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in [2] and show that there are only few of them.

Contents

1. Introduction 1
2. Case of Riemannian hypersurfaces in spaceforms 4
References 9

1. Introduction

Let (Mm, g) and (Nn, h) be an m-dimensional Riemannian (non-necessarily closed)
spin manifold and an n-dimensional Riemannian manifold respectively. Denote by
ΣM the corresponding spinor bundle of M . Given a smooth map f : M −→ N ,
one can define the twisted Dirac-operator Df :=

∑m
j=1 ej · ∇ΣM⊗f∗TN

ej acting on

C∞(M,ΣM ⊗ f∗TN), where (ej)1≤j≤m is a local orthonormal frame on M and
“ · ” denotes Clifford multiplication T ∗M ⊗ ΣM ⊗ f∗TN −→ ΣM ⊗ f∗TN . Here
ΣM ⊗f∗TN is to be understood as the real tensor product of ΣM with f∗TN and
is endowed with a natural Hermitian inner product 〈· , ·〉 making the Clifford action
of each tangent vector skew-Hermitian. A pair (f,Φ) ∈ C∞(M,N)×C∞(M,ΣM⊗
f∗TN) is called Dirac-harmonic map if and only if the identities∣∣∣∣ DfΦ = 0

trg(∇df) = VΦ

2

(1)

hold on M , where VΦ ∈ C∞(M,f∗TN) is the vector field defined by h(VΦ, Y ) :=∑m
j=1〈ej · RNY,f∗ejΦ,Φ〉 for all Y ∈ f∗TN . Recall that, since each tangent vector

to M and the curvature tensor RN of (N,h) act in a skew-Hermitian (resp. skew-
symmetric) way, the sum

∑m
j=1〈ej ·RNY,f∗ejΦ,Φ〉 is real. Here and in the following

the notation ej ·RNY,f∗ejΦ stands for (ej ·⊗RNY,f∗ej )Φ. Our convention for curvature

tensors is RNX,Y = [∇NX ,∇NY ]−∇N[X,Y ].

As in [2], we look for solutions (f,Φ) to the Dirac-harmonic-map-equations (1) in
the form

(f,Φ :=

m∑
j=1

ej · ψ ⊗ f∗ej + ϕ⊗ ν), (2)

where ψ,ϕ ∈ C∞(M,ΣM) are (untwisted) spinor fields and ν ∈ C∞(M,f∗TN) is
a unit vector field standing orthogonally onto TM at each point. Before stating the
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main results, we write the Dirac-harmonic-map-equations for those (f,Φ) down ex-
plicitly. As usual, we denote byDM :

∑m
j=1 ej ·∇ΣM

ej : C∞(M,ΣM)→ C∞(M,ΣM)

the spin Dirac operator and by P : C∞(M,ΣM) → C∞(M,T ∗M ⊗ ΣM), ψ 7→
∇ΣMψ + 1

m ·
∑m
j=1 e

[
j ⊗ ej ·DMψ the Penrose (or twistor) operator on M .

Lemma 1.1. With the above assumptions and notations, one has

DfΦ =

m∑
j=1

(
2−m
m

ej ·DMψ − 2Pejψ

)
⊗ f∗ej − ψ ⊗ trg(∇df)

+(DMϕ)⊗ ν +

m∑
j=1

ej · ϕ⊗∇Nejν

and, for all Y ∈ f∗TN ,

h(VΦ, Y ) =

m∑
j,k,l=1

h(RNY,f∗ejf∗ek, f∗el)<e(〈ej · ek · ψ, el · ψ〉)

+2

m∑
j,k=1

h(RNY,f∗ejf∗ek, ν)<e(〈ej · ek · ψ,ϕ〉).

Proof. We set Ψ :=
∑m
j=1 ej · ψ ⊗ f∗ej and compute

DfΦ =

m∑
j=1

ej · ∇ΣM⊗f∗TN
ej (

m∑
k=1

ek · ψ ⊗ f∗ek)

=

m∑
j,k=1

ej · ∇Mej ek · ψ ⊗ f∗ek + ej · ek · ∇ΣM
ej ψ ⊗ f∗ek

+ ej · ek · ψ ⊗∇f
∗TN
ej f∗ek

= −
m∑

j,k=1

ek · ej · ∇ΣM
ej ψ ⊗ f∗ek − 2

m∑
j,k=1

g(ej , ek)∇ΣM
ej ψ ⊗ f∗ek

+

m∑
j,k=1

ej · ∇Mej ek · ψ ⊗ f∗ek + ej · ek · ψ ⊗ f∗(∇Mej ek)︸ ︷︷ ︸
0

+

m∑
j,k=1

ej · ek · ψ ⊗ (∇df)(ej , ek)︸ ︷︷ ︸
symm. in ej ,ek

= −
m∑
k=1

ek ·DMψ ⊗ f∗ek − 2

m∑
j=1

∇ΣM
ej ψ ⊗ f∗ej

−
m∑
j=1

ψ ⊗ (∇df)(ej , ej)

= −
m∑
j=1

ej ·DMψ ⊗ f∗ej − 2

m∑
j=1

Pejψ ⊗ f∗ej +
2

m

m∑
j=1

ej ·DMψ ⊗ f∗ej

−ψ ⊗ trg(∇df)

=
2−m
m

m∑
j=1

ej ·DMψ ⊗ f∗ej − 2

m∑
j=1

Pejψ ⊗ f∗ej − ψ ⊗ trg(∇df).
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On the other hand,

Df (ϕ⊗ ν) =

m∑
j=1

ej · ∇ΣM⊗f∗TN
ej (ϕ⊗ ν)

=

m∑
j=1

ej ·
(
∇ΣM
ej ϕ⊗ ν + ϕ⊗∇f

∗TN
ej ν

)
= (DMϕ)⊗ ν +

m∑
j=1

ej · ϕ⊗∇Nejν.

This gives DfΦ = DfΨ +Df (ϕ⊗ ν).
As for the vector field VΦ, we recall that Φ 7→

∑m
j=1 ej · RNY,f∗ejΦ is Hermitian, in

particular

h(VΦ, Y ) = h(VΨ, Y ) + h(Vϕ⊗ν , Y ) + 2<e

 m∑
j=1

〈ej ·RNY,f∗ejΨ, ϕ⊗ ν〉


for all Y ∈ f∗TN . We compute each term separately. First,

h(VΨ, Y ) =

m∑
j,k,l=1

<e
(
〈ej ·RNY,f∗ej (ek · ψ ⊗ f∗ek), el · ψ ⊗ f∗el〉

)
=

m∑
j,k,l=1

<e
(
〈(ej · ek · ψ)⊗RNY,f∗ejf∗ek, el · ψ ⊗ f∗el〉

)
=

m∑
j,k,l=1

h(RNY,f∗ejf∗ek, f∗el)<e (〈ej · ek · ψ, el · ψ〉) .

For ϕ⊗ ν, using h(RNY,f∗ejν, ν) = 0, we obtain

h(Vϕ⊗ν , Y ) =

m∑
j=1

<e
(
〈(ej · ϕ)⊗RNY,f∗ejν, ϕ⊗ ν〉

)
=

m∑
j=1

h(RNY,f∗ejν, ν)<e (〈ej · ϕ,ϕ〉)

= 0.

As for the cross term, we obtain

<e

 m∑
j=1

〈ej ·RNY,f∗ejΨ, ϕ⊗ ν〉

 =

m∑
j,k=1

<e
(
〈(ej · ek · ψ)⊗RNY,f∗ejf∗ek, ϕ⊗ ν〉

)

=

m∑
j,k=1

h(RNY,f∗ejf∗ek, ν)<e (〈ej · ek · ψ,ϕ〉) .

The result follows. �

As a straightforward consequence of Lemma 1.1, Jost, Mo and Zhu [2, Thm. 2]
obtain the

Corollary 1.2. With the assumptions of Lemma 1.1, if furthermore m = 2, the
spinor field ψ is a twistor-spinor, ϕ = 0 and the map f is harmonic, then (f,Φ) is
a Dirac-harmonic map.
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Proof. The r.h.s. in the first identity of Lemma 1.1 vanishes and so does VΦ since
the Hermitian inner product 〈ej · ek · ψ, el · ψ〉 is purely imaginary for all j, k, l ∈
{1, 2}. �

2. Case of Riemannian hypersurfaces in spaceforms

We now specialize to the situation where f is an isometric immersion, n = m+ 1,
the manifold N is oriented and has constant sectional curvature c ∈ R. Note that
the orientations of M and N induce a global smooth unit normal vector field ν
on M . Denote by A := −∇Nν the corresponding Weingarten endomorphism-field
of the hypersurface M and by H := 1

m tr(A) its mean curvature. We reformulate
Lemma 1.1:

Proposition 2.1. With the assumptions above, one has

DfΦ =

m∑
j=1

(
2−m
m

ej ·DMψ − 2Pejψ −A(ej) · ϕ
)
⊗ f∗ej

+(DMϕ−mHψ)⊗ ν

and VΦ = −2mc<e (〈ψ,ϕ〉) ν.

Proof. Using ∇df = A ⊗ ν, one has trg(∇df) = tr(A)ν = mHν. Moreover, since
∇NXν = −A(X) and A is symmetric, Lemma 1.1 gives

DfΦ =

m∑
j=1

(
2−m
m

ej ·DMψ − 2Pejψ

)
⊗ f∗ej −mHψ ⊗ ν

+(DMϕ)⊗ ν −
m∑
j=1

ej · ϕ⊗A(ej)

=

m∑
j=1

(
2−m
m

ej ·DMψ − 2Pejψ

)
⊗ f∗ej + (DMϕ−mHψ)⊗ ν

−
m∑

j,k=1

g(A(ej), ek)ej · ϕ⊗ f∗ek

=

m∑
j=1

(
2−m
m

ej ·DMψ − 2Pejψ

)
⊗ f∗ej + (DMϕ−mHψ)⊗ ν

−
m∑
k=1

A(ek) · ϕ⊗ f∗ek

=

m∑
j=1

(
2−m
m

ej ·DMψ − 2Pejψ −A(ej) · ϕ
)
⊗ f∗ej

+(DMϕ−mHψ)⊗ ν,

which proves the first identity. Since by assumption the curvature tensor of N is
given by h(RNX,Y Z, T ) = c · (h(X,T )h(Y,Z)− h(X,Z)h(Y, T )) for all X,Y, Z, T ∈
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TN , one obtains for all Y ∈ f∗TN :

h(VΦ, Y ) =

m∑
j,k,l=1

h(RNY,f∗ejf∗ek, f∗el)<e(〈ej · ek · ψ, el · ψ〉)

+2

m∑
j,k=1

h(RNY,f∗ejf∗ek, ν)<e(〈ej · ek · ψ,ϕ〉)

= c ·
m∑

j,k,l=1

h(Y, f∗el)h(f∗ej , f∗ek)︸ ︷︷ ︸
δjk

−h(Y, f∗ek)h(f∗ej , f∗el)︸ ︷︷ ︸
δjl

<e(〈ej · ek · ψ, el · ψ〉)

+2c ·
m∑

j,k=1

h(Y, ν)h(f∗ej , f∗ek)︸ ︷︷ ︸
δjk

−h(Y, f∗ek)h(f∗ej , ν)︸ ︷︷ ︸
0

<e(〈ej · ek · ψ,ϕ〉)
= −mc ·

m∑
l=1

h(Y, f∗el)<e(〈ψ, el · ψ〉)︸ ︷︷ ︸
0

−mc ·
m∑
k=1

h(Y, f∗ek)<e(〈ek · ψ,ψ〉)︸ ︷︷ ︸
0

−2mch(Y, ν)<e(〈ψ,ϕ〉),
which concludes the proof. �

We can now characterize Dirac-harmonic maps of the form (2) in that setting
(compare [2, Thm. 1]):

Theorem 2.2. Let f : Mm −→ Nm+1 be an isometric immersion from a con-
nected Riemannian spin manifold (Mm, g) into an oriented Riemannian manifold
(Nm+1, h) with constant sectional curvature c ∈ R. Let ν be a smooth unit normal
vector field on M and A := −∇Nν be the corresponding Weingarten-endomorphism-
field with trace mH, where H is the mean curvature of f . For ψ,ϕ ∈ C∞(M,ΣM)
let Φ :=

∑m
j=1 ej ·ψ⊗f∗ej +ϕ⊗ν, where (ej)1≤j≤m is any local orthonormal frame

on M .

i) If m = 2, then (f,Φ) is a Dirac-harmonic map with Φ 6= 0 if and only if
H = 0, DMϕ = 0, c·<e(〈ψ,ϕ〉) = 0 and e1·∇ΣM

e1 ψ−e2·∇ΣM
e2 ψ = κ1ϕ, where

A(e1) = κ1e1 (the vector e1 is pointwise an eigenvector for A associated to
the principal curvature κ1).

ii) If m ≥ 3 and f is totally umbilical, then (f,Φ) is a Dirac-harmonic map if
and only if H = −c<e(〈ψ,ϕ〉), DMϕ = mHψ, DMψ = − mH

m−2ϕ and Pψ =

0. If furthermore M is closed, then (f,Φ) is a Dirac-harmonic map with
Φ 6= 0 if and only if A = 0, DMϕ = 0, ∇ΣMψ = 0 and c · <e(〈ψ,ϕ〉) = 0.

Proof. Proposition 2.1 implies that (f,Φ) is a Dirac-harmonic map if and only if
DMϕ −mHψ = 0, 2−m

m ej · DMψ − 2Pejψ − A(ej) · ϕ = 0 for all 1 ≤ j ≤ m and

mH · ν = VΦ

2 = −mc<e (〈ψ,ϕ〉) ν. In other words, (f,Φ) is a Dirac-harmonic map
if and only if DMϕ = mHψ, H = −c<e (〈ψ,ϕ〉) and

2−m
m

X ·DMψ − 2PXψ −A(X) · ϕ = 0 (3)

for all X ∈ TM . Note that, plugging X = ej , taking the Clifford product of (3)
with ej and summing over j gives, using the symmetry of A,

0 =
2−m
m

m∑
j=1

ej · ej ·DMψ − 2

m∑
j=1

ej · Pejψ︸ ︷︷ ︸
0

−
m∑
j=1

ej ·A(ej) · ϕ

= (m− 2)DMψ +mHϕ. (4)



6 BERND AMMANN AND NICOLAS GINOUX

Case m = 2: Then it follows from (4) that Hϕ = 0. Since on the open set
Ω := {x ∈ M |H(x) 6= 0} the spinor ϕ has to vanish, so does ψ on Ω because of
DMϕ = mHψ, so that Φ = 0 on Ω and therefore on M by the unique continuation
property for elliptic self-adjoint differential operators. Since we look for a pair
(f,Φ) with Φ 6= 0, we necessarily have Ω = ∅, that is, H = 0 on M . The
identitiesDMϕ = mHψ, H = −c<e (〈ψ,ϕ〉) becomeDMϕ = 0 and c<e (〈ψ,ϕ〉) = 0
respectively. As for (3), putting X = ej , taking its Clifford product with X and
remembering the definition of P , one obtains

ej ·A(ej) · ϕ = −2ej · Pejψ
= −2ej · ∇ΣM

ej ψ +DMψ

for both j ∈ {1, 2}. The difference of both identities for j = 1 and 2 yields e2 ·
A(e2) · ϕ− e1 ·A(e1) · ϕ = 2(e1 · ∇ΣM

e1 ψ − e2 · ∇ΣM
e2 ψ). Take now (ej)1≤j≤2 to be a

pointwise orthonormal basis of TM made of eigenvectors for A. With the condition
H = 0 one can write A(e1) = κ1e1 and A(e2) = −κ1e2, therefore one obtains

2(e1 · ∇ΣM
e1 ψ − e2 · ∇ΣM

e2 ψ) = 2κ1ϕ,

this identity implying trivially (3). This shows i).
Case m ≥ 3: It follows from (4) that DMψ = − mH

m−2ϕ. As a consequence, the

assumption A = H · Id (total umbilicity of f) makes (3) equivalent to Pψ = 0.
This proves the general case. If moreover M is closed, then D2

Mψ = − mH
m−2DMϕ =

−m
2H2

m−2 ψ. Here we use the fact any m(≥ 2)-dimensional totally umbilical hypersur-
face in an Einstein manifold has constant mean curvature: it is an elementary conse-
quence of δA = −mdH+RicN (ν)T , which itself follows from the Codazzi-Mainardi-

identity (the 1-form RicN (ν)T ∈ T ∗M is defined by RicN (ν)T (X) = h(RicN (ν), X)

for all X ∈ TM). Analogously D2
Mϕ = −m

2H2

m−2 ϕ. Since D2
M is a non-negative

operator, it does not have any negative eigenvalue on a closed manifold, therefore
ψ = ϕ = 0 unless H = 0, which is the only possibility because of Φ 6= 0. Therefore
H - hence A - has to vanish on M . Since both DMψ = 0 and Pψ = 0, one ob-
tains ∇ΣMψ = 0 (hence ψ is actually parallel). This shows ii) and concludes the
proof. �

At this point we notice a mistake in [2, Thm. 1]: even in the case m ≥ 3 the authors
assume the spinor field ϕ to be harmonic (i.e., DMϕ = 0), which with Theorem
2.2 yields H = 0, c<e(〈ψ,ϕ〉) = 0 and ∇ΣMψ = 0. In particular no example with
non-harmonic map f can be produced with their result.

We now describe explicit examples fitting into Theorem 2.2. From now on we
denote by Nm+1(c) any Riemannian spaceform of constant sectional curvature c

and by Ñm+1(c) the simply-connected complete Riemannian spaceform of constant
sectional curvature c. Without loss of generality (up to rescaling the metric h, which
does not affect any existence result), we can and shall assume that the sectional

curvature c of N lies in {−1, 0, 1}, i.e., Ñm+1(c) = Hm+1(−1), Rm+1 and Sm+1(1)
for c = −1, 0 and 1 respectively.

Proposition 2.3. With the above notations, one has the following:

i) Case m = 2 and M is closed:
1) For any conformally minimal immersion f from M := S2 into N :=

N3(1), there exists a non-zero Φ ∈ C∞(M,ΣM ⊗ f∗TN) such that
(f,Φ) is a Dirac-harmonic map.

2) For any conformally minimal immersion f from M := T2 endowed
with the trivial spin structure into N := N3(1) or compact N3(0),



EXAMPLES OF DIRAC-HARMONIC MAPS AFTER JOST-MO-ZHU 7

there exists a non-zero Φ ∈ C∞(M,ΣM ⊗ f∗TN) such that (f,Φ) is
a Dirac-harmonic map.

ii) Case m = 2 and M is non-compact: for any conformally minimal immer-

sion f from any non-empty open subset M ⊂ R2 into N := Ñ3(c), there
exists a non-zero Φ ∈ C∞(M,ΣM ⊗ f∗TN) such that (f,Φ) is a Dirac-
harmonic map.

iii) Case m ≥ 3 and A = 0: for the inclusion map f of any non-empty open

subset M of any hyperplane in N := Ñm+1(0) = Rm+1, there exists a
non-zero Φ ∈ C∞(M,ΣM ⊗ f∗TN) such that (f,Φ) is a Dirac-harmonic
map. The same holds when M := Tm with flat metric and spin structure
is embedded totally geodesically into N := Tm+1.

iv) Case m ≥ 3 and A = H ·Id with H 6= 0: for the inclusion map f of any non-

empty open subset M of any hyperplane Hm(− 4
m+2 ) in N := Ñm+1(−1) =

Hm+1, there exists a non-zero Φ ∈ C∞(M,ΣM ⊗ f∗TN) such that (f,Φ)
is a Dirac-harmonic map.

Proof. Note first that, if we let ϕ = 0 in case m = 2, then Theorem 2.2 states that
the pair (f,Φ) is a non-trivial Dirac-harmonic map if and only if H = 0 (that is,
f is harmonic) and ψ is a non-zero twistor-spinor (for e1 · ∇ΣM

e1 ψ − e2 · ∇ΣM
e2 ψ =

e1 ·Pe1ψ− e2 ·Pe2ψ, as we have seen above). Therefore the first result by Jost, Mo
and Zhu [2, Thm. 2] is recovered in that particular setting.
For m = 2 we remind the reader of the conformal invariance of the Dirac-harmonic-
map equation: a pair (f,Φ) is Dirac-harmonic on (M2, g) if and only if (f, e−

u
2 Φ)

is Dirac-harmonic on (M2, e2ug), whatever u ∈ C∞(M,R) is. In case the surface
M2 is closed, the only possibility for it to carry non-trivial twistor-spinors is to be
conformally spin diffeomorphic to S2 or to T2 with trivial spin structure. Combining
that fact with the preceding remarks, we deduce that, given any immersion f from
such a surface into a spaceform, if there is a conformal metric on N such that the
immersion is minimal, then for that metric the pair (f,Φ) made out of a non-zero
twistor spinor ψ and with ϕ = 0 is Dirac-harmonic; by conformal invariance there
is a non-trivial Dirac-harmonic map for the original metric. Note that the Gauß
equation for scalar curvature implies c > 0 (where N = N3(c)) in case M = S2

and c ≥ 0 in case M = T2. There is anyway no closed example in R3 or H3 since
there is no closed minimal hypersurface in those spaceforms. This shows i). The
proof of ii) follows the same lines since any (non-empty) open subset of R2 has an
infinite-dimensional space of twistor-spinors, whatever the metric it carries.
In case m ≥ 3 and A = 0, any (non-empty) open subset of Rm with flat metric
carrying non-zero parallel (hence harmonic) spinors, one can choose ψ and ϕ to be
parallel spinors and obtains a non-zero Φ such that (f,Φ) is a Dirac-harmonic map.
Note that those examples with ψ 6= 0 have to be Ricci-flat hence flat hypersurfaces
M in Nm+1(0). Closed examples for M can be similarly obtained by choosing a flat
M := Tm totally geodesically sitting in N = Tm+1, provided Tm carries the trivial
spin structure (otherwise no non-zero parallel spinor is available). This proves iii).
As for the remaining case where m ≥ 3 and A = H · Id 6= 0, recall that M has to

be non-compact (Theorem 2.2). Since Pψ = 0, we know that D2
Mψ =

mSg

4(m−1)ψ,

where Sg is the scalar curvature of (Mm, g). Comparing with D2
Mψ = −m

2H2

m−2 ψ

and assuming ψ 6= 0 (otherwise ϕ = 0 hence Φ = 0, as we have seen above), we

obtain
mSg

4(m−1) = −m
2H2

m−2 and Gauß equation Sg = m(m − 1)c + m2H2 − |A|2 =

m(m− 1)(H2 + c) implies H2 = −m−2
m+2c, in particular c has to be negative, w.l.o.g.

c = −1. We consider the case where N = Ñm+1(−1) = Hm+1(−1). Then M has to
be a totally umbilical (but non-totally geodesic) hyperbolic hyperplane of constant
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sectional curvature H2 + c = 4
m+2c = − 4

m+2 . Up to changing ν into −ν, one can

assume H to be positive, so that H =
√

m−2
m+2 . Now the space of twistor-spinors on

any hyperbolic space is explicitly known: it is the direct sum of the space of Killing
spinors for the opposite (imaginary) Killing constants. More precisely ker(P ) =
Kp⊕Km on M , where Kp := {ψ ∈ C∞(M,ΣM) | ∇ΣM

X ψ = i√
m+2

X ·ψ ∀X ∈ TM}
and Km := {ψ ∈ C∞(M,ΣM) | ∇ΣM

X ψ = − i√
m+2

X · ψ ∀X ∈ TM}. Looking

for ψ in the form ψ = ψp + ψm with a priori arbitrary (ψp, ψm) ∈ Kp ⊕ Km, we
write the equations of Theorem 2.2 down: one has DMψ = − im√

m+2
(ψp − ψm),

in particular one has to choose ϕ := −m−2
mH DMψ = i

√
m− 2(ψp − ψm). Then

DMϕ = i
√
m− 2 · (− im√

m+2
(ψp + ψm)) = m

√
m−2
m+2ψ = mHψ. The only remaining

condition having to be satisfied is H = −c · <e(〈ψ,ϕ〉), that is,√
m− 2

m+ 2
=
√
m− 2 · <e(−i〈ψp + ψm, ψp − ψm〉)

=
√
m− 2 · =m(|ψp|2 − |ψm|2 + 〈ψm, ψp〉 − 〈ψp, ψm〉)

= −2
√
m− 2 · =m(〈ψp, ψm〉),

that is, =m(〈ψp, ψm〉) = − 1
2
√
m+2

. Note that the inner product 〈ψp, ψm〉 is any-

way constant on M (its first derivative vanishes). Since (ψp, ψm) 7→ 〈ψp, ψm〉 is
sesquilinear, it suffices to find a pair (ψp, ψm) with 〈ψp, ψm〉 6= 0 (then multiply ψm
by a suitable complex constant to obtain the desired imaginary part). This can be
achieved in an elementary way, taking ψp to be arbitrary (non-vanishing) and set-
ting ψm(x) := x · em+1 ·ψp(x) for all x ∈ Hm(−1) (if the result is true for Hm(−1),
then it is obviously true for Hm(− 4

m+2 )), where em+1 is the last canonical basis

vector in Rm+1 ⊃ Hm(−1) and here “ · ” denotes the Lorentzian Clifford multiplica-
tion in Rm+1 with Minkowski-metric. It is namely a straightforward computation
to show that 〈ψp, ψm〉 = ‖ψp‖2, where ‖ · ‖ denotes the positive-definite Hermitian
inner product on the space of spinors of Rm+1. In particular, 〈ψp, ψm〉 6= 0, which
is what we wanted.1 This shows iv) and concludes the proof. �

It may be interesting to know whether 2-dimensional examples with ϕ 6= 0 can
be obtained. Namely if one considers the Clifford torus M2 := S1( 1√

2
) × S1( 1√

2
)

sitting canonically in N := S3, then the inclusion map is minimal (with principal
curvatures 1 and −1) but a short computation shows that the only Dirac-harmonic
maps (f,Φ) in the form (2) have vanishing ϕ-component.

Note that, in case N = Hm+1(−1), we have actually shown in the proof of Propo-
sition 2.3 that the example described is the only one with (f,Φ) in the particular
form (2). Even in the case where m = 2 no non-trivial example of Dirac-harmonic
maps from a closed hyperbolic surface can be obtained with that approach, since
those do not carry non-zero twistor-spinors. In that setting, examples can be pro-
duced with the help of index-theoretical methods, see e.g. [1]. Curvature conditions
implying the vanishing of the Φ defined in (2) have been investigated by X. Mo [3]
and confirm that only few examples of that special form can be expected.

For higher codimensions the same approach can probably be carried out, the exis-
tence of a global unit normal ν already restricting the generality. On the other hand,
there are in that case obvious examples of Dirac-harmonic maps which are not in the

1Probably it is cleverer to show this by trivializing the spinor bundle of Hm by i
2
- as well as

by − i
2
-Killing spinors. Then it is no problem, one just have to choose ψp and ψm so that they

coincide at one point. (N.)
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form (2): take e.g. M := S2 = CP1 embedded totally geodesically into N = CP2,
then we know by the index-theorem (see e.g. [1]) that dimC(ker(Df )) ≡ 2 (4) and is
at least 4-dimensional by [2] (the space of twistor-spinors on S2 injects into ker(Df )),
so that it is at least - actually exactly - 6-dimensional. Now if Φ ∈ ker(Df ), then
it is an easy remark that w.r.t. the canonical splitting Φ = Φ+ + Φ− one has
DfΦ± = 0 and VΦ± = 0, in particular (f,Φ+) and (f,Φ−) are Dirac-harmonic

maps; since dimC(ker(Df
±)) ≥ 3 and the space of pure twistor-spinors is complex

2-dimensional, there are at least one non-trivial Φ+ ∈ ker(Df
+) and one non-trivial

Φ− ∈ ker(Df
−) such that (f,Φ±) are Dirac-harmonic but do not come from any

twistor-spinor on S2.
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