Forschungsgebiete / Research domains:

  • Differential geometry: spin geometry of submanifolds, of Kählerian, Sasaki- and Lorentzian manifolds, of Riemannian foliations.

  • Analysis on manifolds: spectral geometry of Dirac-type operators, evolution equations on globally hyperbolic spacetimes.

  • Mathematical physics: quantization of classical or fermionic fields, locally covariant quantum field theory, construction of quantum fields.



    Veröffentlichungen / Publications:  (list as a pdf file, see also MathSciNet, Zentralblatt MATH, arXiv or the Preprintserver of the Regensburger Fakultät für Mathematik)


  • Artikel / Articles:

    B. Ammann und N. Ginoux Dirac-harmonic maps from index theory Calc. Var. Part. Diff. Eq. 47 (2013), no. 3-4, 739-762
    C. Bär und N. Ginoux Classical and quantum fields on Lorentzian manifolds in: C. Bär et al. (eds): "Global Differential Geometry", Springer Proceedings in Mathematics 17 (2012), no. 2, 359-400
    N. Ginoux und U. Semmelmann Imaginary Kählerian Killing spinors I Ann. Glob. Anal. Geom. 40 (2011), no. 4, 467-495
    N. Ginoux und G. Habib The spectrum of the twisted Dirac operator on Kähler submanifolds of the complex projective space manuscripta math. 137 (2012), no. 1-2, 215-231
    N. Ginoux und J.-F. Grosjean Almost harmonic spinors C. R. Math. Acad. Sci. Paris 348 (2010), no. 13-14, 811-814
    N. Ginoux und G. Habib A spectral estimate for the Dirac operator on Riemannian flows Cent. Eur. J. Math. 8 (2010), no. 5, 950-965
    N. Ginoux und G. Habib Remarks on transversal Killing spinors C. R. Math. Acad. Sci. Paris 346 (2008), no. 11-12, 657-659
    N. Ginoux und G. Habib Geometric aspects of transversal Killing spinors on Riemannian flows Abh. Math. Sem. Univ. Hamburg 78 (2008), 69-90
    N. Ginoux The spectrum of the Dirac operator on SU2/Q8 manuscripta math. 125 (2008), no. 3, 383-409
    F. Belgun, N. Ginoux und H.-B. Rademacher A singularity theorem for twistor-spinors Ann. Inst. Fourier 57 (2007), no. 4, 1135-1159
    N. Ginoux Dirac operators on Lagrangian submanifolds J. Geom. Phys. 52 (2004), no. 4, 480-498
    N. Ginoux Remarques sur le spectre de l'opérateur de Dirac C. R. Acad. Sci. Paris Sér. I 337 (2003), no. 1, 53-56
    N. Ginoux Une nouvelle estimation extrinsèque du spectre de l'opérateur de Dirac C. R. Acad. Sci. Paris Sér. I 336 (2003), no. 10, 829-832
    N. Ginoux Reilly-type spinorial inequalities Math. Z. 241 (2002), no. 3, 513-525
    N. Ginoux und B. Morel On eigenvalue estimates for the submanifold Dirac operator Int. J. Math. 13 (2002), no. 5, 533-548


  • Bücher / Books:

    N. Ginoux The Dirac spectrum Lecture Notes in Mathematics 1976 (2009), Springer
    C. Bär, N. Ginoux und F. Pfäffle Wave equations on Lorentzian manifolds and quantization ESI Lectures in Mathematics and Physics, EMS Publishing House (2007)


  • Kongressakte / Proceedings:

    C. Bär und N. Ginoux CCR- versus CAR-quantization on curved spacetimes in: F. Finster et al. (eds.): ''Quantum Field Theory and Gravity'', Birkhäuser, 183-206, 2012
    N. Ginoux Linear wave equations in: C. Bär et K. Fredenhagen (eds.): ''Quantum field theory on curved spacetimes'', Lecture Notes in Physics 786 (2009), 59-84, Springer
    N. Ginoux Reilly-type spinorial inequalities in: J.-P. Bourguignon et al. (eds.): ''Dirac operators: Yesterday and Today'', 263-269, International Press, 2005


  • Diplom- und Doktorarbeit / Theses:

    N. Ginoux Opérateurs de Dirac sur les sous-variétés Thèse de doctorat, Université Henri Poincaré, Nancy, 2002
    N. Ginoux Géométrie hermitienne et géométrie spinorielle conforme Mémoire de D.É.A, Université Henri Poincaré, Nancy, 1999



    Bitte beachten Sie: Die Dateien, die hier heruntergeladen werden können, können sich eventuell von den veröffentlichten Versionen unterscheiden.

    Please note: The files which can be downloaded here may differ from the published versions.




    Nicolas Ginoux, 29.06.2013