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1. Introduction

This course in financial economics addresses two main
questions.
I Efficiency: does trade in financial assets lead to an

efficient allocation of economic risks?
I Asset pricing: what determines asset prices?

To answer these questions we approach the field of financial
economics from the perspective of general equilibrium theory
with complete markets. (Incomplete markets are much harder
to analyze and there are much fewer general results.)
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1. Introduction

Results in this field come at two strikingly different levels of
mathematical difficulty. Examples include several of the
classical results in financial economics:
I Almost all results require only very basic math. Examples

include
I the first welfare theorem with financial markets
I the fundamental equations of asset pricing in two-period

and multi-period setups
I the shareholder unanimity theorem
I the Modigliani-Miller theorem
I the CAPM
I the efficient markets hypothesis
I fundamental value.

5 / 183



1. Introduction

I Some results, which assert the existence of something,
require the use of separating hyperplane or fixed point
theorems:
I existence of equilibrium
I the 2nd welfare theorem (for any Pareto-optimal allocation,

there exist endowments and prices such that the allocation
and the prices are an equilibrium)

I the fundamental theorem of asset pricing (in the absence of
arbitrage opportunities, there exist state prices that can be
used to value assets).

These slides focus on the former set of results. A second set of
slides “Financial Economics: Risk Sharing and Asset Pricing in
General Equilibrium II” c© summarize the latter set of results and
the necessary math.
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1. Introduction

The classical theorems in financial economics that we prove do
not work very well in practice.

As explained in boxes like this one,
I making risks tradable does not necessarily improve

the allocation of risk,
I the fundamental equations of asset pricing fail to

explain the equity premium,
I financial structure matters,
I the CAPM does not work well, and
I asset prices do not accurately reflect fundamental

value.
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1. Introduction

That does not mean that the theorems bear no practical
significance. They are the perfect-markets perfect-information
reference point for assessing inefficiencies.

I Risk sharing with trade in new financial products may work
less efficiently than suggested by the perfect-markets
model,

I the equity premium compared to the prediction of the
fundamental equations of asset pricing is a puzzle,

I firms’ financial structure is not, as the perfect-markets
model suggests, irrelevant,

I there are asset pricing anomalies, i.e., deviations from the
asset returns predicted by the CAPM, and

I asset prices do not accurately reflect the fundamental value
that is implied by the fundamental equations of asset
pricing.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

EFFICIENT RISK
SHARING
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

2. Two-period two-state
model
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

Endowment economy with
I I consumers i = 1,2, . . . , I,
I one (physical) good,
I two periods, t and t + 1,
I two states s = 1,2 with probabilities πs (πs > 0,∑2

s=1 πs = 1).
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

Convention:
I Subscript 0: variable refers to date t
I Subscript s: variable refers to state s at date t + 1.

Endowments: y i
0, y i

1, y
i
2.

Preferences: utility functions U i(c i
0, c

i
1, c

i
2) (U i : R3

+ → R). The
only assumption we place on the U i ’s is that they are strictly
increasing.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

For asset pricing, we assume a time-separable expected utility
function:

U i(c i
0, c

i
1, c

i
2) = ui(c i

0) + β i
2∑

s=1

πsui(c i
s).

with
I positive discounting (0 < β i < 1),
I ui : R+ → R twice differentiable,
I (ui)′(c) > 0 > (ui)′′(c) for all c > 0, and
I (ui)′(0) =∞.

But that’s inessential for much of the equilibrium analysis.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

The model is simple to the point of triviality. That doesn’t mean
that it’s easy to analyze, however!
It offers deep insights into the nature of general equilibrium, its
welfare properties, and efficient risk bearing.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

Literature:
I Mas-Colell, Andreu, Michael D. Whinston, and Jerry R.

Green, Microeconomic Theory, Oxford University Press
(1995), Chapters 16, 19.

I Magill, Michael, and Martine Quinzii, Theory of Incomplete
Markets, MIT (2002), Section 6.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

3 Efficient risk sharing:
contingent-commodity

markets
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

To begin with, ignore financial markets. There is a spot market
with payment and delivery at date 0. Further, there are
contingent-commodity markets (CCMs). In these markets,
claims to the delivery of one unit of the consumption good
contingent upon the realization of state s are traded at price qs.
If s does not materialize, nothing is delivered.

t t+ 1, 1 t+ 1, 2

q0 - u
q1
q2

u u
spot market

-
-

u= delivery of one unit
of the commodity
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

I q = (q0,q1,q2): price vector
I yi = (y i

0, y
i
1, y

i
2): i ’s endowment vector

I ci = (c i
0, c

i
1, c

i
2): i ’s consumption vector.

Given that the U i ’s are strictly increasing, we can restrict
attention to q ∈ R3

++. Without further comment, we let ci ∈ R3
+

(and analogously when we consider the model with more than
two states).
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

i ’s budget constraint is:

q(ci − yi) ≤ 0.

Convention: the product of two vectors is the scalar product. In
equilibrium, due to strictly increasing utility, the budget
equations will hold with equality.
All trade takes place at the inital date 0.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

Definition: An allocation (ci)I
i=1 is feasible if

I∑
i=1

ci ≤
I∑

i=1

yi .

An allocation is Pareto-optimal if it is feasible and there is no
other feasible allocation (ci ′)I

i=1 such that

U i(ci ′) ≥ U i(ci)

for all i with strict inequality for at least one i.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

Definition: An allocation (ci)I
i=1 and a price vector q are an

equilibrium with CCMs (ECCM) if
I ci maximizes U i subject to the individual’s budget

constraint for all consumers i and
I markets clear:

I∑
i=1

ci =
I∑

i=1

yi .
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

Theorem (1st Welfare Theorem with CCMs): Let
((ci)I

i=1,q) be an ECCM. Then (ci)I
i=1 is Pareto-optimal.

Proof: Suppose not. Then there is (ci′)I
i=1 which is feasible and

Pareto-superior. Pareto-superiority implies

qci′ ≥ qci

for all i with strict inequality for at least one i . This is because
otherwise i could have afforded a better consumption bundle
than ci (use is made of strictly increasing utility).
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

So
I∑

i=1

qci′ >
I∑

i=1

qci .

Feasibility of the allocation (ci′)I
i=1 requires

∑I
i=1 ci′ ≤∑I

i=1 yi ,
hence

I∑
i=1

qci′ ≤
I∑

i=1

qyi .
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

The fact that ((ci)I
i=1, q) is an equilibrium (i.e.,∑I

i=1 ci =
∑I

i=1 yi ) implies

I∑
i=1

qci =
I∑

i=1

qyi .

Taking stock, we get a contradiction:

I∑
i=1

qyi ≥
I∑

i=1

qci′ >
I∑

i=1

qci =
I∑

i=1

qyi .

Q.E.D.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

As usual in non-monetary micro models, we can arbitrarily
normalize one price (e.g., q0 = 1) without affecting the
equilibrium allocation or the equilibrium relative prices.

Theorem (irrelevance of price normalization): If
((ci)I

i=1, q) is an ECCM, then ((ci)I
i=1, λq) is an ECCM for

any λ > 0.

Proof: Markets clear by construction.

(λq)(ci − yi) ≤ 0

if, and only if, q(ci − yi) ≤ 0. That is, the budget set remains the
same after multiplying all the prices by a constant, so the
optimal ci also remains the same. Q.E.D.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

Two other important theorems are:
I Existence of equilibrium: An ECCM exists.
I 2nd Welfare Theorem: For any Pareto-optimal allocation

(ci)I
i=1, there exists endowments (yi)I

i=1 and a price vector
q such that ((ci)I

i=1,q) is an ECCM
The proofs of these theorems require additional (convexity,
continuity, and boundary) assumptions and the use of a fixed
point theorem and a separating hyperplane theorem,
respectively, and can be found in the slides “Financial
Economics: Risk Sharing and Asset Pricing in General
Equilibrium II” c©.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

The analysis is unchanged if one interprets the three
commodities as three goods traded in spot markets at a given
point in time. Hence, the 1st Welfare Theorem above is in
essence a reinterpretation of the standard theorem for
non-contingent commodity markets. It shows that the standard
analysis of trade at a point in time without uncertainty carries
over to intertemporal trade in the presence of risk. This holds
true, more generally, for all results of standard general
equilibrium theory.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

A mere reinterpretation of the concept of a “good” is suffi-
cient to turn the standard static general equilibrium without
uncertainty into a model with time and risk. The problem
with this approach is that in reality futures markets exist for
very few commodities (energy, oil, gas, metals, agricultural
products) and even in these markets delivery is not state-
contingent.
https://www.cnbc.com/futures-and-commodities/

In what follows we give up the concept of contingent
commodities and replace CCMs with financial markets.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

Literature:
I Mas-Colell, Andreu, Michael D. Whinston, and Jerry R.

Green, Microeconomic Theory, Oxford University Press
(1995), Chapter 19.

I Magill, Michael, and Martine Quinzii, Theory of Incomplete
Markets, MIT (2002), Section 7.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

4 Efficient risk sharing:
finance economy
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

The CCM economy achieves Pareto-optimal risk sharing, as
CCMs allow state-contingent consumption plans.
We now assume that the only goods markets are spot markets:
the price is paid on delivery. The spot price is normalized to
unity. There are no CCMs.
Financial markets (FMs) serve the same purpose as CCMs
(indirectly): they allow the state-contingent transfer of
purchasing power which can then be used to buy goods.
Not all trade takes place at date 0: people buy goods using the
proceeds of their financial claims at dat 1.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

There are a risky and a safe asset, also called asset 1 and
asset 2, respectively.
I The risky asset trades at prices p at t and pays a dividend

a1 = 1 in state 1 and a2 = 0 in state 2 at date t + 1.
I The safe asset trades at price 1/(1 + r) and pays one unit

of income in either state at date t + 1.
By buying one unit of the safe asset and (short-) selling one
unit of the risky asset, one gets nothing in state 1 and one unit
of income in state 2. The financial market is complete, in that it
is possible to buy purchasing power for the different states.

t t+ 1, 1 t+ 1, 2

1 - uspot market

1 - uspot market

p -

1 - uspot market

1
1+r − p -
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

Let z i
1 denote consumer i ’s investment in the risky asset and z i

2
his purchases of the safe asset and zi = (z i

1, z
i
2). His budget

constraints are:

c i
0 ≤ y i

0 − pz i
1 −

1
1 + r

z i
2

c i
1 ≤ y i

1 + z i
1 + z i

2

c i
2 ≤ y i

2 + z i
2.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

Definition: An allocation (ci)I
i=1, asset holdings (zi)I

i=1, and a
price vector (p, r) are an equilibrium with FMs (EFM) if
I ci and zi maximize U i subject to the individual’s budget

constraints for all consumers i and
I markets clear:

I∑
i=1

ci =
I∑

i=1

yi

and
I∑

i=1

zi = 0.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

Consider an ECCM. Without loss of generality (as the absolute
price level is indeterminate), set q0 = 1.
I By buying one unit of the risky asset, one gets the

purchasing power needed to buy one unit of the good in
state 1. If

p = q1,

this costs the same amount of money as one unit of
contingent commodity 1 in the ECCM.

I By buying one unit of the safe asset and short-selling the
risky asset, one gets the purchasing power needed to buy
one unit of the good in state 2. If

1
1 + r

= q1 + q2,

this costs the same amount of money as one unit of
contingent commodity 2 in the ECCM.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

Theorem (ECCM and EFM): Let (ci∗)I
i=1 and q with q0 = 1

be an ECCM. Let
p = q1

1
1 + r

= q1 + q2.

Let
z i

1 =
(

c i∗
1 − y i

1

)
−
(

c i∗
2 − y i

2

)
z i

2 = c i∗
2 − y i

2.

Then ((ci∗, zi)I
i=1, (p, r)) is an EFM.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

Proof: To prove the theorem we have to show that ci∗ and zi

maximize i ’s utility and markets clear.
Let Bi denote the set of affordable consumption vectors ci for
consumer i with CCMs given equilibrium CCM prices q, and let
Bi ′ denote the set of affordable consumption vectors ci in the
finance economy given the asset prices in the theorem.
To prove that ci∗ maximizes utility in the finance economy, it
suffices to show that

ci∗ ∈ Bi ′ ⊆ Bi .

That is, ci∗ is affordable, and there is no better consumption
vector in Bi ′, because it would have been chosen in the CCM
economy.

�

�

�

�

�

�

�

�Bi

Bi′

�ci∗
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

We first prove ci∗ ∈ Bi ′. The choice of the portfolio zi in the
theorem implies that i can afford the same date-t + 1
consumption levels as in the ECCM. The question is whether
he can also afford c i∗

0 . Since ci∗ satisfies the CCM budget
constraint with equality, we have q(ci∗ − yi) = 0. Using the
asset prices and the equations for i ’s portfolio in the theorem,
this can be rewritten as

(c i∗
0 − y i

0) + p(z i
1 + z i

2) +

(
1

1 + r
− p

)
z i

2 = 0.

Rearranging terms shows that the date-t budget constraint is
satisfied. This proves ci∗ ∈ Bi ′.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

To prove Bi ′ ⊆ Bi , suppose ci ∈ Bi ′, i.e., ci and some zi satisfy
the finance economy budget constraints. Using the pricing
formulas in the theorem, the date-t budget constraint becomes

c i
0 − y i

0 ≤ −q1(z i
1 + z i

2)− q2z i
2.

From the date-t + 1 budget constraints, z i
1 + z i

2 ≥ c i
1 − y i

1 and
z i

2 ≥ c i
2 − y i

2. So

c i
0 − y i

0 ≤ −q1(c i
1 − y i

1)− q2(c i
2 − y i

2),

i.e., q(ci − yi) ≤ 0. Thus, ci ∈ Bi ′ implies ci ∈ Bi . That is,
Bi ′ ⊆ Bi .
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

It remains for us to show that markets clear. For the goods
markets, this holds true by construction. For the asset markets,
this follows immediately upon summing the individuals’ asset
demands in the theorem:

∑I
i=1 zi = 0. Q.E.D.

The equilibrium allocation (ci∗)I
i=1 is Pareto optimal, as it is

identical to the allocation in the CCM economy. So a 1st
Welfare Theorem follows immediately from the theorem that
relates an EFM to an ECCM: if an EFM “replicates” an ECCM,
then the equilibrium allocation is Pareto optimal.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

The theorem does not rule out that there are other EFMs, which
do no replicate an ECCM and with a Pareto-nonoptimal
allocation.
It is easy to see that such EFMs cannot exist: analogously to
the proof of ci∗ ∈ Bi ′, one can see that any ci ∈ Bi is also in Bi ′.
So the budget constraints are the same in the CCM and FM
economies and, hence, the set of equilibria are also the same.
For the sake of convenience, without further mention we
consider only EFMs which replicate an ECCM in what follows.
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

The theory says that financial markets help achieve efficient
risk sharing. The risk of having to make payments in states
with low consumption can be shifted to the agents most
willing (least unwilling) to accept it. The most striking coun-
terargument is the role of securitization in the financial cri-
sis 2007-2009: by making credit risk tradable, securitization
contributed to the onset of the crisis as well as to its spread
across the globe (Brunnermeier, 2009).
https://www.princeton.edu/˜markus/research/papers/liquidity_credit_crunch.pdf
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2. Two-period two-state model
3. Efficient risk sharing: contingent commodity markets

4. Efficient risk sharing: finance economy

Literature:
I Brunnermeier, Markus K. (2009), “Deciphering the

Liquidity and Credit Crunch 2007-2008”, Journal of
Economic Perspectives 23, 77-100.

I Mas-Colell, Andreu, Michael D. Whinston, and Jerry R.
Green, Microeconomic Theory, Oxford University Press
(1995), Chapter 19.

I Magill, Michael, and Martine Quinzii, Theory of Incomplete
Markets, MIT (2002), Section 8.
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5. The fundamental equations of asset pricing
6. Applications

CONSUMPTION-BASED
ASSET PRICING
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5. The fundamental equations of asset pricing
6. Applications

5 The fundamental
equations of asset pricing
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5. The fundamental equations of asset pricing
6. Applications

The central idea in consumption-based asset pricing is to
exploit the necessary optimality conditions which characterize
consumer choice in a market equilibrium.
So we consider an EFM and derive its implications for asset
prices.
To do so, we now consider the time-separable expected utility
function:

U i(c i
0, c

i
1, c

i
2) = ui(c i

0) + β i
2∑

s=1

πsui(c i
s)

with (ui)′(c) > 0 > (ui)′′(c) for all c > 0 and (ui)′(0) =∞.
Let a denote the payoff of the risky asset (i.e., a1 = 1 or a2 = 0).
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5. The fundamental equations of asset pricing
6. Applications

Consider individual i ’s utility maximization problem. The budget
constraints hold with equality. Substituting for the consumption
levels c i

0, c i
1, and c i

2 yields the following problem:

max
zi

: ui
(

y i
0 − pz i

1 −
1

1 + r
z i

2

)
+ β iE

[
ui
(

y i + az i
1 + z i

2

)]
.

The optimality conditions can be written as:

p = E

[
β i (ui)′(c i)

(ui)′(c i
0)

a

]

1
1 + r

= E

[
β i (ui)′(c i)

(ui)′(c i
0)

]
.

These equations relate the asset prices to individual i ’s
marginal utility function and his consumption levels. As such,
these are not remarkable asset pricing formulas.
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5. The fundamental equations of asset pricing
6. Applications

The reason why they do yield interesting implications is that
they can be used to express asset pricing without reference to
individual-specific variables.
To see this, note that individual i ’s MRS between consumption
at t and consumption in state s at t + 1 is determined by

dU i = (ui)′(c i
0)dc i

0 + πsβ
i(ui)′(c i

s)dc i
s = 0.

That is:

MRSi
s = −dc i

0

dc i
s

= πsβ
i (ui)′(c i

s)

(ui)′(c i
0)
.
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5. The fundamental equations of asset pricing
6. Applications

Theorem (Equality of MRSs when the allocation is
Pareto-optimal): Let (ci)I

i=1 be a Pareto-optimal allocation.
Then for each s,

MRSi
s = MRSi ′

s

for all i and i ′.

Proof: Suppose for s = 1 or s = 2 the MRSs of individuals i
and i ′ are different. Without loss of generality, let
MRSi

s > MRSi ′
s . That is, i “has a stronger preference” for

consumption in s at t + 1 than i ′.
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5. The fundamental equations of asset pricing
6. Applications

Let
0 < dc i

s = −dc i ′
s

dc i
0 = −MRSi

s + MRSi ′
s

2
dc i

s = −dc i ′
0 .

The resulting allocation is feasible. Then

dU i

(ui)′(c i
0)

=
MRSi

s −MRSi ′
s

2
dc i

s > 0

dU i ′

(ui ′)′(c i ′
0 )

= −MRSi
s −MRSi ′

s
2

dc i ′
s > 0.

This contradicts Pareto-optimality. Q.E.D.
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5. The fundamental equations of asset pricing
6. Applications

Theorem (The fundamental equations of asset pricing):
Let the utility function be given by

U i(c i
0, c

i
1, c

i
2) = ui(c i

0) + β i
2∑

s=1

πsui(c i
s),

where ui is twice differentiable, with (ui)′(c) > 0 > (ui)′′(c)
for all c > 0 and (ui)′(0) = ∞. Then, at an EFM with a
Pareto optimal allocation there exists a stochastic discount
factor (SDF) M such that

p = E (Ma)

1
1 + r

= E(M).

51 / 183



5. The fundamental equations of asset pricing
6. Applications

Proof: Since the MRSs

MRSi
s = πsβ

i (ui)′(c i
s)

(ui)′(c i
0)

are uniform across individuals, so is

Ms ≡
MRSi

s
πs

= β i (ui)′(c i
s)

(ui)′(c i
0)

The assertion then follows immediately from the necessary
optimality conditions for the individuals’ utility maximization
problems. Q.E.D.
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5. The fundamental equations of asset pricing
6. Applications

An alternative proof of the fact that the MRS are uniform makes
use of

p = E(Ma) = π1M1

(since a1 = 1 and a2 = 0) and

1
1 + r

− p = E(M)− E(Ma) = π2M2.

The individual MRS are identical (and, hence, the individual
SDFs are identical) because they are adjusted to the same
prices (viz., the prices of purchasing power in the respective
states). (This version of the proof will be generalized in the
model with more than two states.)
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5. The fundamental equations of asset pricing
6. Applications

Future returns are discounted weakly (Ms is high) if
consumption is low in state s. Future returns are discounted
heavily (Ms is low) if consumption is high in s. That is, the SDF
takes care that returns are valued according to whether they
provide a hedge against low consumption.
Notice that what makes this an asset pricing theory is the
underlying general equilibrium model, which ensures that the
MRSs are uniform, so that a single SDF exists which can be
used to discount payoffs.
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Notice the difference between the stochastic discount factor in

p = E(SDF · a)

and the common, non-stochastic, discount factor DF in

p = DF · E(a),

where
DF =

1
1 + r + risk premium

.

The next section brings the two ways of discounting closer
together.
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The biggest challenge for consumption-based asset pricing
is the equity premium puzzle. The return on U.S. stocks
from 1889 to 1978 was about 7%, the return on bonds
below 1%, so there is a 6 percentage points equity pre-
mium. Why is this a puzzle? If one assumes constant rel-
ative risk aversion and that consumption growth and div-
idend growth are i.i.d. and lognormal and calibrates the
fundamental asset pricing equation to the data, then the
implied coefficient of relative risk aversion is 47.6. Em-
pirically, the coefficient seems to be around 2-3. So a
highly unrealistic degree of risk aversion is required in order
to make consumption-based asset pricing consistent with
stock market data (Mehra, 2003).
www.nber.org/papers/w9512.pdf
https://www.tandfonline.com/doi/abs/10.2469/faj.v59.n1.2503
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Literature:
I Cochrane, John F., Asset Pricing, 2nd Edition, Princeton

University Press (2005), Chapter 1.
I Mehra, Rajnish (2003), “The Equity Premium: Why is it a

Puzzle?”, Financial Analysts Journal 59, 54-69.
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5. The fundamental equations of asset pricing
6. Applications

The fundamental equations of asset pricing look quite different
than standard asset pricing formulas. This section shows that
they can be rearranged such that they become more similar.

For now, the asset pricing formulas we derive apply only to the
risky asset with payoff 1 in state 1 and 0 in state 2. Later on, we
will see that they generalize to assets with arbitrary payoff
vectors and to a multi-period model. In that multi-period model,
a risky asset has a sequence of dividends at ,at+1, . . . , and
having bought it at t at price pt , it can be resold at date t + 1 at
price pt+1. So we add a time subscript to the expectations
operator, asset payoffs, the asset price, the interest rate, and
the SDF and replace at+1 with pt+1 + at+1, where it is
understood that pt+1 = 0 in the two-period setup studied so far.
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5. The fundamental equations of asset pricing
6. Applications

Application 1: Covariance Define σM,p+a as the covariance
between the SDF and the risky asset’s return:

σM,p+a ≡ Et [Mt+1(pt+1 + at+1)]− Et (Mt+1)Et (pt+1 + at+1).

Then

pt = Et (Mt+1)Et (pt+1 + at+1) + σM,p+a

=
Et (pt+1 + at+1)

1 + rt+1
+ σM,p+a.

That is, the asset price is the expected payoff discounted at the
riskless rate plus a risk adjustment, and the risk adjustment is
simply the covariance of its return with the SDF. The risky asset
is expensive if the SDF is high (i.e., consumption is low) in state
1, in which it pays off.
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5. The fundamental equations of asset pricing
6. Applications

Application 2: Systematic risk Let

Rt+1 =
pt+1 + at+1

pt
− 1

denote the rate of return on the risky asset. Then, using
σM,p+a = pt σM,R,

Et (Rt+1)− rt+1 = −(1 + rt+1)σM,R.

The risky asset’s risk premium is proportional to the covariance
between its returns and the SDF (its systematic risk).
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5. The fundamental equations of asset pricing
6. Applications

Application 3: Idiosyncratic risk If the asset’s payoff is
uncorrelated with the SDF, then the asset does not pay a risk
premium, irrespective of how volatile its returns are:

Et (Rt+1)− rt+1 = 0 if σM,R = 0.
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5. The fundamental equations of asset pricing
6. Applications

Application 4: beta Another way to write the fundamental
pricing equation for the risky asset is

Et (Rt+1)− rt+1 = −β σ2
M

Et (Mt+1)
,

where
β =

σM,R

σ2
M
.

That is, (analogously to the CAPM) the asset’s risk premium is
the product of a non-asset specific “market” term and its beta.
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5. The fundamental equations of asset pricing
6. Applications

Application 5: Random walk Contrary to what has been
assumed so far, assume the agents are risk-neutral:
ui(c i) = c i . Consider a “short” time interval, in which
discounting doesn’t play a role (β i = 1) and the asset doesn’t
pay a dividend (at+1 = 0). The fundamental equation for the
risky asset becomes:

Et (pt+1 − pt ) = 0.

The asset price is a random walk (which will become
meaningful in the multi-period model).
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Literature:
I Cochrane, John F., Asset Pricing, 2nd Edition, Princeton

University Press (2005), Chapter 1.
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7 Complete markets:
Efficient risk sharing
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The restriction to S = 2 states is immaterial for most of the
analysis. Let S ≥ 2. State s occurs with probability πs (πs > 0,∑S

s=1 πs = 1). Define
I q = (q0,q1, . . . ,qS): price vector
I yi = (y i

0, y
i
1, . . . , y

i
S): i ’s endowment vector

I ci = (c i
0, c

i
1, . . . , c

i
S): i ’s consumption vector.

U i is defined over ci (U i : RS+1
+ → R).

The whole analysis of the CCM economy goes through without
any modification.
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The financial market in the two-state economy in Section 4 is
complete in that it is possible to transfer income to a specific
state s (= 1,2) by forming a suitable portfolio.
Assume that there are financial products, called Arrow
securities (ASs), which do so directly: for each state s
(= 1, . . . ,S), there is an AS that costs p̃s at t and entitles the
owner to the payment of one unit of income in s at t + 1 (and
nothing in any other state).
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As in Section 4, the goods prices are set equal to unity in both
periods. Consumer i ’s budget constraints can be written as:

c i
0 − y i

0 ≤ −
S∑

s=1

p̃sz̃ i
s

c i
s − y i

s ≤ z̃ i
s, s = 1, . . . ,S.

Let p̃ = (p̃1, . . . , p̃S) denote the vector of AS prices and
z̃i = (z̃ i

1, . . . , z̃
i
S) i ’s AS holdings.

In our one-good model, AS markets are almost the same as
CCMs: they allow the purchase of the purchasing power
required to purchase the good in one single state.

70 / 183



7. Complete markets: Efficient risk sharing
8. Complete markets: Asset pricing

Definition: An allocation (ci)I
i=1, AS holdings (z̃i)I

i=1, and a
vector of AS prices p̃ are an equilibrium with a complete set
of ASs (ECAS) if
I (ci , z̃i) maximizes U i subject to the individual’s budget

constraints for all consumers i and
I markets clear:

I∑
i=1

ci =
I∑

i=1

yi

I∑
i=1

z̃i = 0.
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Consider an ECCM with q0 = 1 (which entails no loss of
generality because of the irrelevance of price normalization).

Theorem (ECAS and ECCM): Let ((ci∗)I
i=1,q) be an

ECCM,
p̃s = qs, s = 1, . . . ,S,

and
z̃ i

s = c i∗
s − y i

s, s = 1, . . . ,S.

Then ((ci∗, z̃i)I
i=1, p̃) is an ECAS.

The former condition says that the cost of buying the
purchasing power needed to buy one unit of the good in the
spot market if state s occurs is the same as the cost of buying
the delivery in the CCM. The second condition says that the
portfolio finances the ECCM consumption vector.
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Proof: The proof works exactly like the proof of the 1st Welfare
Theorem for the two-state finance economy.
We have to show that ci∗ maximizes i ’s utility and markets clear.
To prove that ci∗ maximizes utility given ECAS prices, it suffices
to show that

ci∗ ∈ Bi ′ ⊆ Bi ,

where Bi is the set of affordable consumption vectors ci for
consumer i with CCMs given equilibrium CCM prices q and Bi ′

is the set of affordable consumption vectors ci with a complete
set of ASs given the ECAS prices. That is, ci∗ is affordable, and
there is no better consumption vector in Bi ′, because it would
have been chosen in the CCM economy.

�

�

�

�

�

�

�

�Bi

Bi′

�ci∗

73 / 183



7. Complete markets: Efficient risk sharing
8. Complete markets: Asset pricing

To prove ci∗ ∈ Bi ′, notice that the fact that i chooses ci∗ at the
ECCM implies q(ci∗ − yi) = 0. Substituting for q from the
former condition of the theorem (and q0 = 1) yields

c i∗
0 − y i

0 +
S∑

s=1

p̃s(c i∗
s − y i

s) = 0.

As stipulated by the theorem, let consumer i choose the
portfolio

z̃ i
s = c i∗

s − y i
s, s = 1, . . . ,S.

From the preceding equation,

c i∗
0 − y i

0 = −
S∑

s=1

p̃sz̃ i
s.

The latter two equations show that ci∗ ∈ Bi ′.
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To prove Bi ′ ⊆ Bi , suppose ci ∈ Bi ′, i.e., ci and some portfolio
z̃i satisfy the S + 1 budget constraints. Substituting for z̃ i

s from
the latter S constraints into the period-t budget constraint yields

c i
0 − y i

0 ≤ −
S∑

s=1

p̃s(c i
s − y i

s).

The former condition of the theorem and q0 = 1 yield

q(ci − yi) ≤ 0.

So ci ∈ Bi . The fact that ci ∈ Bi ′ ⇒ ci ∈ Bi proves Bi ′ ⊆ Bi .
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Goods market clearing in the CCM economy implies goods
market clearing in the economy with ASs:

I∑
i=1

ci∗ =
I∑

i=1

yi .

From the second condition of the theorem,
I∑

i=1

z̃ i
s =

I∑
i=1

(c i∗
s − y i

s)︸ ︷︷ ︸
=0

= 0, s = 1, . . . ,S.

So the AS markets also clear:
I∑

i=1

z̃i = 0.

Q.E.D.
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Next, we consider a less peculiar asset structure. There are K
assets k = 1, . . . ,K with prices pk in t and payoffs ask in state s
at t + 1. The payoffs are summarized in the payoff matrix

A =

 a11 . . . a1K
...

. . .
...

aS1 . . . aSK

 .

The k -th column gives asset k ’s payoffs in the S states, the s-th
row gives the K assets’ payoffs in state s.
The set of assets is exogenously given – there is no “financial
engineering”.
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Let z = (z1, . . . , zK ) denote a portfolio.

Az =

 a11 . . . a1K
...

. . .
...

aS1 . . . aSK


 z1

...
zK

 =


∑K

k=1 a1kzk
...∑K

k=1 aSkzk


gives the payoffs generated the portfolio in the S states.

Definition: The financial market is complete if A contains S
linearly independent payoff vectors.

Market completeness implies that for all x ∈ RS, there is z such
that

Az = x.

Let the assets be ordered such that the first S payoff vectors
(k = 1, . . . ,S) are independent. Then for all x ∈ RS, there is
z = (z1, . . . , zS,0, . . . ,0) such that Az = x.

78 / 183



7. Complete markets: Efficient risk sharing
8. Complete markets: Asset pricing

In theory, the condition for market completeness is not too
demanding: it can be shown that it is satisfied if there is one
asset with a different payoff in each state s and it is possible to
write put or call options on this asset.

Giving up the matrix notation, the completeness condition can
be written as

K∑
k=1

askzk = xs, s = 1, . . . ,S.
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Consumer i ’s budget constraints become:

c i
0 − y i

0 ≤ −
K∑

k=1

pkz i
k

c i
s − y i

s ≤
K∑

k=1

askz i
k , s = 1, . . . ,S.
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Let p = (p1, . . . ,pK ) denote the asset price vector.

Definition: An allocation (ci)I
i=1, asset holdings (zi)I

i=1, and a
vector of asset prices p are an equilibrium with complete
financial markets (ECFM) if the financial market is complete,
I (ci , zi) maximizes U i subject to the individual’s budget

constraints for all consumers i and
I markets clear:

I∑
i=1

ci =
I∑

i=1

yi

I∑
i=1

zi = 0.
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Theorem (ECFM and ECAS): Let ((ci∗, z̃i∗)I
i=1, p̃) be an

ECAS. Let

pk =
S∑

s=1

p̃sask , k = 1, . . . ,K .

Suppose the financial market is complete, and for all i =
1, . . . , I, let zi∗ = (z i

1
∗
, . . . , z i

S
∗
,0, . . . ,0) denote a solution to

S∑
k=1

askz i∗
k = z̃ i∗

s , s = 1, . . . ,S.

Then ((ci∗, zi∗)I
i=1,p) is an ECFM.
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Proof: Let Bi ′ denote the set of affordable consumption vectors
ci for i given ECAS prices p̃, and let Bi ′′ denote the set of
affordable consumption vectors ci for i with complete financial
markets. We show that

ci∗ ∈ Bi ′′ ⊆ Bi ′.

That is, i can afford ci∗, and there cannot be a consumption
vector he likes better, because he would have chosen it in the
ECAS.
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The fact that i chooses (ci∗, z̃i∗) in the ECAS implies that it
satisfies his budget constraints for the AS economy with
equality:

c i∗
0 − y i

0 = −
S∑

s=1

p̃sz̃ i∗
s

c i∗
s − y i

s = z̃ i∗
s , s = 1, . . . ,S.

The existence of the portfolio zi∗ in the theorem is implied by
market completeness. This portfolio reproduces the payoffs of
the ASs portfolio.
Substituting the formula for z̃ i∗

s in the theorem into these
constraints and using the pricing formula in the theorem and
z i

k
∗

= 0 for k = S + 1, . . . ,K in the first constraint proves that
the budget equations for the economy with CFMs are satisfied.
This proves ci∗ ∈ Bi ′′.
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Suppose ci ∈ Bi ′′. That is, there is a portfolio zi (not
necessarily with zero holdings of assets k = S + 1, . . . ,K ) such
that (ci , zi) satisfies

c i
0 − y i

0 ≤ −
K∑

k=1

pkz i
k

c i
s − y i

s ≤
K∑

k=1

askz i
k , s = 1, . . . ,S.

Let z̃ i
s =

∑K
k=1 askz i

k . Using this and the pricing formula in the
theorem, it follows that (ci , z̃i) satisfies the budget equations for
the economy with ASs. That is, ci ∈ Bi ′. This proves Bi ′′ ⊆ Bi ′.

85 / 183



7. Complete markets: Efficient risk sharing
8. Complete markets: Asset pricing

Obviously, the goods markets clear.
As for the asset markets, let z∗k =

∑I
i=1 z i∗

k . Asset market
clearing in the economy with ASs implies

0 =
I∑

i=1

z̃ i∗
s =

I∑
i=1

S∑
k=1

askz i∗
k =

S∑
k=1

askz∗k , s = 1, . . . ,S.

So a11 . . . a1S
...

. . .
...

aS1 . . . aSS


 z∗1

...
z∗S

 =


∑S

k=1 a1kz∗k
...∑S

k=1 aSkz∗k

 =

 0
...
0

 .

From linear independence of the S payoff vectors in the matrix,
it follows that the only solution to this system of equations is
(z∗1 , . . . , z

∗
S) = (0, . . . ,0). z i

k
∗

= 0 for k = S + 1, . . . ,K implies
that the other asset markets also clear. Q.E.D.
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8 Complete markets: Asset
pricing
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Using the utility function

U i = ui(c i
0) + β i

S∑
s=1

πsui(c i
s),

we can also generalize the fundamental asset pricing equations
to the S-states case.
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To do so, start with the economy with ASs:

U i = ui

(
y i

0 −
S∑

s=1

p̃sz̃ i
s

)
+ β i

S∑
s=1

πsui(y i
s + z̃ i

s).

Necessary optimality conditions:

−(ui)′(c i
0)p̃s + β iπs(ui)′(c i

s) = 0

or

p̃s = πsβ
i (ui)′(c i

s)

(ui)′(c i
0)

= πsMs,

where the SDF M is defined as before. As in the model with
only a safe and one risky asset, the fact that Ms is uniform
across individuals i for all s follows from the fact that consumers
adjust their MRS to asset prices.
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Let ãs denote the random payoff of AS s, i.e., 1 in state s and 0
in all other states. Then

p̃s =
∑
s′ 6=s

πs′Ms′ · 0 + πsMs · 1

or simply
p̃s = Et (Mãs).

This generalizes the fundamental pricing formula for a risky
asset.
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Now consider the economy with a complete set of FMs. The
fact that the consumption vectors ci∗ are the same in an ECFM
as in an ECAS implies that the uniform SDF
Ms = β i(ui)′(c i∗

s )/(ui)′(c i∗
0 ) is also the same. From the pricing

rule pk =
∑S

s=1 p̃sask , we get

pk =
S∑

s=1

πsMsask

or, letting ak denote the random payoff of asset k :
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Theorem (The fundamental equations of asset pricing):
Let the utility function be given by

U i = ui(c i
0) + β i

S∑
s=1

πsui(c i
s),

where ui is twice differentiable, with (ui)′(c) > 0 > (ui)′′(c)
for all c > 0 and (ui)′(0) = ∞. Then at an ECFM prices
obey

pk = Et (Mak )

and, in particular, pk = Et (M) for a safe asset with ask = 1
for all s = 1, . . . ,S.
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It follows that the applications in Section 6 go through without
any modification in the economy with more than two states and
assets with arbitrary payoff vectors.

Define
qs ≡ (1 + r)Msπs,

so that
∑S

s=1 qs = 1. Then the pricing equation can be rewritten
as

pk =

∑S
s=1 qsask

1 + r
.

That is, the qs ’s can be interpreted as risk-neutral probabilities:
the price of the asset is its discounted expected value, where
the qs ’s are used to calculate the expectation.
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An important property of the ECAS and the ECFM is that there
are no arbitrage opportunities, i.e., it is not possible to form a
portfolio that
I has non-positive cost and
I has a non-negative payoff in all states

with one “inequality” strict.
This is obvious for the economy with ASs. A portfolio that has a
positive payoff in some state costs something. A portfolio with
negative cost has a short position in some AS and, hence, a
negative payoff in some state.
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Turning to the economy with CFMs, we formalize the definition
above:

Definition: Asset prices p are arbitrage-free if there is no
portfolio z ∈ RK such that pz ≤ 0, Az ≥ 0, and either Az 6= 0 or
pz < 0.

Theorem (Arbitrage-freeness of the ECFM): ECFM
prices are arbitrage-free.

95 / 183



7. Complete markets: Efficient risk sharing
8. Complete markets: Asset pricing

Proof: From the first two conditions and the pricing formula for
pk ,

K∑
k=1

askzk ≥ 0, s = 1, . . . ,S,

and
S∑

s=1

p̃s

K∑
k=1

askzk ≤ 0.

If Az 6= 0, then one of the former equalities is strict, which
contradicts the latter inequality.
If pz < 0, then

∑K
k=1 askzk must be negative for some s, which

contradicts the former set of inequalities. Q.E.D.
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Another important theorem is:

The fundamental theorem of asset pricing: If asset prices
p > 0 are arbitrage-free, then there exist non-negative state
prices p̃ = (p̃1, . . . , p̃S) such that

pk =
S∑

s=1

p̃sask , k = 1, . . . ,K .

The proof requires the use of a separating hyperplane theorem
and can be found in the slides “Financial Economics: Risk
Sharing and Asset Pricing in General Equilibrium II” c©.
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Literature:
I Magill, Michael, and Martine Quinzii, Theory of Incomplete

Markets, MIT (2002), Section 10.
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9. Stock market economy
10. The Modigliani-Miller theorem

11. The Capital Asset Pricing Model

The aim of this section is to show that the results for the
exchange economy carry over to a model with firms. This also
allows addressing questions about shareholder aims and
capital structure.
For simplicity, we don’t consider production decisions, but take
firms’ outputs as exogenously given.
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11. The Capital Asset Pricing Model

There are J firms j = 1, . . . , J with exogenous outputs ỹ j
s in

state s in period t + 1.
The firms are 100 percent owned by the consumers i and (for
now) don’t issue debt. x% of firm j ’s shares entitle the holder to
x% of the firm’s revenue ỹ j

s in any date-t + 1 state s.
Consumer i is endowed with a share θ̄ij in firm j , where θ̄ij ≥ 0
and

∑I
i=1 θ̄

ij = 1 for all j .
In period t , consumers have endowments y i

0, and there’s no
production.
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11. The Capital Asset Pricing Model

There are markets for the shares and for a complete set of ASs.
The value of firm j as of time t is denoted v j and the vector of
firm values as v = (v1, . . . , vJ). i ’s post trade share holdings
are denoted θij . We also write θi = (θi1, . . . , θiJ),
θ̄

i
= (θ̄i1, . . . , θ̄iJ), and

y =


y0
y1
...

yS

 =


∑I

i=1 y i
0∑J

j=1 ỹ j
1

...∑J
j=1 ỹ j

S

 .

We call this a stock market economy (SME) and analyze it by
comparing it to the exchange economy with ASs.
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11. The Capital Asset Pricing Model

The SME budget constraints read:

c i
0 − y i

0 ≤ −
S∑

s=1

p̃sz̃ i
s −

J∑
j=1

(θij − θ̄ij)v j

c i
s ≤ z̃ i

s +
J∑

j=1

θij ỹ j
s, s = 1, . . . ,S.
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11. The Capital Asset Pricing Model

Definition: An allocation (ci)I
i=1, AS holdings (z̃i)I

i=1,
shareholdings (θi)I

i=1, a vector of AS prices p̃, and a vector of
firm values v are an equilibrium of the stock market
economy (ESME) if
I (ci , z̃i ,θi) maximizes U i subject to the individual’s budget

constraints for all consumers i and
I markets clear:

I∑
i=1

ci = y

I∑
i=1

z̃i = 0

I∑
i=1

θi = 1.
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Theorem (ESME and ECAS): Let (ci∗, z̃i∗)I
i=1 and p̃ be an

ECAS of the exchange economy with endowments

y i
s =

J∑
j=1

θ̄ij ỹ j
s, s = 1, . . . ,S, i = 1, . . . , I,

and let

v j =
S∑

s=1

p̃sỹ j
s, j = 1, . . . , J.

Then (ci∗, z̃i∗, θ̄
i
)I
i=1 and (p̃,v) are an ESME.
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That is, given arbitrage-free pricing of the payoffs generated by
the firms, the SME behaves like the exchange economy in
which individuals are endowed with what their initial
shareholdings are worth.

Proof: Let Bi ′′′ be the set of consumption vectors attainable in
the SME. As usual by now, we show

ci∗ ∈ Bi ′′′ ⊆ Bi ′.
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The fact that i chooses (ci∗, z̃i∗) in the ECAS implies that it
satisfies the budget constraints of the exchange economy with
a complete set of ASs with equality:

c i∗
0 − y i

0 = −
S∑

s=1

p̃sz̃ i∗
s

c i∗
s − y i

s = z̃ i∗
s .

Using the definition of y i
s in the theorem, it follows that

(ci∗, z̃i∗, θ̄
i
) satisfies the SME budget constraints, i.e., ci∗ ∈ Bi ′′′.
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Let ci ∈ Bi ′′′. That is, there are z̃i and θi such that the SME
budget constraints hold. Let z̃i ′ be given by

z̃ i
s
′ = z̃ i

s +
J∑

j=1

(θij − θ̄ij)ỹ j
s, s = 1, . . . ,S.

Then (ci , z̃i ′) ∈ Bi ′.
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The fact that the period-t budget constraint is satisfied follows
from the period-t budget constraint for the SME and the
definition of v j

t in the theorem:

c i
0 − y i

0 ≤ −
S∑

s=1

p̃sz̃ i
s −

J∑
j=1

(θij − θ̄ij)v j

= −
S∑

s=1

p̃sz̃ i
s −

J∑
j=1

(θij − θ̄ij)
S∑

s=1

p̃sỹ j
s

= −
S∑

s=1

p̃s

z̃ i
s +

J∑
j=1

(θij − θ̄ij)ỹ j
s


= −

S∑
s=1

p̃sz̃ i
s
′.
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The period-t + 1 budget constraints also hold:

c i
s ≤ z̃ i

s +
J∑

j=1

θij ỹ j
s

= z̃ i
s
′ +

J∑
j=1

θ̄ij ỹ j
s

= z̃ i
s
′ + y i

s

c i
s − y i

s ≤ z̃ i
s
′.

So ci ∈ Bi ′ and Bi ′′′ ⊆ Bi ′.
The validity of the market clearing conditions in the SME is
obvious. Q.E.D.
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So the SME behaves essentially like the exchange economy
considered before. So if an ESME replicates an ECAS which in
turn replicates a ECCM, then the ESME allocation c∗ is
Pareto-optimal, since it coincides with the EECM allocation,
which is Pareto-optimal due to the 1st welfare theorem.
Households do not trade shares at the ESME in the theorem.
There are other ESMEs, with trade in shares, however:
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Theorem (ESME with trade in shares): Let
((ci∗, z̃i∗, θ̄

i
)I
i=1, p̃,v) be an ESME. Suppose house-

hold i changes his stock demands by dθi = (dθi1, . . . ,dθiJ)
(not necessarily small) and his AS demands by

dz̃ i
s = −

J∑
j=1

ỹ j
sdθij ,

where
∑I

i=1 dθij = 0 for all j . Then ((ci∗, z̃i∗ + d̃z
i
, θ̄

i
+

dθi)I
i=1, p̃,v) is also an ESME.

Proof: From the budget constraints, these asset reallocations
do not affect consumption. So if (ci∗, z̃i∗, θ̄

i
) maximizes utility,

so does (ci∗, z̃i∗ + d̃z
i
, θ̄

i
+ dθi). Markets clear. Q.E.D.
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Irrespective of their subjective risk attitudes, shareholders in the
SME are unanimous with regard to what the firms they own
shares in should do: maximize shareholder value.

Theorem (Shareholder Unanimity): An increase in v j ex-
pands the budget set of each individual i with θ̄ij > 0.

Proof: Substituting for z̃ i
s from the period-t + 1 budget

constraints into the period-t budget constraint yields
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c i
0 − y i

0 ≤ −
S∑

s=1

p̃s

c i
s −

J∑
j=1

θij ỹ j
s

− J∑
j=1

(θij − θ̄ij)v j

= −
S∑

s=1

p̃sc i
s +

J∑
j=1

θij
S∑

s=1

p̃sỹ j
s︸ ︷︷ ︸

=v j

−
J∑

j=1

(θij − θ̄ij)v j

= −
S∑

s=1

p̃sc i
s +

J∑
j=1

θ̄ijv j .

So if v j rises, the budget sets of the initial shareholders
(individuals i with θ̄ij > 0) expand. Q.E.D.
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In the model as it stands, the result that firms should maximize
shareholder value is of little significance because firms do not
make any decisions that affect value.
But suppose for each firm j there is a set of different output
vectors (ỹ j

1, . . . , ỹ
j
S) from which it has to choose one. Then the

unanimity theorem states that, in the interest of its initial
shareholders, it should maximize shareholder value.
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The shareholder value maximization doctrine is one of the
most disputed guidelines derived from economic theory. It
is the basis of the dichotomy that firms should make money,
constrained by rules made by governments. Famously ad-
vocated by Milton Friedman (“conduct the business in ac-
cordance with [shareholders’] desires, which generally will
be to make as much money as possible while conforming
to the basic rules of the society”), it has been attacked for
various economic and ideological reasons. The basic idea
behind it is certainly harder to attack than the doctrine in-
terpreted as a strict guideline that allows for no deviations.
https://review.chicagobooth.edu/economics/2017/article/
it-s-time-rethink-milton-friedman-s-shareholder-value-argument
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10 The Modigliani-Miller
theorem
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The Modigliani-Miller (MM) theorem states that the division of a
firm’s cash flow between different kinds of financial claims (i.e.,
its capital structure) is irrelevant for its value.
This section proves a much more general version of the MM
theorem (due to Stiglitz, 1969), which proves that firms’ capital
structure is irrelevant for real economic activity in general –
“finance is a veil”.
In doing so, we neglect the issue of investment finance, i.e.,
how the choice of different financial instruments affects
investment activity (as is well known, capital structure is not
irrelevant in this regard in the presence of information
asymmetries).
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Without uncertainty, the value of a firm’s payments to
stockholders (ỹ j − bj ) and to creditors (bj) at t + 1 is ỹ j/(1 + r),
where r is the safe interest rate. This is the same as in the case
of no debt because the present value debt is zero.
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With uncertainty, let a single firm j take on debt bj . The value of
the firm’s payments to stockholders (ỹ j − bj ) and creditors (bj)
at t + 1 is

S∑
s=1

p̃s(ỹ j
s − bj) + pbbj .

Since the price of debt is

pb =
S∑

s=1

p̃s,

this coincides with

v j =
S∑

s=1

p̃sỹ j
s,

i.e., the value of the unlevered firm .
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Now the general case. Let bj denote the debt issued by firm j .
bj is exogenous, so we can discuss the effects of exogenous
changes in the firms’ capital structure. Let bi denote the debt
held by individual i . Shares θij in j entitle the holder to a fraction
θij of the proceeds of j ’s debt issue pbbj at t , in addition to the
same share in its date-t + 1 profits (in a model with investment
this would translate into a reduction in the contributions to the
investment outlays). We rule out bankruptcy:

ỹ j
s ≥ bj , s = 1, . . . ,S, j = 1, . . . , J.

This means that any two firms’ debt obligations are perfect
substitutes for the consumers. We call this the stock and debt
economy (SDE).
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i ’s budget constraints become

c i
0 − y i

0 ≤ −
S∑

s=1

p̃sz̃ i
s −

J∑
j=1

(θij − θ̄ij)v j − pbbi +
J∑

j=1

θijpbbj

c i
s ≤ z̃ i

s +
J∑

j=1

θij(ỹ j
s − bj) + bi ,

where v j is the value at which the shares of firm j trade in the
stock market.
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Definition: An allocation (ci )I
i=1, AS holdings (z̃i )I

i=1, shareholdings
(θi )I

i=1, debt holdings (bi )I
i=1, a vector of AS prices p̃, a vector of firm

values v, and a price of debt pb are an equilibrium of the stock and
debt economy (ESDE) if
I (ci , z̃i ,θi ,bi

t ) maximizes U i subject to the individual’s budget
constraints for all consumers i and

I markets clear:
I∑

i=1

ci = y

I∑
i=1

z̃i = 0

I∑
i=1

θi = 1

I∑
i=1

bi =
J∑

j=1

bj .
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Theorem (Modigliani-Miller Theorem): Let
((ci∗, z̃i∗,θi∗)I

i=1, (p̃,v)) be an ESME. Let

pb =
S∑

s=1

p̃s

and

bi∗ =
J∑

j=1

θij∗bj , i = 1, . . . , I.

Then ((ci∗, z̃i∗,θi∗,bi∗)I
i=1, p̃,v,pb) is an ESDE.
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Proof: Let Bi ′′′′ denote the set of affordable ci ’s in the SDE. As
usual, we show

ci∗ ∈ Bi ′′′′ ⊆ Bi ′′′.

Since ci∗ ∈ Bi ′′′, the budget constraints for the SME hold with
equality:

c i∗
0 − y i

0 = −
S∑

s=1

p̃sz̃ i∗
s −

J∑
j=1

(θij∗ − θ̄ij)v j

c i∗
s = z̃ i∗

s +
J∑

j=1

θij∗ỹ j
s.

(ci∗, z̃i∗,θi∗,bi∗) satisfies the SDE budget constraints. This
follows from the observation that the additional terms on the
right-hand sides drop out by virtue of the equation for bi∗ in the
theorem. So ci∗ ∈ Bi ′′′′.
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Suppose ci ∈ Bi ′′′′, so there is (ci , z̃i ,θi ,bi) that satisfies the
budget constraints of the SDE. Suppose, in the SME, i buys the
same amounts of shares θij and

z̃ i
s
′ = z̃ i

s + bi −
J∑

j=1

θijbj

ASs.
Using the pricing formula for debt in the theorem, it follows that
(ci , z̃i ′,θi) satisfies the date-t budget constraint in the SME:
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c i
0 − y i

0 ≤ −
S∑

s=1

p̃sz̃ i
s −

J∑
j=1

(θij − θ̄ij)v j − pbbi +
J∑

j=1

θijpbbj

= −
S∑

s=1

p̃sz̃ i
s −

J∑
j=1

(θij − θ̄ij)v j −

bi −
J∑

j=1

θij

 S∑
s=1

p̃s

= −
S∑

s=1

p̃s

z̃ i
s + bi −

J∑
j=1

θijbj

− J∑
j=1

(θij − θ̄ij)v j

= −
S∑

s=1

p̃sz̃ i
s
′ −

J∑
j=1

(θij − θ̄ij)v j .
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Analogously, the date-t + 1 SME budget constraints hold:

c i
s ≤ z̃ i

s +
J∑

j=1

θij(ỹ j
s − bj) + bi

= z̃ i
s + bi −

J∑
j=1

θijbj +
J∑

j=1

θij ỹ j
s

= z̃ i
s
′ +

J∑
j=1

θij ỹ j
s.

This proves that ci ∈ Bi ′′′′ implies ci ∈ Bi ′′′, i.e., Bi ′′′′ ⊆ Bi ′′′.
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Goods market clearing in the SDE follows from goods market
clearing in the ESME.
Since the demands for ASs and stocks are unchanged, the
same holds true for the markets for ASs and stocks.
Finally, the debt market also clears:

I∑
i=1

bi∗ =
I∑

i=1

J∑
j=1

θij∗bj =
J∑

j=1

bj
I∑

i=1

θij∗

︸ ︷︷ ︸
=1

=
J∑

j=1

bj .

Q.E.D.
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The firm values v j are unaffected by changes in capital
structure. So the “corporate finance MM theorem” is a direct
corollary of our “general equilibrium MM theorem”.
The intuition behind the theorem is this:
I From (the bj terms in) the SDE budget constraints,

households’ consumption vectors would change if they did
not react to the change in capital structure (i.e., if they
chose bi = 0), viz., by

∑J
j=1 θ

ijpbbj = pbbi∗ in period t and
by −bi∗ in period t + 1.
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I So the debt holdings in the theorem imply that the effects
of the change in capital structure are neutralized: they cost
pbbi∗ in period t and yield bi∗ in period t + 1. One can (but
need not, due to the perfect substitutes property) assume
that the households buy debt issued by the firms of which
they hold stocks in proportion to their shareholdings. The
first part of the proof of the theorem (ci∗ ∈ Bi ′′′′) shows that
this neutralization strategy is feasible.

I The second part of the proof of the theorem (Bi ′′′′ ⊆ Bi ′′′)
shows that this neutralization strategy maximizes utility:
any consumption vector that is affordable after the debt
issue was also affordable before. The fact that i chose ci∗

means that this is still the best choice.
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According to the MM theorem, for given investment deci-
sions, firms’ financial choices are irrelevant. Put differently,
what matters for a firm’s value is how it operates and not
how it slices the claims to the proceeds. The MM theo-
rem has been criticized on several grounds (Gifford, 1998).
Maybe the most important caveat is that when the firm still
has to finance the expansion of its operations, asymmetric
information between the firm and suppliers of capital makes
the choice of the financial instruments used to raise capital
relevant. Intermediation, in particular by commercial banks,
plays a vital role then, and disintermediation is crucial for
the severity of financial crises.
http://pages.stern.nyu.edu/˜adamodar/New_Home_Page/articles/MM40yearslater.htm
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11 The Capital Asset
Pricing Model
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The Capital Asset Pricing Model (CAPM) is usually derived
from Markowitz portfolio theory. It can also be derived from our
equilibrium model. To do so, assume the consumers’ utility
functions are additively separable and quadratic (so that they
could be represented by a (µ, σ) utility function, as employed in
portfolio theory), and each consumer has the same discount
factor β:

U i = c i
0 −

bi

2

(
c i

0

)2
+ β

S∑
s=1

πs

[
c i

s −
bi

2

(
c i

s

)2
]
.

Assume that the bi ’s are sufficiently small so that the marginal
utilities 1− bic i

0 and 1− bic i
s are positive.

137 / 183



9. Stock market economy
10. The Modigliani-Miller theorem

11. The Capital Asset Pricing Model

Define the rate of return on j ’s stocks as

r j
s =

ỹ j
s

v j − 1.

Let vM =
∑J

j=1 v j the total market capitalization. Define the
return on the market as

rM
s =

ys

vM − 1.

Denote the covariance between the returns of asset j and the
market as σjM and the variance of the market rate of return as
σM2. The safe rate of return is denoted r . Er j and ErM are the
expected returns of firm j and the market, respectively.
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For the sake of simplicity, we return to the assumption of no
debt and consider the SME with a complete set of ASs.

Theorem (CAPM): In an ESME, given quadratic utility and
uniform discount factors, the risk premium of firm j is

Er j − r = β j
(

ErM − r
)
,

where

β j =
σjM

(σM)2 .
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Proof: Quadratic utility implies that the AS prices are linear
functions of aggregate output ys =

∑J
j=1 ỹ j

s alone. To see this,
consider i ’s MRS between consumption in state s in t + 1 and
consumption in t :

−dc i
0

dc i
s

= πsβ
1− bic i

s

1− bic i
0
.

Each consumer adjusts his MRS to the corresponding AS price
p̃s, so the MRSs of any two consumers i and i ′ are the same:

πsβ
1− bic i

s

1− bic i
0

= πsβ
1− bi ′c i ′

s

1− bi ′c i ′
0
.
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Rearranging terms yields

c i ′
s =

1
bi ′

[
1− 1− bic i

s

1− bic i
0

(
1− bi ′c i ′

0

)]
.

Inserting this into the market clearing condition

I∑
i ′=1

c i ′
s = ys,

rearranging terms, and using
∑I

i ′=1 c i ′
0 = y0 yields

1− bic i
s

1− bic i
0

=

∑I
i ′=1

1
bi′ − ys∑I

i ′=1
1

bi′ − y0
.
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Equality of the MRS and the AS price for state s implies

p̃s = πs(a− bys),

where

a = β

∑I
i ′=1

1
bi′∑I

i ′=1
1

bi′ − y0

and
b = β

1∑I
i ′=1

1
bi′ − y0

.

An AS is expensive if the underlying state occurs with high
probability and aggregate production is low. We now use this
formula for the AS prices in order to price stock j , the market,
and a riskless bond. This will yield the CAPM formula.
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Consider any risky income αs. The value as of date t is

vα =
S∑

s=1

p̃sαs.

The rate of return is defined as

rαs =
αs

vα
− 1,

so that
Erα =

Eα
vα
− 1.

The covariance σαM between rα and rM satisfies

E [(1 + rα)(1 + rM)] = σαM + (1 + Erα)(1 + ErM).
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Hence,

vα =
S∑

s=1

p̃sαs

=
S∑

s=1

πs(a− bys)αs

= aEα− bE (αy)

1 = aE
( α

vα
)
− bvME

( α
vα

y
vM

)
= a (1 + Erα)− bvM

[
σαM + (1 + Erα)

(
1 + ErM

)]
= (1 + Erα)

[
a− bvM

(
1 + ErM

)]
− bvMσαM .
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Letting αs = 1, we get

1
1 + r

= a− bvM
(

1 + ErM
)
.

This can be used to write the corresponding expressions for
αs = ỹ j

s and αs = ys as

(1 + r)bvMσjM = Er j − r

and
(1 + r)bvM(σM)2 = ErM − r .

Solving for Er j − r yields the CAPM formula. Q.E.D.
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Consumption-based asset pricing and the standard CAPM are
not competing theories of asset pricing. Both are ways to
express asset prices in equilibrium.
From the pricing formula v j =

∑S
s=1 p̃sỹ j

s, asset j is expensive if
it pays high dividends ỹ j

s in states with a high AS price p̃s. From
the equation for the AS prices p̃s = πs(a− bys) and the
expression for the market return rM

s = ys/vM − 1, these are
states with low aggregate output and low market returns.
Hence, j is expensive if the correlation of its output and return
with the market are low. The similarity to consumption-based
asset pricing is evident.
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The CAPM does not perform very well empirically. Fama
and French (1992) find a positive but insignificant value for
beta using U.S. data for 1963-1990. beta even turns nega-
tive (but remains insignificant) if one controls for size. Fama
and French propose a three-factor model that relates re-
turns to beta, size, and book-to-market.
https://www.ivey.uwo.ca/cmsmedia/3775518/the_cross-section_of_expected_stock_
returns.pdf
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All we had to say about uncertainty so far is that the
probabilities πs of states s = 1, . . . ,S satisfy πs > 0 and∑S

s=1 πs = 1. In the multi-period setup uncertainty unfolds as
time proceeds. This raises some subtle questions.
I What does it mean formally that uncertainty unfolds?
I What are agents’ expectations of future payoffs, prices,

etc.?
I What are agents’ expectations of their future expectations?
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Let S = {1,2, . . . ,S} denote the set of states. The basic idea is
that at some final date decision makers know the true state
s ∈ S, but earlier on, they have imperfect information.
More concretely, at each date there is a partitioning
{σ1, . . . , σJ} of S (i.e., the σj ’s are disjoint and ∪̇jσj = S). Agents
know σj . This means that they know that at the final date some
s ∈ σj will be realized. The unfolding of information means that
the sets which comprise the partitioning of S become smaller,
i.e., the partitioning becomes finer. Formally, if agents observe
σ, then at each later date there is a partitioning {σ′1, . . . σ′J} of σ
and agents know σ′j .
Information is symmetric: at each date, the partitioning
{σ1, . . . , σJ} of S is the same for each agent. (Asymmetric
information raises subtle questions about knowing what others
know.)
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Let x be a random variable, i.e., x takes on the value xs (s ∈ S)
at the final date. Suppose agents observe σ at some date. The
conditional expectation of x is then

E(x |σ) =
∑
s′∈σ

πs′

πσ
xs′ ,

where πσ =
∑

s′∈σ πs′ .
What are agents’ expectations of their future expectations?
Suppose they know σ. At each later date, there is a partitioning
{σ′1, . . . σ′J} of σ and they will know σ′ ∈ {σ′1, . . . σ′J}. Their
expectation at the earlier date of their expectation at the later
date is

E
(
E(x |σ′) | σ

)
=

J∑
j=1

∑
s∈σ′

j

πs

πσ
E(x |σ′j ).
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We are now in a position to state the fundamental result of this
section: the law of iterated expectations. The law says that the
expectation of future expectations is simply today’s
expectations. This is not surprising: the detour must not
improve the accuracy of forecasts. But it’s crucial to any
multi-period equilibrium model, in which today’s prices depend
on expected future prices (resale values), which depend on the
future expectation of prices then in the future, and so on.

Theorem (The law of iterated expectations):

E(x |σ) = E
(
E(x |σ′) | σ

)
.

Let πσ′
j

=
∑

s∈σ′
j
πs. Then:
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Proof:

E(x |σ) =
∑
s′∈σ

πs′

πσ
xs′

=
J∑

j=1

∑
s′∈σ′

j

πs′

πσ
xs′

=
J∑

j=1

∑
s′∈σ′

j

πs′

πσ
xs′
∑
s∈σ′

j

πs

πσ′
j

=
J∑

j=1

∑
s∈σ′

j

πs

πσ

∑
s′∈σ′

j

πs′

πσ′
j

xs′

=
J∑

j=1

∑
s∈σ′

j

πs

πσ
E(x |σ′j )

= E
(
E(x |σ′) | σ

)
.

Q.E.D.
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We usually encounter iterated expectations when individuals
form expectations at t about their expectations at t + 1 about
the realization xT of a random variable x at T > t + 1. They
know σt and that σ′t+1 is in a partitioning {σ′t+1,1, . . . , σ

′
t+1,J} of

σt . We then write
E(xT |σt ) = Et (xT )

and
E
(
E(x |σ′t+1) | σt

)
= Et [Et+1(xT )],

so that Et (xT ) = Et [Et+1(xT )].
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In this section, we show that the fundamental equations of
asset pricing derived in the two-period economy hold true
without any modification in a multi-period exchange economy.
We return to an exchange economy with one consumption
good. The time horizon T (≥ 1) is finite. (With an infinite
horizon the question of whether asset prices may contain
bubble components becomes harder to answer.)
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Let ci
t = (c i

1,t , . . . , c
i
S,t ) denote the vector of realizations of his

random date-t consumption c i
t . Only one of the components of

ci
t is realized at t , but i has to contemplate different possibilities

when he makes decisions prior to date t). The endowment
vector yi

t is defined analogously.
In any state s, aggregate utility from date t onwards is

U i
s,t (c

i
t , . . . ,c

i
T ) =

T∑
τ=t

(β i)τ−tEt

[
ui(c i

τ )
]
.
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There are K assets, all in zero net supply. Asset k pays a
dividend ask ,t and is traded at price psk ,t in state s at date t .
The vector of date-t asset prices is denoted
pt = (p11,t , . . . ,psk ,t , . . . ,pSK ,t ).
i ’s date-t state-s position in asset k is denoted z i

sk ,t , his date-t
portfolio is zi

t = (z i
11,t , . . . , z

i
sk ,t , . . . , z

i
SK ,t ). i ’s state-s date-t

budget constraints are:

c i
s,t +

K∑
k=1

psk ,t

(
z i

sk ,t − z i
sk ,t−1

)
≤ y i

s,t +
K∑

k=1

ask ,tz i
sk ,t−1,

with psk ,T = 0 for all s and all k .
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In the two-period model, the reason why the necessary
optimality conditions for utility maximization give rise to a single
SDF is that the MRSs are uniform across individuals because
consumers adjust their MRS to asset prices or because of
Pareto optimality. To simplify things, we now assume that all
individuals are alike. They have
I the same utility function u,
I the same subjective discount factor β,
I at each date t , the same endowment yt (yt may vary

across time), and
I the same information.

In this setup, the MRSs are uniform across individuals simply
because all individuals are alike and choose the same
consumption levels. We drop the superscript i .

162 / 183



12. Time and uncertainty
13. Equilibrium and the fundamental equations of asset pricing

14. Fundamental value

Consider an equilibrium in which individuals consume their
endowments and do not invest in any asset:

Definition: ct = yt , zt = 0, and pt , t = 0, . . . ,T , are a no-trade
equilibrium (NTE) if cs,t = ys,t and zsk ,t = 0 solve the utility
maximization problem for all s = 1, . . . ,S, k = 1, . . . ,K , and
t = 0,1, . . . ,T .

An NTE looks trivial, since it leads to the same allocation as no
markets at all. However, the question is: how do asset prices
have to adjust in order to induce the individuals to optimally
choose not to trade?
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Theorem (NTE): If (ct , zt ,pt )
T
t=0 is an NTE if, then

psk ,t = Et

[
β

u′(yt+1)

u′(ys,t )
(pk ,t+1 + ak ,t+1)

]
.

Proof: Suppose not. Let a consumer change his holdings of
asset k in s at t by dzsk ,t 6= 0, holding all other current and
future asset demands constant. Date-t consumption changes
by dcs,t = −psk ,tdzsk ,t and date-t + 1 consumption by
dct+1,s = (psk ,t+1 + ask ,t+1)dzsk ,t .
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The induced change in utility is

dU i
s,t = −u′(ys,t )psk ,tdzsk ,t

+Et
[
βu′(yt+1)(pk ,t+1 + ak ,t+1)

]
dzsk ,t

= −u′(ys,t )dzsk ,t

{
psk ,t − Et

[
β

u′(yt+1)

u′(ys,t )
(pk ,t+1 + ak ,t+1)

]}
6= 0.

This contradicts utility maximization. Q.E.D.
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Letting

Mt+1,s = β
u′(yt+1,s)

u′(yt )
,

one gets the fundamental asset pricing equations:

pk ,t = Et
[
Mt+1(pk ,t+1 + ak ,t+1)

]
.

The pricing formula for a riskless one-period bond is obtained
by setting pk ,t = 1/(1 + rt+1), pk ,t+1 = 0, and ak ,t+1 = 1.
The applications of the fundamental asset pricing equations in
Section 6 go through without any modification.
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With risk neutrality (i.e., u′(c) = 1) the SDF (Mt+1 = β) is not
stochastic), and

pk ,t = Et
[
β(pk ,t+1 + ak ,t+1)

]
.

This equation gives a precise statement of the random walk
result mentioned in Application 5 in Section 6. If β = 1, then

pk ,t = Et (pk ,t+1)

for each trading date before a date without a dividend payment
(i.e., for all t such that ask ,t+1 = 0 for all s). This is the “no free
lunch” hypothesis. It also sometimes called an efficient markets
hypothesis.
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The evidence on the validity of the no free lunch hypothesis
is mixed. Short-run momentum and long-run mean rever-
sion in asset prices contradict the non-predictability of fu-
ture price movements. Jegadeesh and Titman (1993) show
that in the U.S. stock market between 1965 and 1989 buy-
ing each month the top-10% performers of the previous six
months yielded a 0.8% monthly return. Financing this port-
folio by shorting the bottom-10% performers increased the
return to 1.0% per month. On the other hand, the fact that
even for professional investors it is hard to consistently beat
the market over an extended period of time is evidence for
no free lunch (Malkiel, 2003).
https://onlinelibrary.wiley.com/doi/epdf/10.1111/1468-036X.00205
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The fundamental equations of asset pricing are expectational
difference equations in the multi-period model. Which price
sequences satisfy these equations?
In this section, we show that the only price sequence consistent
with the fundamental equations is fundamental value, i.e., the
present expected value of the asset payoffs. This is a strong
version of the efficient markets hypothesis.
We start with the case of risk neutrality (i.e. u′(c) = 1). As
shown above, Mt+1 = β and

pk ,t = Et
[
β(pk ,t+1 + ak ,t+1)

]
.
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Theorem (Fundamental value with risk neutrality): If
consumers are risk-neutral, asset prices are uniquely de-
termined by

pk ,t =
T∑

τ=t+1

βτ−tEt (ak ,τ ).

Proof: Uniqueness of the sequence of equilibrium prices
follows from the fundamental equation of asset pricing via
backward induction: pk ,T−1 = βET−1(ak ,T ) is unique, so
pk ,T−2 = βET−2[β(ak ,T−1 + pk ,T−1) is unique, and so on.
The formula in the theorem follows via backward induction. The
above formula for pk ,T−1 satisfies the formula in the theorem for
t = T − 1. Using the law of iterated expectations, we have
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pk ,t = Et
[
β(pk ,t+1 + ak ,t+1)

]
= Et

[
β

T∑
τ=t+2

βτ−(t+1)Et+1(ak ,τ ) + βak ,t+1

]

=
T∑

τ=t+2

βτ−tEt [Et+1(ak ,τ )] + βEt (ak ,t+1)

=
T∑

τ=t+2

βτ−tEt (ak ,τ ) + βEt (ak ,t+1)

=
T∑

τ=t+1

βτ−tEt (ak ,τ ).

Q.E.D.
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Next, we allow for risk aversion (so that the SDF is stochastic).
Define the cumulated discount factor from τ to t by:

M̄t ,τ =
τ∏

θ=t+1

Mθ.

Risk neutrality is the special case with M̄t ,τ =
∏τ
θ=t+1 β = βτ−t .

Notice also that M̄t ,t+1 = Mt+1 and

M̄t ,τ = Mt+1

τ∏
θ=t+2

Mθ = Mt+1M̄t+1,τ .
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Theorem (Fundamental value): Asset prices are uniquely
determined by

pk ,t =
T∑

τ=t+1

Et (M̄t ,τak ,τ ).

Proof: The same arguments as in the risk-neutral case imply
uniqueness. Analogously as before,
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pk ,t = Et [Mt+1(pk ,t+1 + ak ,t+1)]

= Et

[
Mt+1

T∑
τ=t+2

Et+1(M̄t+1,τak ,τ ) + Mt+1ak ,t+1

]

=
T∑

τ=t+2

Et [Et+1(M̄t ,τak ,τ )] + Et (Mt+1ak ,t+1)

=
T∑

τ=t+2

Et (M̄t ,τak ,τ ) + Et (Mt+1ak ,t+1)

=
T∑

τ=t+1

Et (M̄t ,τak ,τ ).

Q.E.D.
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There are two striking pieces of evidence against funda-
mental value: excess volatility and bubbles. Shiller (1981)
computed that that the standard deviation of the S&P 500
was 5.5 times as high as the standard deviation of the
stocks’ fundamental value over the period 1870-1979. The
factor for the DJIA 1928-79 is 13. The volatility of actual
stock prices is incompatible with fundamental value. Gen-
erally, asset prices (and prices of other storable goods)
appear to be sporadically plagued by bubble-like behavior,
i.e., cumulative movements away from average, followed by
steep drops when the bubble bursts.
https://www.businesspundit.com/10-most-bizarre-economic-bubbles-in-history/
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Appendix. Incomplete markets

Market incompleteness means that financial markets do not
allow the transfer of purchasing power to each single state (the
seminal model is Diamond, 1967). The implications of general
equilibrium with incomplete markets for welfare, asset prices,
etc. are much less clear-cut than in the case of complete
markets (see Geanakoplos et al., 1990, Magill and Quinzii,
2002).
I The equilibrium allocation is not generally (unconstrained)

Pareto optimal. This is obvious. In the extreme case with
no financial markets at all, each individual consumes his
endowments, there is no risk sharing whatsoever.
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I The equilibrium allocation is not even constrained Pareto
optimal, i.e., optimal relative to the trading opportunities
generated by the existing financial markets. A special case
with Pareto optimality was identified by Diamond (1967):
there is a single final good, physical capital is the only input
in production, stocks are the only financial assets, and
uncertainty arises in the form of multiplicative shocks to
firms’ production functions.

I Even though there is not a common SDF, there exist state
prices which can be used to price all financial assets (the
fundamental theorem of asset pricing).

I Shareholders are not unanimous except in very restrictive
special cases, such as the one proposed by Diamond
(1967).
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I The MM theorem holds.
I The analysis of the multi-period model did not make use of

market completeness. So the pricing implications,
including the random walk behavior of asset prices for risk
neutrality, go through.
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