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Abstract

The described methods can be used to investigate the effect of proteases on ion channels, receptors, and other plasma membrane proteins
heterologously expressed in Xenopus laevis oocytes. In combination with site-directed mutagenesis, this approach provides a powerful tool to
identify functionally relevant cleavage sites. Proteolytic activation is a characteristic feature of the amiloride-sensitive epithelial sodium channel
(ENaC). The final activating step involves cleavage of the channel’s γ-subunit in a critical region potentially targeted by several proteases
including chymotrypsin and plasmin. To determine the stimulatory effect of these serine proteases on ENaC, the amiloride-sensitive whole-
cell current (ΔIami) was measured twice in the same oocyte before and after exposure to the protease using the two-electrode voltage-clamp
technique. In parallel to the electrophysiological experiments, a biotinylation approach was used to monitor the appearance of γENaC cleavage
fragments at the cell surface. Using the methods described, it was demonstrated that the time course of proteolytic activation of ENaC-mediated
whole-cell currents correlates with the appearance of a γENaC cleavage product at the cell surface. These results suggest a causal link between
channel cleavage and channel activation. Moreover, they confirm the concept that a cleavage event in γENaC is required as a final step in
proteolytic channel activation. The methods described here may well be applicable to address similar questions for other types of ion channels or
membrane proteins.

Video Link

The video component of this article can be found at http://www.jove.com/video/51582/

Introduction

Proteases are enzymes that are involved in various physiological reactions ranging from the well-known proteolytic degradation of proteins, in
the context of digestion, to highly sophisticated protease cascades involved in complex regulatory signaling pathways. Proteases are classified
into seven groups according to their catalytic active site: aspartate, asparagine, cysteine, glutamic acid, metallo, serine, and threonine proteases.
Different proteases target distinct cleavage sites which are not always easy to predict from the primary structure of a protein. The MEROPS
database (http://merops.sanger.ac.uk/) provides detailed information on a wide range of proteases and their preferential cleavage sites.
Functionally relevant cleavage sites can be identified using site-directed mutagenesis.

It is well established that proteolytic processing of ENaC is an important mechanism of activation of this particular ion channel1,2. Interestingly,
there is evidence that the function of the related acid-sensing ion channel 1a (ASIC1a) may also be modified by proteases3-5. At present it
remains an open question whether proteolytic channel cleavage plays a relevant physiological role in regulating the activity of other ion channels
or transporters. However, it is well established that proteolytic cleavage activates a group of G protein-coupled receptors, the protease-activated
receptors (PARs)6. Several serine proteases (e.g. channel-activating proteases (CAP1-3), chymotrypsin, trypsin, furin, plasmin, neutrophil
elastase, and kallikrein) have been shown to proteolytically activate ENaC2. In addition to serine proteases, other groups of proteases may be
involved in proteolytic ENaC activation. Indeed, recent data shows that the metalloproteinase meprin-β7 and the cysteine protease cathepsin-
S8 can also activate ENaC. However, the (patho-)physiologically relevant proteases for ENaC activation remain to be determined and may differ
from tissue to tissue.

Proteases are known to preferentially cleave at particular sites in the amino acid sequence. For instance, the serine protease chymotrypsin
shows a specific cleavage pattern cleaving after the aromatic amino-acid residues phenylalanine and tyrosine. In contrast, the serine protease
trypsin preferentially cleaves after the basic residues lysine or arginine. Using mutant human γENaC constructs generated by site-directed
mutagenesis, functionally relevant cleavage sites in ENaC heterologously expressed in the oocyte expression system could be identified8-13.

By injecting cRNA for the three ENaC subunits (αβγ) into isolated oocytes, ENaC can be functionally expressed in these cells and the activity
of channels present at the plasma membrane can be measured by using the two-electrode voltage-clamp technique. By using the diuretic
amiloride, a specific ENaC inhibitor, the amiloride-sensitive ENaC-mediated whole-cell current component (ΔIami) can be separated from
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unspecific leak currents or from currents conducted by other ion channels. Thus, ΔIami values reflect overall ENaC activity and can be determined
by subtracting whole-cell currents measured in the presence of amiloride from the corresponding whole-cell currents recorded in the absence
of amiloride. To test whether a protease has a stimulatory effect on ENaC, ΔIami is measured twice in the same oocyte, i.e. before and after
incubation of the oocyte in a protease containing solution. An increase of ΔIami from the first to the second measurement indicates proteolytic
ENaC activation. Chymotrypsin or trypsin are known to maximally stimulate ENaC in the oocyte expression system2,14 and can be used to
confirm that proteolytic ENaC activation is detectable in a given batch of oocytes.

In parallel to whole-cell current measurements, a biotinylation approach9 was used to investigate whether the increase in ΔIami detected upon
exposure of the oocytes to proteases correlates with the appearance of ENaC cleavage fragments at the cell surface. Proteins at the cell surface
are labeled with biotin and can be separated from intracellular proteins by binding the biotinylated proteins to Neutravidin-labeled agarose beads.
The biotinylated proteins can be analyzed by western blot. γENaC cleavage fragments at the cell surface can be detected using a specific
antibody directed against an epitope in the C-terminus of the γENaC. To identify functionally relevant cleavage site(s), predicted cleavage sites
can be mutated using site-directed mutagenesis. Wildtype and mutant channels are compared in parallel experiments using oocytes from the
same batch.

With this methodological approach it was demonstrated for the first time that proteolytic activation of ENaC-mediated whole-cell currents
correlates with the time-dependent appearance of ENaC cleavage fragments at the cell surface. These results suggest a causal link between
channel cleavage and channel activation. Moreover, using site-directed mutagenesis of putative cleavage sites in combination with the two-
electrode voltage-clamp technique, functionally relevant cleavage sites for plasmin, chymotrypsin13 and cathepsin-S8 were identified.

Protocol

1. Isolation of Xenopus Oocytes and Microinjection of cRNA

1. Obtain oocytes from adult female Xenopus laevis. Anaesthetize animals in 0.2% MS222, and resect ovarian lobes through a small abdominal
incision.

2. Isolate oocytes from the ovarian lobes by enzymatic digestion at 19 °C for 3-4 hr with 600-700 U/ml of type 2 collagenase from Clostridium
histolyticum dissolved in calcium free OR2 solution (recipe in Table 1).

3. For selection, place the defolliculated oocytes in a Petri dish under a binocular microscope in a high sodium containing solution (ND96: recipe
in Table 1).

4. Select stage V-VI oocytes and place them in another Petri dish with a Pasteur pipette. NOTE: Blunt Pasteur pipette by flaming to prevent
oocyte injury.

5. Inject oocytes with cRNA (e.g. 0.2 ng per αβγENaC subunit). Dissolve cRNAs in RNase-free water. NOTE: Total volume injected into each
oocyte is 46 nl.

6. Store injected oocytes at 19 °C in a low sodium solution to prevent sodium loading of the oocytes (ND9: recipe in Table 1). Supplement the
solution with 100 U/ml sodium penicillin and 100 μg/ml streptomycin sulphate to prevent bacterial growth. Carefully handle the oocytes to limit
the amount of damaged or dead oocytes and maintain them in individual small groups in a 12-well-plate wells filled with bath solution during
the two days after cRNA injection.

OR2 82.5 mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM HEPES, adjusted to pH
7.4 with NaOH

ND96 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 5 mM HEPES,
adjusted to pH 7.4 with Tris

ND9 9 mM NaCl, 87 mM NMDG-Cl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2,
5 mM HEPES, adjusted to pH 7.4 with Tris

biotinylation buffer 10 mM triethanolamine, 150 mM NaCl, 2 mM CaCl2, adjusted to pH 9.5
with HCl

quench buffer 192 mM glycin, 25 mM Tris-Cl, adjusted to pH 7.5 with HCl

lysis buffer 500 mM NaCl, 5 mM EDTA, 50 mM Tris-Cl, adjusted to pH 7.4 with HCl

Table 1. Solutions

2. Performing Two-electrode Voltage-clamp Experiments

1. Measure the oocytes two days after injection.
2. Fill one syringe of a gravity fed perfusion system with ND96 solution and another syringe with ND96 solution containing amiloride (2 µM).

Mount syringes 50 cm above the oocyte bath chamber. NOTE: The concentration of the ENaC inhibitor amiloride was chosen to be 20 times
higher than its IC50 (100 nM).

3. Turn on a 150 W halogen cold light source and adjust it to 10 cm above the oocyte bath chamber allowing good visualization with the
binocular microscope. Then turn on suction and adjust the suction tube at the end of the oocyte bath chamber. Locate suction tube opposite
to superfusion tubes’ adapter entering the oocyte bath. NOTE: Suction power must be sufficient to support continuous flow of the solution
superfusing the oocyte.

4. Adjust superfusion speed of each solution to 3-5 ml/min by using the i.v. gravity flow control device. Connect the superfusion tubes with an
adapter to the oocyte bath chamber.

http://www.jove.com
http://www.jove.com
http://www.jove.com


Journal of Visualized Experiments www.jove.com

Copyright © 2014  Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

July 2014 |  89  | e51582 | Page 3 of 9

5. Pull glass capillaries with a micropipette puller to obtain tip diameters of <1 µm. Then fill capillaries to ~1/4 with 3 M KCl. NOTE: Make sure
that the chlorinated part of the silver wire of the electrode holder is immersed in KCl solution. Check for air bubbles in the tip of the capillary.
Air bubbles impair the measurement by increasing resistance stray capacitance.

6. Insert the capillaries into the electrode holders of the current and the voltage electrode and place them into ND96 containing amiloride (2 µM)
solution using the micro-manipulators.

3. Measurement of Amiloride-sensitive Whole-cell Currents

1. Zero the electrode potential of the voltage electrode (Vm) and the current electrode (Ve) by adjusting the Vm and Ve offsetbuttons. NOTE: The
resistance should be 1-2 MΩ for the electrode to measure Vm and 0.5-1 MΩ for the current injection electrode.

2. Place the oocyte into the bath chamber in close proximity to the voltage sensing electrode. NOTE: Do not damage the oocyte during any of
these transfer steps. Use a Pasteur pipette to transfer the oocyte. To avoid damaging the oocyte the edges of the pipette should be blunted
by flaming.

3. Impale oocytes gently with both microelectrodes.
4. Set the holding potential at the amplifier to -60 mV and turn on the chart recorder. Turn on the amiloride (2 µM) containing solution. NOTE:

The current should be about 0 ± 0.5 µA. Larger leak currents indicate a leaky impalement. Therefore, these oocytes should be rejected.
Moreover, the leak currents measured in the presence of amiloride (2 µM) should be similar in αβγ-WT expressing oocytes to those
measured in αβγ-mutant ENaC expressing oocytes. This indicates that the mutations do not affect the amiloride-sensitivity of the channel.

5. Start recording. If necessary adjust the gain.
6. After the measured current reaches a stable plateau, change to amiloride-free solution. NOTE: Downward current deflections in the current

traces correspond to inward currents, i.e. movement of positive charge (Na+) from the extracellular side into the cell.
7. After a current plateau is reached (after ~60 sec), switch the superfusion back to the amiloride containing solution. After the current of the

oocyte reaches the initial baseline current, turn off the voltage clamp and gently withdraw the electrodes.
8. To allow resealing of the plasma membrane at the sites of impalement, place the oocyte into one well of a 96-well plate containing 100-150 µl

of protease free ND96 solution.
9. After 5 min, transfer oocyte to a protease containing solution or to a control solution without protease for a 30 min incubation time. NOTE: The

incubation time depends on the protease and the studied channel.
10. After the incubation step repeat the current measurement (see 3.2 and following). NOTE: It is possible to measure >90% of the oocytes after

incubation in protease solution.

4. Biotinylation Assay

1. Select and discard defective oocytes under the binocular microscope. NOTE: Use injected oocytes from the same batch for the current
measurements and for the biotinylation experiments.

2. Keep biotin at RT for at least 20 min before its use in the experiment.
3. Prepare the solutions: ND96 and ND96 containing the appropriate protease. Prepare Pasteur pipettes by labeling them and by briefly flaming

their tips to avoid injury of the oocytes. NOTE: Here, the protease chymotrypsin 2 µg/ml in ND96 is used. Treat each group with a separate
pipette to avoid cross contamination of solutions.

4. Fill each well of a 6-well plate with 2.5 ml control ND96 or ND96 containing a protease at RT. Then deposit 30 oocytes per well and incubate
them for 30 min at RT. NOTE: For the subsequent procedures it is important to keep samples on ice at all times. All centrifugation steps are
at performed at 4 °C.

5. Fill each well of a new 6-well plate with 2.5 ml ND96 (each group needs 3 wells for the washing steps) and weigh the biotin. NOTE: 2.5 mg
biotin per well (1 mg/ml) is required. Dissolve the biotin in the biotinylation buffer (i.e. 25 mg biotin (for 10 groups) in 25 ml biotinylation buffer
(recipe in Table 1).

6. Transfer each group of oocytes to a well filled with 2.5 ml ND96. Transfer oocytes sequentially into two additional wells with ND96 to wash off
any remaining protease. Incubate the oocytes for 5 min in ND96.

7. Transfer the oocytes into a well containing 2.5 ml biotin solution and incubate them with gentle agitation (‘shaker’) for 15 min. NOTE:
Minimize the transferred ND96 with the pipette to avoid dilution of the biotin solution.

8. Transfer each group of oocytes into a well containing 2.5 ml quench buffer (recipe in Table 1) to stop the biotinylation reaction. Then, transfer
each group of oocytes into a second well also containing 2.5 ml quench buffer and incubate for 5 min with gentle agitation.

9. Remove damaged or dead oocytes. NOTE: Choose the same number of oocytes per group for the following procedure.
10. Transfer each group of oocytes to a 1.5 ml plastic microcentrifuge tube. NOTE: Minimize the quantity of quench buffer that is transferred.
11. Subsequently, lyse the oocytes by passing them through a 27 G needle in 1 ml lysis buffer (recipe see Table 1) supplemented with protease

inhibitors.
12. Centrifuge the lysates for 10 min at 1,500 x g.
13. Aspirate supernatant and transfer it to a 1.5 ml microcentrifuge tube containing 0.5% Triton-X-100 and 0.5 % NP40. Discard the remaining

pellet. NOTE: The supernatant contains biotinylated plasma membrane proteins and non-biotinylated intracellular proteins.
14. Incubate the microcentrifuge tubes for 20 min on ice. Repeatedly vortex the tubes during this period to completely dissolve the proteins in

NP40 and Triton-X-100.
15. Centrifuge 100 µl of agarose beads per oocyte group for 3 min at 1,500 x g. After the centrifugation remove supernatant from the beads

solution and wash three times with lysis buffer to equilibrate the beads with buffer.
16. Pipette 100 µl of the washed beads into each microcentrifuge tube containing the protein-detergent-solution prepared in 4.13 to allow binding

of the biotinylated proteins to the beads.
17. Incubate microcentrifuge tubes with overhead rotation O/N at 4 °C.
18. Centrifuge the microcentrifuge tubes for 3 min at 1,500 x g. Then transfer the supernatant into a new tube. NOTE: Intracellular proteins are

not labeled with biotin. Supernatant can be stored at -20 °C. Do not aspirate the beads.
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5. Detection of ENaC Cleavage Fragments at the Cell Surface by Western Blot Analysis

1. Wash the beads three times with lysis buffer and add 100 µl of 2x SDS-PAGE sample buffer. NOTE: Samples can be stored at -20 °C or
immediately prepared for western blot analysis.

2. Boil samples for 5 min at 95 °C and then place tubes on ice.
3. Centrifuge samples for 3 min at 20,000 x g and pipette the supernatant into a new microcentrifuge tube. NOTE: This supernatant contains the

biotinylated plasma membrane proteins from the cell surface of the oocyte.
4. Analyze 30 µl of this supernatant by western blot to investigate cleavage fragments at the cell surface.
5. Separate the biotinylated proteins by SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) using an appropriate gel (8%,

10%, 12% depending on the molecular weight of the cleavage fragments investigated).
6. Transfer the proteins to polyvinylidene difluoride (PVDF) membranes by semi-dry blotting.
7. Probe the membrane with a specific antibody against human γENaC directed against an epitope in the C-terminus (see Figure 3 and 13).
8. Use horseradish peroxidase-labeled goat anti-rabbit antibody as secondary antibody.
9. Detect chemiluminescent signals.

Representative Results

To investigate whether the serine protease plasmin can activate ENaC-mediated currents, ΔIami of individual ENaC-expressing oocytes was
determined before and after 30 min incubation of the oocytes in protease-free (control) (Figure 2A) or plasmin containing solution (Figure 2B)
using the two-electrode voltage-clamp technique (see Figure 1). Exposure to plasmin increased ΔIami in every oocyte measured. In contrast, in
control experiments, 30 min incubation of ENaC-expressing oocytes in protease-free solution had a negligible effect (Figure 2 C,D). Thus, by
using this method a stimulation of ENaC-mediated current by plasmin can be detected.

To study the effects of mutating putative cleavage sites upon the activation of ENaC-mediated currents, as well as upon channel cleavage,
the effect of chymotrypsin on WT-ENaC was compared with that on a mutant ENaC with mutated prostasin and plasmin cleavage sites
(γRKRK178AAAA;K189A). The time course of channel activation by chymotrypsin as well as the appearance of ENaC cleavage products at the cell
surface was investigated by using different protease incubation times (Figure 4A). It was demonstrated that the mutant channel delays and
reduces the activation of ENaC-mediated current by chymotrypsin. This is paralleled by a delayed appearance of a lower molecular weight
γENaC cleavage fragment of 67 kDa corresponding to the fully cleaved subunit. Cleavage fragments were detected using a γENaC antibody
directed against an epitope in the C-terminus (Figure 3). This methodological approach demonstrates that the time course of proteolytic
activation of ENaC-mediated currents correlates with the appearance of a 67 kDa γENaC cleavage product at the cell surface (Figure 4 B,C).
This supports the concept of a causal link between proteolytic channel cleavage and channel activation13. Moreover, by combining current
measurements and the detection of γENaC fragments at the cell surface it was demonstrated that the mutated cleavage sites are functionally
relevant for proteolytic channel activation.

 

Figure 1. Procedure of determining the stimulatory effect of a protease on ENaC heterologously expressed in Xenopus laevis oocytes.
ENaC activity is estimated by measuring the amiloride-sensitive whole-cell current component ΔIami.
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Figure 2. Plasmin stimulates ENaC-mediated currents in oocytes expressing ENaC. (A-D) Oocytes expressing human ENaC were
incubated for 30 min in protease-free solution (control) or in solution containing plasmin (10 μg/ml). To determine ΔIami before (-) and after
(+) incubation, oocytes were clamped at a holding potential of -60 mV. (A,B) Four representative whole-cell current traces from one batch of
oocytes. Amiloride (ami) was present in the bath solution to specifically inhibit ENaC as indicated by black bars. (C) Data points obtained from an
individual oocyte are connected by a line. (D) Summary of similar experiments as shown in C. Columns represent relative stimulatory effect on
ΔIami calculated as the ratio of ΔIami measured after a 30 min incubation (ΔIami 30 min) to the initial ΔIami (ΔIami initial) measured before incubation.
Numbers inside the columns indicate the number of individual oocytes measured. N indicates the number of different batches of oocytes. (This
figure has been modified from [Haerteis et al. 2012 J Gen Physiol 140, 375-389, doi:10.1085/jgp.201110763])
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Figure 3. Model of the γENaC subunit showing cleavage sites for proteolytic activation and the binding site of the antibody used.
Proteolytic cleavage by the Golgi-associated convertase furin is important for ENaC maturation in the biosynthetic pathway before the channel
reaches the plasma membrane. After cleavage by furin a 76 kDa fragment can be detected at the cell surface using a biotinylation approach
and an antibody against an epitope in the C-terminus of the γ-subunit. The pivotal final step in proteolytic ENaC activation probably takes place
at the plasma membrane where γENaC is cleaved by extracellular proteases (e.g. plasmin or chymotrypsin) in a region distal to the furin site
resulting in a 67 kDa cleavage fragment. (This figure has been modified from [Haerteis et al. 2012 J Gen Physiol 140, 375-389, doi:10.1085/
jgp.201110763])
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Figure 4: Mutating both the plasmin (K189) and the prostasin cleavage site (RKRK178) delays the activation of ENaC-mediated
currents and the appearance of a 67 kDa cleavage product of the channel’s γ-subunit. Oocytes expressing WT (open symbols) and
γRKRK178AAAA;K189AENaC mutant channel (closed symbols) were incubated for 30 min in protease-free solution (control) or for 5, 30, or 60 min in
a solution containing chymotrypsin (2 μg/ml). (A) To determine ΔIami before and after incubation, oocytes were clamped at a holding potential
of -60 mV. Circles represent the ratio of ΔIami measured after 5, 30, or 60 min incubation (ΔIami min) to the initial ΔIami (ΔIami initial) measured
before incubation. Each data point represents the mean ΔIami measured in 22-24 individual oocytes of four different batches. (B-D) In parallel to
the detection of ΔIami, expression of biotinylated γENaC at the cell surface was analyzed by SDS-PAGE. γENaC was detected with an antibody
against an epitope in the C-terminus of human γENaC. Representative western blots from one batch of oocytes are shown. (C-E) Densitometric
analysis of three western blots similar to those shown in B or D. For each lane, the signals detected in the regions of 76 kD (open columns) and
67 kD (gray columns) were determined and normalized to the sum of the total signal detected. N indicates the number of different batches of
oocytes. Click here to view larger image.
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Discussion

In this manuscript a methodological approach which was successfully applied to study the mechanisms underlying the activation of ENaC by
proteases is described8,13. The well established Xenopus laevis oocyte expression system was used to functionally express ENaC. ENaC
function was assessed with the conventional two-electrode voltage-clamp technique. Site-directed mutagenesis was employed to identify
functionally relevant protease cleavage sites. Biotinylation experiments performed in parallel with the electrophysiological measurements made
it possible to correlate the appearance of ENaC cleavage products at the cell surface with proteolytic current activation. A correlation between
the time course of current activation and the appearance of proteolytic cleavage fragments at the cell surface supports the concept of proteolytic
channel activation.

Two-electrode voltage-clamp recordings require the impalement of an oocyte with two microelectrodes. This procedure is usually performed only
once in an individual oocyte. However, it was feasible to remove the microelectrodes after an initial whole-cell current recording without apparent
damage to the oocyte. Indeed, the plasma membrane at the sites of impalements appears to reseal within a few minutes. Thus, after completing
a first two-electrode voltage-clamp measurement, it is possible to transfer the oocyte from the experimental flow chamber of the two-electrode
voltage-clamp setup to a microfuge tube or a well of a 96-well plate filled with a small volume of test or control solution. Afterwards, the same
oocyte can be transferred back to the flow chamber and can be impaled again to perform a second two-electrode voltage-clamp measurement.
Remarkably, ENaC-mediated currents did not vary much between the first and second measurement when the oocyte was maintained in control
solution. In contrast, incubation of the oocyte in a protease containing solution after the first measurement resulted in increased ENaC-mediated
current in the second measurement (Figure 2). This finding indicates proteolytic channel activation.

Performing two separate current measurements in a single oocyte offers the advantage that the oocyte can be exposed to proteases or other
pharmacological agents between the two measurements for a variable length of time in a small volume of test solution. This is important when
using agents which are expensive and/or unavailable in large quantities, e.g. purified protease preparations. The limited availability of agents
may make it impossible (or unaffordable) to use them in continuous two-electrode voltage-clamp recordings because of the large volumes
of test solution required for continuously superfusing the oocytes with flow rates of several milliliters per minute. Moreover, continuous two-
electrode voltage-clamp measurements are limited by the well-known phenomenon of spontaneous channel rundown also described for ENaC
15. In contrast, exposing oocytes to test solutions between two separate measurements for up to an hour or more does not generally pose
a problem (see Figure 4A). Finally, two sequential measurements performed in the same oocyte allow paired observations of drug effects.
This has an advantage over unpaired measurements from two separate groups of oocytes (protease-treated and vehicle-treated), because
it reduces the problem of high variability between oocytes, usually observed in ion channel expression. With paired observations and the
possibility to normalize the data to the first measurement, fewer oocytes are needed per experimental group to demonstrate a significant effect
of a pharmacological agent. Normalization of the data also makes it easy to summarize data from different batches of oocytes with different ion
channel expression levels and hence different baseline currents (Figure 2D). Obviously, control experiments are necessary for this approach to
demonstrate that the ion channel activity of interest remains stable in vehicle-treated control oocytes from the first to the second measurement
(see Figure 2).

To demonstrate that proteolytic current activation correlates with the appearance of ENaC cleavage products at the cell surface, a biotinylation
approach originally described by Harris et al.9 can be used. This procedure (as detailed in the protocol section and shown in Figure 4) was
adapted to demonstrate that exposure of channels to proteases and subsequent activation of ENaC-mediated currents is paralleled by the time-
dependent appearance of cleavage fragments. The biotinylation method also allows the analysis of an overall increase or decrease of membrane
proteins at the cell surface. Thus, this method is suitable to investigate the effect of proteases and other pharmacological agents upon channel
insertion into the plasma membrane or upon channel retrieval. Moreover, western blot analysis of the biotinylated plasma membrane proteins
allows detection of protein fragments (e.g. proteolytic ENaC fragments) or changes in the glycosylation pattern which may be functionally
relevant.

In conclusion, the combination of methods used to investigate the stimulatory effect of proteases on ENaC-mediated whole-cell currents and to
demonstrate a correlation with the occurrence of ENaC cleavage products at the cell surface may be useful for a broad range of applications.
In particular, these methods may be suitable to address similar questions regarding the regulation of other ion channels, transporters or
transmembrane receptors (e.g. protease-activated receptors PARs).
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