
Int. J. Man-Machine Studies (1984), 21, 365-375

Stages and levels in human-machine interaction

DONALD A. NORMAN

Department of Psychology and Institute for Cognitive Science C-015,
California, San Diego, La Jolla, California 92093, U.S.A.

University of

The interaction between a person and a computer system involves four different stages
of activities--intention, selection, execution, and evaluation--each of which may occur
at different levels of specification. Analysis of these stages and levels provides a useful
way of looking at the issues of human-computer interaction.

Introduction

My concern is with the overall process of interaction with the computer. I want to
avoid an emphasis on detailed aspects of that interaction and ask about the nature of
the interaction. Details are indeed important, but only once the proper conceptualiz-
ation has been applied. Consider a simple situation. A user of a computer system is
writing a paper and, in the process, decides that the appearance of the printed draft
is not ideal: the paragraph indentation does not look proper. The user forms an
intention: to correct the appearance of the paper. Now the problem is to satisfy this
intention by translating it into the appropriate set of actions. The purpose of this article
is to examine some aspects of the interaction between a person and the computer
system as the person attempts to satisfy the intention. The focus is derived from three
observations.

1. When a person interacts with a computer, it is possible to identify four
different stages of that interaction, each with different goals, different methods,
and different needs (Norman, 1984).

2. Each of the known techniques for the interface has different virtues and different
deficiencies. Any given method appears to lead to a series of trade-offs. Moreover, the
trade-offs differ across the four stages of user interaction (Norman, 1983a).

3. Messages and interactions between user and machine can take place at a number
of different levels. I f the levels are not matched, confusion and misunderstanding can
arise. Determining the appropriate level is a difficult task, often requiring some
knowledge of the intentions of the user (Norman, 1981 a, 1983b).

Let us start with a brief analysis of the stages.

The four stages of user activities

I define intention as the internal, mental characterization of the desired goal. Intention
is the internal specification of action responsible for the initiation and guidance of the
resulting activity. Although intentions are often conscious, they need not be. Selection

365

0020-7373/84/100365 + 11 $03.00/0 �9 1984 Academic Press Inc. (London) Limited

366 D . A . NORMAN

is the stage of translating the intention into one of the actions possible at the moment.
To go from intention to action, the person must review the available operations and
select those that seem most auspicious for the satisfaction of the intention. Then,
having mentally selected, the actual command sequences must be specified to the
computer. The determination of a particular command or command sequence is
selection ; the act of entering the selections into the system is execution. Intention and
selection are mental activities; execution involves the physical act of entering informa-
tion into the computer. These activities do not complete the task. The results of the
actions need evaluation, and that evaluation is used to direct further activity.

Thus, the full cycle of stages for a given interaction involves:

forming the intention;
selecting an action;
executing the action; and
evaluating the outcome.

Perhaps the best way to understand the differences among the stages is to continue
with our example. The intention is to improve the appearance of the printed version
of the manuscript. This is a higher order statement that must get translated into more
specific terms. Suppose that because it is the paragraph indentation that looks wrong,
the user decides to switch to a "block paragraph" f o r m a t - - a format in which the initial
line of a paragraph is not indented. We now have a second level of intention: call the
main intention intentiono and this new level intentions. But even intention~ is not
sufficiently specific. Suppose the manuscript is being prepared by means of a traditional
editor and run-off facility, so the manuscript contains formatting instructions that get
interpreted at run-off time. One way to carry out the intention is to change the definition
of the paragraph. Another way is to bypass the paragraph format specification and to
substitute a blank line instead. There are several ways of carrying out each of these
methods, but suppose that our user decides upon the latter technique, substituting for
the paragraph specification .pp, the "skip a line" specification, .sp. This becomes
intention2.

Having formed intention2, the next step is to select an appropriate set of actions to
carry it out. This requires a set of text-editing commands, commands that find the
appropriate location in the text that is to be changed (in this example, there are apt
to be a rather large number of locations), then commands that change the .pp to .sp.
There are several different ways of performing these operations. Thus, in the particular
text editor that I happen to be using to write this paper (Berkeley U N I X vi), the
following command sequence will do the operation g/ . pp / s / pp / sp / . t A more detailed
analysis of the steps involved in making the selection would reveal that several more
levels of intentions were involved. Eventually, however, a set of text-editing commands
will be selected. We must take note of one more level o f intention: the intention to
execute the selected command sequence. Call this intention3.

t As with many text editors, the command sequence is not particularly intelligible. The initial g signals
that the command is to be performed "globally" to all occurrences of the string. The /^ .pp / is the string
that is searched for in the text: a line that begins with ".pp" The remaining part of the line specifies the
substitute command: substitute for the string "pp" the string "sp". Users of the vi text editor will recognize
that even this description is slightly simplified. It should be clear that selecting this command string is a
reasonably complex operation, requiring the setiing of numerous sub-intentions and engaging in some
problem-solving.

S T A G E S A N D L E V E L S 367

Having selected the command sequence, the next step is to execute the selection. In
vi, this will require yet another action cycle to get the editor into the mode in which
the substitute command will work properly, an action cycle that requires yet more
levels of intentions, selection, execution, and evaluation. Finally, if all has gone welt,
the user has executed intention3, and entered the command sequence into the system.
Although execution has its own cycle of activities and sub-intentions, let us skip over
them and assume that this stage has been performed properly.

This brings us to evaluation. Evaluation has to occur separately for each level of
intention. First, it is necessary to check that the command sequence entered into the
editor is the one intended. Then the manuscript text must be examined to make sure
that intentiona (the global change) got properly carried out: that all the .pp lines do
indeed now say .sp. If they do, intention2 (change pp to sp) has also been satisfied.
Then intentionl (change to block paragraph format) must be evaluated by means of
yet another action cycle and another set of intentions. To see if the paragraphs come
out in desired block-paragraph style, it is necessary to "run-off" the manuscript: this
involves a new intention, intentionlA, and a new selection of commands. When all that
is complete, the user can finally examine the printed page and determine whether
intention1 has been satisfied. If so, then the outcome can be evaluated with respect to
intentiono to determine whether the new format is a satisfactory improvement over the
original.

STAGES ARE APPROXIMATIONS

Note that although it is useful to identify stages of user activity, the stages should be
thought of as convenient approximations, not as well-defined, well-demarcated psycho-
logical states. People are not serial-processing mechanisms, they do not have well-
defined stages of decision processes or action formation, and they often are not
conscious of the reasons for their own actions. People are best viewed as highly-parallel
processors with both conscious and subconscious processing, and with multiple factors
continually interacting and competing to shape activity (see Norman, 1981a, b;
Rumelhart & Norman, 19~'2). Nevertheless, the approximations used by this analysis
may yield relevant and worthwhile results for the identification of important design
considerations.

THE INTENTION STAGE

From the point of view of a system designer, there are two different aspects of intentions,
each of which can be divided into two different concerns. The first aspect is the system's
need (and ability) to know the intentions of the user, the second is the support that
can be offered to the user to help form appropriate sub-intentions.

Knowing the user's intentions
Consider what the system might need to know about the user's intentions. There are
two concerns here: (a) what needs to be known about a user's intentions, and (b) how
it is possible for a computer system to get this information. The problem is made more
complex because of the multiple-layers of intentions that exist, with any reasonable
task iavolving a fairly complex structure of intentions and sub-intentions. Still, for a
system to provide useful guidance and feedback, it is going to need information about

3 6 8 D . A . N O R M A N

the user's higher-level intentions, both the overall, general intention and the sub-
intention that is relevant at the moment (and perhaps the entire chain from the current
sub-intention back to the highest level intention). Indeed, one could argue that all
assistance (including help and error messages) requires input about the higher levels
of user intentions in order to be maximally effective (see Johnson, Draper & Soloway,
1983). The second concern, how a system can get the necessary information about the
user's intentions, is the difficult one. In some cases, the user can simply be asked. In
others, it will be far more complicated. I expect that as we learn more about what the
higher-levels of intention relevant to the task are, we will go a long way toward solving
the how problem.

System support for sub-intention formation
There are usually two things a user needs to known in forming intentions: what the
current status of things is and what is possible, given the current status and system
facilities (both of these points are also appropriate for other stages: the question "what
is the current status?" is part of evaluation; the question "what is possible?" is part
of selection). We need to learn how to provide this information, at the appropriate
level of sophistication for a given user at a given task, without intrusion.

THE SELECTION STAGE

Some intentions might map directly onto a single action, others might require a sequence
of operations. In either case, the selection of an action sequence can require consider-
able knowledge on the part of the users. There are two aspects of selection. One is to
figure out the method that is to be used in doing the task, the other to select which
particular system commands are to be invoked. Consider how users decide what the
options are in the selection process. How do they know the commands? There are four
ways.

1. They could retrieve them from memory.
2. They might be reminded, either by another person, the system, or a manual.
3. They might be able to construct or derive the possibilities.
4. They might have to be taught, either by another person, the system, or a manual.

In the first case, recall-memory is used to identify the desired item. In the second case,
recognition-memory is used to identify the desired item from the list or description of
the alternatives. In the third case, the user engages in problem-solving, perhaps using
analogy, perhaps eliminating possibilities. And in the fourth case, the user learns from
some external source. This raises the issue of how the user knew that assistance was
needed and how that assistance was then provided--a major theme of study in its own
right.

Support for the selection stage comes principally from memory aids (manuals and
various on-line support tools such as menus, help commands and icons) that allow
the user to determine the possible commands and their modes of operation, prere-
quisities and implications. Selection can be enhanced by "workbenches" that collect
together relevant files and software support in one convenient location. Other methods
of structuring groups of commands and files dependent upon the user's intentions
need to be explored (for example, see Bannon, Cypher, Greenspan, & Monty, 1983).

STAGES AND LEVELS 369

THE EXECUTION STAGE

Naming
There are two ways to specify an action to the computer: naming and pointing. Naming
is the standard situation for most computer systems. The designer provides a command
language and the users specify the desired action by naming it, usually typing the
appropriate command language sequences. A speech input system would also be
executing by naming. Execution by naming provides the designer with a number of
issues to worry about. What is the form of the command language? How are the
commands to be named, how are options to be specified? How are ill-formed sequences
to be handled? How much support should be provided for the user?

Most operating systems provide little or no support for intention, selection or
execution. The user is expected to have learned the appropriate commands. Then the
execution is judged either to be legitimate (and therefore carried out) or erroneous
(and an error message presented to the user).

It is quite possible for a system to provide considerable support for these stages, to
provide information that tells not only the actions available, but also the exact procedure
for executing them. This can be done with menus, perhaps abbreviated and restricted
in content, so that they serve as reminders of the major actions available.

Pointing
Execution of an action by pointing means that the alternative actions are visually
present and that the user physically moves some pointing device to indicate which of
the displayed actions are to be performed. Although the prototypical "pointing"
operation is to touch the desired alternative with a finger or other pointing device, the
definition can be generalized to include any situation where a selection is made by
moving an indicator to the desired location.

Note that a naming system requires two things: a place to point at and a means of
pointing. We can separate these two. Moreover, as long as one needs a place to point
at, it might as well be informative. Thus, the places serve as reminders to the selection
stage when they consist of printed labels, lists, menus, or suggestive icons displayed
on a terminal screen. But the places need not be informative: they might be unlabelled
locations on the screen (or, in electronic devices, unlabel led--or illegible--panels).

Executing by naming often allows a large set of possible actions, hard to learn, but
efficient in operation. Execution by pointing is restricted to those commands that can
have a specified location. As a result, proponents of naming systems say they are more
efficient: pointing requires sublevels. Proponents of pointing say they are easier to
remember. One side emphasizes ease of execution, the other ease of selection.

THE EVALUATION STAGE

Feedback is an integral part of evaluation, whether the operation has been completed
successfully or whether it has failed. For full analysis, the user must k n o w a number
of things.

What the previous state of the system was.
What the intentions were.
What action was executed.
What happened.

370 D.A. NORMAN

How the results correspond to the intentions and expectations.
What alternatives are now possible.

The evaluat ion o f an action depends upon the user 's intentions for that action. In
cases where the opera t ion could not be performed, either because it was not executed
properly, or because some necessary precondi t ion was not satisfied, the user will
p robably maintain the same intention but at tempt to correct whatever was inappropria te
and then repeat the attempt. In cases where the opera t ion was done, but with undesirable
results, the user may need to " u n d o " the operation. In this case, repetit ion o f the same
action is not wanted.

One useful viewpoint is to think of all actions as iterations toward a goal. I l l -formed
c o m m a n d s are to be thought o f as partial descriptions o f the proper command : they
are approximat ions. This means that error messages and other forms of feedback must
be sensitive to the intentions o f the users, and, wherever possible, provide assistance
that allows for modification o f the execution and convergence upon the proper set o f
actions.

The user support relevant to each stage is summarized in Table 1.

TABLF 1
Design implications for the stages of user activities

Stage Tools to consider

Forming the intention

Selecting the action

Executing the action

Evaluating the outcome

Structured activities
Workbenches
Memory aids
Menus
Explicit statement of intentions

Memory aids
Menus

Ease of specification
Memory aids
Menus
Naming (command languages)
Pointing

Sufficient workspace
Information required depends on intentions
Actions are iterations toward goal
Errors as partial descriptions
Ease of correction
Messages should depend upon intentions

Interface aids

MENUS IN THE FOUR STAGES

One o f the more c o m m o n interface aids is a menu, implemented either as a set o f
verbal statements or as pictures (" icons") . It is useful to examine menus at this point

S T A G E S A N D L E V E L S 371

for two reasons. First, the use of menus is often controversial, in part because their
use requires trading the perceived value of the information provided by the menu for
a loss of workspace and a time penalty [these trade-offs are discussed in Norman
(1983a)]. Second, two different aspects of menus are often confounded. Menus can
serve as a source o f information for the intention and selections stages. In addition,
they can also provide information, or even the mechanism, for the execution stage.
That is, in execution by pointing, the menu or icon provides both information and a
place to point. Unnecessary confusion arises when these rules of menus for selection
are lumped with their roles for execution. Menus as sources of information for the
intention and selection stages have one set of virtues and deficits; menus as mechanisms
for the execution stage have another set of virtues and deficits. The point is that menus
serve different purposes and have different trade-off values for each stage: in part, the
virtues for one stage are pitted against the deficits for another. The properties of menus
can be summarized in the following way.

I. Menus are capable of providing information for intention and selection by:
A. Presenting the user with a list of the alternatives;
B. Presenting descriptions and explanations of the alternatives.

II. Menus can aid in the execution stage:
A. if execution is by pointing, menus can aid by:

1. Providing a target to be pointed at.
B. I f execution is by naming, menus can aid by:

1. Providing the user with an abbreviated execution name (such as the number
of the menu line, a single letter, or a short abbreviation, usually mnemonic) ;

2. Providing the user with the full command line (and arguments) that are to
be used.

The first function of menus, providing information, is really their primary function.
The information, explanations and descriptions that they present are especially impor-
tant in the stages of forming the intention and selecting the action. Note that this
function can be performed without any commitment to how execution is carried out.
The second function of menus, aiding in execution, can be of equal use for execution
by naming or pointing. Menus are especially useful when only a restricted number of
alternatives is available, usually restricted to those described by the menu. Execution
might be performed either by pointing at the menu items or by typing simplified
command names (which are often so configured as to only require the typing of single
characters).

Another major design decision is the question of how to get access to menus. The
alternatives for menus are the following.

1. Always to be present in full form. Note that a set of labelled function keys can
be thought of as a menu that is always present, with execution by pointing (i.e.
depressing the appropriate key). In this sense, then, the panels of conventional instru-
ments use a form of menus; the set of controls and range of possible actions are always
visible. This option optimizes access to information at the expense of workspace.

2. Always to be present in a reduced form that allows the use~ to request the full
menu. This option is a compromise position between the demands for information
and workspace.

372 D.A. NORMAN

3. Not to be present unless requested by a special c o m m a n d or labelled key (e.g.
"he lp") or by some other act ion (e.g. a " p o p - u p " menu called by depressing a bu t ton
on a mouse) . This opt ion maximizes workspace at the expense of t ime and effort.

4. Avai lable through a hierarchical or network structure, necessary when the menu

size is large.

Note that fans of menus usual ly are those who weight highly the informat ion provided
for in ten t ion and selection. Foes of menus usual ly are those who do not need assistance

in these stages and who object to the loss of t ime and workspace dur ing execut ion
and evaluat ion. The differences come from differing needs at the different stages. Table

2 summarizes the effects of these issues on menu design.

TABLE 2

Properties of Menus

Variable Virtues Deficits

Information The more information presented in one
display, the more detailed the explana-
tions can be or the more alternatives can
be presented, in either case improving
the quality of advice offered the user

The more workspace available for the
menu, the more information can be dis-
played and the better it can be format-
ted, simplifying search and improving
intelligibility

Allows user to see a large percentage of
the alternatives, aiding intention and
selection stages and minimizing number
of menus needed

Easy to read, quick to display, only a
small percentage of the available space
is required

Amount of work-
space used

Display of a large
number of menu
items

Display of a small
number of menu
items

More information increases
times for searching, reading, and
displaying, making it harder to
lind any given item, decreasing
usability and user satisfaction

The larger the percentage of the
available space used, the more
interference with other uses of
that space

Slow to read, slow to display,
uses large percentage of the
available space

If number of alternatives is large,
multiple menus must be pro-
vided. This can be slow and cum-
bersome

Levels of activity

THE PROBLEM OF LEVELS

The existence of numerous levels of in tent ions leads to numerous difficulties. First,

there can be a mismatch between the level at which the user wishes to express the
in ten t ions and the level that the system requires. Second, even apparent ly simple tasks
can require considerable levels of in tent ions and sub- in tent ions , and the person 's
short- term memory may become overloaded, leading to confus ion and error . t Final ly,

t A number of "'slips" of action occur for this reason, where the person loses track of the higher-order
intention but continues to perform the actions associated with the lower-order ones. The result is to perform
some action, only to wonder why the action is being done. When the lower-level actions are completed,
there might no longer be any trace of the originating intention/action [an example from my collection: walk
across the house to the kitchen, open the refrigerator door, then say "Why am I here?" (Norman, 1981a)].

STAGES AND LEVELS 373

there can be difficulties in the evaluation stage, especially when the results are not as
expected�9 Here the problem is to determine at what level the mismatch occurs�9 An
example from a p rogram on our system illustrates the problem. I wish to display the
contents o f a file on the screen�9 I execute the appropr ia te display program and it works
well. However , when I try to perform one o f the opt ions o f the display program, the
program collapses most ungracefully, and then displays this message on the screen:
longjmp botch: core dumped. What is a " long jmp bo tch"? Why am I being told this?
Of what use is this information to me?

The message was obviously written by a conscientious p rogrammer who perhaps
thought the si tuation would never arise, but that when it did, it would be impor tant
to tell the user. t One problem with this message is that it is presented at the
lowest level o f p rogram execution whereas I am thinking at a fairly high level o f
intention: I want to change what material is on the screen and want it either to be
done or to see a message telling me that it cannot be done, in reasons relevant
to my level o f thought . " longjmp bo tch" is not the level at which I am forming my
intentions�9

Remember the earlier example o f at tempting to reformat the paper. Suppose the
end result is not satisfactory. Why not? The reason could lie at any level�9 Perhaps the
run-off was not carried out properly; perhaps the change of .pp to .sp was not done
properly; perhaps that change did not proper ly perform the "b lock paragraph" format-
ting; perhaps "b lock paragraph" is not what is required to satisfy intentiono. There are
many places for error, many places where intentions could fail to be satisfied. I f the
operat ion were carried out manually, one step at a" time, then it would be relatively
easy to detect the place where the problem lies. But in many situations this is not
possible: all we know is that the intention has not been satisfied. Many of us have
experienced this problem, spending many hours "fixing" the wrong part o f a p rogram
or task because we did not have the informat ion required to judge the level at which
the problem had occurred. The question, however, for the system designer is: what
information is most useful for the user?

] 'he question is very difficult to answer�9 For the system programmer who is trying
to debug the basic routines, the statement longjmp botch might be very useful - - jus t the
informat ion that was needed. For me, it was worthless and frustrating�9 A statement
like System difficulties: forced to abort the display command might have been much
more effective for my purposes, but rather useless to the systems programmer. The
problem is not that the error message is inappropr ia te ; the problem is that sometimes
it is appropriate , o ther times not.

One solution to the levels problem is to know the intention�9 I f the program knew it
was being used by a person who only wanted to see the files, it could make one set
o f responses�9 I f it knew it was being used by someone trying to track down a problem,
it could make another set. However, a l though knowing user intentions and levels often
helps, it does not guarantee success. In my studies o f h u m a n errors I have found
numerous cases where knowledge of the intention would not help. Consider the

t It is from this and related experiences that I formulated the rule: programmers should never be allowed
to communicate with the user. Good software design, I am convinced, can only come about when the part
of the program that communicates with the user is encapsulated as a separate module of the program,
written and maintained by an interface designer. Other parts of the program can communicate only with
each other and with the interface module--most definitely not with the user. See Draper & NortT~an (1984).

374 D.A. NORMAN

following example:

X leaves work and goes to his car in the parking lot. X inserts the key in the door,
but the door will not open. X tries the key a second time: it still doesn't work.
Puzzled, X reverses the key, then examines all the keys on the key ring to see if the
correct key is being used. X then tries once more, walks around to the other door
of the car to try yet again. In walking around, X notes that this is the incorrect car.
X then goes to his own car and unlocks the door without difficulty.

I have a collection of examples like this, some involving cars, others involving apart-
ments, offices, and homes. The common theme is that even though people may know
their own intentions, they seem to tackle the problem at the lowest level, and then
slowly, almost reluctantly, they pop up to higher levels of action and intention. If the
door will not unlock, perhaps the key is not inserted properly. If it still will not work,
perhaps it is the wrong key, and then, perhaps the door or the lock is stuck or broken.
Determining that the attempt is being made at the wrong door seems difficult. Now
perhaps the problem is the error messages are inappropriate: the door simply refuses
to open. It would be better if the door could examine the key and respond "This key
is for a different car". Can programs overcome this problem?

This article is intended only to introduce the ideas that there are stages of activity,
levels of intention and trade-otis among the solutions to the problems of human-user
interaction. As the saying goes, more work is needed. But if that message is understood,
then the article is successful. My goal is to move the level of study of the human
interface up, away from concentration upon the details of the interaction to consider-
ation of the global issues.

The ideas discussed here result from the interactions with the UCSD Human-Machine
Interaction project. The various sections of the paper have been presented at the SIGCHI
Conference on Computer-Human Interaction (Norman, 1983a), the I FIPS First Conference on
Human-Computer Interaction (Norman, 1984), and at the NSF Conference on Intelligent
Interfaces, New Hampshire, 1983. Sondra Buttett and Edwina Rissland have provided helpful
critiques of various drafts of the article.

The research was supported by Contract N00014-79-C-0323, NR 667-437 with the Personnel
and Training Research Programs of the Office of Naval Research and by a grant from the System
Development Foundation. Requests for reprints should be sent to Donald A. Norman, Institute
for Cognitive Science C-015; University of California, San Diego; La Jolla, California 92093,
U.S.A.

References

BANNON, L., CYPHER, A., GREENSPAN, S. & MONTY, M. L. (1983). Evaluation and
analysis of users' activity organization. Proceedings of the CHI 1983 Conference on Human
Factors in Computer Systems, Boston.

DRAPER, S. & NORMAN, D. (1984). Software engineering for user interfaces. Proceedings of
the 7th International Conference on Software Engineering, Orlando, Florida.

JOHNSON, W. L., DRAPER, S. & SOLOWAY, E. (1983). Classifying bugs is a tricky business.
ACM SIGSOFT/ SIGPLAN Symposium on High-Level Debugging, Baltimore, Maryland.

NORMAN, D. A. (1981a). Categorization of action slips. Psychological Review, 88, 1-15.
NORMAN, D. A. (1981b) A psychologist views human processing: Human errors and other

phenomena suggest processing mechanisms. Proceedings of the International Joint Conference
on Artificial Intelligence, Vancouver.

STAGES AND LEVELS 375

NORMAN, D. A. (1983a). Design principles for human-computer interfaces. Proceedings of the
CHI 1983 Conference on Human Factors in Computing Systems, Boston.

NORMAN, O. A. (1983b). On human error: Misdiagnosis and failure to detect the misdiagnosis.
Talk presented at the GA Technologies Inc. Workshop on Decision Processes in Operation
Planning and Fault Diagnosis, La Jolla, California.

NORMAN, D. A. (1984). Four stages of user activities. In SHACKEL, B., Ed., INTERACT '84,
First Conference on Human-Computer Interaction, Amsterdam: North Holland.

RUMELHART, D. E. & NORMAN, D. A. (1982). Simulating a skilled typist: A study of cogni-
tive-motor performance. Cognitive Science, 6, 1-36.

