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Definition: Let X and Y be two sets. A rule that maps each
element x of X to an element f (x) of Y is a function. A
convenient shorthand is f : X → Y .
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Definition: Let X be a set. A sequence is a mapping from the
natural numbers N = 1,2,3, . . . to the elements of X . The n-th
element of the sequence is denoted xn.
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Definition: Let x = (x1, . . . , xL) be an L-tuple of real numbers.
The set of all such L-tuples is denoted as RL and the subsets
with xl ≥ 0 or xl > 0 for all l = 1, . . . ,L as RL

+ and RL
++,

respectively. The (Euclidian) distance between x ∈ RL and
y ∈ RL is defined as

||x− y|| =

√√√√
L∑

l=1

(xl − yl)2.

�

�
x1

x2

x

x1

x2
||x||

5 / 87



1. Math I: Basics
2. Math II: Separation of convex sets

3. The 2nd welfare theorem
4. The fundamental theorem of asset pricing

Definition: A sequence of elements of a subset X of RL is said
to converge to a if for any real number ε > 0, there is nε such
that

||xn − a|| < ε for n ≥ nε.

A convenient shorthand is xn → a.
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Definition: The least upper bound of a set X ⊂ R is called its
supremum.
We take the following for granted: Let X ⊂ R be bounded from
above. Then a supremum exists, and a sequence xn ∈ X
converging to the supremum exists.

�

�

X

n

xn

supremum

� � � � � � � �

This fact can be derived from an axiom of continuity for the real
number system.
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Definition: Let X ,Y ⊂ RL and f : X → Y . f is continuous at
a ∈ X if for any sequence xn → a, we have f(xn)→ f(a). f is
continuous if it is continuous for all a ∈ X .
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Definition: X ⊂ RL is closed if for any convergent sequence
xn ∈ X the limit a is in X .
Definition: X ⊂ RL is bounded if there exist a,b ∈ RL such that

X ⊂ Y = {x|x ∈ RL,al ≤ xl ≤ bl for l = 1, . . . ,L}.

Definition: A set X ⊂ RL is compact if a convergent
subsequence xm can be extracted from any sequence xn ∈ X .
Compactness of the domain is the crucial condition in order for
a continuous function to attain a maximum and is implied by
closedness and boundedness.
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I f (x) = x : [0,1)→ R does not attain a maximum, because
the domain is not closed.

I f (x) = x : R+ → R does not attain a maximum, because
the domain is not bounded.

I f (x) = x : [0,1]→ R attains a maximum f (1) = 1 at x = 1.
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The interval [a,b] ⊂ R is compact. Consider a sequence
xn ∈ [a,b]. An infinite number of terms is either in [a, (a + b)/2]
or in [(a + b)/2,b]. Pick this subinterval. Again, an infinite
number of terms of xn is in the lower or upper half. After m
iterations, an infinite number of terms is in a subinterval of
length (b − a)2−m. Taking the limit m→∞ yields the limit of a
convergent subsequence.
Y = {x|x ∈ RL,al ≤ xl ≤ bl for l = 1, . . . ,L} is compact.
Consider the sequence x1n of the first component of a
sequence xn ∈ Y . A convergent subsequence x1m exists.
Consider the sequence xm that includes the other components.
The sequence x2m of second components has a convergent
subsequence. Repeating the procedure proves the assertion.
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Theorem: If X ⊂ RL is closed and bounded, then it is com-
pact.

Proof: Since X is bounded, there exist a, b such that X ⊂ Y .
Since Y is compact, it suffices to prove the following assertion:
If X ⊂ Y is closed and Y is compact, X is compact.
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Consider a sequence xn in X . As X ⊂ Y , this is also a
sequence in Y . Since Y is compact, there is a convergent
subsequence xm with a limit a in Y . Since xm → a, xm ∈ X and
X is closed, we have a ∈ X . That is, there is the subsequence
xm extracted from xn ∈ X converges to a ∈ X . This proves that
X is compact. Q.E.D.
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Let a ∈ RL
+, p ∈ RL

+, w > 0. Consider the following sets:
I X = {x|x ∈ RL

+,px ≤ w} for p ∈ RL
++,

I X ′ = X ∩ {x|x ≤ a} for all p ∈ RL
+,

I the unit simplex ∆ ≡ {x|∑L
l=1 xl = 1, xl ≥ 0, l = 1, . . . ,L}.
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These sets are obviously bounded. We take it for granted that
they are closed, as they contain their boundaries. So they are
compact.
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Theorem (Weierstrass Theorem): Let X ⊂ RL be com-
pact and f : X → R continuous. Then f takes on a maximum
in X.

Proof: Denote the supremum of the set {f (x)|x ∈ X} as α.
There is a sequence xn of elements of X such that f (xn)→ α.
Because of compactness of X , a convergent subsequence xm
can be extracted from xn, which converges to a ∈ X . f (xm) is a
subsequence of f (xn), so f (xm)→ α. Because of continuity of
f , f (xm)→ f (a). So α = f (a). That is, (the finite value) f (a) is
the maximum of f on X . Q.E.D.
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2. Math II: Separation of
convex sets
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Definition: A set X ⊂ RL is convex if for all x,y ∈ X ,

λx + (1− λ)y ∈ X for λ ∈ [0,1].
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Definition: Let X ⊂ RL be convex. f : X → R is strictly
quasi-concave if for all x,y ∈ X (y 6= x),

f (x) ≥ f (y)⇒ f (λx + (1− λ)y) > f (y) for λ ∈ (0,1).
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Theorem (Alternative characterization of quasi-
concavity): Let X ⊂ RL be convex and f : X → R strictly
quasi-concave. Then for given a, the set

F = {x|x ∈ X , f (x) ≥ a}

is convex.

Proof: Consider x′,x′′ ∈ F with x′ 6= x′′ and (without loss of
generality) f (x′) ≥ f (x′′). f (x′) ≥ f (x′′) ≥ a because x′,x′′ ∈ F .
From quasi-concavity of f ,

f (λx′ + (1− λ)x′′) > f (x′′) ≥ a, λ ∈ (0,1),

so λx′ + (1− λ)x′′ ∈ F . Q.E.D.
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Definition: Let p ∈ RL and c ∈ R. The set {x|x ∈ RL,px = c} is
called a hyperplane.

Theorem (Separating hyperplane theorem 1): Let X ⊂
RL be convex and closed, a ∈ RL, and a 6∈ X . Then there
exist p ∈ RL and c ∈ R such that pa < c and px ≥ c for all
x ∈ X . That is, there exists a hyperplane that separates a
and X .
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Proof: Since X is closed, the distance between a and X is
positive. Let b be the point in X closest to a. b exists due to the
Weierstrass theorem. Let p = b− a and c = pb. Notice

pa = p(a− b) + pb = −||a− b||2 + pb < pb = c.

Because of convexity, for any x ∈ X , any point
x(λ) = λx + (1− λ)b ∈ X . The distance between x(λ) and a is

||x(λ)− a|| =

√
[(b− a) + λ(x− b)]2.

By construction ||x(λ)− a|| ≥ ||b− a||:
√

[(b− a) + λ(x− b)]2 ≥
√

(b− a)2.
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Rearranging terms:

2λ(b− a)(x− b) + λ2(x− b)2 ≥ 0.

Dividing by λ (> 0), letting λ→ 0, and using p = b− a and
pb = c shows

px ≥ c for x ∈ X .

That is, the hyperplane px = c separates a and X . The
hyperplane passes through b. There are hyperplanes through
points between a and b which strictly separate a and X , i.e.,
px > c′ for x ∈ X . Q.E.D
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Theorem (Separating hyperplane theorem 2): Let X ⊂
RL be convex, a ∈ RL, and a 6∈ X . Then there exist p ∈ RL

and c ∈ R such that pa < c and px ≥ c for all x ∈ X . That
is, there exists a hyperplane that separates a and X .
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Proof: If a is not a boundary point of X , the proof of the former
theorem goes through with minor modifications. If a is a
boundary point of X , then there are points close to a not in X
and hyperplanes strictly separating these points and X .
Consider a sequence an of such points and the corresponding
hyperplanes pnx = pnbn = c′n. By construction, pnan < c′n and
pnx > c′n for x ∈ X . Taking the limit, pa = c′ and px ≥ c′ for
x ∈ X . That is, there is a hyperplane through a that “supports”
X . Q.E.D.
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Theorem (Separating hyperplane theorem 3): Let X ⊂
RL be convex and disjoint from RL

++. Then X and RL
+ are

separated by the hyperplane px = 0 with p ≥ 0 so that
px ≤ 0 for all x ∈ X .

Proof: Let Y = RL − X , i.e.,

Y = {y|y = z− x, z ∈ RL,x ∈ X}.
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Consider y′,y′′ ∈ Y . There are z′, z′′ ∈ RL
+ and x′,x′′ ∈ X such

that y′ = z′ − x′ and y′′ = z′′ − x′′. By convexity of RL
+ and X ,

λz′ + (1− λ)z′′ ∈ RL
+ and λx′ + (1− λ)x′′ ∈ X for λ ∈ [0,1].

Hence, λ(z′ − x′) + (1− λ)(z′′ − x′′) = λy′ + (1− λ)y′′ ∈ Y , i.e.,
Y is convex.
Suppose the origin 0 is in the interior of Y . Then there is y > 0,
y ∈ Y , and also −y ∈ Y . So −y = z− x for some z ∈ RL,
x ∈ X . Hence,

0 < y = x− z︸︷︷︸
≥0

≤ x.

This contradicts the assumption that X and RL
++ are disjoint.

So 0 is not in the interior of Y
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By separating hyperplane theorem 2, there is a hyperplane
py = 0 such that

py ≥ 0 for y ∈ Y .

Using y = z− x,

pz ≥ px for z ∈ RL
+,x ∈ X .

Set z = 0 ∈ RL
+ to get

px ≤ 0 for x ∈ X .

That is, X is below the hyperplane px = 0.

27 / 87



1. Math I: Basics
2. Math II: Separation of convex sets

3. The 2nd welfare theorem
4. The fundamental theorem of asset pricing

For any x, pz is bounded from below by px. Hence,

pz =
p(λz)

λ
≥ px

λ
for λ > 0.

Letting λ→ 0, we get

pz ≥ 0 for z ∈ RL
+.

That is, RL
+ is above the hyperplane px = 0.

Suppose pl < 0 for some l . Let z ∈ RL
+ obey zl > 0 and zl ′ = 0

for l ′ 6= l . Then,

pz =
L∑

l ′=1

pl ′zl ′ = pl︸︷︷︸
<0

zl︸︷︷︸
>0

< 0,

a contradiction. Q.E.D.
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3 The 2nd welfare theorem
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Theorem (2nd Welfare Theorem with CCMs): Let the
utility functions be strictly increasing and strictly quasi-
concave. Suppose (ci∗)I

i=1 is a Pareto-optimal allocation.
Then there are a distribution of endowments (yi)I

i=1 and a
price vector q such that ((ci∗)I

i=1,q) is an ECCM given the
endowments (yi)I

i=1.

Proof: By the alternative characterization of quasi-concavity of
U, the sets of consumption bundles

X i = {ci |U i(ci) ≥ U i(ci∗)}

preferred to ci∗ are convex.
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Let X denote the set of aggregate consumption vectors which
can be divided across consumers such that each consumer is
better-off than with ci∗:

X = {c|c =
I∑

i=1

ci ,ci ∈ X i}.

Consider c′,c′′ ∈ X . This implies that there exist ci′,ci′′ ∈ X i .
Using convexity of X i ,

λc′ + (1− λ)c′′ = λ

I∑

i=1

ci′ + (1− λ)
I∑

i=1

ci′′

=
I∑

i=1

[λci′ + (1− λ)ci′′]︸ ︷︷ ︸
∈X i

∈ X for λ ∈ [0,1].

Hence, X is convex.
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Let a =
∑I

i=1 ci∗. By construction, a ∈ X . Any a′ obtained by
reducing some component of a means that some consumer is
worse-off, so a is on the boundary of X . By the separating
hyperplane theorem 2 there exists q such that

qc ≥ qa for c ∈ X .
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Let each consumer i be endowed with ci∗, and assume q is the
price vector. To prove the theorem, it suffices to show that ci∗

maximizes utility. Suppose not. Then there exist i and ci such
that

U i(ci) = U i(ci∗), qci < qci∗.

Since i is no worse-off with ci , we have
c = ci +

∑I
i ′=1,i ′ 6=i ci ′∗ ∈ X . Using a =

∑I
i=1 ci∗, it follows from

the separating hyperplane theorem that

q


ci +

I∑

i ′=1,i ′ 6=i

ci ′∗


 ≥ q

I∑

i=1

ci∗,

i.e., qci ≥ qci∗, a contradiction. Q.E.D.
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Literature:

I Mas-Colell, Andreu, Michael D. Whinston, and Jerry R.
Green, Microeconomic Theory, Oxford University Press
(1995), Chapter 16.
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The “equilibrium approach” pursued here implies the existence
of state prices p̃t ,s, determined by

qt

(
1
p̃

)
= q

(i.e., p̃t ,s = qt+1,s/qt ). We have used the state prices to price
assets in an ECFM:

pk =
S∑

s=1

p̃t ,sask .
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In a sense, this approach, building on our model of complete
financial markets, is very special.

I Financial markets might be incomplete.
I The “true” model may deviate from our perfectly

competitive setup without market imperfections.
I We might not have a model of the total economy at all.

This section shows that the existence of state prices holds
much more generally: all we need is arbitrage-free pricing of
the assets.
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As a motivation, consider the case of certainty (S = 1). A bond
with payoff 1 and price pt is the AS for s = 1.
If pt were non-positive, there would be a “free lunch”.
Conversely, if there is no free lunch (pt > 0), then the state (AS)
price for s = 1 is positive.
That is, arbitrage-freeness requires a positive asset price.

38 / 87



1. Math I: Basics
2. Math II: Separation of convex sets

3. The 2nd welfare theorem
4. The fundamental theorem of asset pricing

Here is the theorem that states that arbitrage-freeness
gurantees the existence of state prices p̃t ,s. This theorem is
often called the fundamental theorem of asset pricing:

Theorem (The fundamental theorem of asset pricing):
If asset prices p > 0 are arbitrage-free, then there exist
non-negative state prices p̃ = (p̃t ,1, . . . , p̃t ,S) such that

pk =
S∑

s=1

p̃t ,sask , k = 1, . . . ,K .
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Proof: Let B denote the set of all payoff vectors attainable with
costless portfolios:

B = {x ∈ RS|Az = x for some z with pz = 0}.

Arbitrage-freeness implies B ∩ (RS
+\{0}) = ∅, hence

B ∩ RS
++ = ∅.
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B is convex. To see this, let x′,x′′ ∈ B. Then there are
z′, z′′ ∈ RS such that

0 = λpz′ + (1− λ)pz′′ = p[λz′ + (1− λ)z′′]

λx′ + (1− λ)x′′ = λAz′ + (1− λ)Az′′ = A[λz′ + (1− λ)z′′].

So λx′ + (1− λ)x′′ ∈ B, since it is generated by the costless
portfolio λz′ + (1− λ)z′′.
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Due to Separating hyperplane theorem 3, there exists p̃′ ∈ RS,
p̃′ ≥ 0 such that

p̃′x ≤ 0, x ∈ B.

More specifically,
p̃′x = 0, x ∈ B.

x ∈ B implies x = Az and pz = 0 for some z, so −x = A(−z)
and p(−z) = 0, i.e., −x ∈ B. If p̃′x < 0 for x ∈ B, then
p̃′(−x) > 0 and −x ∈ B, a contradiction.
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Since p̃′s ≥ 0 and ask ≥ 0, we have

S∑

s=1

p̃′sask ≥ 0, k = 1, . . . ,K .

Assume
(as1, . . . ,asK ) 6= 0, s = 1, . . . ,S.

This entails no loss of generality, for if (as1, . . . ,asK ) = 0, then
set p̃t ,s > 0 arbitrary and drop the state s from the analysis.
Since p̃′ 6= 0, there is some state s with p̃′s > 0. Since some
component of (as1, . . . ,asK ) is positive, we have

S∑

s=1

p̃′sask > 0 for some k .

Without loss of generality, let this asset be k = 1.
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Consider the equation:

pk = α

S∑

s=1

p̃′sask .

For k = 1, α = p1/(
∑S

s=1 p̃′sas1) (> 0) is well defined. The
equation holds true for all k = 1, . . . ,K . Suppose not. Without
loss of generality, let k = 2 be the asset for which the equality
does not hold:

∑S
s=1 p̃′sas1

p1
6=
∑S

s=1 p̃′sas2

p2
.
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Consider the following portfolio:

z =

(
1
p1
,− 1

p2
,0 . . . ,0

)
.

The portfolio is costless: pz = 0. So Az ∈ B and

p̃′(Az) = 0.

The payoff generated by the portfolio is

Az =




a11z1 + a12z2
...

aS1z1 + aS2z2


 .
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Therefore,

p̃′(Az) =




p̃′1
...

p̃′S







a11z1 + a12z2
...

aS1z1 + aS2z2




= z1

S∑

s=1

p̃′sas1 + z2

S∑

s=1

p̃′sas2

=

∑S
s=1 p̃′sas1

p1
−
∑S

s=1 p̃′sas2

p2
6= 0,

a contradiction.
Define p̃ = αp̃′. This completes the proof of the theorem.
Q.E.D.
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Literature:

I Mas-Colell, Andreu, Michael D. Whinston, and Jerry R.
Green, Microeconomic Theory, Oxford University Press
(1995), Section 19.E.

I Magill, Michael, and Martine Quinzii, Theory of Incomplete
Markets, MIT (2002), Section 9.
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5 Math III: Math for the
existence problem
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Theorem (Theorem of the maximum): Let p ∈ RL
++,

w ≥ 0, X = {x|x ∈ RL
+,px ≤ w}, and f : RL

+ → R con-
tinuous, strictly increasing, and stricty quasi-concave. Then
the solution d(p,w) : RL

++ × R+ → RL
+ to

max
x∈X

: f (x)

is a continuous function.

Proof: The set of maximizers d is non-empty due to the
Weierstrass theorem.
d is a function (i.e., single-valued). If there were two different
maximizers x and y, then by quasi-concavity,
f (λx + (1− λ)y) > f (x) = f (y), a contradiction.
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�

�

�
x

� � � �

��y

x1

x2

���

���

px = w

d(p, w)

d(pn, wn)

d is continuous. Suppose not. Consider a sequence
(pn,wn)→ (p,w). Suppose d(pn,wn)→ x 6= d(p,w).
pnd(pn,wn) ≤ wn implies px ≤ w . Since d(p,w) 6= x is optimal
given (p,w), we must have f (d(p,w)) > f (x). As f is
continuous and strictly increasing, there is y close to d(p,w)
such that py < w and f (y) > f (x). The former inequality implies
pny < wn for n large enough. From the fact that d(pn,wn) is
optimal given (pn,wn), it follows that f (d(pn,wn)) > f (y). By
continuity of f , f (x) > f (y), a contradiction. Q.E.D.
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Consider the triangle formed by the three vertices (1,0,0),
(0,1,0), and (0,0,1) as a (triangular) house. The three vertices
are called corners 1, 2, and 3, respectively. The side of the
triangle opposite to corner i is called outer wall i .

corner 1:
(

1
0
0

)

corner 3:
(

0
0
1

)

corner 2:
(

0
1
0

)

outer wall 1outer wall 2

outer wall 3
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The house is divided into triangular rooms by walls. Any two
rooms either share one common wall or none at all.

corner 1:
(

1
0
0

)

corner 3:
(

0
0
1

)

corner 2:
(

0
1
0

)

outer wall 1outer wall 2

outer wall 3
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Give each corner of each room a number, 1, 2, or 3. The only
labelling rules are:

I Corners 1, 2, 3 are labeled 1, 2, 3 respectively;
I No corner on outer wall i is labeled i (i = 1,2,3).

1 2

3

11 2 2

11 2

3 2

2 21
�
������

� �
���

�
		


�
���
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Theorem (Sperner’s Lemma): There exists an odd num-
ber of rooms whose corners are labeled 1, 2, 3.

Proof: Say a wall has a door if its corners are labeled 1 and 2.
Start at corner 1 and go along outer wall 3 until you reach a
door. Enter the room.
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Walk the house according to the following rules:
I If the room you enter is labeled 1, 2, 3: stop.
I If it’s labeled 1, 2, 1 or 1, 2, 2, there is a second door

besides the one through which you entered: go through
this door.

The walk obeys the following two observations:
I You never enter the same room twice.
I The walk ends in a room labeled 1, 2, 3 or you exit the

house through a door in wall 3.
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Since the number of doors in wall 3 is odd, there is an odd
number of walks which terminate in a room labeled 1, 2, 3.
This proves that there is a room labeled 1, 2, 3.
If, in addition, there is a room no walk starting at wall 3 leads
into, then start another walk obeying the two rules there. By
virtue of the two observations made, the walk ends in another
such room. So this type of rooms come in pairs.
This proves that the number of rooms labeled 1, 2, 3 is odd.
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The theorem easily generalizes to higher dimensions by means
of induction on the number of dimensions.
Suppose the assertion of the theorem holds true for an
n − 1-dimensional simplex, spanned by n points. Consider the
n-dimensional simplex made up of n + 1 points
(1,0, . . . ,0), . . . , (0,0, . . . ,1).
By the induction hypothesis, the n − 1-dimensional subsimplex
obtained by deleting the n + 1st point has an odd number of
n − 1-dimensional rooms labeled (1,0, . . . ,0), . . . , (0,0, . . . ,1).
Walking the house analogously to the rules above proves that
there is an odd number of n-dimensional rooms.
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Theorem (Brouwer’s fixed point theorem): Let f : ∆→ ∆
be a continuous mapping from the two-dimensional simplex
on itself. Then there exists a fixed point x ∈ ∆ such that
f(x) = x.

Proof: Consider an arbitrarily fine triangularization of the house
into rooms.
Suppose no corner is a fixed point of f since otherwise the
assertion of the theorem is trivially true.
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Consider the following labelling procedure:
I Corners 1, 2, 3 are labeled 1, 2, 3 respectively;
I To each other point, attach a label i (∈ {1,2,3}) such that

fi(x) < xi .
fi(x) < xi for some i , since

∑
i xi =

∑
i fi(x) = 1 and xi ≤ fi(x)

for all i imply that xi = fi(x) for all i . So the labelling procedure
is feasible.
Points on outer wall i satisfy xi = 0. So fi(x) ≥ xi , and the
points are not labeled i . That is, the labelling procedure
conforms to the rule specified above.
By Sperner’s lemma, there is a room labeled 1, 2, 3.
A room labeled 1, 2, 3 satisfies fi(x) < xi for i ∈ {1,2,3}.
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Consider a sequence of ever finer triangularizations of the
house into rooms. For each triangularization, there is a room
such that fi(x) < xi for i ∈ {1,2,3}.
Since x is in the compact set ∆, we can pick a convergent
subsequence.
In the limit, we must have fi(x) = xi for i ∈ {1,2,3}. Q.E.D.

This proof generalizes immediately to higher dimensions.
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8 Existence

61 / 87



5. Math III: Math for the existence problem
6. Existence of equilibrium

7. Math IV: Concave optimization

Theorem (Existence): Let the utility functions be strictly
increasing, strictly quasi-concave, and continuous. Then
an equilibrium exists.

Proof: Let the solution (c i
t , c

i
t+1,1, c

i
t+1,2) to the consumers’

utility maximization problem problem be denoted as
(c0(q), c1(q), c2(q)) = ci(q). The Theorem of the maximum
ensures that these are continuous functions.
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Let z(q) denote the excess demand function:

z(q) =
I∑

i=1

[ci(q)− yi ].

The excess demand functions are continuous.
From the budget constraints, qci(q) = qyi for all q and all i .
Hence,

qz(q) =
I∑

i=1

q[ci(q)− yi ] = 0.

This relation is called Walras’ law: the value of the excess
demands is zero.
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In a slight abuse of notation, let
q = (qt ,qt+1,1,qt+1,2) = (q0,q1,q2).
Consider the Gale-Nikaido mapping f = (f0, f1, f2) defined by:

fj(q) =
qj + max{zj(q),0}

1 +
∑2

j ′=0 max{zj ′(q),0}
, j = 0,1,2.

Since the model is homogeneous of degree zero in q, we are
free to consider price vectors q in the two-dimensional unit
simplex ∆ ≡ {q|∑2

j=0 qj = 1,qj ≥ 0, j = 0,1,2}.
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f is a continuous mapping from the unit simplex on itself. By
Brouwer’s theorem, there is a fixed point, such that q = f(q).
Using Walras’ law, it follows that the fixed point is an equilibrium
price vector.
So there is q such that

qj =
qj + max{zj(q),0}

1 +
∑2

j ′=0 max{zj ′(q),0}
, j = 0,1,2.
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Multiply by zj(q):

qjzj(q) =
qjzj(q) + zj(q) max{zj(q),0}

1 +
∑2

j ′=0 max{zj ′(q),0}
, j = 0,1,2.

Sum over all j :

2∑

j=0

qjzj(q)

︸ ︷︷ ︸
=0

=

=0︷ ︸︸ ︷
2∑

j=0

qjzj(q) +
∑2

j=0 zj(q) max{zj(q),0}

1 +
∑2

j ′=0 max{zj ′(q),0}
.
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Use Walras’ law:

0 =

∑2
j=0 zj(q) max{zj(q),0}

1 +
∑2

j ′=0 max{zj ′(q),0}
.

Each term in the sum in the numerator is non-negative, so each
term has to be equal to zero:

zj(q) = 0, j = 0,1,2.
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There’s one subtlety we’ve ignored so far. We’ve presupposed
that a solution to the consumers’ utility maximization problem
exists. According to the Weierstrass theorem, this requires that
the domain of the problem is compact. However, the unit
simplex includes price vectors with zero components, and when
one price is zero, the individuals’ budget sets are not compact.
This problem is handled as follows.
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Add the restriction ci ≤ 2
∑I

i ′=1 yi ′ to i ’s problem. This makes
the domain compact end ensures the existence of a solution
ci(q).
So there is a price vector q which clears the markets given the
“demand functions” ci(q). By construction, ci(q) is in the
interior of the set of consumption bundles which satisfy
ci ≤ 2

∑I
i ′=1 yi ′ .

The restriction of the domain is immaterial. Suppose there’s a
consumption vector c′i in i ’s budget set and which i prefers to
ci(q) but which does not satisfy ci ≤ 2

∑I
i ′=1 yi ′ .
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Since both ci and c′i are in i ’s budget set, so is a mixture of
them.

I Because of strict quasi-concavity, as c′i is preferred to ci ,
so is any mixture of the two.

I As ci(q) is in the interior of the set of consumption bundles
which satisfy ci ≤ 2

∑I
i ′=1 yi ′ , so is a mixture with a

sufficiently high weight on ci .
It follows that there is a mixture of ci and c′i with a sufficiently
high weight on the former which is in i ’s budget set, is preferred
to ci , and satisfies ci ≤ 2

∑I
i ′=1 yi ′ , a contradiction. Q.E.D.
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Literature:

I Mas-Colell, Andreu, Michael D. Whinston, and Jerry R.
Green, Microeconomic Theory, Oxford University Press
(1995), Sections 17.A-C.

I Nikaido, Hukukane (1970), Introduction to Sets and
Mappings in Modern Economics, Amsterdam:
North-Holland, Chapters 8, 10.
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7 Math IV: Concave
optimization
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Definition: Let X ⊂ RL. A function f : X → R is concave if for
any x,y ∈ X ,

f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y) for λ ∈ [0,1].

�

�
x

f(x)

�
��

x yλx+

�
f(λx + (1− λ)y)

λf(x) + (1− λ)f(y)

(1 − λ)y
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Theorem (Kuhn-Tucker theorem): Let X ⊂ RL be convex
and f : X → R and gi : X → R, i = 1, . . . , I concave
functions. Suppose there is c ∈ X such that gi(c) > 0,
i = 1, . . . , I. Suppose x∗ solves

max
x∈X

: f (x)

s.t.: gi(x) ≥ 0 for i = 1, . . . , I.

Let

L(x,λ) = f (x) +
I∑

i=1

λigi(x).

Then there is λ∗ ∈ RI
+ such that x∗ maximizes L(x,λ∗) and

λ∗i gi(x∗) = 0, i = 1, . . . , I.
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Proof: Define g0(x) = f (x)− f (x∗) and
g = (g0,g1, . . . ,gI) : X → RI+1. Consider the set

Y = {y|y ∈ RI+1,y ≤ g(x) for some x ∈ X}.
Suppose y ∈ Y , y ∈ RI+1

++ . That is, the constraints are not
binding, and the value of the objective function is greater than
maximal, a contradiction. Formally, 0 < yi ≤ gi(x), i = 1, . . . , I,
implies

y0 = g0(x) = f (x)− f (x∗) ≤ 0.

So Y and the interior of RI+1
+ are disjoint.

�

�
x1

x2

g(x) = 0

g(x) > 0

�
f(x) = f(x∗)

x∗

f(x) > f(x∗)
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Let y′,y′′ ∈ Y . There are x′,x′′ ∈ X such that y′ ≤ g(x′) and
y′′ ≤ g(x′′). Because of concavity of g,

g(λx′ + (1− λ)x′′) ≥ λg(x′) + (1− λ)g(x′′) = λy′ + (1− λ)y′′.

Because of convexity of X , λx′ + (1− λ)x′′ ∈ X . So
λy′ + (1− λ)y′′ ∈ Y , i.e., Y is convex.
Separating hyperplane theorem 3 implies that there exists a
hyperplane px = 0 with p ≥ 0 such that py ≤ 0 for y ∈ Y .
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Let
g(X ) = {y|y ∈ RI+1,y = g(x) for some x ∈ X}.

Clearly, g(X ) ⊂ Y . So py ≤ 0 for y ∈ g(X ), i.e.,

pg(x) = p0[f (x)− f (x∗)] +
I∑

i=1

pigi(x) ≤ 0 for x ∈ X .

For x = x∗, we have
∑I

i=1 pigi(x∗) ≤ 0. As pi ≥ 0 and
gi(x∗) ≤ 0, this implies

pigi(x∗) = 0 for i = 1, . . . , I.
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Suppose p0 = 0. Then
∑I

i=1 pigi(x) ≤ 0 for x ∈ X . Since∑I
i=1 pigi(c) ≥ 0, we have

∑I
i=1 pigi(c) = 0. gi(c) > 0 for

i = 1, . . . , I implies pi = 0 for i = 1, . . . , I. Hence, p = 0. This
contradicts the implication of the separating hyperplane
theorem. So p0 > 0.
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Define
λi =

pi

p0
for i = 1, . . . , I.

Then pigi(x∗) = 0 becomes

λigi(x∗) = 0 for i = 1, . . . , I.

And

f (x) +
I∑

i=1

λigi(x) ≤ f (x∗) ≤ f (x∗) +
I∑

i=1

λigi(x∗).

Q.E.D.
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Definition: Let X ⊂ R. f : X → R is differentiable at x ∈ X if

lim
h→0

f (x + h)− f (x)

h

exists. The derivative is then denoted f ′(x) or df (x)/dx . If f is
differentiable at all x in the interior of X , then it is differentiable.
Definition: Let X ⊂ RL. f : X → R is partially differentiable with
respect to xl at x ∈ X if

lim
h→0

f (x1, . . . , xl + h, . . . , xL)− f (x)

h

exists. The partial derivative is then denoted ∂f (x)/∂xl . If the
partial derivatives exist at all x in the interior of X , then f is
differentiable.
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Theorem (Necessary conditions for unconstrained
maximization): Let f : RL

+ → R be continuously differen-
tiable. If x∗ solves

max
x∈RL

+

: f (x),

then

∂f (x∗)
∂xl

≤ 0,
∂f (x∗)
∂xl

x∗l = 0 for l = 1, . . . ,L.

�

�

x

f(x)

�

�

x

f(x)� �

x∗ x∗
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Proof: For any x ∈ RL
+, let x(λ) = λx + (1− λ)x∗. Since

x∗ = x(0) maximizes f ,

f (x(λ))− f (x(0))

λ
≤ 0 for x ∈ RL

+, λ ∈ (0,1].

Taking the limit λ→ 0,
df (x(0))

dλ
≤ 0 for x ∈ RL

+.

Using x(0) = x∗ and

df (x(λ))

dλ
=

L∑

l=1

∂f (x(λ))

∂xl
(xl − x∗l ),

this becomes
L∑

l=1

∂f (x∗)
∂xl

xl ≤
L∑

l=1

∂f (x∗)
∂xl

x∗l for x ∈ RL
+.
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First, choose x ∈ RL
+ such that xl = µ > 0 and xl ′ = 0 for l ′ 6= l .

Then,
∂f (x∗)
∂xl

≤
∂f (x∗)
∂xl

µ
for µ > 0.

Letting µ→ 0 proves the first assertion of the theorem.
Second, choose x = 0 ∈ RL

+. This yields

L∑

l=1

∂f (x∗)
∂xl︸ ︷︷ ︸
≤0

x∗l︸︷︷︸
≥0

≥ 0.

Since ∂f (x∗)/∂xl ≤ 0 and x∗l ≥ 0, each term in the sum must
be equal to zero. This implies the validity of the second
assertion of the theorem. Q.E.D.
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Theorem (Constrained maximization): Let X = RL and
f and gi , i = 1, . . . , I be continuously differentiable in the
Kuhn-Tucker theorem. Then there is λ∗ ∈ RI

+ such that

∂L(x∗,λ∗)
∂xl

≤ 0 ,
∂L(x∗,λ∗)

∂xl
x∗l = 0 for l = 1, . . . ,L,

and
λ∗i gi(x∗) = 0, i = 1, . . . , I.

Proof: This restates the condition that x∗ maximizes L(x,λ∗)
using the theorem on the necessary conditions for
unconstrained maximization. Q.E.D.

84 / 87



5. Math III: Math for the existence problem
6. Existence of equilibrium

7. Math IV: Concave optimization

Theorem (Envelope theorem): Let f (x, c), gi(x, c), i =
1, . . . , I, and, hence, the Langrangean L(x∗,λ∗, c) depend
on a parameter c ∈ R in the differentiable constrained max-
imization problem. Suppose an interior solution x∗ > 0 ob-
tains. Then

df (x∗, c)

dc
=
∂L(x∗,λ∗, c)

∂c
.

In the unconstrained case, this boils down to

df (x∗, c)

dc
=
∂f (x∗, c)

∂c
.
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Proof: x∗ > 0 implies

∂L(x∗,λ∗, c)

∂xl
=
∂f (x∗, c)

∂xl
+

I∑

i=1

λ∗i
∂gi(x∗, c)

∂xl
= 0.

Differentiating f (x∗, c) gives

df (x∗, c)

dc
=
∂f (x∗, c)

∂c
+

L∑

l=1

∂f (x∗, c)

∂xl

dx∗l
dc

or
df (x∗, c)

dc
=
∂f (x∗, c)

∂c
−

I∑

i=1

λ∗i

L∑

l=1

∂gi(x∗, c)

∂xl

dx∗l
dc

.
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Differentiating the i-th constraint gives

∂gi(x∗, c)

∂c
+

L∑

l=1

∂gi(x∗, c)

∂xl

dx∗l
dc

= 0 for i = 1, . . . , I.

So

df (x∗, c)

dc
=

∂f (x∗, c)

∂c
+

I∑

i=1

∂gi(x∗, c)

∂c

=
∂L(x∗,λ∗, c)

∂c
.

Q.E.D.
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