i = w_i$.

$$D\left(\sum_{j} s^{j} v_{j}\right) = \sum_{j,\alpha} e_{\alpha}^{b} \cdot \nabla_{e_{\alpha}}(s^{j} v_{j})$$

$$= \sum_{j,\alpha} \left(e_{\alpha}^{b} \cdot (\partial_{e_{\alpha}} s^{j}) v_{j} + s^{j} e_{\alpha}^{b} \cdot \nabla_{e_{\alpha}} v_{j}\right)$$

$$= \sum_{j} (ds_{j} \cdot v_{i} + s^{j} Dv_{j})$$

$$= \sum_{j,\alpha} \frac{\partial s_{j}}{\partial \psi^{\alpha}} dx^{\alpha} \cdot v_{i} + 0. \text{ Ordnung}$$

$$\sum_{k} A_{jk}^{(\alpha)} = dx^{\alpha} \cdot v_{j}$$

$$\sigma_{\xi}(D) = \left(v_{j} \mapsto \sum_{\alpha=1}^{n} \sum_{k} i A_{jk}^{(\alpha)} \xi_{\alpha} v_{j} = i \sum_{\alpha=1}^{n} \xi_{\alpha} dx^{\alpha} \cdot v_{j} = \xi \cdot v_{j}\right).$$

ANHANG B. IDEALE IN ALGEBREN

Definition 2.1. Sei A eine Algebra (wie immer assoziativ, mit 1). Eine Teilmenge I heißt *Ideal*, falls gilt:

- (1) I ist Untervektorraum
- (2) für $i \in I$ und $a \in A$ gilt $ai \in I$ und $ia \in I$.

Ist $f : A \to B$ ein Algebren-Homomorphismus, und $I \subset B$ ein Ideal in B, so ist auch $f^{-1}(I)$ ein Ideal. Unter anderem ist der Kern eines Algebren-Homomorphismus ein Ideal. Umgekehrt, ist $I \subset A$ ein Ideal, so trägt der Quotientenvektorraum A/I eine eindeutige Algebren-Struktur, so dass $\pi : A \to A/I$ ein Algebren-Homomorphismus ist und der Kern hiervon ist I.

Es gilt auch die folgende universelle Eigenschaft: Ist $f : A \to B$ ein Algebren-Homomorphismus und *I* ein Ideal in *A*, das im Kern von *f* enthalten ist, so läßt sich *f* auf eindeutige Art als Verkettung $f : A \xrightarrow{\pi} A/I \to B$ schreiben.

Jedes Ideal ist auch eine Unteralgebra. Aber Achtung: ist I ein Ideal in A und J ein Ideal in I, so folgt i.a. nicht, dass J ein Ideal in A ist. Der Schnitt von beliebig vielen Idealen in A ist wieder ein Ideal.

Definition 2.2. Sei S ein Teilmenge von A. Dann ist das von S erzeugte Ideal definiert als

$$I_S \coloneqq \bigcap_{\substack{I \text{ Ideal} \\ S \subset I}} I,$$

Offensichtlich enthält I_S bereits span S, nach Definition den von S aufgespannten Vektorraum. Weiter sind alle Elemente der Form $a\varphi b$ mit $a, b \in A, \varphi \in \text{span } S, \text{in } I_S$ enthalten. Man sieht nun direkt, dass der von diesen Elementen aufgespannte Vektorraum bereits ein Ideal ist, und somit mit I_S übereinstimmt.

ANHANG C. LIE-ALGEBREN UND ZUSAMMENHANGS-1-FORMEN

Definition 3.1. Eine *Lie-Algebra* ist ein reeller Vektorraum V mit einer Abbildung $[\cdot, \cdot]: v \times V \rightarrow V$, der sogenannten *Lie-Klammer*, mit den Eigenschaften

(1) $[\cdot, \cdot]$ ist bilinear

(2) [X, Y] = -[Y, X] für alle $X, Y \in V$ (Asymmetrie)

(3) [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 für alle $X, Y, Z \in V$ (Lie-Klammer).

Sei G eine Lie-Gruppe. Wir identifizieren den Tangentialraum an die Eins T_eG mit den linksinvarianten Vektorfeldern auf G. Die Lie-Klammer $[\cdot, \cdot]$ auf den Vektorfeldern liefert mit dieser Identifikation eine Lie-Klammer auf T_eG .

Man kann umgekehrt auch zeigen

THEOREM 3.2. [War83, Theorem 3.28] Zu jeder endlich dimensionalen Lie-Algebra $(V, [\cdot, \cdot])$ gibt es eine (bis auf Isomorphie von Lie-Gruppen eindeutige) zusammenhängende und einfach zusammenhängende Lie-Gruppe G, so dass T_eG als Lie-Algebra isomorph zu $(V, [\cdot, \cdot])$ ist.

Wir haben also eine eineindeutige Beziehung zwischen endlich-dimensionalen Lie-Algebren und einfach zusammenhängend, zusammenhängenden Lie-Gruppen.

$$(T_e \tilde{G}, [\cdot, \cdot]) \to (T_e G, [\cdot, \cdot]).$$

Beweis siehe [War83].

Sei für $g \in G$

$$\begin{array}{rccc} I_g:G & \to & G \\ & h & \mapsto & ghg^{-1} \end{array}$$

Wir setzen $\operatorname{Ad} := (dI_g)_e : T_e G \to T_e G$. Dann ist $(T_e G, \operatorname{Ad})$ eine Darstellung von G, die adjungierte Darstellung von G.

ANHANG D. $\pi_1(\text{Spin}(n))$

PROPOSITION 4.1. Spin(n) ist einfach zusammenhängend für $n \ge 3$.

Beweis. Wir zeigen es durch Induktion über n. Die Aussage gilt für n = 3, da Spin $(3) = S^3$. Im folgenden kommutativen Diagramm sind nach Satz 15.3 die Zeilen kurze exakte Sequenzen

\mathbb{Z}_2	\rightarrow	$\operatorname{Spin}(n)$	\rightarrow	$\mathrm{SO}(n)$
$\downarrow \mathrm{id}$		\downarrow		\downarrow
\mathbb{Z}_2	\rightarrow	$\operatorname{Spin}(n+1)$	\rightarrow	SO(n+1)

Man überlegen sich, dass SO(n+1) das *SO*-Rahmen-Bündel über der Standard-Sphäre S^n ist und somit ein SO(n)-Hauptfaser-Bündel. Daraus folgt, dass Spin(n+1) ein Spin(n)-Hauptfaser-Bündel über S^n ist. Die Proposition folgt nun aus dem folgenden Lemma.

LEMMA 4.2. Sei G eine einfach zusammenhängende, zusammenhängende Lie-Gruppe und P ein G-Hauptfaserbündel über M. Dann ist $\pi_1(P) \rightarrow \pi_1(M)$ bijektiv.

Beweis. Der Beweis ist ein bischen Arbeit, aber nicht schwer. Man ueberlegt sich zunächst, dass man Wege und Familien von Wegen liften kann. Die Surjektivität folgt dann aus der Tatsache, dass G zusammenhängend ist. Um die Injektivität zu zeigen, nehmen wir eine Schleife γ in P, so dass das Bild von γ in M als Schleife in M homotop zu einer konstanten Schleife ist. Man zeigt nun, dass diese Homotopie liftet (etwas Arbeit). Somit ist γ homotop zu einer Kurve, die ganz in einer faser verläuft. Da die Faser einfach zusammenhängend ist, ist γ homotop zur konstanten Kurve.

LITERATUR

- [AB02] B. Ammann and C. Bär. The Einstein-Hilbert action as a spectral action. In Noncommutative Geometry and the Stadard Model of Elementary particle Physics, F. Scheck, H. Upmeier, W. Werner (Ed.). Springer Verlag, 2002. http://www.mathematik.uni-regensburg.de/ammann/preprints/hesse199/.
- [Bal16] W. Ballmann. Riccati equation and volume estimates. http://people.mpim-bonn.mpg.de/hwbllmnn/ archiv/Volume160309.pdf, 2016.
- [Bär00] C. Bär. Localization and semibounded energy a weak unique continuation theorem. J. Geom. Phys., 34:155–161, 2000.
- [BGV91] N. Berline, E. Getzler, and M. Vergne. Heat kernels and Dirac operators. Springer-Verlag, 1991.

- [BHM⁺15] J.-P. Bourguignon, O. Hijazi, J.-L. Milhorat, A. Moroianu, and S. Moroianu. A spinorial approach to Riemannian and conformal geometry. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich, 2015.
- [BtD95] T. Bröcker and T. tom Dieck. Representations of compact Lie groups. Corrected reprint of the 1985 orig. Graduate Texts in Mathematics. 98. New York, Springer, 1995.
- [Fri80] T. Friedrich. Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nicht-negativer Krümmung. Math. Nach., 97:117–146, 1980.
- [Fri00] T. Friedrich. Dirac Operators in Riemannian Geometry. Graduate Studies in Mathematics 25. AMS, Providence, Rhode Island, 2000.
- [Gin09] N. Ginoux. The Dirac spectrum, volume 1976 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2009.
- [HS71] F. Hirzebruch and W. Scharlau. Einführung in die Funktionalanalysis. Number 296 in BI-Hochschultaschenbücher. BI-Wissenschafts-Verlag, 1971.
- [Hum80] J. E. Humphreys. Introduction to Lie algebras and representation theory. 3rd printing, rev. Graduate Texts in Mathematics, 9. New York - Heidelberg - Berlin: Springer-Verlag, 1980.
- [Kar89] H. Karcher. Riemannian comparison constructions. In Global differential geometry, volume 27 of MAA Stud. Math., pages 170–222. Math. Assoc. America, Washington, DC, 1989.
- [LM89] H. B. Lawson and M.-L. Michelsohn. Spin Geometry. Princeton University Press, Princeton, 1989.
- [MS74] J. Milnor and J. Stasheff. Characteristic Classes. Annals of Mathematical Studies. Princeton University Press, Princeton, 1974.
- [Roe88] J. Roe. Elliptic operators, topology and asymptotic methods, second edition. Number 179 in Pitman Research Notes in Mathematics Series? Longman??, 1988.
- [Sem99] U. Semmelmann. A short proof of eigenvalue estimates for the Dirac operator on Riemannian and Kähler manifolds. In Kolár, Ivan (ed.) et al., Differential geometry and applications. Proceedings of the 7th international conference, DGA 98, and satellite conference of ICM in Berlin, Brno, Czech Republic, August 10-14, 1998. Brno: Masaryk University. 137-140. 1999.
- [War83] F. W. Warner. Foundations of differentiable manifolds and Lie groups. Reprint. Graduate Texts in Mathematics, 94. New York etc.: Springer-Verlag. IX, 272 p., 57 figs. DM 58.00; \$ 22.50, 1983.

LITERATUR

[1] M. Pilca, O. Müller, Vorlesung Differentialgeometrie 2, Regensburg Sommersemester 2016