|
Prof. Dr. Helmut Abels Nonlinear partial differential equations, free boundary value problems, pseudodifferential operator methods
Prof. Dr. Bernd Ammann Conformal geometry, Dirac operators, analysis on manifolds
Prof. Dr. Luise Blank
Prof. Dr. Ulrich Bunke
Prof. Dr. Georg Dolzmann
Nonlinear partial differential equations, calculus of variations
Prof. Dr. Felix Finster
Analysis, mathematical physics
Prof. Dr. Harald Garcke
Partial differential equations, geometric evolution equations, numerical analysis, free boundary problems
Prof. Dr. Walter Gubler
Diophantine geometry and Arakelov theory
Prof. Dr. Michael Hellus
Matlis duals of local cohomology modules, complete intersections
Prof. Dr. Uwe Jannsen
Number theory and algebraic geometry, especially motives and étale cohomology
Prof. Dr. Moritz Kerz
Arithmetic Geometry and Algebraic K-theory
Prof. Dr. Guido Kings
Arithmetic geometry: L-functions, polylogarithms, regulators and
Iwasawa theory
Prof. Dr. Klaus Künnemann
Arithmetic geometry, in particular Arakelov theory, abelian varieties
and, algebraic cycles
Prof. Dr. Clara Löh
Geometric and algebraic topology of manifolds and groups (simplicial volume, bounded cohomology, l¹-homology, L²-invariants)
Prof. Dr. Niko Naumann
Arithmetic Geometry and (motivic) Homotpy Theory
|