Genetic structure of native ant supercolonies varies in space and time

EVA SCHULTNER,*,† JARI SARAMÄKI‡ and HEIKKI HELANTERÄ*†
*Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Viikinkaari 1, Helsinki 00014, Finland, †Tvärminne Zoological Station, J.A. Pärmäntie 260, Hanko 10900, Finland, ‡Department of Computer Science, Aalto University, PO Box 15400, Aalto 00076, Finland

Abstract
Ant supercolonies are the largest cooperative units known in nature. They consist of networks of interconnected nests with hundreds of reproductive queens, where individuals move freely between nests, cooperate across nest boundaries and show little aggression towards non-nestmates. The combination of high queen numbers and free mixing of workers, queens and brood between nests results in extremely low nestmate relatedness. In such low-relatedness societies, cooperative worker behaviour appears maladaptive because it may aid random individuals instead of relatives. Here, we provide a comprehensive picture of genetic substructure in supercolonies of the native wood ant Formica aquilonia using traditional population genetic as well as network analysis methods. Specifically, we test for spatial and temporal variation in genetic structure of different classes of individuals within supercolonies and analyse the role of worker movement in determining supercolony genetic networks. We find that relatedness within supercolonies is low but positive when viewed on a population level, which may be due to limited dispersal of individuals and/or ecological factors such as nest site limitation and competition against conspecifics. Genetic structure of supercolonies varied with both sample class and sampling time point, which indicates that mobility of individuals varies according to both caste and season and suggests that generalizing has to be carried out with caution in studies of supercolonial species. Overall, our analysis provides novel evidence that native wood ant supercolonies exhibit fine-scale genetic substructure, which may explain the maintenance of cooperation in these low-relatedness societies.

Keywords: ant supercolonies, cooperation, Formica, kin selection, microsatellites, network analysis, population genetics

Received 26 March 2015; revision received 25 September 2016; accepted 17 October 2016

Introduction
In social insect colonies, individuals cooperate because they gain indirect fitness from helping relatives reproduce (Hamilton 1964). In a stereotypical ant nest, one or a few reproductive females (queens) produce offspring, while their sterile daughter helpers (workers) are responsible for brood care, foraging and nest defence.

In these tight-knit family units, individuals share a large proportion of their genes and workers gain fitness indirectly by rearing related brood (Bourke & Franks 1995). Workers cooperate with nestmates but behave aggressively towards intruders, including foreign conspecifics. This helps the ants maintain strict boundaries between colonies and ensures workers direct their help towards relatives.

However, many ant species do not form such simple family units (Heinze 2008). In fact, from this ancestral state of family-structured colonies, ants have evolved huge variation in social structure, both inter- and intraspecifically (Bourke & Franks 1995). Kin structure
variation is mainly caused by differences in queen number, but can also be due to variation in queen mating frequency, reproductive skew among queens and worker reproduction (Ross et al. 1988; MacKay et al. 1990; Seppä 1992; Rosengren et al. 1993; Sundström 1993; Bourke 1994; Baer & Boomsma 2004; Hannonen et al. 2004; Rheindt et al. 2004; Bargum et al. 2007; Helanterä & Sundström 2007; Seppä et al. 2009).

A particularly extreme form of social organization has evolved in supercolonial ants. The nests of these species can contain hundreds or even thousands of reproductive queens, and supercolonies consist of networks of interconnected nests in which individuals move freely between nests, cooperate across nest boundaries and show little or no aggression towards non-nestmates (Helanterä et al. 2009). Supercolonies typically originate from one or a few nests that grow by adopting daughter queens and subsequently colonize new nesting sites by budding, that is the founding of new nests by queens and workers that disperse from parental nests to new nesting sites (Hölldobler & Wilson 1977; Keller 1991). The combination of high queen numbers and free mixing of workers, queens and brood between nests results in extremely low nestmate relatedness in supercolonial ants that is often indistinguishable from zero (Holzer et al. 2006; Pedersen et al. 2006; Kümerli & Keller 2007; Fournier et al. 2009).

In these low-relatedness societies, cooperative worker behaviour appears maladaptive because it may aid random individuals instead of relatives. Evolutionary theory predicts that such lineages represent evolutionary dead ends that fail to diversify and degrade eventually, for example because of lack of selection on worker traits (Linksvayer & Wade 2009) or increased selection on selfish reproductive individuals (Rankin et al. 2007; Helanterä et al. 2009). Still, supercolonial organization has evolved multiple times in ants (Helanterä et al. 2009) and supercolonial ants are among the most successful of all insect taxa (Savolainen & Vepsäläinen 1988, 1989; Savolainen et al. 1989; Wetterer et al. 1999; O’Dowd et al. 2003; Wilson 2005). This raises the question how cooperative behaviour is maintained in these systems.

A crucial step in understanding the maintenance of cooperation is a detailed assessment of the genetic structure of supercolonies. Past studies on the genetic diversity between ant supercolonies have revealed that while overall relatedness within nests is low, supercolonies can be genetically differentiated when considered on a larger geographical scale (Tsutsui & Case 2001; Pedersen et al. 2006; Drescher et al. 2007; Kümerli & Keller 2007; van Zweden et al. 2007; Holzer et al. 2009). This indicates that processes like limited dispersal and between-supercolony competition play a role in determining the genetic substructure of populations, and gives a first indication of the importance of choosing the relevant spatial scale when assessing genetic structure of supercolonies (Helanterä et al. 2009). In particular, this suggests that the choice of background allele frequencies (i.e. the population wide frequencies P used in the relatedness estimator of Queller & Goodnight 1989) strongly affects relatedness estimates (e.g. Tsutsui & Case 2001), with higher estimates being obtained when allele frequencies from a wider sampling area are used as a comparison.

Fewer studies have addressed the genetic substructure within supercolonies. Those that do have assessed genetic structure across nests using within-nest relatedness analyses and classical measures of genetic differentiation in space such as F-statistics and isolation by distance, which may lack power when attempting to disentangle nonlinear spatial genetic patterns in systems with low overall relatedness (e.g. in Formica ants, Kümerli & Keller 2007). In addition, studies of ant population genetics have traditionally focused on worker genotypes, which may fail to reflect the genetic reality of colonies that can be shaped by differential reproductive partitioning between worker- and gyno-producing queens (Pamilo & Seppä 1994; Bargum & Sundström 2007), and, in the case of supercolonies, between worker- and gyno-producing nests (Kennedy et al. 2014). Finally, high queen numbers and complex social interaction networks in supercolonial ants—which include exchange of queens, brood and workers between nests, adoption of queens by neighbouring nests and formation of new nests by budding (Helanterä et al. 2009)—in our opinion demands an approach tailored to these dynamics.

In this study, we test two nonexclusive hypotheses for how workers can gain inclusive fitness in these unique systems. First, nests within supercolonies may form clusters that exhibit locally elevated relatedness when viewed on a large enough spatial scale. Indeed, worker relatedness in nests of several Formica ant supercolonies is significantly higher than zero when relatedness is compared among supercolonies (Chapuisat et al. 1997; Kümerli & Keller 2007; Holzer et al. 2009). Here, competition between genetically distinct supercolonies may select against intrasupercolony instability arising from selfish behaviour (Helanterä et al. 2009), thus contributing to the persistence of supercolonial populations (Pedersen et al. 2006).

Second, supercolonies may exhibit genetic variation in substrutures on a temporal scale due to movement of individuals, especially workers. This is likely to be the case in temperate, hibernating species where nests within supercolonies are cut-off from each other during winter but undergo massive worker exchange in early
summer. In some temperate Formica ants, queens produce male and queen-destined female eggs in early spring before worker movement commences, while worker-destined eggs are produced in late spring and early summer (Bier 1952; Gösswald & Bier 1954). If workers produced the previous year hibernate in their maternal colony, they may be able to direct their help towards relatives by remaining in their natal nests until the sexual spring brood has been reared.

We use traditional population genetic methods as well as network analysis methods (network thresholding (Rozenfeld et al. 2008), network modularity optimization (Blondel et al. 2008) and maximum spanning tree analyses (Onnela et al. 2007)) to disentangle genetic structure of two supercolonies of the temperate wood ant Formica aquilonia, a species ideally suited for testing spatial and temporal components of genetic population structure because of its large, dense supercolonies (Pamilo & Rosengren 1983; Punttila 1996) and seasonal variation in brood production and worker exchange (Pamilo & Rosengren 1983; Otto 2005). We provide a comprehensive picture of genetic structure by including queens, workers and brood in our analysis and analyse relatedness across two geographical scales to test for the effect of the reference population on relatedness estimates. We investigate local genetic substructure using Bayesian and network-based clustering analyses. We also generate genetic networks based on relatedness estimates of different sample classes, allowing us to assess how genetic structure varies between groups of individuals. Finally, we test for temporal variation in genetic structure by comparing networks calculated from worker genotypes collected before and after worker exchange. Our results show clear genetic differentiation between supercolonies and demonstrate that genetic structure within supercolonies is complex, depending both on the sample class and sampling time point. More generally, our study provides a new way of resolving genetic patterns on small spatial scales using network-based methods and highlights the importance of detailed assessment of genetic structure for understanding how cooperation is maintained in social systems.

Material and methods

Study species

Formica aquilonia is a wood ant commonly found in southern Finland where it forms large supercolonies of connected nests containing hundreds of queens each (Pamilo et al. 2005). High queen numbers and moderate multiple mating by queens result in low within-nest relatedness in this species (Pamilo 1993; Pamilo et al. 2005; Sundström et al. 2005) and supercolonies can dominate entire ecosystems, making F. aquilonia an ideal model for studying the persistence of low-relatedness societies. Like other polygynous (i.e. multiple queen) ants, F. aquilonia is characterized by limited dispersal of queens, with new nests typically founded by groups of queens and workers dispersing on foot. Once initiated, new nests continue to grow as young queens often attempt adoption in their own or a nearby nest, so that mature nests usually contain over a hundred queens and persist over several years, or even decades. This also results in short distances between nests and high nest densities in established supercolonies (Kennedy et al. 2014) and may result in reduced gene flow between distant supercolonies. In our study area, distance between genetically differentiated supercolonies ranges from 200 m to 50 km (Sundström et al. 2005), indicating that typical dispersal distance is most likely <200 m. This is supported by the fact that median dispersal distance in Formica exsecta, a species that is presumed to be a stronger disperser than F. aquilonia, is <150 m (Vitikainen et al. 2015).

Sample collection

We sampled nests and recorded their location using GPS coordinates in two supercolonies near Tvärminne Zoological Station in southern Finland: supercolony Langstrand (‘LA’, 59.95°N/23.17°W, n = 21) and supercolony Myggforskogen (‘MY’, 59.99°N/23.23°W, n = 20) (Fig. 1). Our sampling was not exhaustive as F. aquilonia supercolonies can easily be comprised of more than a hundred nests (Kennedy et al. 2014). However, as we were mainly interested in genetic structure at the core of supercolonies, we located an area with high nest density (10–30 m distance between nests) at each site and sampled outwards in all directions until nest density dropped dramatically and we thus could not be sure whether nests still belonged to the same supercolony, or habitat became unsuitable. In LA, old-growth forest provided suitable habitat on both sides of the dirt road (red line, Fig. 3), allowing us to sample in a circular fashion. In MY, we were restricted to sampling in a more linear fashion as habitat was only suitable on one side of the road (black line, Fig. 4). Sampled nests covered 6.6 ha in LA and 6.1 ha in MY and the distance between two nests was 161 ± 87 m (mean ± SD, range 2.6–423 m) in LA and 155 ± 107 m (range 3.6–492 m) in MY. The two supercolonies were clearly separated from each other by distance (c. 5.5 km) and the presence of unsuitable habitats (e.g. water, clear-cut areas, farmland) between sites (Fig. 1). Nests were sampled once in 2010 and twice in 2011 and individuals stored in 95% ethanol at 4 °C until further analysis.
In both years, we sampled once early in the season (mid-April, spring sampling) before the snow had thawed and nests were still cut off from one another. For spring sampling, we collected resident queens (i.e. mated, established queens) and spring workers from eight nests in each of the supercolonies in 2010 and from 13 (LA) and 12 (MY) nests in 2011. Nests sampled in 2011 were sampled a second time in June (summer sampling) when they contained pupae and worker exchange among nests had occurred. During summer sampling, we collected summer workers and pupae (workers, males and gynes). Our final data set contained 656 spring workers from 41 nests, 454 queens from 39 nests, 352 summer workers from 22 nests and 160 pupae from 8 nests. Data from both years were pooled prior to analyses as neither spring workers nor queens differed in mean within-nest relatedness across years (Welch two-sample t-test, LA—workers: \(t = 0.1661, P = 0.8706 \); LA—queens: \(t = 0.721, P = 0.4814 \); MY—workers: \(t = -1.0899, P = 0.2956 \); MY—queens: \(t = -0.9946, P = 0.3355 \); for methods see Relatedness within nests below) and estimates of pooled between-nest relatedness correlations were similar to estimates obtained when data from each year were analysed separately (Appendix S1, Supporting information; for methods see Network correlations below).

Microsatellite analysis

All samples were genotyped at eight polymorphic microsatellite loci designed for *Formica* species and tested for successful cross-amplification in *F. aquilonia* (Schultner et al. 2013): FE13, FE19, FE21, FE42 (Gyllenstrand et al. 2002); FL20, FL21 (Chapuisat 1996); FY4, FY7 (Hasegawa & Imai 2004). For DNA extraction, one leg from 8 to 16 individuals per nest and sampling class was placed in an individual well together with a 2.5:100 l L Proteinase K—Chelex solution and left to incubate overnight at 56 °C. PCRs were run in 10 l L reactions using 5 l L of QIAGEN Type-It microsatellite multiplex buffer, 3 l L of deionized water, 1 l L of optimized primer mix and 1 l L of DNA. PCR protocols were run according to QIAGEN recommendations, products analysed in 1:200 dilutions in a 3730 ABI sequencer and microsatellite peaks scored using manual bin corrections and individual peak verification in GENEMAPPER software version 4.1.

Hardy–Weinberg, linkage disequilibrium, null alleles and F-statistics

We calculated allele frequencies and mean levels of heterozygosity and tested for departures from Hardy–Weinberg using all samples (except male pupae) and loci in each supercolony separately. We tested for linkage disequilibrium (LD) between loci with log-likelihood tests in the entire data set, and within each supercolony separately. We tested for the occurrence of null alleles using ML-Null, which uses a maximum likelihood method to test for heterozygote deficiency (Kalinowski & Taper 2006). Finally, we calculated \(F_{st} \) between supercolonies using all loci, for each locus.

© 2016 John Wiley & Sons Ltd
separately, and for different combinations of loci to estimate robustness of results. Calculations were performed in GENEPOL Version 4.2 (http://genepop.curtin.edu.au).

Relatedness within nests

We calculated within-nest relatedness for each sample class and between all sample class combinations (queens and spring workers, queens and summer workers, queens and brood, spring workers and brood, summer workers and brood) with RELATEDNESS 5.0.8 following Queller & Goodnight (1989), as this represents the most widely used measure of relatedness in social insect population genetic studies, especially when relatedness within and between groups, not just among pairs of individuals, is assessed. For relatedness estimates between brood and other classes, only female pupae were included. In MY, brood was not included in the analyses as pupae genotypes were only available from two nests. For analyses within supercolonies, background allele frequencies were calculated and implemented separately for each supercolony, and nests weighted equally. We compared within-nest relatedness calculated from supercolony-specific allele frequencies with estimates obtained using allele frequencies from two nests. For analyses within supercolonies, they were weighed by one-half to account for haploidy. Networks of genetic structure between supercolonies were generated based on between-nest relatedness of all sample classes and nest GPS coordinates (Fig. 1, left). Networks within supercolonies were generated based on between-nest relatedness of all sample classes (Fig. 2C, D) and each sample class separately (Figs 3 and 4), and nest GPS coordinates. All PYTHON code used in network analyses is available at GITHUB (https://github.com/jsaramak/ants/). For statistical analyses such as Pearson correlations standard PYTHON packages were used (scipy.stats.pearsonr in SCIPY, Jones et al. 2001).

Detecting large scale patterns of genetic differentiation between and within supercolonies

Clustering analyses using Bayesian and network-based approaches. We analysed genetic structure between and within supercolonies using Bayesian clustering implemented in BAPS 6 (Corander et al. 2008) with the spatial clustering of individuals by group (i.e. nest) option. Analyses of the entire data set were run with default parameters for different maximum numbers of population clusters, where \(K = 2, 3, 5, 10, 25 \) and 50. Robustness of clusters was verified by repeating analyses with shuffled data, where individuals within supercolonies where randomly shuffled between nests while retaining the original number of individuals per nest. Within supercolonies, analyses were run for \(K = 2, 3, 4, 5 \) and 10. In all analyses, 20 iterations were run for each \(K \). Where significant clustering was detected, we calculated pairwise \(F_{ST} \) between clusters in GENEPOL Version 4.2 as described above. We also applied network-based clustering approaches, including network thresholding, modularity optimization and maximum spanning tree analyses, to networks constructed from all data except male pupae. For network thresholding, we studied the cluster structure of the joint network and the MY and LA subnetworks by progressively removing links, beginning with the lowest relatedness, and monitoring the remaining network structure. We stopped this thresholding at a stage when the network was split into two separate clusters that contained multiple nodes. For detecting clusters (i.e. modules, Fortunato 2010) in networks with modularity optimization, we applied the Louvain algorithm, which is based on partitioning the network into modules such that a quantity called modularity is optimized (Blondel et al. 2008). Modularity measures how ‘unexpected’ the links inside modules are with respect to a random null model. We used the weighted version of this method and applied it to full

\[r = \frac{\sum_{x} \sum_{k} \sum_{l} W_{x}(P_{y} - P^{*})}{\sum_{x} \sum_{k} \sum_{l} W_{x}(P_{x} - P^{*})} \]

where \(W_{x} \) is a weight parameter applied for each nest, \(P_{x} \) is the frequency of allele \(l \) at locus \(k \) in individual \(x \), \(P_{y} \) is the frequency of that same allele in the set of ‘partners’ of individual \(x \), and \(P^{*} \) is the frequency of the allele in the population at large, with all putative relatives of individual \(x \) excluded (e.g. when calculating between-nest relatedness, the two focal nests were excluded from population allele frequencies). Background allele frequencies \((P^{*}) \) were based on whole-population estimates for analyses across supercolonies and on supercolony-specific estimates for analyses within supercolonies. All nests were weighted equally with \(W_{x} = 1 \). Where male genotypes were available, they were weighted by one-half to account for haploidy.
relatedness matrices without prethresholding using the online version at http://jako.complex.cs.aalto.fi. Finally, we used maximum spanning tree (MST) analysis, which builds trees that connect all nodes of a network so that the sum of link weights is maximized. MSTs serve as a tool for network exploration, and their structure may be indicative of modules in networks (Onnela et al. 2003).

For a perfectly modular network, the number of links of the MST that connect different modules should be as low as possible; specifically, for a network with two separate modules (defined by strong internal links and weak between-module links), the MST should only contain one between-module link, and otherwise be composed of module-internal links (see Appendix S2, Supporting information for more details).

Isolation by distance. We tested for isolation by distance within supercolonies as another way of detecting patterns of genetic substructure among nests. This was carried out in each sample class (except brood) by comparing pairwise geographical distances (in metres, converted from GPS data using R package SODA, Chambers 2008) and genetic distances between nests (based on normalized $F_{st}/(1 − F_{st})$ values calculated in GENEPOP Version 4.2, http://genepop.curtin.edu.au) using Mantel tests with 10 000 permutations (ECODIST package in R, Goslee & Urban 2007). The number of pairwise comparisons (i.e. number of nests) for each sample class was the same as for within-nest relatedness calculations (Table 1).

Detecting variation in supercolony genetic structure across sample classes and time

Random reference network thresholding. In each supercolony, we looked for significant genetic subclusters within networks calculated from different sample classes to assess whether genetic clustering of different types of individuals and sampling time points overlaps. To this end, we applied the commonly used method of
thresholding networks (Rozenfeld et al. 2008) so that only the strongest links corresponding to highest pairwise relatednesses are retained. If one a priori assumes that there is cluster structure, this thresholding can be performed up to the point where the network disintegrates into clusters (Rozenfeld et al. 2008 and 'Clustering analyses' above). An alternative approach that does not make a priori assumptions is to use a statistical reference model to set a meaningful threshold. We used a reference model based on random reshuffling of all individuals between nests, retaining the number of ants of each class in each nest. Using such ensembles of randomized versions of observed networks for detecting nontrivial network characteristics or for statistical significance testing is common procedure in network analysis (Milo et al. 2002; Kivelä et al. 2015). We ran 1000 iterations of the null model for each network, resulting in an ensemble of 1000 reference networks in which spatial correlations were due to chance alone. We then used the distribution of all pairwise relatedness values in all networks of the reference network ensemble to set the threshold. For between-supercolony analyses, we

© 2016 John Wiley & Sons Ltd
retained links whose pairwise relatedness value was higher than 99.9% ($P < 0.001$) of the values in the reference ensemble, and for within-supercolony analysis, the threshold was at 95% ($P < 0.05$). The latter threshold corresponded to approximately 1.8 (1.9) standard deviations of the reference ensemble for MY (LA). The difference in the applied thresholds reflects network structure: for within-supercolony analysis, a higher threshold would not have left any links. Note that the reference ensemble is to be interpreted as a scale rather than a null hypothesis. Directly interpreting the thresholds as P-values for testing statistical significance can be misleading: first, links whose relatedness values do not significantly differ from the reference can still be ‘real’ and statistically significant, even though they are not part of the most important substructure spanned by high-relatedness links. Second, in any structured network, links are not independent, and their statistical significance should not be tested in isolation. To the best of our knowledge, there are no commonly accepted ways of testing the statistical significance of the entire outcome of thresholding networks of genetic similarity, that is computing a probability for the specific subgraph to appear when using a null hypothesis.

We visually compared the number and identity of significant links between networks calculated from the different sample classes to assess how genetic structure changes with sample class and throughout the season. When comparing links between spring and summer worker networks, we compared the number of significant links shared between spring and summer networks in respect to the total number of significant summer links (i.e. links that could potentially appear in both spring and summer networks as all nests sampled in summer were also sampled in spring).

Network correlations. We also tested for correlations between networks to assess whether genetic
substructure of supercolonies varied depending on sample class or year. Most importantly, we wanted to know whether within-nest relatedness of one class is correlated with within-nest relatedness estimates of the other classes across all nests, as would be expected if nests were genetically homogenous across different sample classes. Genetic homogeneity across queens, spring workers, summer workers and brood would imply that dispersal within supercolonies (i.e. budding of groups of queens and workers) and movement patterns of individual workers overlap, so that, for example, the genetic structure of nests does not change over the course of the season. This would be expected if workers remain in their natal nest throughout their lives to ensure that they direct help towards relatives. We compared pairwise within-nest relatedness of (i) queens and spring workers, (ii) queens and summer workers, (iii) queens and brood, (iv) spring workers and brood, (v) summer workers and brood and (vi) spring workers and summer workers using Pearson correlations in samples from different groups overlaps. Here, positive correlations would indicate that relatedness between nests is similar irrespective of sample class, which would arise if for instance seasonal movement patterns of workers mirror budding patterns within supercolonies. Significance of between-nest relatedness correlations was tested using Mantel tests with 9999 permutations (ade4 package in R, Dray & Dufour 2007) and by comparing correlations calculated from the original data with correlations based on random reshuffling of individuals between nests (1000 permutations).

Results

Hardy–Weinberg, linkage disequilibrium, null alleles and F-statistics

We found significant departures from Hardy–Weinberg equilibrium for locus FY 4 in both supercolonies, for locus FE 42 in supercolony LA and for loci FL 20 and FL 21 in supercolony MY (Appendix S3, Supporting information). Pairwise F_{ST} between supercolonies calculated from data sets with and without these loci were comparable, ranging from 0.078 to 0.167 (Appendix S3, Supporting information). As locus FY4 exhibited departure from HWE in both supercolonies, we recalculated individual pairwise relatedness without FY4 in both supercolonies and then calculated the correlation between pairwise relatedness in data sets with and without this locus. Pairwise relatedness with and without FY4 was strongly positively correlated in both LA and MY, although more highly in LA ($r = 0.95$) than MY ($r = 0.77$). Although pairwise relatedness estimates with and without FY4 were not perfectly correlated in either supercolony, they were not consistently biased in either direction (Fig. S3 in Appendix S3, Supporting information). In addition, removing FY4 did not significantly change results in clustering analyses (Appendices S2 and S4, Supporting information); we therefore decided to retain locus FY4 in subsequent analyses. When analysing all samples together, we found

Table 1 Relatedness within and between different sample classes in two Formica aquilonia supercolonies

<table>
<thead>
<tr>
<th>Supercolony</th>
<th>Type</th>
<th>N nests (individuals)</th>
<th>$r_{supercolony}$ (95% CI)</th>
<th>$r_{population}$ (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>All</td>
<td>21 (910)</td>
<td>0.035 (0.02-0.05)</td>
<td>0.185 (0.163-0.207)</td>
</tr>
<tr>
<td></td>
<td>Queens</td>
<td>20 (254)</td>
<td>0.045 (0.0002-0.09)</td>
<td>0.201 (0.157-0.245)</td>
</tr>
<tr>
<td></td>
<td>Spring workers</td>
<td>21 (336)</td>
<td>0.043 (0.004-0.082)</td>
<td>0.191 (0.152-0.229)</td>
</tr>
<tr>
<td></td>
<td>Summer workers</td>
<td>10 (160)</td>
<td>0.014 (–0.024 to 0.052)</td>
<td>0.162 (0.119-0.205)</td>
</tr>
<tr>
<td></td>
<td>Brood</td>
<td>8 (160)</td>
<td>0.046 (–0.025 to 0.12)</td>
<td>0.173 (0.098-0.249)</td>
</tr>
<tr>
<td></td>
<td>Queens—spring workers</td>
<td>20 (254, 320)</td>
<td>0.042 (0.002-0.082)</td>
<td>0.197 (0.146-0.212)</td>
</tr>
<tr>
<td></td>
<td>Queens—summer workers</td>
<td>10 (160, 160)</td>
<td>0.023 (–0.022 to 0.068)</td>
<td>0.183 (0.141-0.225)</td>
</tr>
<tr>
<td></td>
<td>Queens—brood</td>
<td>6 (96, 96)</td>
<td>0.084 (0.034-0.137)</td>
<td>0.233 (0.176-0.289)</td>
</tr>
<tr>
<td></td>
<td>Spring workers—brood</td>
<td>7 (112, 112)</td>
<td>0.072 (0.003-0.141)</td>
<td>0.209 (0.153-0.265)</td>
</tr>
<tr>
<td></td>
<td>Summer workers—brood</td>
<td>5 (80, 80)</td>
<td>0.112 (0.053-0.171)</td>
<td>0.261 (0.207-0.315)</td>
</tr>
<tr>
<td>MY</td>
<td>All</td>
<td>20 (746)</td>
<td>0.028 (0.016-0.040)</td>
<td>0.157 (0.134-0.179)</td>
</tr>
<tr>
<td></td>
<td>Queens</td>
<td>19 (202)</td>
<td>0.014 (–0.014 to 0.041)</td>
<td>0.134 (0.104-0.165)</td>
</tr>
<tr>
<td></td>
<td>Spring workers</td>
<td>20 (320)</td>
<td>0.039 (0.002-0.076)</td>
<td>0.171 (0.133-0.209)</td>
</tr>
<tr>
<td></td>
<td>Summer workers</td>
<td>12 (192)</td>
<td>0.072 (0.013-0.131)</td>
<td>0.197 (0.129-0.264)</td>
</tr>
<tr>
<td></td>
<td>Queens—spring workers</td>
<td>19 (202, 304)</td>
<td>0.022 (–0.006 to 0.050)</td>
<td>0.144 (0.114-0.175)</td>
</tr>
<tr>
<td></td>
<td>Queens—summer workers</td>
<td>11 (140, 176)</td>
<td>0.060 (0.004-0.116)</td>
<td>0.181 (0.119-0.243)</td>
</tr>
</tbody>
</table>

Values in bold are significantly higher than zero as their confidence intervals do not overlap with zero.
significant linkage disequilibrium (LD, Fisher’s global test at \(P < 0.01 \)) between FE 13 and FL 21 and FE 42 and FL 21 (Appendix S3, Supporting information). In supercolony LA, we found significant LD between FL 20 and FY 7, FE 13 and FL 21 and FE 21 and FE 21 when analysing all samples together, but not in the individual queen and spring worker data sets. In MY, we found significant LD between FE 19 and FL 20 when analysing all samples together and between FE 42 and FL 21 in spring workers. No significant LD was detected in the MY queen data set. Because analysing genetically related groups of individuals may cause apparent linkage in some cases and as the same pairs of loci were not consistently linked, this suggests that there is no physical linkage or strong disequilibrium in these loci. Significant heterozygote deficiency was found for locus FY 4 in supercolony MY, but no other null alleles were detected consistently across the entire data set (Appendix S3, Supporting information). Pairwise \(F_{st} \) between supercolonies calculated from data sets with and without FY 4 gave comparable results (with FY 4: \(F_{st} = 0.153 \), without FY 4 = 0.148). We therefore chose to include all loci in our analyses.

Relatedness within nests

Overall relatedness within supercolonies was close to zero when calculated from supercolony-specific allele frequencies, although confidence intervals did not overlap with zero in either supercolony. When allele frequencies from both supercolonies were used, overall mean relatedness values increased to 0.185 (95% CI: 0.163–0.207) in LA and 0.157 (95% CI: 0.134–0.179) in MY (Table 1), which corresponds to individuals within supercolonies being more closely related than cousins \((r = 0.125)\), although less than half-siblings \((r = 0.25)\). Within-nest relatedness of separate sample classes ranged from 0.014 to 0.072 and was significantly higher than zero in four of seven cases when calculated from supercolony-specific allele frequencies (Table 1). In LA, queens and spring workers exhibited positive relatedness, while relatedness among summer workers and brood was not significantly higher than zero. In contrast, relatedness was positive in MY spring and summer workers, but not in queens. Overall however, relatedness calculated from different groups did not differ (Kruskal–Wallis rank sum test, LA: \(X^2 = 0.883, \text{d.f.} = 3, P = 0.8295 \), MY: \(X^2 = 3.6386, \text{d.f.} = 2, P = 0.1621 \)). Relatedness estimates of separate sample classes were always higher than zero when allele frequencies from both supercolonies were implemented (Table 1).

Relatedness between sample classes ranged from 0.022 to 0.112 when calculated from supercolony-specific allele frequencies and was highest between LA summer workers and LA brood (Table 1). Relatedness between queens and summer workers in LA, and queens and spring workers in MY, was not significantly different from zero, but all other classes showed positive relatedness. There was no significant variation in relatedness estimates between comparisons (Kruskal–Wallis rank sum test, LA: \(X^2 = 7.7576, \text{d.f.} = 4, P = 0.1009 \); MY: \(X^2 = 1.4007, \text{d.f.} = 1, P = 0.2366 \)). Relatedness between classes was always positive when allele frequencies from both supercolonies were implemented (Table 1).

Supercolonies are genetically different

Random reference network thresholding across supercolonies revealed that relatedness between nests of different supercolonies is generally negative, while nests within supercolonies show positive, significant relatedness links (Fig. 1). Consistent clustering of nests by supercolony irrespective of input \(K \) in Bayesian clustering analyses also points towards genetic differentiation between supercolonies (Fig. 2A and Appendix S4, Supporting information), as does lower relatedness of network links between supercolonies than within (Fig. 2B).

Network thresholding for the joint MY+LA network revealed a clean split into two clusters that exactly matched with the MY and LA supercolonies, with a link density of 100% inside both supercolonies at the time of this split (Fig. 2C, left). Similarly, modularity optimization using the Louvain method divided the data into two clusters that correspond perfectly to the MY and LA supercolonies (Appendix S2, Supporting information). Finally, the maximum spanning tree (MST) for the joint MY+LA network only contained one link that connects MY and LA—cluster structure between supercolonies is thus as perfect as possible (Fig. 2D, left).

Genetic structure within supercolonies varies with spatial scale, sampling class and sampling time point

Clusters within supercolonies. We found faint clustering of nests within supercolonies with baps, network thresholding and MST analyses (Fig. 2A,C,D), but not with modularity optimization (Appendix S2, Supporting information). In baps analyses, cluster membership was consistent across the range of \(K \) values in MY but not LA (Appendix S4, Supporting information). Pairwise \(F_{st} \) values between baps clusters within supercolonies were low \((F_{st} \sim 0.017)\) compared to between supercolonies \((F_{st} \sim 0.15)\) (Appendix S4, Supporting information). Network thresholding also only detected clear spatially separated subclusters in MY, which matched the clusters produced by baps (Fig. 2C, middle). In LA, even
though thresholding detected two clusters, many of the links between nests were weak enough to be below the threshold and network clusters did not overlap well with BAPS clusters (Fig. 2C, right). Together, this suggests that genetic differentiation is more pronounced in MY than in LA. In MST analysis, there were multiple links between clusters in both MY and LA, indicating that the data cannot easily be clustered into two distinct groups in either supercolony. However, the number of links clearly fell below random reference expectations, indicating that many node pairs in the clusters have stronger internal connections than the connections between them (see also Appendix S2, Supporting information). This result is in line with the interpretation that both MY and LA have very weak subclusters.

Isolation by distance. We did not find significant isolation by distance between nests in LA when all sample classes were analysed together (Mantel test; all samples: \(r = 0.13 \) (95% CI: 0.24–0.59), \(P = 0.06, n = 21 \) nests). In contrast, isolation by distance was highly significant in MY [Mantel test; all samples: \(r = 0.41 \) (95% CI: 0.24–0.59), \(P < 0.001, n = 20 \)]. When classes were analysed separately, we found significant isolation by distance in spring workers of LA but not queens or summer workers [Mantel test; queens: \(r = -0.02 \) (0.17 to 0.12), \(P = 0.59, n = 20 \); spring workers: \(r = 0.16 \) (0.02–0.30), \(P = 0.03, n = 21 \); summer workers: \(r = 0.15 \) (0.12 to 0.41), \(P = 0.18, n = 10 \)]. In MY, only spring workers exhibited significant isolation by distance when analysed separately [Mantel test; queens: \(r = 0.08 \) (0.12 to 0.28), \(P = 0.25, n = 19 \); spring workers: \(r = 0.17 \) (0.03 to 0.38), \(P = 0.08, n = 20 \); summer workers: \(r = 0.40 \) (0.18–0.63), \(P = 0.003, n = 12 \)].

Networks and network correlations within supercolonies. Analyses of the genetic networks within supercolonies showed that genetic structure varies with sample class and sampling time point. In LA, comparison with reference models revealed significant relatedness between nests (27 links between 16 nests), spring workers (nine links between six nests), summer workers (three links between four nests) and brood (one link between two nests) from different nests (Fig. 3). Queen networks shared one significant link with spring worker networks, three different links with summer worker networks and no link with brood networks. Spring workers, summer workers and brood did not share any significant links. In MY, network analysis revealed eight significant relatedness links between nests for queens, 13 links between 11 nests for spring workers and 14 links between nine nests for summer workers (Fig. 4). Queens shared one link with spring and summer workers and spring and summer workers shared three links. Neither within-nest nor between-nest relatedness of different sample classes was significantly correlated in either supercolony, confirming that genetic structure varies among groups of individuals (Table 2). Finally, significant subnetworks calculated from separate sample classes do not overlap with subclusters detected in the entire data set using Bayesian and network-based clustering (compare Figs 2A,C,D, 3 and 4).

Discussion

Ant supercolonies are the largest cooperative units found in nature, but it remains elusive how inclusive fitness can maintain cooperation in these low-relatedness societies. Here we show complexity and variation of genetic structure within and among populations that urges caution in generalizing results obtained from single supercolonies, or from worker genotypes alone.

Supercolonies are hot spots of locally elevated relatedness

In line with other studies of wood ant supercolonies (Pamilo 1982; Chapuisat et al. 1997; Pamilo et al. 2005; Kümerli & Keller 2007), overall relatedness in *Formica aquilonia* nests was very low but positive when calculated from supercolony-specific allele frequencies. When different classes of individual were analysed separately, within-nest relatedness was not significantly different from zero in three of seven groups, including in queens of supercolony MY. Taking into account the ambiguities in interpreting which genetic reference population correctly corresponds to the scale of competition (Queller 1994; Griffin & West 2002), we found that expanding the reference population to account for larger geographical scale led to above-zero relatedness in all sample classes. This is compatible with our hypothesis that competition among supercolonies on larger spatial scales could play a role in the maintenance of altruism in supercolonies. That supercolonies represent hot spots of locally elevated relatedness was further underscored by higher genetic differentiation between \(F_{st} = 0.15 \) than within \(F_{st} = 0.017 \) supercolonies as estimated by \(F_{st} \), similar to previous studies estimating \(F_{st} \sim 0.2 \) between supercolonies in other populations (Pamilo et al. 2005, 2016; Vanhala et al. 2014).

Differences in relatedness estimates stemming from reference allele frequencies highlight the importance of choosing the relevant scale when assessing genetic structure in ant supercolonies (Kümerli & Keller 2007). The fact that relatedness estimates increase from near-zero to between cousins and half-siblings (a range which can also be found in nonsupercolonial species,
Bourke & Franks 1995) when spatial scale is expanded clearly demonstrates that this is the key to understanding the maintenance of altruism in supercolonies. Spatial scale can be a major factor in determining genetic substructure because limited dispersal abilities or dispersal barriers quickly limit gene flow between nests (Pamilo et al. 2005). In Formica supercolonies, once a nest or nests have been established in a new habitat, colonies usually reproduce by budding. Because of the limited dispersal range of walking individuals, supercolonies may display high spatial genetic viscosity (Chapuisat et al. 1997; Holzer et al. 2006, 2009; Pamilo et al. 2016), which can be further promoted by ecological factors such as nest site limitation and competition against con- and/or heterospecifics (reviewed in Ellis & Robinson 2014). Higher levels of inbreeding in F. aquilonia compared to nonsupercolonial Formica ants give evidence for reduced dispersal in this species (Sundström et al. 2005).

In our data, the increase in relatedness estimates when using allele frequencies from both supercolonies indicates that restricted gene flow significantly influences genetic differentiation between supercolonies. At the same time, significant isolation by distance and consistent detection of two genetic clusters in the MY supercolony suggests that such processes may also be relevant within supercolonies. In our study, maximum distance between nests within a supercolony was 500 m, while distance between supercolonies in the study area ranges from 0.2 to 50 km (Sundström et al. 2005). Thus, distances between nests within single supercolonies are large enough to be potentially affected by limited dispersal in this species, contrary to previous data showing no isolation by distance (Pamilo 1982). If limited dispersal is responsible for separation of supercolony MY into two genetic clusters, we may even speculate that in the long run, reinforcement of local relatedness networks through limited dispersal could lead to separation of the two groups, and formation of separate supercolonies.

Table 2 Correlations between networks calculated from different sample classes in two Formica aquilonia supercolonies

<table>
<thead>
<tr>
<th>Supercolony</th>
<th>Type</th>
<th>Correlation r</th>
<th>N</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Within-nest relatedness correlations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA</td>
<td>Queens—spring workers</td>
<td>0.10</td>
<td>20</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>Queens—summer workers</td>
<td>0.27</td>
<td>10</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>Queens—brood</td>
<td>-0.17</td>
<td>7</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>Spring workers—brood</td>
<td>-0.01</td>
<td>8</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>Summer workers—brood</td>
<td>-0.24</td>
<td>6</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Spring workers—summer workers</td>
<td>-0.07</td>
<td>10</td>
<td>0.84</td>
</tr>
<tr>
<td>MY</td>
<td>Queens—spring workers</td>
<td>-0.06</td>
<td>19</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>Queens—summer workers</td>
<td>0.12</td>
<td>11</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>Spring workers—summer workers</td>
<td>-0.06</td>
<td>12</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>Between-nest relatedness correlations</td>
<td></td>
<td></td>
<td>Mantel P/shuffled P</td>
</tr>
<tr>
<td>LA</td>
<td>Queens—spring workers</td>
<td>0.04</td>
<td>190</td>
<td>0.41/0.52</td>
</tr>
<tr>
<td></td>
<td>Queens—summer workers</td>
<td>0.15</td>
<td>45</td>
<td>0.21/0.37</td>
</tr>
<tr>
<td></td>
<td>Queens—brood</td>
<td>0.07</td>
<td>21</td>
<td>0.42/0.48</td>
</tr>
<tr>
<td></td>
<td>Spring workers—brood</td>
<td>0.15</td>
<td>28</td>
<td>0.20/0.35</td>
</tr>
<tr>
<td></td>
<td>Summer workers—brood</td>
<td>0.10</td>
<td>15</td>
<td>0.38/0.48</td>
</tr>
<tr>
<td></td>
<td>Spring workers—summer workers</td>
<td>0.12</td>
<td>45</td>
<td>0.27/0.42</td>
</tr>
<tr>
<td>MY</td>
<td>Queens—spring workers</td>
<td>0.17</td>
<td>171</td>
<td>0.09/0.23</td>
</tr>
<tr>
<td></td>
<td>Queens—summer workers</td>
<td>0.07</td>
<td>55</td>
<td>0.36/0.49</td>
</tr>
<tr>
<td></td>
<td>Spring workers—summer workers</td>
<td>0.31</td>
<td>66</td>
<td>0.05/0.19</td>
</tr>
</tbody>
</table>

Mantel P-values were calculated in the ade4 package in R and based on 9999 permutations. Shuffled P-values represent the probability of obtaining postshuffling correlation estimates as high or higher than in the original data.

Bourke & Franks (1995) when spatial scale is expanded clearly demonstrates that this is the key to understanding the maintenance of altruism in supercolonies. Spatial scale can be a major factor in determining genetic substructure because limited dispersal abilities or dispersal barriers quickly limit gene flow between nests (Pamilo et al. 2005). In Formica supercolonies, once a nest or nests have been established in a new habitat, colonies usually reproduce by budding. Because of the limited dispersal range of walking individuals, supercolonies may display high spatial genetic viscosity (Chapuisat et al. 1997; Holzer et al. 2006, 2009; Pamilo et al. 2016), which can be further promoted by ecological factors such as nest site limitation and competition against con- and/or heterospecifics (reviewed in Ellis & Robinson 2014). Higher levels of inbreeding in F. aquilonia compared to nonsupercolonial Formica ants give evidence for reduced dispersal in this species (Sundström et al. 2005).

In our data, the increase in relatedness estimates when using allele frequencies from both supercolonies indicates that restricted gene flow significantly influences genetic differentiation between supercolonies. At the same time, significant isolation by distance and consistent detection of two genetic clusters in the MY supercolony suggests that such processes may also be relevant within supercolonies. In our study, maximum distance between nests within a supercolony was 500 m, while distance between supercolonies in the study area ranges from 0.2 to 50 km (Sundström et al. 2005). Thus, distances between nests within single supercolonies are large enough to be potentially affected by limited dispersal in this species, contrary to previous data showing no isolation by distance (Pamilo 1982). If limited dispersal is responsible for separation of supercolony MY into two genetic clusters, we may even speculate that in the long run, reinforcement of local relatedness networks through limited dispersal could lead to separation of the two groups, and formation of separate supercolonies.

Testing this idea requires assessment of the relevant cooperative and competitive spatial scales, that is the scale where population regulation over long time periods occurs (Queller 1994; Griffin & West 2002), taking into account factors like emergence of aggression between workers from different clusters as well as dispersal ranges and colony founding success. This appears particularly complex in native Formica supercolonies compared to, for example, supercolonies of invasive ants, which typically lack both genetically distinct conspecific competitors and heterospecific rivals and form genetically homogenous populations across huge areas (Tsutsui et al. 2000; Giraud et al. 2002). In our system, one way to disentangle patterns may be to sample nests located between our focal supercolonies. Adding data on allele frequencies in neighbouring nests should help increase the accuracy of relatedness estimates within supercolonies (e.g. see Chapuisat et al. 2016).
and was uniformly low. This is contrast to our second hypothesis and indicates that temporal variation in genetic substructure cannot explain the maintenance of cooperation in these systems.

Movement of individuals between nests in ant supercolonies has been suggested to mirror strategic redistribution of resources among functional units, for example in multicellular organisms (Kennedy et al. 2014), thus supporting the idea that ant supercolonies are in a state of evolutionary transition from individuality (separate nests) to organismality (closed network of connected nests) (McShea 2001; McShea & Changizi 2003; Bourke 2011; Pedersen 2012; Kennedy et al. 2014). However, to date few studies have actually investigated how transfer of individuals (and resources) affects the substructure of these cooperative units (but see Ellis et al. 2014; Ellis & Robinson 2015). Our study shows that worker movement plays a role in determining the genetic substructure of supercolonies, but we can only speculate as to whether genetic network patterns mirror a functional redistribution of ants (Rosengren & Fortelius 1987; Gordon et al. 1992; Holway & Case 2000; Heller et al. 2008; Ellis & Robinson 2014).

A multitude of factors likely influences spatial genetic structure in ant supercolonies

Together, conventional analysis of spatial genetic structure together with use of network construction and clustering methods provides novel evidence that native wood ant supercolonies exhibit fine-scale genetic substructures, which vary depending on sampling scale, time, sample class and population (Table 3). On the one hand, our data provide support to the idea that supercolonies are comprised of genetic subunits that arise through budding and limited dispersal (Chapuisat et al. 1997; Pamilo et al. 2005; Holzer et al. 2009), where locally elevated relatedness within supercolonies (relative to a larger reference population) is sufficient to ensure the maintenance of cooperation (Helanterä et al. 2009). On the other hand, network-based methods using supercolony-specific allele frequencies also revealed significant genetic substructure of *F. aquilonia* queens, workers and brood that cannot be explained by geographical isolation by distance alone, meaning that other factors must contribute to shaping genetic structure.

One such factor may be restriction of sexual production to one or a few nests, much like if supercolonies were networks of functional units (Cook et al. 2013). With new queens and males always dispersing from similar locations, genetic differentiation between nests should be largely independent of linear distance between nests. Indeed, only half of the nests contributed to offspring production in this study and
Table 3 Analyses of genetic structure used in this study

<table>
<thead>
<tr>
<th>Analyses conducted in this study</th>
<th>Type of analysis</th>
<th>Biological rationale</th>
<th>Observed effects in this study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparing within-nest relatedness calculated from supercolony-specific and combined allele frequencies</td>
<td>Classic</td>
<td>Relatedness estimates should be similar if there is unrestricted gene flow between supercolonies; if gene flow is restricted, relatedness should be higher when using combined frequencies</td>
<td>Relatedness estimates increased when using combined allele frequencies, indicating that factors like limited dispersal or habitat unsuitability restrict gene flow between supercolonies (Table 1)</td>
</tr>
<tr>
<td>Within-nest relatedness among individuals in different sample classes within a time point</td>
<td>Classic</td>
<td>Within-nest relatedness among workers is not directly linked to inclusive fitness benefits; comparing relatedness among workers, queens and brood allows better estimates of fitness benefits</td>
<td>Average within-nest relatedness varied among sample classes, and sample classes differed in their relatedness to each other; however these differences were not statistically significant (Table 1)</td>
</tr>
<tr>
<td>Isolation by distance</td>
<td>Classic</td>
<td>If dispersal of individuals in a given sample class is limited by distance on the investigated scale, we predict significant correlation between genetic and geographic distance</td>
<td>Estimates of IBD were mainly non significant but depended strongly on sample class and supercolony, suggesting that sample classes differ in their dispersal propensity/ability and that habitat structure in addition to distance has a significant effect on genetic structure</td>
</tr>
<tr>
<td>Clustering of nests across and within supercolonies according to genetic differentiation</td>
<td>Bayesian clustering</td>
<td>Across supercolonies, individuals should cluster together irrespective of supercolony origin if there is unrestricted gene flow. Within supercolonies, no clusters should be detected if dispersal of individuals is unrestricted</td>
<td>Samples from the two supercolonies clustered into distinct groups, indicating that there is limited gene flow between supercolonies. Robust subclusters were also detected in one but not the other supercolony, suggesting that habitat characteristics may restrict dispersal on small spatial scales (Fig. 2A)</td>
</tr>
<tr>
<td>Clustering of nests across supercolonies according to between-nest relatedness</td>
<td>Network</td>
<td>If there is unrestricted gene flow, relatedness between nests of the same supercolony should be similar to relatedness between nests of different supercolonies</td>
<td>Relatedness is significantly higher between nests of the same supercolony, indicating that there is limited gene flow between supercolonies (Figs 1 and 2C,D)</td>
</tr>
<tr>
<td>Clustering of nests within supercolonies according to between-nest relatedness</td>
<td>Network</td>
<td>If dispersal of individuals within supercolonies is unrestricted, relatedness between any combination of nests should be similar</td>
<td>Depending on the method used, faint subclusters were detected within supercolonies, suggesting that dispersal can be restricted on small spatial scales (Fig. 2C,D)</td>
</tr>
<tr>
<td>Within-nest relatedness among individuals in the same sample classes across time points</td>
<td>Network</td>
<td>In supercolonies, movement of individuals between nests can lead to changes in genetic substructure over time</td>
<td>Relatedness networks of spring workers differed from summer worker networks, showing that workers move between nests (Figs 3 and 4)</td>
</tr>
</tbody>
</table>
sexual reproduction is partitioned among nests in the LA supercolony (Kennedy et al. 2014), suggesting that reproductive partitioning plays a role in determining overall genetic patterns. Another factor, which may provide an alternative explanation for the genetic heterogeneity in MY which manifests in consistent clustering of nests into two groups, is multicolonial origin following fusion of separate, independent nests or groups of nests. This kind of process has been shown to underlie genetic substructure in Formica exsecta using maternally inherited mitochondrial markers (Seppä et al. 2012). While the two groups are currently both part of the MY supercolony, as evidenced by much lower differentiation between groups than between supercolonies, they may represent remnants of two formerly independent supercolonies. If MY but not LA resulted from such a fusion event, this may also explain the structural differences between the two supercolonies and caution against making generalizations from a single supercolony.

The most obvious conclusion from this study is perhaps that it remains exciting to study the maintenance of cooperation in ant supercolonies (Queller 1992; Lehmann et al. 2008). Using a combination of traditional and network-based methods, we have provided a new way of resolving genetic patterns on small spatial scales, and our analysis of worker movement provides insight into the role of nonreproductive dispersal on spatial genetic structure of supercolonies. Further understanding the social genetic dynamics of native supercolonies requires linking genetic patterns within supercolonies to social behaviour, for instance by correlating genetic differentiation with individual aggression levels as has been performed in some species (Suarez et al. 1999; Le Breton et al. 2004; Holzer et al. 2006). Network analysis will again prove useful in this context as an optimal tool for analysing genetic, ecological and behavioural data (Rollins et al. 2012; Kivelä et al. 2015). Ultimately, this will lead to a better understanding of the transition from individuality to organismality in social insects and, more generally, contribute to explaining social cohesion in social evolutionary transitions.

Acknowledgements

The authors thank A. Griffin, P. Pamilo, P. Seppä and anonymous reviewers for constructive comments on earlier versions of the manuscript and Unni Pulliainen for help with data collection.

Funding

This study was funded by the Academy of Finland (grants 135970, 140990, 273029 to HH; grant 252411 to Centre of Excellence in Biological Interactions), Kone Foundation and Waldemar von Frenckells Stiftelse.

References

Linksvayer TA, Wade MJ (2009) Genes with social effects are expected to harbor more sequence variation within and between species. Evolution, 63, 1685–1696.
Queller DC (1994) Genetic relatedness in viscous populations. Evolutionary Ecology, 8, 70–73.
E.S. and H.H. designed the study and conducted sampling; E.S. conducted genotyping and genetic data analysis; J.S. conducted network analysis; E.S., J.S. and H.H. wrote the manuscript.

Data accessibility

Genotype data and nest GPS coordinates are available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.c682f.

Supporting information

Additional supporting information may be found in the online version of this article.

Appendix S1 Relatedness correlations between nests across sampling years.

Appendix S2 Network-based clustering.

Appendix S3 Summary of genetic data.

Appendix S4 Results of BAPS analyses.