Cytosolic Phospholipase A₂ (PLA₂), but Not Secretory PLA₂, Potentiates Hydrogen Peroxide Cytotoxicity in Kidney Epithelial Cells*

(Received for publication, December 14, 1995, and in revised form, May 24, 1996)

Adam Sapirstein[‡], Richard A. Spech[‡], Ralph Witzgall, and Joseph V. Bonventre§

From the Medical and Anesthesia Services, Massachusetts General Hospital, and Departments of Medicine and Anesthesia, Charlestown, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115

Phospholipase A₂ (PLA₂) and reactive oxygen species have been implicated both individually and synergistically in various forms of cellular injury. The form(s) of PLA₂ important for cell injury and the implications of enhanced activity of the enzyme, however, have not been discerned. Previous studies reveal an increase in PLA₂ activity associated with cell injury, but this association does not establish a causal relationship between the increase in activity and the injury. LLC-PK₁ cell lines were created that express either the cytosolic PLA₂ or a group II PLA₂. The susceptibility of these cells to hydrogen peroxide toxicity was determined in order to evaluate the relative importance of these two forms of PLA₂ in oxidant injury. Expression of cytosolic PLA₂ in the LLC-cPLA₂ cell line was associated with a 50-fold increase in PLA₂ activity in the cytosolic fraction, an increase in agonist-stimulated arachidonate release, and immunodetection of the cytosolic PLA₂ protein that was undetectable in control cells. Exposure to hydrogen peroxide or menadione, but not mercuric chloride, resulted in significantly greater lactate dehydrogenase release in LLC-cPLA₂ cells when compared with control cells. Exogenous arachidonic acid (150 µm) did not enhance hydrogen peroxide-induced injury. The intracellular calcium chelator, 1,2-bis-(o-aminophenoxy)ethane-N,N,N,N-tetraacetic acid/tetra(acetoxymethyl) ester, protected the cells against injury, but the calcium ionophore, A23187, did not increase injury. Glycine conferred no protective effect against hydrogen peroxide toxicity. By contrast to these results with cytosolic PLA₂-expressing cells, secretory PLA₂ expression to very high levels did not increase susceptibility to hydrogen peroxide. Thus, cytosolic PLA, may an be an important mediator of oxidant damage to renal epithelial cells.

Phospholipase A_2 (PLA₂)¹ and reactive oxygen species have

been implicated in various forms of cellular injury (1–3). PLA_2 activation may adversely affect cell viability by direct actions on membranes or indirectly due to metabolic products produced by the activity of this family of enzymes. PLA_2 can cause membrane degradation and changes in plasma and mitochondrial membrane bioenergetics and permeability (4–6). These effects, together with increased production of lysophospholipids, arachidonic acid, eicosanoids, platelet-activating factor, and reactive oxygen species (7) due to increased PLA_2 action, have been implicated in destructive cellular processes in kidney (4, 8–10), heart (11), intestine (12), and central nervous system (13–15).

We have proposed that PLA₂ can act synergistically with reactive oxygen species to cause cellular injury due to enhanced susceptibility of peroxidized membranes to the action of PLA₂ (4). Reactive oxygen species are considered to be important mediators of cytotoxicity in a variety of situations, including ischemia/reperfusion (16), toxic cellular injury (17), and apoptosis (18, 19). Oxidant stress and peroxidation of lipid substrates have been shown to enhance PLA₂ activity (2, 14, 15), and the associated activation of PLA₂ has been proposed to be a critical factor in injury (2, 15). Despite such evidence, the role of PLA₂ in cellular injury remains controversial (20). PLA₂ has been shown to be protective in some settings of lipid peroxidation and hypoxia (21-23). Furthermore, since many different forms of PLA₂ exist (24, 25), a clarification of the importance of PLA₂ in cell injury requires the recognition of the role played by each of the various forms of the enzyme (25) present in the cell.

The 85-kDa cytosolic PLA₂ (cPLA₂) may be of particular importance as a mediator of cellular injury. This enzyme has a high specificity for arachidonic acid at the sn-2 position of phospholipids and is translocated to its site of action, lipid membranes, in response to increases in cytosolic calcium concentrations in the nanomolar range (26). Cytosolic calcium concentrations increase in many pathobiological states, such as those associated with cellular ATP depletion, toxin, and reactive oxygen species exposure. Hence, activation of this enzyme would be expected under various conditions in which cells are injured. PLA₂ activation with arachidonic acid release is associated with membrane degradation and changes in plasma and mitochondrial membrane bioenergetics and permeability (4-6). Enzymes that metabolize arachidonic acid produce reactive oxygen species with destructive potential (27). Oxygenated metabolites of arachidonic acid may themselves be toxic (28), as may the lysophospholipids that result from cPLA₂ action on phospholipids. The amphiphilic lipid molecules that are generated by PLA₂ action can have direct detergent actions on the

^{*} This work was supported by National Institutes of Health Grants DK39773, DK 38452, NS 10828, and T32DK07540. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

[‡] The first two authors contributed equally to the design and execution of this work.

[§] To whom correspondence and reprint requests should be addressed: Massachusetts General Hospital East, 149-4002 13th St., Charlestown, MA 02129-2060. Tel.: 617-726-3770; Fax: 617-726-4356.

MA 02129-2060. Tel.: 617-726-3770; Fax: 617-726-4356. ¹ The abbreviations used are: PLA₂, phospholipase A₂; cPLA₂, cytosolic PLA₂; sPLA₂, group II PLA₂; BAPTA-AM, 1,2-*bis*-(*o*-aminophenoxy)ethane-*N*,*N*,*N'*,*N'*-tetraacetic acid/tetra(acetoxymethyl) ester; DMEM, Dulbecco's modified Eagle's medium; LDH, lactate dehydrogenase; PBS, phosphate-buffered saline; PC, 1-stearoyl-2-arachidonyl phosphatidylcholine; PMA, 12-myristate 13-acetate; BSA, bovine serum

albumin; PAGE, polyacrylamide gel electrophoresis; MDCK, Madin-Darby canine kidney cells.

membrane and can influence the activity of membrane channels and/or proteins. We have proposed that $cPLA_2$ plays an important role in cell injury in the post-ischemic kidney and brain (8, 14).

In contrast to cPLA₂, the 14-kDa group II PLA₂ (sPLA₂), found in many organs and cell types, is a prototypical interfacial enzyme that is secreted from cells, has no selectivity for the fatty acid in the *sn*-2 position, and requires higher calcium concentrations for activation (29). It has characteristics in common with snake venom group II PLA₂ and is found in inflammatory exudates (30); however, its role in cytotoxicity is undefined.

Other forms of PLA_2 are less well characterized. Some have proposed that calcium-independent forms are important for cell injury (9). The structural characteristics of these calcium-independent forms have not been reported to date.

To better define potential roles of cPLA₂ and sPLA₂ in direct cytotoxicity and to explore the complex interrelationship between PLA₂ and reactive oxygen species in cellular injury, we examined the effect of PLA₂ expression on hydrogen peroxideinduced injury in renal epithelial cells that normally express low amounts of PLA₂ activity. LLC-PK₁ cell lines were created that stably express cPLA₂ (31) or the 14-kDa group II PLA₂, $sPLA_2$ (30). When exposed to H_2O_2 or menadione, the $cPLA_2$, but not sPLA₂, overexpressing cells were much more susceptible to cell death than control cells. Of the potentially injurious agents examined, this predisposition to injury appeared to be specific for H₂O₂-mediated toxicity, because cPLA₂ expressing cells did not demonstrate enhanced injury secondary to mercuric chloride or A23187. The increased susceptibility to H_2O_2 injury was mitigated by pretreatment of the cells with BAPTA-AM, a chelator of intracellular calcium, but not with glycine, an agent found to protect kidney cells against various forms of injury (32).

EXPERIMENTAL PROCEDURES

Materials-A23187, HgCl₂, phorbol 12-myristate 13-acetate (PMA), β -NAD, β -NADPH, glutathione, glutathione reductase, xanthine, xanthine oxidase, 5,5'-dithiobis(2-nitrobenzoic acid), lithium lactate, menadione, and [³H]arachidonic acid were purchased from Sigma. H₂O₂ and glycine were obtained from Fisher. The aminoglycoside antibiotic, G418 sulfate, was from Life Technologies, Inc. Bovine serum albumin fraction V (BSA) was from Boehringer Mannheim. 1-Stearoyl-2-[1-14C]arachidonyl phosphatidylcholine ([14C]PC) was from Amersham Corp. The acetoxymethyl form of the intracellular Ca²⁺ chelator 1,2-bis-(o-aminophenoxy)ethane-N,N,N,N-tetraacetic acid/tetra(acetoxymethyl) ester (BAPTA/AM) and hygromycin B were obtained from Calbiochem. The cell permeant form of the fluorescent H_2O_2 indicator 5-(and -6)-carboxy-2',7'-dichlorodihydro-fluorescein diacetate was obtained from Molecular Probes (Eugene, OR). The WAKO NEFA-C fatty acid detection kit was purchased from Biochemical Diagnostics Inc. (Edgewood, NY). 1-Palmitoyl,2-oleoyl-phosphatidylglycerol was obtained from Avanti Polar Lipids (Alabaster, AL). Protein measurements based on Bradford's assay were performed with reagents from Bio-Rad.

Cell Culture—LLC-PK₁ cells were obtained from the American Type Culture Collection (Rockville, MD). Cells were maintained in DMEM containing 4.5 g/liter glucose and supplemented with 1% L-glutamine and 10% fetal calf serum and kept at 37 °C in 95% air, 5% CO₂ without antibiotics. Stable cell lines transfected with pcDNA I/Neo, pcDNA3, or pREP4 (Invitrogen, San Diego, CA) were maintained with 400 μ g/ml G418 sulfate (pcDNA I/Neo or pcDNA3 transfected cells) or 500 μ g/ml hygromycin B (pREP4 transfected cells). In preparation for experiments, cells were replated and grown in the absence of antibiotics in culture conditions, cell passage number, and plating density may have resulted in some intrinsic variability between experiments. All experiments were, therefore, conducted with contemporaneous matched controls.

Plasmid Expression Systems—The mammalian expression construct containing human cPLA₂, pmt-PLA₂ (31), was a gift of Dr. Clark at Genetics Institute (Cambridge, MA). The plasmid pSQ140, containing human sPLA₂ (30), was the gift of Dr. Browning at Biogen Inc. (Cambridge, MA). The cDNA for human sPLA₂ was released from pSQ140 as

the 835-base pair EcoRI/NotI restriction fragment. This fragment was cloned into the compatible restriction sites of the pcDNA3 mammalian expression vector to create pcDNA3/sPLA₂. The construct was sequenced using the Sequenase DNA Sequencing Kit from U. S. Biochemical Corp. The sequence and orientation of the insert in pcDNA3/sPLA₂ was compared with the published sequence (30).

Creation of Stable Transfectants-LLC-PK1 cells were plated on 10-cm tissue culture plates at a density of approximately 250,000 cells/ plate 2 days before transfection. The cells were transfected using the calcium phosphate technique as published (33). LLC-cPLA₂ cells were created by co-transfection of LLC-PK₁ cells with 2 μ g of the G418 resistance plasmid pcDNA I/Neo and 18 µg of pmt-PLA2. LLC-sPLA2 cells were created by the transfection of LLC-PK₁ cells with 20 μ g of pcDNA3/sPLA₂. LLC-vector cells were created by transfection with a neomycin or hygromycin resistance plasmid or with the pcDNA3 plasmid. There were no differences in characteristics of the vector control cells whether they carried the hygromycin or neomycin resistance plasmid. Two days after transfection the cells were trypsinized and transferred to medium containing G418 sulfate (400 $\mu\text{g/ml})$ for selection. Limiting dilutions of the transfected cells were made, and subclones with the highest cPLA2 (LLC-cPLA2) or sPLA2 (LLC-sPLA2) activity were selected and used for all further experiments.

Arachidonic Acid Release—Subconfluent cells in 12- or 24-well plates were labeled for 18–24 h with [³H]arachidonic acid (0.2–0.3 μ Ci/ml) in serum-free Dulbecco's modified Eagle's medium (DMEM). After labeling, the medium was removed, and cells were washed with DMEM containing 0.2% BSA. To measure stimulated arachidonic acid release, cells were exposed to agonists or vehicle in DMEM, 0.2% BSA for 20–30 min at 37 °C in 95% air, 5% CO₂. The medium was removed and centrifuged, and the radioactivity in 250 μ l of supernatant was measured in a liquid scintillation counter. In some experiments, cells were solubilized with 0.5 N NaOH or 1% Triton X-100, and the amount of [³H]arachidonic acid released into the medium was expressed as a percent of total (cell-associated plus released).

PLA₂ Activity-Cells were washed with phosphate-buffered saline (PBS) and lysed by sonication (Heat Systems-Ultrasonics, Inc.) in a buffer containing 120 mM NaCl, 1 mM EDTA, and 50 mM Tris/HCl at pH 9.0. The lysate was centrifuged at 100,000 \times g for 1 h at 4 °C. The supernatant was removed and stored at 4 °C. cPLA₂ activity was assayed at 37 °C for 20 min in 100- μ l reactions that included 10 μ l of [¹⁴C]PC (final concentration 5 µM), 5 mM CaCl₂, 1 mM EDTA, 100 mM NaCl, and 75 mM Tris/HCl at pH 9.0. Reactions were quenched by adding 800 µl of Dole's reagent (32% isopropyl alcohol, 67% n-heptane, and 1% of 1 N H₂SO₄) (34) and vortexing. The sample was centrifuged for 2 min, and 400 μ l of the upper phase was transferred to a new tube containing 600 µl of *n*-heptane and 50 mg of silica gel. After vortexing and allowing the silica gel to settle, 800 μ l of supernatant was transferred to another tube containing 200 μ l of *n*-heptane and 50 mg of silica gel. After vortexing and centrifuging, 800 μ l of supernatant was counted for radioactivity in a liquid scintillation counter. In order to elute membrane-associated PLA_2 activity, the 100,000 \times g pellet was resuspended, sonicated, and incubated at 4 °C for 1 h in a buffer of 50 MM Tris/HCl, pH 8.0, 1 MM EGTA, 1 MM EDTA, and 1 M KCl before repeating centrifugation (8). The cPLA₂ activity in 10 μ l of the supernatant was assayed in a volume of 100 μ l of the previously described cPLA₂ assay buffer. The protein concentrations in the cell fractions were determined using bovine serum albumin as a standard.

To measure sPLA₂ activity released from cells, tissue culture medium of 90-95% confluent cell monolayers was changed to serum-free DMEM for 24 h; after that the medium was collected and immediately centrifuged to remove any cellular debris. sPLA₂ activity was assayed using a detergent/phospholipid substrate as described in detail by Santos (35). Briefly, 10 μ l of each sample was placed in a 96-well plate (Falcon) that had been pretreated with a solution of 1% gelatin in PBS and warmed to 37 °C. Fifty microliters of a substrate solution consisting of 0.35% w/v 2-oleoyl phosphatidyl glycerol in 0.4% w/v Nonidet P-40, 0.2% w/v sodium deoxycholate, 108 mM Tris/HCl pH 8.0, 10.8 mM CaCl₂, and 0.09 mm EDTA was added to each sample. The samples and substrate were incubated at 37 °C for 30 min. The reaction was quenched by the addition of 80 μ l of color reagent A from the NEFA-C kit and incubated another 10 min, followed by the addition of 150 μ l of color reagent B from the NEFA-C kit. After 10 min, the sample absorption was measured at 550 nm using an enzyme-linked immunosorbent assay plate reader. Specific activity was determined from standard curves created using dilutions of 1 mM oleic acid. Linearity of the test system over the range of the assay was documented using porcine pancreatic PLA₂ at known concentrations as a standard.

Immunoblotting-Immunodetection of cPLA2 was performed as de-

scribed elsewhere (36). Briefly, crude extracts of proteins were separated by SDS-10% PAGE and transferred to Immobilon polyvinylidene difluoride membranes (Millipore, Bedford MA). Nonspecific binding was blocked by preincubation with 5% nonfat dry milk in PBS containing 0.5% Tween 20 and 0.1% Thimerosal (Sigma). The membrane was exposed to 1:1000 diluted polyclonal antibody raised against porcine spleen cPLA₂ (36) and washed, and antibody binding was detected by using peroxidase-conjugated goat anti-rabbit IgG (Bio-Rad) and the chromogenic substrate, 4-chloro-1-naphthol.

Cytotoxicity Assays-In adherent cells grown in 12- or 24-well plates, cell death was determined by the fraction of the total lactate dehydrogenase (LDH) that had been released into the medium. Cells were tested when at least 80% confluent but before dome formation. All cells were fed with DMEM with 10% fetal calf serum the day before experiments. To test for H₂O₂ or A23187 toxicity, the medium was removed and replaced with serum-free DMEM, except for BAPTA/AM pretreatment experiments in which cells were incubated in nominally Ca²⁺-free PBS. Cells were exposed to H₂O₂ or A23187 for 180 min or menadione for 90 min at 37 $^\circ C$ in 95% air, 5% CO_2 unless otherwise noted. The medium was then removed and centrifuged to remove any cells. The adherent cells were lysed with 1% Triton X-100 for 10 min. and this was added to any pellet from the centrifuged medium and vortexed. LDH activity in the medium and cell lysate was determined by adding 400 μ l of the sample to 2.6 ml of 7 mm β -NAD in glycine/lactate buffer (58 mm lithium lactate and 200 mM glycine at pH 8.9) at 37 °C and measuring absorbance at 340 nm over 2 min.

Irreversible cell injury was also measured using trypan blue exclusion when so indicated. Cells were trypsinized, suspended in DMEM 10% fetal calf serum, centrifuged gently, and resuspended in serum-free DMEM. Cells were resuspended at 0.5–1.0 \times 10⁶/ml in 12-well plates and exposed to an agent of interest or vehicle at 37 °C in 95% room air and 5% CO₂. After the exposure, any adherent cells were gently scraped off, and the cell suspension was mixed with an equal volume of 0.4% trypan blue for 2 min before counting. Two hundred cells in random fields were counted, and cell death was reported as the percentage of all cells that took up trypan blue.

Antioxidant Enzyme Activities and Glutathione Content—Activities of three antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) and total glutathione content were assayed using confluent cell monolayers in 10-cm cell culture plates. For each enzyme assay, the cells were washed twice in the appropriate buffer, scraped from the plate, centrifuged, resuspended in buffer, and lysed by sonication on ice. Cell lysates for catalase measurement were centrifuged for 30 min at 14,000 × g at 4 °C, and the supernatant was treated with 1/20th a volume of 1% Triton X-100 in buffer prior to measurement. Activities were normalized to cell protein.

Superoxide dismutase activity was assayed by spectrophotometric determination of the reduction of cytochrome *c* as described (37). In brief, the xanthine/xanthine oxidase reaction was performed in 50 mm potassium phosphate, 0.1 mM EDTA at pH 7.8 and 20 °C. Sample protein was added to achieve a 50% inhibition in the rate of superoxide-induced cytochrome *c* reduction. Assays were repeated with the addition of 1 mm potassium cyanide to distinguish Mn superoxide dismutase (resistant) from CuZn superoxide dismutase. Results are expressed in superoxide dismutase units/mg protein.

Catalase activity was measured, as described previously (38), by measuring the decomposition of H_2O_2 . Absorbance at 240 nm was measured for 1 min after the addition of sample in a buffer containing 50 mM, pH 7.0, phosphate buffer and 10 mM H_2O_2 . Results are expressed as mmol of O_2 produced per min for each ml of reaction normalized per mg of protein.

The glutathione peroxidase activity was determined using *t*-butyl hydroperoxide as a substrate and measuring the oxidation of NADPH at 340 nm (39). The assay was performed in a buffer containing 1 mM EDTA, 100 mM potassium phosphate, pH 7.7, with 0.5 mM *t*-butyl hydroperoxide, 150 μ M NADPH, 5 mM glutathione, and 0.25 units of glutathione reductase. Sodium azide (1 mM) was added to the reaction to inhibit catalase activity. Nonenzymatic oxidation of NADPH and glutathione was measured by substituting buffer for sample, and this correction was made to all sample measurements. Glutathione-independent oxidation of NADPH, determined by conducting the assay without the addition of glutathione, was below the limits of detection. Results are expressed as milliunits/mg protein.

Total glutathione was measured in a protein-free cell lysate prepared by resuspending the cell pellet in 600 μ l of 0.8% picric acid, sonicating on ice, and separating the protein precipitate by centrifugation at 14,000 × g for 5 min at 4 °C. Total glutathione was determined spectrophotometrically as described (40) using 5 μ l of the supernatant in 1 ml of a buffer containing 0.2 mM NADPH, 100 mM sodium phosphate, pH 7.5, with 0.6 mM 5,5'-dithiobis(2-nitrobenzoic acid). After the addition of 0.1 unit of glutathione reductase, the increase in absorbance at 412 nm of each sample was recorded. Freshly prepared solutions of reduced glutathione were used to calibrate the assay, and results are reported as nanomoles of glutathione/mg of cellular protein.

Statistical Analysis—Values are presented as means \pm 1 S.E. Significance was tested using Student's *t* test for paired data or analysis of variance where appropriate. Two-tailed *p* values < 0.05 were considered significant.

RESULTS

Stable Expression of cPLA₂ or sPLA₂ in LLC-PK₁ Cells-To confirm that LLC-PK1 cells stably transfected with pmt-PLA2 (LLC-cPLA₂ cells) expressed more cytosolic PLA₂ activity than the native cells, $100,000 \times g$ supernatants and pellets of cellular homogenates were assayed for in vitro activity using 1-stearoyl-2-[1-¹⁴C]arachidonyl phosphatidylcholine as a substrate. The PLA₂-specific activity in the cytosolic fraction of the LLCcPLA₂ cells was approximately 69 ± 13 pmol/mg/min, a level that was approximately 50-fold higher than that of vectortransfected or parental LLC-PK₁ cells. The cytosolic activity represented approximately one-half of the total cellular activity in the LLC-cPLA₂ cells. This level of activity in the LLC-cPLA₂ cells was comparable with PLA₂ activities measured in cytosolic extracts of MDCK and kidney mesangial cells using the same assay system (data not shown). Thus, the PLA₂ activity in the LLC-cPLA₂ cells is in the physiological range of other kidney cell lines.

To confirm functional activity of the overexpressed cPLA₂, cells were labeled overnight with [³H]arachidonic acid, and basal and stimulated release of [³H]arachidonic acid in LLCcPLA₂ and vector-transfected cells were compared. Even when not stimulated, there was a statistically significant small increase in [³H]arachidonic acid release in the LLC-cPLA₂ cells (Fig. 1A). Over time more [³H]arachidonic acid was released from normally growing LLC-cPLA₂ than LLC-PK₁ cells. These data are consistent with enhanced basal functional cPLA₂ activity in normally growing LLC-cPLA₂ cells. When treated with 100 nm PMA, 2 or 10 μ m A23187, or PMA and A23187 together for 30 min LLC-cPLA₂ cells released a large amount of the radiolabeled arachidonic acid while there was no increased release in the LLC-vector cells (Fig. 1B) or parental LLC-PK₁ cells (data not shown). Thus the stimulated [³H]arachidonic acid release in the LLC-cPLA₂ cells resulted entirely from cPLA₂ activation.

Having established that the cPLA₂-transfected cells have both more biochemical and functional PLA₂ activity, we then confirmed the presence of cPLA₂ protein by immunoblotting. Cellular proteins were separated by SDS-PAGE and detected with a polyclonal antibody raised against porcine spleen cPLA₂ (Fig. 2). The control cells with very low levels of PLA₂ activity had no detectable band. In contrast, a single 100-kDa band was seen in extracts from LLC-cPLA₂ cells, confirming the presence of the cPLA₂ protein in the transfected cells.

A stable cell line, LLC-sPLA₂, was created by transfection of $sPLA_2$ into LLC-PK₁ cells, as described under "Experimental Procedures." The specific activities of $sPLA_2$ measured in the cytosolic and membrane-associated fractions were greater than 800 and 500 nmol/mg/min, respectively. $sPLA_2$ activity in the cells transfected with vector alone or in LLC-cPLA₂ cells were below the measurement limit and less than 1% of the levels measured in the stable transfectants using an assay that was optimized for $sPLA_2$. This level of expression is greater than that measured by Kramer *et al.* (41) using a co-transfection expression system. Because the cDNA for $sPLA_2$ contains a signaling sequence, we expected some of it to be actively secreted from the cells. After growing LLC-sPLA₂ cells for 24 h,

FIG. 1. Arachidonic acid release in cPLA₂ expressing (LLC-cPLA₂) and control cells. *A*, arachidonic acid release in nonstimulated cells. LLC-cPLA₂ or the parental LLC-PK₁ cells in DMEM were labeled with [³H]arachidonic acid overnight, washed, and incubated in serum-free medium with 0.2% BSA at 37 °C. Aliquots of medium were removed at indicated times, centrifuged, and analyzed for [³H]. At the end of the incubation period, cells were lysed, [³H] measured, and [³H] released into the medium expressed as a percent of total (medium + cellular [³H]). n = 3. * p < 0.05 compared with % release from LLC-PK₁ cells at same time point. *B*, arachidonic acid release stimulated by PMA and A23187. Cells were treated with vehicle, 100 nm PMA, 2 or 10 μ M A23187 or 100 nm PMA and 2 μ M A23187 together, for 30 min at 37 °C. Percent release of [³H] was determined as described in *A*. n = 8-12. *, p < 0.001 compared with vehicle-treated LLC-cPLA₂ or LLC-vector cells.

FIG. 2. Immunoblot of extracts from LLC-cPLA₂, LLC-sPLA₂, and control LLC-vector cells. After SDS-PAGE of 30 μ g of cellular protein and transfer to a polyvinylidene difluoride membrane, the membrane was exposed to polyclonal antibody raised against porcine cPLA₂. The *arrow* indicates the location of the 100-kDa band corresponding to cPLA₂, only present in the LLC-cPLA₂ cells.

the measured sPLA₂ activity in 22-mm wells containing 1 ml of culture medium was ≈ 15 nmol/ml/min. This value is equivalent to the levels secreted by transfected Chinese hamster ovary cells (42) and about one-fourth to one-third the levels that are found in the inflammatory joint fluid of human subjects (43). The medium of the LLC-vector cells and the LLC-cPLA₂ cells did not demonstrate detectable sPLA₂ activity. The cPLA₂ activity in LLC-sPLA₂ cells was also assayed using [¹⁴C]PC as a substrate in an assay system optimized for measurement of cPLA₂ activity. There was no increase in the cPLA₂

FIG. 3. Comparison of H_2O_2 toxicity in PLA₂ expressing and control cell lines. *A*, comparison of H_2O_2 -induced toxicity in LLC-cPLA₂, LLC-PK₁, and LLC-vector cells. Cells were exposed to various concentrations of H_2O_2 for 3 h at 37 °C. LDH released into the medium is expressed as a percent of total LDH activity. $n \ge 6.*, p < 0.05, **, p < 0.0001$ comparing LLC-cPLA₂ with either control cell line. *B*, comparison of H_2O_2 -induced toxicity in LLC-cPLA₂, LLC-sPLA₂, and LLC-vector cells. Cells were exposed to various concentrations of H_2O_2 -induced toxicity in LLC-cPLA₂, LLC-sPLA₂, and LLC-vector cells. Cells were exposed to various concentrations of H_2O_2 for 3 h at 37 °C. LDH released into the medium is expressed as a percent of total LDH activity. n = 4.*, p < 0.05; **, p < 0.01 comparing LLC-cPLA₂ with either LLC-sPLA₂ or LLC-vector at equivalent H_2O_2 concentrations.

activity of the LLC-sPLA $_2$ cells above that of the LLC-PK $_1$ cells or the vector-transfected cells.

 H_2O_2 -induced Injury Is Enhanced in the LLC-cPLA₂ Cells but Not in LLC-sPLA₂ Cells—The effect of H₂O₂ on cell death in the cPLA₂ expressing cells was evaluated. A marked increase in intracellular H₂O₂ resulted from exposure to extracellular H₂O₂, as confirmed by use of a fluorescent indicator of intracellular H₂O₂ [5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate] that was introduced into cells (data not shown). As seen in Fig. 3, A and B, incubation of cells for 3 h at 37 °C in serum-free medium with H₂O₂ resulted in a dose-dependent increase in LDH release in LLC-cPLA₂ cells. At the same concentrations of H₂O₂, there was only minimal toxicity in the LLC-PK₁ or LLC-vector cells (Fig. 3A). For example, after 3 h in 0.5 mM H_2O_2 there was 60.0 \pm 1.6% cell death in the LLCcPLA_2 versus 13.9 \pm 3.5% in the LLC-vector and 8.4 \pm 0.7% in the LLC-PK₁. The cytotoxicity measured in the control cells is in general agreement with that found by others (44) who have studied H₂O₂-induced injury in LLC-PK₁ cells.

To evaluate whether this effect of cPLA₂ expression on H_2O_2 induced injury was a general effect due to increased cellular PLA₂ activity or was specific to cPLA₂, we examined the effect of sPLA₂ overexpression in the same injury model. As seen in Fig. 3*B*, incubation of LLC-sPLA₂ cells for 3 h at 37 °C in

FIG. 4. Antioxidant defenses in LLC-cPLA₂ and LLC-vector cells. Activities of the antioxidant enzymes, superoxide dismutase (*A*), catalase (*B*), glutathione peroxidase (*C*), and the total glutathione content (*D*), were measured in the LLC-cPLA₂ and LLC-vector cells by procedures described under "Experimental Procedures." The number of replicates performed in each assay is indicated on the figure. *, p < 0.001 comparing LLC-cPLA₂ with LLC-vector cells.

serum-free medium with H_2O_2 resulted in no increase in toxicity when compared with vector-transfected LLC-vector cells. This is in marked contrast to simultaneously treated LLC-cPLA₂ cells that released 41 \pm 8.2% of total LDH upon exposure to 0.25 mM H_2O_2 and 48 \pm 5.2% after exposure to 0.5 mM $H_2O_2.$

Antioxidant Defenses in LLC-cPLA₂ Cells—To evaluate the possibility that the toxicity associated with increased cPLA₂ expression might be due to an indirect effect on the cellular antioxidant defense system, the activities of superoxide dismutase, catalase, and glutathione peroxidase enzymes and cellular glutathione levels were evaluated in the LLC-cPLA₂ and LLC-vector cells. The addition of 1 mM potassium cyanide completely inhibited superoxide dismutase activity in the cells, indicating that the primary superoxide dismutase activity is the Cu-Zn form of the enzyme. As shown in Fig. 4 there were no differences in activities of superoxide dismutase, catalase, and glutathione peroxidase when comparing LLC-cPLA₂ to vectortransfected cells. There was, however, a significant increase in the level of glutathione in the LLC-cPLA₂ cells (117 \pm 8 nmol/ mg) compared with the LLC-vector cells (59 \pm 10 nmol/mg; p <0.001).

 H_2O_2 Stimulates Arachidonic Acid Release in LLC-cPLA₂ but Not in LLC-sPLA₂ Cells—To confirm that functional PLA₂ activity is increased by H_2O_2 in the cPLA₂ expressing cells, [³H]arachidonic acid release was measured in prelabeled cells exposed to H_2O_2 (Fig. 5). H_2O_2 (0.5 mM) stimulated significantly more [³H]arachidonic acid release in the cPLA₂-transfected LLC-CPLA₂ than in the LLC-vector cells. Moreover, the [³H]arachidonic acid release at 30 min (LLC-cPLA₂ 10.5 ± 1.5% versus 5.4 ± 1.1% in LLC-vector, p = 0.02) preceded

FIG. 5. **H**₂**O**₂-**stimulated arachidonic acid release.** Cells were labeled with [³H]arachidonic acid, washed, and exposed to 0.5 mM H₂O₂ in DMEM with 0.2% BSA. At indicated times, aliquots of medium were removed and analyzed for [³H] that was expressed as a percent of total. n = 6. *, p < 0.05; **, p < 0.001 comparing LLC-cPLA₂ with LLC-vector cells.

measurable cytotoxicity (data not shown), indicating that $cPLA_2$ activation occurred prior to cell death.

The effect of 0.5 mM H_2O_2 on arachidonic acid release was also studied in LLC-sPLA₂ cells. In contrast to the results with LLC-cPLA₂ cells, there was no increase in arachidonic acid release in the LLC-sPLA₂ cells. The differences in response of LLC-cPLA₂ and LLC-sPLA₂ cells were also apparent when cells were exposed to the 100 nM PMA and 2 μ M A23187. There was an increase in arachidonic acid release in the LLC-cPLA₂ cells but not in the LLC-sPLA₂ cells (Fig. 6). In addition, when the LLC-sPLA₂ cells were exposed to the ethanol vehicle, 100 nM PMA, or 2 μ M A23187 alone there was no increase in arachidonic acid release (data not shown). Incubation of the LLC-sPLA₂ cells with 0.25, 0.5, or 1.0 mM H₂O₂ for 3 h did not result in a measurable increase in media sPLA₂ activity, although there was a small dose-dependent increase in cellular sPLA₂ activity (data not shown).

Menadione-induced Injury—To establish whether the susceptibility to injury can be generalized to other oxidants and a different method of evaluating cell injury, we exposed cPLA₂ expressing cells in suspension to menadione, a superoxide anion generator (45), and evaluated toxicity by trypan blue staining. After exposure to 50 μ M menadione for 90 min at 37 °C, we found significant irreversible injury in the LLC-cPLA₂ (28.8 ± 2.7% trypan blue-positive cells *versus* vehicle-treated, 9.0 ± 0.6%) but not in the LLC-vector (13.0 ± 2.4% *versus* vehicle-treated, 10.4 ± 0.9%, p > 0.5).

Exogenous Arachidonic Acid Does Not Enhance H_2O_2 Toxicity—Arachidonic acid and its metabolites have been shown to be injurious in several situations. However, neither normal nor injured LLC-PK₁ cells have been reported to have measurable cyclooxygenase (46) or lipoxygenase (47) activities. This suggests that arachidonic acid metabolites are not present or exist only in low concentrations in the native cell line. Nevertheless, it is possible that the enhanced toxicity of H_2O_2 in LLC-cPLA₂ results from the toxic effect of liberated arachidonic acid and/or its metabolites, rather than a direct effect of PLA₂ on cell membranes or liberated lysophospholipids. To test that possibility, we exposed LLC-cPLA₂ cells to 150 μ M arachidonic acid in the presence or absence of simultaneous exposure to H_2O_2 . There was no potentiation of cell death in cells treated with arachidonic acid whether the cells were simultaneously ex-

FIG. 6. Effects of H_2O_2 and PMA and ionophore on arachidonic acid release from LLC-cPLA₂ (*A*), LLC-sPLA₂ (*B*), and LLC-vector cells. Cells were prelabeled with [³H]arachidonic acid, and release of [³H]arachidonic acid into the medium was measured after 30 min of treatment with vehicle, 0.5 mM H₂O₂, or 100 nM PMA and 2 μ M A23187. % release was then calculated by measuring total cellular [³H]arachidonic acid. n = 9 in A and 6 in B. *, p < 0.001 compared with % arachidonic acid release in LLC-vector cells.

posed to H_2O_2 or vehicle (Fig. 7).

BAPTA, but Not Glycine, Protects Against H_2O_2 Toxicity— Since the activity of cPLA₂ is calcium-dependent, we predicted that the treatment of LLC-cPLA₂ cells with a chelator of intracellular Ca²⁺ should prevent H₂O₂-induced injury. Preincubating LLC-cPLA₂ cells for 30 min with 100 μ M BAPTA/AM in nominally Ca²⁺-free PBS resulted in complete protection from H₂O₂ toxicity (% LDH release, 6.5 ± 2.1% in untreated cells; 65.9 ± 5.8% in vehicle plus H₂O₂; 5.6 ± 1.6% in BAPTA/AM 100 μ M plus H₂O₂; n = 9, Table I). Introduction of BAPTA into the cells also blocked the increase in arachidonic acid release seen with H₂O₂ treatment (Table I). Addition of 2.3 mM EGTA to the medium in which the cells are incubated, for 30 min prior to H₂O₂ exposure (which reduced the extracellular [Ca²⁺] to less than 50 nM), resulted in a 26% reduction in LDH release (n = 8, p < 0.001, data not shown).

Glycine has been shown to protect against hypoxic injury in renal tubules (48) and calcium ionophore-induced injury in cultured MDCK and LLC-PK₁ cells (32). The addition of 2 mM glycine provided no protection against H_2O_2 -induced injury in the LLC-cPLA₂ cells, and glycine had no effect on arachidonic acid release from vehicle- or H_2O_2 -treated LLC-cPLA₂ cells (Table I). In addition glycine did not provide protection from H_2O_2 toxicity to cells incubated in a nominally calcium-free buffer (data not shown).

Calcium Ionophore Toxicity—To test whether activation of $cPLA_2$ by calcium ionophore is sufficient to cause increased cell death, LLC-cPLA₂, LLC-PK₁, and LLC-vector cells were exposed to 1, 5, or 10 μ M A23187 for 3 h and toxicity monitored (Fig. 8). At base-line level, the LLC-cPLA₂ cells had slightly higher LDH release than the other two cell lines. Despite being able to stimulate arachidonic acid release in LLC-cPLA₂ cells, 1 and 5 μ M A23187 caused no increased cell injury. At 10 μ M, there was increased cell death in each cell line, but the absolute

FIG. 7. Arachidonic acid does not potentiate H_2O_2 toxicity in LLC-cPLA₂ or LLC-vector cells. LLC-vector and LLC-cPLA₂ cells were treated with 150 μ M arachidonic acid in the presence or absence of 1.0 mM H_2O_2 . The arachidonic acid was added 2 min after H_2O_2 in the arachidonic acid/H₂O₂ group. LDH release was measured after 3 h of incubation. *, p < 0.01; **, p < 0.005 when compared with LLC-vector cells. †, not significantly different from H_2O_2 -treated LLC-cPLA₂ cells.

TABLE I Effects of BAPTA or glycine treatment on H_2O_2 -induced cytotoxicity and arachidonic acid release

LDH release was measured in LLC-cPLA₂ cells preincubated with 100 μM BAPTA/AM or dimethyl sulfoxide vehicle in calcium-free PBS or with 2 mM glycine or vehicle in DMEM for 30 min. The pretreated cells were exposed to 0.2 or 0.5 mM H₂O₂ for 3 h. [³H]Arachidonic acid release was determined after a 30-min exposure to H₂O₂. All values are means \pm S.E. of three experiments, each performed in triplicate.

Agents	LDH release	Arachidonic acid release
	% control	% control
Performed in PBS		
Vehicle	6.5 ± 2.1	13.0 ± 0.4
Vehicle + 0.2 mM H ₂ O ₂	66.0 ± 5.8	19.4 ± 1.9
BAPTA + 0.2 mm $H_2 \tilde{O_2}$	5.6 ± 1.6^a	13.0 ± 1.4^a
Performed in DMEM		
Vehicle	3.0 ± 0.2	7.3 ± 0.4
Vehicle + 0.5 mM H ₂ O ₂	33.1 ± 1.8	17.6 ± 1.8
Glycine + 0.5 mm m_{12} $H_{2}O_{2}$	28.1 ± 1.6 NS	$19.8 \pm 2.2 \text{ NS}^{b}$

^{*a*} p < 0.01, compared with vehicle + H₂O₂.

^bNS, not significantly different from vehicle + H_2O_2 treatment.

increase in LDH release, over control values, in the LLC-cPLA₂ cells was equivalent to that of the LLC-vector cell. Thus, while cPLA₂ activation appears to be necessary for the enhanced oxidant injury seen in LLC-cPLA₂ cells, activation with calcium ionophore does not appear to be sufficient to cause toxicity by itself.

Mercuric Chloride Toxicity-Treatment of LLC-PK1 cells with mercuric chloride results in the rapid accumulation of arachidonic acid and lysophospholipids and irreversible injury, leading to the suggestion that phospholipase activity may play a part in the pathogenesis of mercuric chloride toxicity (47). If this were the case, and if the PLA₂ involved were cPLA₂, then LLC-cPLA₂ cells would have enhanced toxicity to mercuric chloride. To investigate this possibility, LLC-cPLA₂ and LLC-PK₁ cells were exposed to 1 or 10 μ g/ml mercuric chloride for 3 h and cell death measured by trypan blue uptake. No significant differences in mercuric chloride-induced toxicity were found between LLC-cPLA $_2$ and either LLC-PK $_1$ or vectortransfected cells (data not shown). Thus, cPLA₂ does not appear to be an important mediator of mercuric chloride injury. Furthermore, the fact that LLC-cPLA₂ cells are not more susceptible to A23187 or mercuric chloride toxicity suggests that

FIG. 8. Toxicity of the calcium ionophore A23187 on LLCcPLA₂ cells. LLC-cPLA₂, LLC-vector, and LLC-PK₁ cells were treated with 1, 5, or 10 μ M A23187 or vehicle for 3 h and LDH release measured. n = 3-10.

 $cPLA_2$, while enhancing oxidant injury, does not potentiate injury to all toxic agents.

DISCUSSION

Changes in cellular phospholipid metabolism are found in response to various forms of cell insults and likely play a pathogenic role in cytotoxicity (8, 49-51). PLA₂ activation results not only in the degradation of membrane phospholipids but also the accumulation of unsaturated free fatty acids and lysophospholipids which by themselves can be injurious. Determining the exact role PLA₂ plays in pathogenesis is complicated by the interrelated pathways leading to cell injury that are induced by pathophysiological states, including increased intracellular [Ca²⁺], ATP depletion, and the generation of reactive oxygen species (2). Furthermore, an evaluation of the role of PLA₂ in cell injury is also complicated by the fact that multiple forms of mammalian PLA₂ exist and many cells have more than one form. The various forms of the enzyme have many different characteristics, including calcium sensitivity, pH optima, and substrate specificity of the polar head group, the type of bond at the *sn*-1 position, and the fatty acid at the sn-2 position of the phospholipid (24, 25). An understanding of the role of this class of enzymes will depend on an approach designed to examine the role of each individual isozyme. The development of cell lines expressing predominantly one type of PLA₂ offers an opportunity to examine what role, if any, a particular form of PLA₂ might play in different forms of injury.

The cytosolic PLA₂ (cPLA₂) demonstrates specificity for arachidonic acid at the *sn*-2 position of phospholipids, translocates to membranes at calcium concentrations found in stimulated cells, and is activated by phosphorylation in response to hormonal stimulation (31, 36, 42, 52). An essential role for cPLA₂ has been proposed in cytotoxicity and apoptosis resulting from tumor necrosis factor (53, 54) and ischemia in kidney (8) and brain (20). In the current study, we have demonstrated that expression of cPLA₂, in cells with nonmeasurable baseline levels, results in enhanced susceptibility to H₂O₂-induced injury. Oxidant injury in LLC-PK₁ cells has been examined by others (44, 55) but with little attention paid to the possible role of PLA₂. Oxidative stress may have a direct effect on the function of cPLA₂ enhancing the cytotoxicity of this enzyme. Lipid peroxidation has been reported to stimulate PLA₂ activity, perhaps by providing a preferable substrate for hydrolysis (56–58). Additionally, exposure of LLC-PK₁ cells to 1 mM H_2O_2 for as little as 10 min has been shown to raise intracellular free $[Ca^{2+}]$ by more than 100 nM (59), and the increase in $[Ca^{2+}]$ is likely to result in translocation of cPLA₂ to membranes where its substrates reside (26, 31, 36). Taken together, peroxidation of membrane phospholipids and rising intracellular $[Ca^{2+}]$ can account for cPLA₂ activation in response to H_2O_2 exposure.

The enhanced susceptibility of LLC-cPLA₂ cells to an oxidant injury was not due to alterations in the antioxidant defense system. Both increases and decreases in the cellular levels of superoxide dismutase have been implicated in models of cell death (16, 60-63). The amount of superoxide dismutase activity in LLC-cPLA₂ cells was slightly higher than in the vectortransfected cells. While this difference was not statistically significant, we considered whether such a small difference might be physiologically relevant. Increased superoxide dismutase activity has been demonstrated to cause cytotoxicity; however, toxicity was dependent upon substantial increases in the superoxide dismutase activity (16, 63). It has been reported that hydroperoxides released by PLA₂ can be detoxified by glutathione peroxidase (64). Interestingly, the total cellular glutathione content was increased in LLC-cPLA₂ cells as compared with levels in LLC-vector cells. Other investigators (65, 66) have demonstrated that exposure to nonlethal oxidant stress or prostaglandin A2 cause elevations of glutathione levels in cultured cells. This increase has been related to increased transcription of γ -glutamylcysteine synthetase that is the ratelimiting enzyme in glutathione synthesis (66). It is possible that the basal increase in arachidonic acid release of the LLCcPLA₂ cells (Fig. 1A) may increase glutathione levels through a similar mechanism that is dependent upon arachidonic acid or one of its metabolites. Other mechanisms such as alterations in the transmembrane processing of glutathione could also account for the observed increase (67). Ballmaier and Epe (68) have shown that increased glutathione levels in combination with H₂O₂ do not result in significant synergistic DNA damage. It is unlikely that the increase in glutathione accounts for the enhanced toxicity of H₂O₂ in the LLC-cPLA₂ cells.

The enhanced toxicity of H₂O₂ is not a generalized response to increased cellular PLA₂ activity because cells transfected with sPLA₂ were not more susceptible to injury when exposed to H₂O₂. In contrast to cPLA₂, sPLA₂ is not specific for arachidonic acid at the sn-2 position of fatty acids and requires higher calcium concentrations for its activity. The level of sPLA₂ protein in the medium of LLC-sPLA₂ cells approached that found in inflammatory joint fluids, and the total cellular level was greater than 100 times the amount in vector-transfected cells. The lack of cell toxicity associated with markedly elevated levels of sPLA₂ may be due to nonaccessibility of sPLA₂ to cellular membranes since group II PLA₂ may be packaged within vesicles, isolating it from the remainder of the cell. Alternatively, the membranes of the cell may not be susceptible to enzymatic attack by group II PLA₂. It has been proposed that phospholipid rearrangement, by exposing preferential lipid substrates for the enzyme, may potentiate group II PLA₂ activity (43, 69). While A23187 has been proposed to enhance sPLA₂ activity in other cells due to ionophore-induced changes in membrane asymmetry (70), the activity of sPLA₂ was not increased in LLC-sPLA₂ cells in response to H₂O₂, A23187, or the combination of A23187 and PMA in our studies. Lin et al. (42) have also shown that sPLA₂-transfected Chinese hamster ovary cells were unresponsive to ionophore and hormone stimulation.

The Ca^{2+} -induced activation of $cPLA_2$ alone does not appear to be toxic to LLC- $cPLA_2$ cells, because doses of A23187 that

stimulated arachidonic acid release produced no increase in toxicity. The absence of cell death in the presence of cPLA₂ activation by nontoxic doses of ionophore is not surprising since many physiological stimuli increase intracellular free [Ca²⁺] and activate cPLA₂ without pathophysiological consequences. The activation of the enzyme in response to H₂O₂ may result in toxicity because, in addition to increases in intracellular free [Ca²⁺], there are concomitant changes in plasma or intracellular membrane susceptibility to cPLA₂. The intracellular site of cPLA₂ activity may be altered by exogenous stimuli (71).² It is possible that H₂O₂ directs cPLA₂ activity to a cellular location, such as the nucleus, where it produces increased toxicity. The protection against H₂O₂ toxicity afforded by BAPTA is consistent with the importance of intracellular Ca^{2+} as a co-mediator with H₂O₂ of cell death in our system. Chelation of intracellular Ca²⁺, however, will also affect other Ca²⁺-dependent enzymes such as proteases (72-74), and this could be an important factor in limiting the toxicity of H_2O_2 . The limited protective effect of extracellular Ca^{2+} depletion might be expected as the rise in intracellular $[Ca^{2+}]$ after exposure to H_2O_2 is only minimally dependent on the presence of extracellular Ca^{2+} (44). Furthermore, cPLA₂ requires only small increases in intracellular [Ca²⁺] to translocate to membrane phospholipids (75).

In these studies we considered the possibility that the generation of arachidonic acid and/or its metabolites in the setting of oxidant stress might lead to metabolites that mediate the H_2O_2 toxicity. When arachidonic acid was added to H_2O_2 treated LLC-cPLA₂ cells, however, no enhancement of injury was found. This is in general agreement with the observations of others (46, 47) who found LLC-PK₁ cells to produce few, if any, cyclooxygenase and lipoxygenase products and to be relatively resistant to the toxicity of exogenous lipids (47). These data suggest that the generation of arachidonic acid and/or its metabolites does not play an important role in the increased toxicity of H₂O₂ in LLC-cPLA₂ cells. It is possible, however, that exogenously administered arachidonic acid may not mimic the effects of endogenously generated arachidonic acid. Zager and colleagues (23) have found that large amounts of group II PLA₂ or arachidonic acid added exogenously to isolated rat proximal tubules limited injury in an *in vitro* model of hypoxia/ reoxygenation. These authors suggested that protection was due to feedback inhibition of endogenous cPLA₂ by arachidonic acid or its metabolites.

Our studies reveal that pretreatment of cells with glycine, which has been shown to be protective against hypoxic ATP depletion and calcium ionophore-induced injury in isolated kidney tubules and cultured LLC-PK1 and MDCK cells (32, 48), confers no protection against H₂O₂-induced toxicity. In a model, in which exogenous group II PLA₂ was injurious to proximal tubule cells, Wetzels and co-workers (76) found that glycine was not protective. By contrast, this group found that glycine protected against the toxicity of exogenous arachidonic acid and concluded that the cell injury caused by PLA₂ is related to membrane degradation and not the liberated fatty acids. Venkatachalam et al. (77) reported that glycine had no effect on free fatty acid release although it protected MDCK cells treated with calcium ionophore and an uncoupler of oxidative phosphorylation. Thus, the protective effects of glycine on renal tubule cells is independent of PLA₂.

Our determination that neither A23187 nor mercuric chloride caused more cell death in the LLC-cPLA₂ cells suggests that there is some specificity to the synergism that exists between cPLA₂ activity and oxidant stress that results in cell

² A. Sheridan and J. V. Bonventre, unpublished data.

injury. Another demonstration of the specificity of the synergy between cPLA₂ and H₂O₂ is the fact that sPLA₂ overexpressing cells show no enhanced susceptibility to H₂O₂-induced injury even though the amount of group II PLA₂ protein in these cells is very high.

The exact nature of the interaction between H₂O₂ and cPLA₂ that results in injury remains to be determined, but our findings support the following hypothesis. The treatment of cells with H₂O₂ leads to lipid peroxidation and rising intracellular $[Ca^{2+}]$, both of which could increase $cPLA_2$ activity. The enhanced release of peroxidized fatty acids and lysophospholipids by the highly expressed cPLA₂ may overwhelm the normal adaptive responses to oxidant stress, including the reduction and reacylation of the liberated fatty acids. The loss of membrane integrity would lead to further alterations in $[Ca^{2+}]$ homeostasis and subsequent cell death.

Alternatively, the enhanced cytotoxicity of H₂O₂ in LLCcPLA₂ cells may arise from a downstream effect of cPLA₂ expression. Nuclear localization of cPLA₂ may have important implications for its role in intracellular signaling and gene expression. We have found an increase in the glutathione levels of cells expressing cPLA₂, and it is likely that the expression of other cellular proteins is also altered. Further exploration of such changes may elucidate the mechanisms of cytotoxicity associated with cPLA₂.

In conclusion, cell lines have been created to investigate the roles of two forms of PLA₂ in cellular injury. Expression of cPLA₂ in LLC-PK₁ cells, to levels found normally in many other cell types, confers enhanced susceptibility to H₂O₂-mediated injury. By contrast, cells that overexpress sPLA₂ show no increased susceptibility to H₂O₂-mediated injury. Increases in intracellular calcium concentration are necessary but not sufficient to produce enhanced toxicity of H₂O₂ in cells expressing cPLA₂. Glycine did not protect these cells against oxidant injury. Thus, we propose that cPLA₂, which is expressed in many cells, but not a group II PLA₂ is an important endogenous mediator of oxidant-induced cell injury.

Acknowledgment—We thank Karen Dellovo for the graphics.

REFERENCES

- 1. Weinberg, J. M. (1991) Kidney Int. 39, 476-500
- 2. Bonventre, J. V. (1993) *Kidney Int.* **43**, 1160–1178
- 3. Cross, C. E., Halliwell, B., Borish, E. T., Pryor, W. A., Ames, B. N., Saul, R. L., Closs, C. E., Hallwein, D., Dorisi, E. T., Hyor, W. A., Alles, D. V., Sadi, K. E., McCord, J. M., and Harmon, D. (1988) *Ann. Intern. Med.* **107**, 526–545
 Malis, C. D., and Bonventre, J. V. (1986) *J. Biol. Chem.* **261**, 14201–14208
 Malis, C. D., and Bonventre, J. V. (1988) *Prog. Clin. Biol. Res.* **282**, 235–259
 Malis, C. D., Weber, P. C., Leaf, A., and Bonventre, J. V. (1990) *Proc. Natl.*

- Acad. Sci. U. S. A. 87, 8845-8849 7. Gilboe, D. D., Kintner, D., Fitzpatrick, J. H., Emoto, S. E., Esanu, A., Braquet,
- P. G., and Bazan, N. G. (1991) J. Neurochem. 56, 311-319 8. Nakamura, H., Nemenoff, R. A., Gronich, J. H., and Bonventre, J. V. (1991)
- J. Clin. Invest. 87. 1810-1818 9. Portilla, D., Shah, S. V., Lehman, P. A., and Creer, M. H. (1994) J. Clin. Invest.
- 93. 1609-1615 10. Schnellmann, R. G., Yang, X., and Carrick, J. B. (1994) J. Biochem. Toxicol. 9, 211-217
- 11. Chiarello, M., Ambrosio, G., Capelli-Bigazzi, M., Marone, G., and Condorelli,
- M. (1987) J. Pharmacol. Exp. Ther. 241, 560-568 12. Otamiri, T., Franzen, L., Lindmark, D., and Tagesson, C. (1987) Gut 28, 1445-1453
- 13. Moskowitz, M. A., Kiwak, K. J., Hekimian, K., and Levine, L. (1984) Science 224, 886-889
- 14. Rordorf, G., Uemura, Y., and Bonventre, J. V. (1991) J. Neurosci. 11, 1829 - 1836
- 15. Verity, M. A. (1993) Ann. N. Y. Acad. Sci. 679, 110-120
- 16. Nelson, S. K., Bose, S. K., and McCord, J. M. (1994) Free Rad. Biol. Med. 16, 195 - 200
- 17. Prozialeck, W. C., and Lamar, P. C. (1995) Toxicol. Appl. Pharmacol. 134, 285 - 295
- 18. Jacobson, M. D. (1996) Trends Biochem. Sci. 21, 83-86
- 19. Greenlund, L. J. S., Deckworth, T. L., and Johnson, E. M. J. (1995) Neuron 14, 303-315
- 20. Bonventre, J. V., and Koroshetz, W. J. (1993) J. Lipid Med. 6, 457-471
- Van Kuijk, F. G. M., Sevanian, A., Handelman, G. J., and Dratz, E. A. (1987) 21. Trends Biol. Sci. 12, 31-34
- 22. Zager, R. A., Schimpf, B. A., Gmur, D. J., and Burke, T. J. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 8297-8301

- 23. Zager, R. A., Burkhart, K. M., Conrad, D. S., Gmur, D. J., and Iwata, M. (1996) J. Am. Soc. Nephrol. 7, 64–72 24. Bonventre, J. V. (1992) J. Am. Soc. Nephrol. 3, 128–150
- 25. Dennis, E. A. (1994) *J. Biol. Chem.* **269**, 13057–13060
- 26. Glover, S., Bayburt, T., Jonas, M., Chi, E., and Gelb, M. H. (1995) J. Biol. Chem. 270, 15359-15367
- 27. Siesjo, B. K., and Bengtsson, F. (1989) J Cereb. Blood Flow Metab. 9, 127-140 Morrow, J. D., Hill, K. E., Burk, R. F., Nammour, T. M., Badr, K. F., and Roberts, L. J., II (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 9383–9387
- 29. Gelb, M. H., Jain, M. K., Hanel, A. M., and Berg, O. G. (1995) Annu. Rev.
- Biochem. 64, 653-688 30. Kramer, R. M., Hession, C., Johansen, B., Hayes, G., McGray, P., Chow, E. P.,
- Tizard, R., and Pepinsky, R. B. (1989) J. Biol. Chem. 264, 5768-5775 31. Clark, J. D., Lin, L.-L., Kriz, R. W., Ramesha, C. S., Sultzman, L. A., Lin, A. Y.,
- Milona, N., and Knopf, J. L. (1991) *Cell* 65, 1043–1051
 32. Weinberg, J. M., Venkatachalam, M. A., Roeser, N. F., Davis, J. A., Varani, J., and Johnson, K. J. (1991) *Lab. Invest.* 65, 671–678
- 33. Kingston, R. E., Chen, C. A., and Hiroto, O. (1990) in Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds) pp. 9.1.1-9.1.9, John Wiley and Sons. New York
- 34. Dole, V. P., and Meinertz, H. (1960) J. Biol. Chem. 235, 2595-2599
- 35. Santos, A. A., Browning, J. L., Scheltinga, M. R., Lynch, E. A., Brown, E. F., Lawton, P., Chambers, E., Douglas, I., Benjamin, C. D., Dinarello, C. A., Wolff, S. M., Jacobs, D. O., and Wilmore, D. W. (1994) Ann. Surg. 219, 183-192
- 36. Kim, D. K., and Bonventre, J. V. (1993) Biochem. J. 294. 261-270
- 37. Crapo, J. D., McCord, J. M., and Fridovich, I. (1978) Methods Enzymol. 53, 382-393
- 38. Aebi, H. E. (1974) in Methods of Enzymatic Analysis (Bergmeyer, H. U., ed) 3rd Ed., pp. 273-286, Academic Press, New York
- 39. Beutler, E. (1975) Red Cell Metabolism: A Manual of Biochemical Methods, pp. 71-73 Grune and Stratton, New York
- 40. Griffith, O. W. (1974) in *Methods of Enzymatic Analysis* (Bergmeyer, H. U., ed) Vol. VIII, 3 Ed., pp. 521-529, Academic Press, New York
- 41. Kramer, R. M., Roberts, E. F., Manetta, J., and Putnam, J. E. (1991) J. Biol. Chem. 266, 5268-5272
- 42. Lin, L.-L., Lin, A. Y., and Knopf, J. L. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 6147-6151
- Fourcade, O., Simon, M.-F., Viodé, C., Rugani, N., Leballe, F., Ragab, A., Fournié, B., Sarda, L., and Chap, H. (1995) *Cell* 80, 919–927
- 44. Ueda, N., and Shah, S. V. (1992) Am. J. Physiol. 263, F214-F221
- 45. Thor, H., Smith, M. T., Hartzell, P., Bellomo, G., Jewell, S. A., and Orrenius, S. (1982) J. Biol. Chem. 257, 12419-12425
- 46. Lifschitz, M. D. (1982) J. Biol. Chem. 257, 12611-12615
- 47. Troyer, D. A., Kreisberg, J. I., and Venkatachalam, M. A. (1986) Kidney Int. 29, 530-538

- 48. Weinberg, J. M., Davis, J. A., Abarzua, M., and Rajan, T. (1987) J. Clin. Invest. **80**, 1446–1454
- Bonventre, J. V. (1995) in Contemporary Issues in Nephrology (Goligorsky, M. 49. S., ed) pp. 23–44, Churchill Livingstone, New York 50. Bonventre, J. V. (1996) *J. Lipid Med.*, in press
- Mattys, E., Patel, Y., Kreisberg, J., Stewart, J. H., and Venkatachalam, M. 51. (1984) Kidney Int. 26, 153-161
- 52. Channon, J. Y., and Leslie, C. C. (1990) J. Biol. Chem. 265, 5409-5413
- Hayakawa, M., Ishida, N., Takeuchi, K., Shibimoto, S., Hori, T., Oku, N., Ito, F., and Tsujimoto, M. (1993) *J. Biol. Chem.* 268, 11290–11295
 MacEwan, D. J. (1996) *FEBS Lett.* 379, 77–81
- 55. Ueda, N., and Shah, S. V. (1992) J. Clin. Invest. 90, 2593-2597
- 56. Salgo, M. G., Corongiu, F. P., and Sevanian, A. (1992) Biochim. Biophys. Acta **1127**, 131–140
- 57. Salgo, M. G., Corongiu, F. P., and Sevanian, A. (1993) Arch. Biochem. Biophys. 304. 123-132
- van den Berg, J. J. M., Op den Kamp, J. A. F., Lubin, B. H., and Kuypers, F. A. (1993) *Biochemistry* 32, 4962–4967
- 59. Golconda, M. S., Ueda, N., and Shah, S. V. (1993) Kidney Int. 44, 1228–1234
- McCord, J. M. (1995) Proc. Soc. Exp. Biol. Med. 209, 112-116 60.
- Troy, C. M., and Shelanski, M. L. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 6384-6387
- 62. Clément, M.-V., and Stamenkovic, I. (1996) EMBO J. 15, 216-225
- 63. Gergeľ, D., Mišik, V., Ondriaš, K., and Cederbaum, A. I. (1995) J. Biol. Chem. 270, 20922-20929
- 64. Thomas, J. P., Maiorino, M., Ursini, F., and Girotti, A. W. (1990) J. Biol. Chem. 265. 454-461 65. Ohno, K., and Hirata, M. (1990) Biochem, Biophys. Res. Commun. 168.
- 551-557
- 66. Shi, M. M., Kugelman, A., Iwamoto, T., Tian, L., and Forman, H. J. (1994) J. Biol. Chem. 269, 26512-26517
- 67. Meister, A. (1983) Science 220, 472-477
- 68. Ballmaier, D., and Epe, B. (1995) Carcinogenesis 16, 335-342
- 69. Kudo, I., Murakami, M., Hara, S., and Inoue, K. (1993) Biochim. Biophys. Acta 1170. 217-231
- 70. Schroit, A. J., and Zwaal, R. F. A. (1991) Biochim. Biophys. Acta 1071, 313-329 71. Sierra-Honigmann, M. R., Bradley, J. R., and Pober, J. S. (1996) Lab. Invest.
- **74,** 684–695 72. Saido, T. C., Sorimachi, H., and Suzuki, K. (1994) FASEB J. 8, 814-822
- 73. Elliget, K. A., Phelps, P. C., and Trump, B. F. (1994) *Pathobiology* **62**, 298–310 74. Wang, K. K. W., and Yuen, P.-W. (1994) *Trends Pharmacol. Sci.* **15**, 412–419
- 75. Reynolds, L. J., Hughes, L. L., Louis, A. I., Kramer, R. M., and Dennis, E. A. (1993) Biochim. Biophys. Acta 1167, 272–280
- Wetzels, J. F. M., Wang, X., Gengaro, P. E., Nemenoff, R. A., Burke, T. J., and 76 Schrier, R. W. (1993) Am. J. Physiol. 264, F94-F99
- 77. Venkatachalam, M. A., Weinberg, J. M., Patel, Y., Hussong, U., and Davis, J. A. (1995) Kidney Int. 48, 118-128