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Ion channels in sarcoma: pathophysiology and treatment options
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Abstract
Sarcomas are characterized by aggressive growth and a high metastasis potentially leading in most cases to a lethal outcome.
These malignant tumors of the connective tissue have a high heterogeneity with numerous genetic mutations resulting in more
than 100 types of sarcoma that can be grouped into two main kinds: soft tissue sarcoma and bone sarcoma. Sarcomas are often
diagnosed at late disease stage, whereas a guaranteed diagnosis of the sarcoma type is fundamental for successful therapy.
However, there is no appropriate therapy available. Therefore, the need for new therapies, which prolong survival and improve
quality of life, is high. In the last two decades, the role of ion channels in cancer has emerged. Ion channels seem to be an ideal
target for anti-tumor therapies. However, different cancer types have their own altered ion channel pattern, and the knowledge
about the tumor-associated ion channel expression is fundamental. Here, we focus on the role of different ion channels in
sarcoma, their pathophysiology, and possible treatment options.
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Introduction

Sarcomas are characterized by aggressive growth and a high
metastasis potentially leading in most cases to a lethal outcome.
These malignant tumors of the connective tissue have a high
heterogeneity with numerous geneticmutations resulting inmore
than 100 sub-classifications [12, 13, 58]. These tumors account
for 11%of child cancer types. Sarcoma arises frommutated cells
of mesenchymal origin (fat, muscle, bone, cartilage, vascular, or
hematopoietic tissue), all sharing certain microscopic character-
istics and similar symptoms [52]. Given by this diversity of pos-
sible origin, there are many subtypes of sarcoma, which are
classified, based on their histological patterns and molecular sig-
natures [56]. Although sarcomas have relatively low incidence
rates, the disease often takes a fatal clinical course. This is due to
unspecific clinical symptomatic or no symptomatic at all in early

disease stages. Moreover, you need specialized sarcoma centers
for the molecular diagnosis of sarcomas. Another important as-
pect to mention is that treatments in specialized sarcoma centers
show a significantly better overall survival [10, 11].

Sarcomas are divided in the two main groups of (1) bone
sarcomas (including osteosarcoma, Ewing’s sarcoma, and
chondrosarcoma), accounting for around 10 % of all sarcomas,
and (2) soft tissue sarcomas (including, e.g., liposarcoma, fibro-
sarcoma, synovial cell sarcoma, rhabdomyosarcomas, gastroin-
testinal stromal tumor (GIST)) that form the vast majority of all
diagnosed sarcoma [13]. Sarcomas are further sub-classified
based on the type of presumed cell of origin found in the tumor.
So far, there is no promising drug therapy available for sarcomas.
Therefore, it is of highest interest to gain a better understanding
about the tumor diversities, tumor microenvironment, and the
mechanisms underlying the development of these cancers.

Ion channels have emerged as relevant players in the cross-
talk between tumor cells and their tumor microenvironment
and as potential targets because of the following aspects [2]:

1) Ion channels play an important role in cancer biology (pro-
liferation, angiogenesis, differentiation, apoptosis) (Fig. 1).

2) Ion channels are expressed at the cell surface as well as in
d i f fe ren t ce l lu la r componen t s of the tumor
microenvironment.

3) There are often pharmacological tools available to modu-
late ion channel activity.
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Ion transport across the cell membrane is critically impor-
tant for the hallmarks of cancer, a set of six acquired functional
capabilities of cancers defined by Hanahan and Weinberg,
namely self-sufficiency in growth signals, insensitivity to
growth-inhibitory (antigrowth) signals, evasion of pro-
grammed cell death (apoptosis), limitless replicative potential,
sustained angiogenesis, and tissue invasion and metastasis
[30]. Compared to their origin cell, cancer cells often show a
modified cancer-related ion channel expression pattern; in
most cases, a significant increase in their abundance. This is
even more manifest in tumor stem cells, which are more re-
sistant to cancer therapies. Ion channels seem to be an ideal
target for anti-tumor therapies. However, different cancer
types have their own altered ion channel pattern and the
knowledge about the tumor-associated ion channel ex-
pression is fundamental [40, 53]. In the following, we will
focus on the role of different ion channels in sarcoma
(Fig. 2; Table 1).

Ion channels in sarcoma

Ion channels are integral membrane proteins allowing the pas-
sive passage of ions into or out of a cell along their electro-
chemical gradient [34]. Ion channels themselves are able to
open and close as a response to specific regulatory signals or

as a reaction to different chemical or physical stimuli. The
channels can be classified according to the gating stimulus
or the nature of the ion species they let pass. Ion channels have
the ability to interfere in a plethora of cell processes by using
their tools of fine-tuning the chemistry, electricity, and me-
chanics of cells.

Voltage-gated K+ channels (KV)

Voltage-gated K+ channels comprise a large, ubiquitously
expressed transmembrane protein family activated by
changes in the electrical membrane potential. For humans,
40 voltage-gated potassium channel genes, grouped in 12
subfamilies, have been described [28]. According to se-
quence similarities and function, the family of voltage-
dependent potassium channels can be divided into several
subfamilies. One family of KV channels is the shaker-
related subfamily (KV1). It is named after the founding
member of the family identified in “shaker” mutants of
Drosophila melanogaster. Several other potassium chan-
nels with a high-sequence homology are identified in ver-
tebrates followed and form now together with the KV1
family [28]. At least six genes (KV1.1–KV1.6) with differ-
ent physiological functions belong to this family.

Fig. 1 Contribution of ion channel dysregulation to characteristic cancer properties

Fig. 2 Involvement of different
types of ion channels in sarcoma
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A typical member of the family consists of a pore-forming
α-unit spanning the membrane six times. Four α-subunits
(homo- or heterotetrameric) form a KV channel. The channel
may also contain auxiliary cytoplasmic β-subunits. These β-
subunits have an influence on biophysical properties, regula-
tion, and/or localization of the channel [3, 28, 61]. The first
four transmembrane segments (S1–S4) of the α-subunit con-
stitute the voltage sensor, and the last two segments (S5–S6)
flank a pore-forming loop. The channels contain a highly con-
served structural element known as the selectivity filter, which
allows K+ ions to pass at nearly their diffusion limit, while
practically blocking other ions out [41]. A conserved motif
near the C-terminus connects all members of the KV1 family.
Variations of this motif between the members account for their
different cell surface expression and localization [28, 39]. KV

channels play a crucial role in a plethora of cellular processes,
e.g., the functioning of excitable cells, regulation of apoptosis,
cell growth, and differentiation [29].

Ether a go-go (Eag = KV10.1) potassium channel

A number of ion channels are already known to be associated
with tumors. KV10.1 is now the first ion channel directly re-
lated to tumor progression [47]. The KV10.1 channel was first
cloned from a D. melanogastermutant exhibiting leg-shaking
behavior under ether anesthesia [64]. Under physiological
conditions, the expression of KV10.1 (KCNH1) is restricted
to the adult brain and few peripheral cell populations and is
not expressed in the connective tissue [42]. The first evidence
for an oncogenic potential of the K+ channel was described by
Pardo et al. already in 1999 [48].KV10.1 is involved in the cell
cycle progression of tumor cells, and KV10.1 inhibition by
antisense oligonucleotides significantly reduces cell prolifera-
tion in tumors.

KV10.1 is strongly overexpressed in various tumor types.
KV10.1 channel activity in the human tumor was shown for
the first time in primary cultures from cervical cancer using
whole-cell patch-clamp recordings [20]. In a study with 210
soft tissue sarcoma patients, Mello de Queiroz et al. showed
that KV10.1 is aberrantly expressed in over 70 % of sarcomas
by immunohistochemistry [42]. The frequency of KV10.1 ex-
p r e s s i o n d e p e n d s o n t h e h i s t o l o g i c a l t y p e :
Rhabdomyosarcoma and liposarcoma revealed frequencies
of 82 % or 56 %, respectively. However, the expression of
KV10.1 neither correlates with epidemiological nor with path-
ological parameters like tumor size or grade. By analyzing the
clinical course and outcome of liposarcoma patients, they cor-
related a high level ofKV10.1 expression with a bad prognosis
and aggressiveness of the tumor.

In another study by Wu et al., samples of 109 liposarcoma
patients were examined [71]. They also found KV10.1 aber-
rantly expressed in over 67 % of the cases but showing no
correlation of KV10.1 expression with clinicopathological fea-
tures of liposarcoma. In both studies, inhibition experiments
by using RNA interference in established sarcoma cell lines
(fibrosarcoma, rhabdomyosarcoma, and liposarcoma) resulted
in a decrease of cell proliferation and colony-forming,
underlining the importance of KV10.1 for tumor survival and
pointing forwards a possible role of KV10.1 as a biomarker in
liposarcoma [42, 71].

Wu et al. also investigated the involvement of KV10.1 ex-
pression in osteosarcoma [68]. In 71.4 % of 42 examined
osteosarcoma patients, KV10.1 was overexpressed. Again,
the expression could not be correlated with any epidemiolog-
ical parameter. In order to evaluate the potential ofKV10.1 as a
therapeutic target in osteosarcoma, a short hairpin RNA
(shRNA) targeting KV10.1 was designed. The shRNA was
applied to the human osteosarcoma cell line MG-63, as well
as tomice of a xenograft osteosarcomamodel. The application

Table 1 Dysregulated expression of ion channels in sarcoma. List of in this review described ion channels involved in sarcoma tissue and cell lines.
Human names of proteins and genes are shown

Ion channel protein name Gene name Patient sarcoma tissue Sarcoma cell line Reference

KV10.1 KCNH1 Rhabdomyosarcoma, liposarcoma,
osteosarcoma

Fibrosarcoma, rhabdomyosarcoma,
liposarcoma, osteosarcoma

[42, 68–71]

KV1.3 KCNA3 Leiomyosarcoma, alveolar rhabdomyosarcoma,
embryonal rhabdomyosarcoma

Osteosarcoma [7, 8, 72]

KV1.5 KCNA5 Leiomyosarcoma, alveolar rhabdomyosarcoma,
embryonal rhabdomyosarcoma, Ewing sarcoma

Osteosarcoma, Ewing sarcoma [7, 8, 55, 66]

NaV1.6 SCN8A Ewing sarcoma [33]

CLC3 CLCN3 Osteosarcoma [19]

DOG1, Anoctamin-1 DOG1, ANO1,
TMEM16A

Gastrointestinal stroma tumor Gastrointestinal stroma tumor [6, 65]

TRPM8 TRPM8 Osteosarcoma [63, 73]

TRPC4/C1 TRPC4/TRPC1 Synovial sarcoma [43]

Piezo1 PIEZO1 Osteosarcoma, synovial sarcoma [38, 57]
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led to a decrease in angiogenesis and tumor growth. Wu et al.
propose a suppression of tumor growth via the vascular endo-
thelial growth factor—phosphoinositide 3-kinase—protein ki-
nase B signaling pathway [69]. A combination of KV10.1
suppression and simultaneous tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL) overexpression in MG-
63 and the xenograft osteosarcoma mouse model led to syn-
ergistic anti-tumor effects [70]. In summary, these results
highlight the role of KV10.1 in tumor proliferation, growth,
and angiogenesis.

Promising treatment options targeting KV10.1 that have
been described to reduce tumor progression/metastasis in the
last years include monoclonal antibodies, antisense oligonu-
cleotides/siRNA, pharmacological KV10.1 channel blockers
like astemizole, or imipramine [18, 24, 27, 31, 45].

KV1.3 and KV1.5 potassium channels

Especially two members of the KV1 family, KV1.3 and KV1.5,
have been connected with the development and progression of
cancer. In contrast to KV10.1, KV channels are widely
expressed in the body. Pathological states in which these chan-
nels are involved can be attributed to a changed quantity of the
channels [9, 16].

KV1.3, also known as KCNA3, is an intronless gene coding
for a K+ channel expressed in a variety of different cell types
and tissues, including microglia, osteoclasts, vascular smooth
muscle cells, and leucocytes of the immune system. The chan-
nel belongs to the delayed rectifier class that allows nerve cells
to effectively repolarize after an action potential [28, 72]. The
channel is activated very fast and shows C-type-dependent
inhibition and recovery. The modulation ofKV1.3 is an impor-
tant mechanism for apoptosis. In the past years, KV1.3 has
been implicated with proliferation and growth of several dif-
ferent cancer types, e.g., breast and prostate cancer and glio-
mas. In rat prostate cell lines, Kv1.3 currents have been detect-
ed by electrophysiological patch-clamp recordings [22].
However, the mechanism underlying the involvement of
KV1.3 in tumorigenesis is under debate [9, 39].

KCNA5 codes for member 5 of the KV1 voltage-gated
potassium channel family (KV1.5). KV1.5 is expressed in var-
ious tissues like the heart, the brain, and skeletal muscles. In
humans, the channels underlie the cardiac ultra-rapidly, acti-
vating delayed rectifier K+ current, and has a crucial role in
cell cycle regulation. The channel is regulated by extracellular
potassium and pH [28, 36, 66].

KV1.3 and KV1.5 are co-expressed in several tissues like brain
andmuscle and are remodeled during tumorigenesis [9]. In 2013,
Wu et al. investigated the expression of KV1.3 in osteosarcoma
cells [72]. They have shown thatKV1.3 is upregulated in MG-63
osteosarcoma cells. The application of aKV1.3 specific inhibitory
shRNA significantly reduced cell proliferation and induced apo-
ptosis in the sarcoma cells. Furthermore, the inhibition of KV1.3

in MG-63 xenografts on nude mice suppressed the growth of
tumors. Shortly after these findings, the relevance of KV1.5 ex-
pression in osteosarcoma was studied [66].KV1.5 was aberrantly
expressed in osteosarcoma cells. KV1.5 specific inhibition via
shRNA significantly suppressed the proliferation of MG-63 os-
teosarcoma cells and arrested the cells in the G0/G1 phase of the
cell cycle. Hence, targeting the ion channelsKV1.3 orKV1.5 may
be a novel therapeutic strategy for the treatment of osteosarcoma.

In a study by Bielinska et al. , leiomyoma and
leiomyosarcoma samples of patients were studied for KV1.3
and KV1.5 expression [8]. KV1.3 and KV1.5 are remodeled in
human smooth muscle sarcoma. The expression of KV1.3 was
strongly enhanced in leiomyosarcomas compared to
leiomyomas or healthy tissue, and also the expression of
KV1.5 was elevated in both tumor types. The high expression
levels could be correlated with malignancy and aggressive-
ness of the sarcoma. The same group also investigated
KV1.3 and KV1.5 expression in skeletal muscle sarcoma [7]:
Aggressive alveolar rhabdomyosarcoma (ARMS) and embry-
onal rhabdomyosarcoma (ERMS) were studied. The results of
the study revealed that KV1.5 expression was moderate in
adult muscle and low in ERMS, whereas it was notable in
ARMS and embryonic samples. Interestingly, Kv1.3 expres-
sion showed nomajor differences between ARMS/ERMS and
healthy samples. The authors state a correlation of KV1.3 and
KV1.5 expression with tumor malignancy. These findings in-
dicate that KV1.3 and KV1.5 represent potential targets for the
treatment of human leiomyosarcoma and rhabdomyosarcoma.
An in silico analysis of the miRNA expression in
leiomyosarcoma compared to smooth muscle samples re-
vealed a differential expression of various miRNAs involved
in molecular pathways in sarcoma samples [5]. These
miRNAs represent a possible target for leiomyosarcoma
therapies.

In contrast to the aforementioned studies showing elevated
expression of KV1.3 and KV1.5 channels involved in tumor
progression, a study on Ewing sarcoma postulates reduced
KV1.5 expression in favor of tumor progression [55]. Ewing
sarcoma is an aggressive bone or soft tissue tumor character-
ized by overexpression of polycomb proteins, which methyl-
ate (i.e., silence) target genes involved in cell differentiation. It
was shown that in particular KCNA5, the gene of KV1.5 was
epigenetically repressed contributing to cancer cell survival
and proliferation (Fig. 1). Together with the aforementioned
shRNAs, natural molecules like scorpion toxins could act as
KV1.3 channel blockers for therapeutic applications [46].

Voltage-gated Na+ channel NaV1.6

Voltage-gated sodium channels (NaV) comprise a family of ten
members that are widely distributed in neurons of the central
nervous system [4, 15, 23] and may play a role in cancer [49].
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The Na+ selective channels efficiently propagate action poten-
tials when the membrane potential is depolarized by an influx
of Na+ ions. The structure of NaV channels is quite similar to
the previously described KV channels. However, compared to
them, the overall similarity of NaV channels is rather high. The
monomers are composed of four homologous α-subunits,
each spanning the plasma membrane six times, and auxiliary
β-subunits. The composition of β-subunits depends on the
localization of the channel [14, 15]. NaV1.6 is encoded by
the SCN8A gene and can be found in high density in nodes
of Ranvier. The unique properties of the channel allow it to
sustain repetitive excitation [15]. A recent study by
Hernandez-Muñoz et al. investigated the expression of the
transcriptional repressor RING1B and the subsequent influ-
ence on NaV1.6 in 16 primary Ewing sarcoma specimens [33].
RING1B was shown to inhibit the promotor of SCN8A. It is
highly expressed in Ewing sarcomas leading to suppressed
Nav1.6 expression. The authors postulate that a reduced func-
tion of NaV1.6 protects the Ewing sarcoma cells from apopto-
sis and the signaling pathway most likely impaired is NF-κB.

Voltage and Ca2+-activated Cl− channel DOG1
(TMEM16A, Anoctamin1)

Voltage- and calcium-activated chloride channels (CaCCs) play
an essential role in cell physiology and are expressed in many
different cell types. The channels are involved in the regulation of
neuronal and cardiac excitability, regulation of vascular tone,
smooth muscle contraction, and transepithelial Cl− secretion
[32]. The CaCCs are hard to classify due to missing drugs that
could block one specific channel and the difficulty to determine
the molecular identity. The TMEM16A (transmembrane mem-
ber 16A) protein was identified as a member of the CaCCs [21].
The protein has eight putative transmembrane segments and in-
tracellular N- and C-termini. The channels are assembled by
dimers. TMEM16A appears in various isoforms generated via
alternative splicing and the isoforms differ in voltage dependence
and Ca2+ sensitivity [21]. In 2004, TMEM16Awas also named
gastrointestinal stromal tumor 1 (DOG1), as it was found to be
ubiquitously expressed in gastrointestinal stroma tumors (GIST)
[65]. West et al. have shown that 97.8 % of 139 scorable GIST
samples of patients were positive for DOG1 while only 4 of 438
non-GIST cases also showed a positive immunoreaction to
DOG1 [65]. DOG1 was quickly included as a biomarker, but
the functional role was still unclear at that time. In 2014, electro-
physiological studies from Berglund et al. in GIST882 cells re-
vealed that the DOG1-mediated Cl− current is voltage and Ca2+

activated and regulated by DOG1 channel activators and inhib-
itors [6]. This group also reported a high expression of DOG1 in
GIST cells and that the cellular localization of DOG1 varies
between imatinib-sensitive and resistant GIST cells. However,
in vitro experiments with DOG1-regulating modulators revealed

only a small effect of DOG1 on cell viability and proliferation of
GIST cells. The reason for this high and rather specific expres-
sion ofDOG1 inGIST remains unclear and further investigations
are needed to shed light on the function of DOG1 and its poten-
tial as a therapeutic target.

Voltage-gated chloride channel 3 (CLC-3)

Voltage-gated chloride channels (CLCs) constitute an evolu-
tionarily well-conserved superfamily, which includes two dis-
tinct functional groups: voltage-gated chloride channels and
Cl−/H+ antiporters. Their functions in higher animals include
cell volume regulation, signal transduction, transepithelial
transport, control of electric excitability, and acidification of
intracellular organelles [37]. Nine CLC-like proteins have
been cloned from mammals. CLC-3 is one member of the
CLC family and participates in the process of proliferation,
apoptosis, and drug resistance in many types of cancers [35].
The expression of CLC-3 produces outwardly rectifying Cl−

currents that can be inhibited by the activation of protein ki-
nase C [35]. In a study from Du et al., it was shown that CLC-
3 is upregulated in human osteosarcoma cells and in cells with
high metastatic potency [19]. The expression of CLC-3 corre-
lated with the rate of cell proliferation. A siRNA-induced in-
hibition of CLC-3 arrested the sarcoma cells in phase G0/G1 of
the cell cycle. Additionally, the activation of Akt-GSK-3β via
phosphorylation was suppressed. These findings indicate that
CLC-3 may be a potential target for osteosarcoma therapy.

Transient receptor potential (TRP) channels

The TRP superfamily of cation channels can be divided into
seven subfamilies: five group 1 subfamilies (TRPA (ankyrin),
TRPC (canonical), TRPM (melastatin or long TRPs), TRPN
(Nomp-C homologues), and TRPV (vanilloid)) and two group
2 subfamilies (TRPML (mucolipin) and TRPP (polycystin)).
Members of the TRP channel family share the feature of six
transmembrane domains (S1–S6) and intracellular N- and C-
termini containing putative protein interaction and regulatory
motifs [25]. Comparable with voltage-gated K+ channels, tetra-
mers form cation-selective pores. However, TRP channels are
rather classified according to their amino acid sequence than to
their cation selectivity. TRP channels play a critical role in sen-
sory physiology and have also importance for motile function
[26, 62]. Various TRP channels have been associated with cancer
[39, 54], but their involvement in sarcoma is still not clear.

TRPM8

The mammalian TRPM family has eight members. The tran-
sient receptor potential melastatin 8 (TRPM8) channel, also
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known as “cold receptor” was originally identified in prostate
tissue [60]. This early study already showed that TRPM8 ex-
pression is elevated in prostate cancer cell lines and several
other cancer cell line. Soon after the identification of the chan-
nel, it was shown that TRPM8 acts as ion channel being acti-
vated by cold temperature and the cooling agent menthol in
peripheral sensory neurons, and therefore, plays a critical role
in the detection of cold temperatures [50]. TRPM8 constitutes
a nonselective cation channel with a modest Ca2+ permeability
[1]. TRPM8-mediated currents characterized by a high Ca2+

selectivity have been reported to be induced by stimulation of
prostate cancer cells by either coolness, menthol, or icilin [59].

The group of Wang et al. was the first to demonstrate that
TRPM8 is highly overexpressed in osteosarcoma by investigat-
ing 10 samples from osteosarcoma patients [63]. A siRNA-
induced knockdown of TRPM8 in osteosarcoma cell lines in-
duced an impaired intracellular Ca2+ homeostasis. Furthermore,
the inhibition of TRPM8 enhanced the efficacy of epirubicin-
induced apoptosis in the sarcoma cells. The authors propose that
TRPM8 is required for cell proliferation and motility. They show
that the suppression of TRPM8blocks theAkt-GSK-3β pathway
and the subsequent phosphorylation of p44/p42 and FAK. These
results reveal that TRPM8may play a role as a therapeutic target
in osteosarcoma.

A subsequent clinical study with primary osteosarcoma
patients by Zhao and Xu involving two consecutive cohorts
of patients aimed to investigate the expression and prognostic
significance of TRPM8 in osteosarcoma [73]. The two cohorts
A and B contained 20 and 98 patients, respectively. They
confirmed the previous findings of a significantly higher ex-
pression of TRPM8 compared to normal bone tissue [63, 73].
Samples of cohort Awere examined by qPCR and samples of
cohort B by immunohistochemistry for expression of TRPM8.
Osteosarcoma patients compared to the healthy control group
showed a significantly higher expression of TRPM8 (3.34 ±
0.23 vs. 0.55 ± 0.12; P < 0.05) and 60.2 % positivity for
TRPM8, respectively. TRPM8 levels were markedly higher
in patients with metastasis or osteosarcoma at higher clinical
stage compared to those with a lower clinical stage and no
metastasis. Therefore, a higher TRPM8 expression is associ-
ated with an unfavorable prognosis for the patients [73]. Thus,
TRPM8 may serve as a clinical biomarker in the diagnosis or
prediction of clinical outcome in patients with osteosarcoma.

Heteromeric TRPC4/C1

For the mammalian TRPC family, seven members have been
described. However, in humans, only six are expressed as the
human TRPC2 is a pseudogene. The mammalian TRPC fam-
ily can be divided into 4 subsets according to functional sim-
ilarities and sequence homology: TRPC1, TRPC2, TRPC3/6/
7, and TRPC4/5 [62]. TRPCs, in general, are nonselective
Ca2+ permeable cation channels that need phospholipase C

for their activation [51]. TRPC1 can form heterotetramers
with TRPC4 and TRPC5 [44].

In human synovial sarcoma cells (SW982), the
heterotetramer TRPC4/C1 is expressed. Muraki et al. investi-
gated the cytotoxic effect of the organic compound Englerin A
on human synovial sarcoma cells [43]. There, they identified a
sarcoma selective cytotoxicity of Englerin A, but not in nor-
mal cells. It is proposed that TRPC4/C1 is the primary target
of Englerin A and the effect is mediated by Na+ loading via
activation of heteromeric TRPC4/C1 channels coupled with
insufficient Na+/K+-ATPase activity. These findings also indi-
rectly indicate an aberrant expression of TRPC4/C1 in syno-
vial sarcoma cells, as normal cells are not affected.

Mechanically activated cation channel Piezo1

In 2010, Piezo1 was affirmed to be a mechanically activated
cation channel [17]. Piezo1 constitutes a huge membrane pro-
tein with 14 transmembrane segments. The trimeric complex
has the shape of a propeller with three curved “blades”
encircling a central poor permeable for cations. The channel
is mainly expressed in tissues exposed to fluid pressure and
flow. Piezo1 can be activated bymechanical stress, shear stim-
uli on the cell membrane, and by chemical agonists, e.g.,
2-[5-[[(2,6-dichlorophenyl)methyl]thio]-1,3,4-thiadiazol-2-
yl]-pyrazine (Yoda1) [67].

A recent study provided evidence for the involvement of
Piezo1 in osteosarcoma [38]. They have shown that Piezo1
protein is expressed in human osteosarcoma cells (MG63 and
U2). In a mechanical stretch model with human osteosarcoma
cells, it was shown that Piezo1 promoted apoptosis of osteo-
sarcoma cells under stretch force, which could be suppressed
via shRNA inhibition of Piezo1. However, in in vivo experi-
ments with nude mice, an inhibition of Piezo1 could signifi-
cantly restrain tumor growth after 4 weeks [38]. In 2018,
Suzuki et al. investigated the possible role of Piezo1 in cell
viability of synovial sarcoma cells [57]. They showed that
Piezo1 is highly expressed in synovial sarcoma cells SW982
and could be activated by the Piezo1 agonist Yoda1 in a
concentration-dependent manner. A siRNA-induced Piezo1
knockdown significantly induced reduced cell viability in sar-
coma cells. However, the molecular mechanism explaining
Piezo1 involvement in cell viability is yet to be elucidated.
In conclusion, these described publications indicate that
Piezo1 may be a novel potential therapeutic target for the
treatment of osteosarcoma/synovial sarcoma.

Concluding remarks

Sarcomas show a plethora of more than 100 different malig-
nant tumors, some of which differ greatly in terms of their
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biological behavior, their prognosis, and their response to dif-
ferent therapeutic approaches. The variety of different sarco-
ma types together with the diversity of available drugs and the
requirement of an exact knowledge of the various side effects
demands a high degree of specialization and experience and
makes sarcoma treatment very difficult. A safe and rapid di-
agnosis and the identification of the type of sarcoma are fun-
damental for successful treatment. Therefore, there is a high
need for new strategies and approaches to face the difficulties
of sarcoma tumor treatment and diagnosis. A specified pattern
of ion channel expression could support a safe and fast sarco-
ma therapy. Because of their large functional and structural
diversity, K+ channels have enormous potential as targets for
cancer treatment.

Inhibition of ion channels by pharmacological tools, mono-
clonal antibodies, or antisense oligonucleotides/siRNA may
be an attractive strategy to counteract sarcoma growth, prevent
metastasis, and enhance apoptosis of sarcoma cells. Further
studies are required to validate these ion channels as a poten-
tial diagnostic target for the treatment of the various sarcoma
types and to possibly identify new, patient-tailored, therapeu-
tic approaches.
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