

Chromatographie II HPLC Seminar

Chromatographie II HPLC Praktikum (nur Theorie)

- I.1 Einleitung (siehe Skript Praktikum)
- I.2 Ziele des Praktikums
- I.3 Die stationäre Phase
- I.4 Die mobile Phase
- I.5 Die Pumpe(n)
- I.6 Die Injektionseinheit
- I.7 Die Detektoreinheit
- (I.8 Die Software)
- I.9 Die Methode des ISTD
- I.10 Aufgaben zum theoretischen Teil

Chromatographie II I.2 Ziele des Praktikums

Nach diesem Praktikum soll man u.a.:

- Ziel 1 Über den Aufbau einer HPLC-Anlage, sowie über stationäre und mobile Phase Bescheid wissen.
- Ziel 2 Über die Einzelbestandteile (wie z.B. Pumpen, Injektoreinheit und Detektoren) Bescheid wissen.

Chromatographie II WS 2022/23 R. Vasold

Ziel 3 Wichtige chromatographische Kenngrößen (z.B. *t*_m, *t*_R(X), *V*_m, *V*_R(X), *u*_m, *u*(X), *k etc.)* bestimmen können.

Ziel 4 Eine quantitative Bestimmung mit der Methode des Internen Standards durchführen können.

Kapitel I Theoretischer Teil

I Theoretischer Teil I.2.1 Komponenten der HPLC Anlage

WS 2022/23 R. Vasold

Chromatographie II

I Theoretischer Teil I.2.1 Komponenten der HPLC Anlage

Abb. I.2.1: Komponenten eines HPLC-Systems

I Theoretischer Teil I.3 Die Stationäre Phase

WS 2022/23 R. Vasold

Chromatographie II

Abb. I.3.1: Komponenten eines HPLC-Systems (Säule)

I Theoretischer Teil I.3 Die Stationäre Phase

Abb. I.3.2: Darstellung einer HPLC-Säule

I Theoretischer Teil I.3 Die Stationäre Phase

Abb. I.3.3: Darstellung der Einzelpartikel

Chromatographie II WS 2022/23 R. Vasold

Abb. I.3.1.a: Material mit polaren Silanol- (SiOH)- Endguppen

Abb. I.3.1.b: Material mit unpolaren CH₃-Endgruppen

Abb. I.3.1c: Material mit unpolaren C4-Endgruppen

Abb. I.3.1.d: Material mit unpolaren C8-Endgruppen

Abb. I.3.1e: Material mit C18-Endgruppen

Im Praktikumsversuch wird folgende Säule eingesetzt:

Hersteller:Fa. PhenomenexDimensionen:150 mm x 4.6 mm (ID)Material:3 μmstationäre Phase:C18

I Theoretischer Teil I.4 Die mobile Phase

Abb. I.4.1: Komponenten eines HPLC-Systems (Eluenten)

Theoretischer Teil I.4.1 Die Eluotrope Reihe

= Anordnung der Laufmittel nach steigender Elutionskraft E⁰
(△ Polarität) bezogen auf NP-Phase (empirisch bestimmt)

			Eluent	Elutionskraft [E ⁰ (Al ₂ O ₃)]	UV-Grenze [nm]	
	u.	NP-Chromatographie	n-Hexan	0,00	190	
			Toluol	0,29	285	
			Chloroform	0,40	245	
D			Dichlormethan	0,42	230	
Verwendun			Aceton	0,56	330	
			Essigsäureethylester	0,58	260	
		RP-Chromatographie	Dimethylsulfoxid	0,62	270	
			Diethylamin	0,63	275	
			Acetonitril	0,65	190	
			2-Propanol	0,82	210	
			Methanol	0,95	205	_
			Wasser	>1,11	<190	

Abb. I.4.1.a: Die Eluotrope Reihe (Auszug)

hauptsächliche

I Theoretischer Teil I.4.1 Die Eluotrope Reihe

WS 2022/23 R. Vasold

Chromatographie II

21

Theoretischer Teil I.4.1 Die Eluotrope Reihe

Beispiel für die Reversed-Phase-(RP)-Chomatographie:

Abb. I.4.1.c: Entwicklung einer RP-Trennung (isokratisch)

I Theoretischer Teil I.4.2 Die isokratische-Elution

Die Zusammensetzung der mobilen Phase <u>ändert sich</u> während der chromatographischen Trennung <u>nicht</u>:

Abb. I.4.2.: Eluentenverlauf bei isokratischer Elution

I Theoretischer Teil I.4.3 Die Gradienten-Elution

Die Zusammensetzung der mobilen Phase <u>ändert sich</u> während der chromatographischen Trennung:

Abb. I.4.3: Eluentenverlauf bei Gradienten Elution

I Theoretischer Teil I.5 Die Pumpe / Injektor / Detektor

I Theoretischer Teil I.5 Die Pumpe

Theoretischer Teil I.5 Die Pumpe

Theoretischer Teil I.5 Die Pumpe

I Theoretischer Teil I.6 Die Injektionseinheit

Theoretischer Teil I.7 Die Detektoreinheit

I.7.1 Der UV/VIS-Detektor

Abb. I.7: UV/VIS - Detektor (VWD oder MWD) jeweils nur eine Wellenlänge einstellbar

I Theoretischer Teil I.7 Die Detektoreinheit

I.7.2 Der Diodenarray-Detektor (UV/VIS)

Abb. I.7.2: Der Photodiodenarray-Detektor

I Theoretischer Teil I.7.2.1 Der ISO-Plot (DAD-Detektor)

Chromatographie II

I Theoretischer Teil I.7.2.2 Der 3D-Plot (DAD Detektor)

Abb. I.7.2.2: 3-D-Plot einer chromatographischen Trennung

I Theoretischer Teil I.7.3 Der MS-Detektor

Abb. I.7.3: Vereinfachte Darstellung eines HPLC-MS-Detektors

I Theoretischer Teil I.7.4 HPLC-Detektoren (Auswahl)

HPLC-Detektoren	Anwendung	Nachweisgrenze	Linearität
UV/VIS DAD (Diodenarray-Detektor);	selektiv für UV/VIS-aktive Analyte (ca. 190-950 nm)	ca. 0,3 ng/mL	1 x 10 ⁴
RI (R efractive-Index-Det.) Brechungsindex	Analyte mit unterschiedlichem Brechungsindex zum Eluenten (temperaturabhängig, keine Gradientenelution, wenig empfindlich)	ca. 0,7 μg/mL	3 x 10 ³
FLD (Fluorescence- D et.) Fluoreszenz	selektiv nur für fluoreszierende Analyte	0,2 pg/mL (!)	10 ^{3 -} 10 ⁴
ECD (Elektro-Chemical-Det.) elektrochemisch	selektiv, nur für oxidierbare bzw. reduzierbare Analyte	ca. 1,0 pg/mL (!)	-
CD (C onductivity- D et.) Leitfähigkeit	Selektiv für Ionen	a)	ca. 10⁵
ELSD (Evaporative-Light- Scattering-Det.) Verdampfungslichtstreuung.	Relativ Universell aber wenig empfindlich	modellabhängig	-
MSD (Mass-Selective-Det.) Masse	Relativ universell aber Analyte müssen ionisierbar sein.	modellabhängig	-

a) kann bis zu ca. 0,2% Unterschied in der Leitfähigkeit nachweisen.

Abb. I.7.4: häufig eingesetzte HPLC-Detektoren

Theoretischer Teil I.8. Software

Abb. I.8: Software Open LAB ChemStation C.01.07 SR4

...warum der Aufwand, wenn man exakt quantifizieren will?

...warum ist eine externe Kalibrierung oft nicht ausreichend ?

Es kann zu "ganz normalen" Schwankungen zwischen den Läufen kommen, wie:

Veränderungen des Säulenmaterials im Laufe des Meßbetriebes.

Veränderungen der Umgebungstemperatur etc.

Abb. I.9: Zugabe eines internen Standards (Tracer)

Die Fläche eines Peaks ist mit der eingespritzten Stoffmenge bzw. der Massenkonzentration m_i des Stoffes proportional:

$$\frac{\mathbf{f}_{\mathrm{Tr}}}{\mathbf{f}_{\mathrm{i}}} = \frac{m_{i}^{x} \cdot a_{Tr}^{x}}{m_{Tr}^{x} \cdot a_{i}^{x}}$$
(5)
$$x = \mathrm{Probenlösung}$$

Auflösen nach Massekonzentration der Komponente i

I Theoretischer Teil I.10 Fragen zum Theoretischen Teil (Auswahl)

- 1.) In welche zwei grundlegenden Typen von Phasensystemen kann die Adsorptionschromatographie unterschieden werden?
- 2.) Erklären sie den Begriff "endcapping".
- 3.) Welche Effekte hinsichtlich der Peakform können auftreten, wenn z.B. basische Substanzen (Amine, Phenole) auf schlecht endgecappten RP-Phasen chromatographiert werden (2 Beispiele)?
- 4.) Nennen Sie mindestens drei Vorteile, die RP-Phasen im Vergleich zu NP-Phasen aufweisen.
- 5.) Was versteht man unter der Eluotropen Reihe, wie wurde sie bestimmt, und welchem Ordnungsprinzip folgt sie?
- 6.) Welcher Zusammenhang besteht zwischen Eo (Al2O3) und Eo (SiO2)?
- 7.) Zwischen welchen beiden grundlegenden Arbeitsweisen wird beim Einsatz der mobilen Phase während einer chromatographischen Trennung unterschieden und wie nennt man diese Formen der Elution?
- 8.) Erläutern sie in diesem Zusammenhang die Begriffe "binärer", "ternärer" und "quaternärer" Gradient.
- 9.) Nennen sie zwei Gründe, warum Eluenten entgast werden sollten.
- 10.) Nennen sie vier mögliche Verfahren der Eluentenentgasung
- 11.) Wie ist der Kalibrierfaktor KFi einer Komponente i definiert?
- 12.) Nennen sie mindestens vier Eigenschaften, die ein geeigneter Tracer aufweisen muß.
- 13.) Nennen sie einen wesentlichen Unterschied zwischen dem Bauprinzip eines VWD-Detektors und eines DAD-Detektors.
- 14.) Erläutern sie in diesem Zusammenhang der Ausdruck: "Inverse Optik". Nennen sie neben UV/VIS vier weitere Arten von HPLC-Detektoren.