4 Bessel Potential and Besov Spaces

4.1 Mikhlin Multiplier Theorem

Recall that the Fourier transformation \mathcal{F} and the inverse Fourier transformation \mathcal{F}^{-1} are defined by

$$\mathcal{F}[f](\xi) := \hat{f}(\xi) := \int_{\mathbb{R}^n} e^{-ix\xi} f(x) \, dx,$$

$$\mathcal{F}^{-1}[f](x) := \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\xi} f(\xi) \, d\xi,$$

where $f \in L^1(\mathbb{R}^n)$. We note that the definitions are the same for $f \in L^1(\mathbb{R}^n; X)$, where X is an arbitrary Banach space. Moreover, recall that by Planchard’s theorem $\mathcal{F}: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ is an isomorphism with inverse \mathcal{F}^{-1} and that

$$\int_{\mathbb{R}^n} f(x)g(x) \, dx = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \hat{f}(\xi)\hat{g}(\xi) \, d\xi$$

(4.1)

for all $f, g \in L^2(\mathbb{R}^n)$. Here (4.1) holds true for $f \in L^2(\mathbb{R}^n; X), g \in L^2(\mathbb{R}^n; X')$ if the products of the functions are understood as duality product pointwise. The proof is the same as in the scalar case or one can proof (4.1) in the vector-valued case by approximating $f \in L^2(\mathbb{R}^n; X), g \in L^2(\mathbb{R}^n; X')$ by simple functions and applying the identity in the scalar case. Furthermore, if $f, g \in L^2(\mathbb{R}^n; H)$ and H is a Hilbert space, then $\mathcal{F}: L^2(\mathbb{R}^n; H) \to L^2(\mathbb{R}^n; H)$ is an isomorphism with inverse \mathcal{F}^{-1}.

THEOREM 4.1 (Mikhlin Multiplier Theorem)

Let H_0, H_1 be Hilbert spaces and let $N = n+2$. Moreover, let $m: \mathbb{R}^n \setminus \{0\} \to \mathcal{L}(H_0, H_1)$ be an N-times differentiable function such that

$$\|\partial^\alpha_\xi m(\xi)\|_{\mathcal{L}(H_0, H_1)} \leq C|\xi|^{-|\alpha|}$$

(4.2)

for all $\xi \neq 0$ and $|\alpha| \leq N$ and let

$$m(D_x)f = \mathcal{F}^{-1}\left[m(\xi)\hat{f}(\xi)\right] \quad \text{for all } f \in C^\infty_0(\mathbb{R}^n; H_0).$$

Then $m(D_x)$ extends to a bounded linear operator

$$m(D_x): L^p(\mathbb{R}^n; H_0) \to L^p(\mathbb{R}^n; H_1) \quad \text{for all } 1 < p < \infty.$$

(4.3)
The theorem is proved in Appendix B. We just note that (4.1) implies that, if $H_0 = H_1 = C$,

$$\|m(D_x)f\|_{L^2(\mathbb{R}^n)} \leq \|m\|_{L^\infty(\mathbb{R}^n)} \|f\|_{L^2(\mathbb{R}^n)} \quad \text{for all } f \in L^2(\mathbb{R}^n).$$

Hence $m(D_x) \in \mathcal{L}(L^2(\mathbb{R}^n))$. In order to prove Theorem 4.1, the main step is to show that $m(D_x) \in \mathcal{L}(L^1(\mathbb{R}^n), L^1_{\text{weak}}(\mathbb{R}^n))$. Once this is proved, $m(D_x) \in \mathcal{L}(L^p(\mathbb{R}^n))$ for all $1 < p \leq 2$ by the Marcinkiewicz interpolation theorem and the case $2 < p < \infty$ will follow by duality. Using that the Plancharel Theorem holds also for $f \in L^2(\mathbb{R}^n; H_j)$, the proof can be generalized to the case of general Hilbert spaces H_0, H_1.

4.2 A Fourier-Analytic Characterization of Hölder continuity

First of all, we recall that:

1. If $f : \mathbb{R}^n \to \mathbb{C}$ is a continuously differentiable function such that $f \in L^1(\mathbb{R}^n)$ and $\partial_x f \in L^1(\mathbb{R}^n)$, then

 $$\mathcal{F}[\partial_x f] = i\xi_x \mathcal{F}[f] = i\xi_x \hat{f}(\xi). \quad (4.4)$$

2. If $f \in L^1(\mathbb{R}^n)$ such that $x_j f \in L^1(\mathbb{R}^n)$, then $\hat{f}(\xi)$ is continuously partial differentiable with respect to ξ_j and

 $$\partial_{\xi_j} \hat{f}(\xi) = \mathcal{F}[-ix_j f(x)]. \quad (4.5)$$

The latter identities show the duality between differentiability of f and decay of $\hat{f}(\xi)$ as $|\xi| \to \infty$ as well as decay of f for large x and differentiability of \hat{f}.

In the following we will use a Littlewood-Paley partition of unity $\varphi_j(\xi)$, $j \in \mathbb{N}_0$ (on \mathbb{R}^n). This is a partition of unity $\varphi_j(\xi)$, $j \in \mathbb{N}_0$, on \mathbb{R}^n with $\varphi_j \in C^\infty_0(\mathbb{R}^n)$ such that

$$\text{supp } \varphi_j \subseteq \{ \xi \in \mathbb{R}^n : 2^{j-1} \leq |\xi| \leq 2^{j+1} \} \quad \text{for all } j \geq 1. \quad (4.6)$$

The partition of unity can be constructed such that $\text{supp } \varphi_0 \subset \overline{B_2(0)}$, $\varphi_j(\xi) = \varphi_1(2^{-j+1}\xi)$ for all $j \geq 1$ and (4.6) holds. Then we have

$$|\partial_\xi^\alpha \varphi_j(\xi)| \leq C \|\partial_\xi^\alpha \varphi_1\|_{L^\infty(\mathbb{R}^n)} 2^{-|\alpha|j} \quad \text{for all } \alpha \in \mathbb{N}_0^n, j \geq 1. \quad (4.7)$$
Moreover, we note that
\[\varphi_j(D_x)f = \mathcal{F}^{-1} \left[\varphi_j(\xi) \hat{f}(\xi) \right] = \hat{\varphi}_j * f \]
for all \(f \in C^\infty_0(\mathbb{R}^n) \), \(j \in \mathbb{N}_0 \), where \(\hat{\varphi}_j = \mathcal{F}^{-1} [\varphi_j] \) and
\[\varphi_j(x) = 2^{(j-1)n} \varphi_1(2^{j-1}x) \quad \text{for all } j \in \mathbb{N} \text{ and } x \in \mathbb{R}^n. \]
For \(f \in L^\infty(\mathbb{R}^n) \) we will define \(\varphi_j(D_x)f \) by
\[\varphi_j(D_x)f = \hat{\varphi}_j * f. \]
Furthermore, since \(\varphi_{j-1} + \varphi_j + \varphi_{j+1} \equiv 1 \) on \(\text{supp } \varphi_j \) (where \(\varphi_{-1} \equiv 0 \), we have
\[\varphi_j(D_x)f = (\varphi_{j-1}(D_x) + \varphi_j(D_x) + \varphi_{j+1}(D_x)) \varphi_j(D_x)f \quad (4.8) \]
for all \(f \in \mathcal{S}(\mathbb{R}^n), j \in \mathbb{N}_0. \)
Using this decomposition, we obtain the following characterization of Hölder continuous functions.

Theorem 4.2 Let \(0 < s < 1 \). Then \(f \in C^s(\mathbb{R}^n) \) if and only if \(f \in L^\infty(\mathbb{R}^n) \) and
\[\|f\|_{C^s} := \sup_{j \in \mathbb{N}_0} 2^{js} \|\hat{\varphi}_j * f\|_{L^\infty(\mathbb{R}^n)} < \infty. \]
Moreover, \(\| \cdot \|_{C^s} \) is an equivalent norm on \(C^s(\mathbb{R}^n) \).

Proof: First let \(f \in C^s(\mathbb{R}^n) \). Then
\[\sup_{x \in \mathbb{R}^n} |f(x) - f(y)| \leq \|f\|_{C^s} |y|^s \]
for all \(y \in \mathbb{R}^n \). Since we have chosen \(\varphi_j \) such that \(\varphi_j(\xi) = \varphi_1(2^{1-j}\xi) \) for \(j \geq 1 \), we have \(\hat{\varphi}_j(x) = \psi_{2^{-j}}(x) = 2^{jn} \psi(2^jx) \), where \(\psi(x) = \mathcal{F}^{-1}[\varphi_1(2^{-1}\xi)]. \)
This implies that
\[\|\hat{\varphi}_j\|_{L^1(\mathbb{R}^n)} \leq C, \quad \|\nabla \hat{\varphi}_j\|_{L^1(\mathbb{R}^n)} \leq C2^j \quad \text{for all } j \in \mathbb{N}_0, \quad (4.9) \]
Moreover,
\[\int_{\mathbb{R}^n} \hat{\varphi}_j(y)dy = \int_{\mathbb{R}^n} \psi(y)dy = \mathcal{F}[\psi](0) = \varphi_1(0) = 0. \]

28
for all \(j \geq 1 \). Hence
\[
\varphi_j(D_x)f = \int_{\mathbb{R}^n} f(x-y)\psi_{2^{-j}}(y)dy = \int_{\mathbb{R}^n} (f(x-y) - f(x))\psi_{2^{-j}}(y)dy \tag{4.10}
\]
and therefore
\[
\|\varphi_j(D_x)f\|_\infty \leq \|f\|_{C^s} \int_{\mathbb{R}^n} |y|^s\psi_{2^{-j}}(y)dy
\]
\[
= 2^{-js}\|f\|_{C^s} \int_{\mathbb{R}^n} |z|^s\psi(z)dz = C2^{-js}\|f\|_{C^s}
\]
for all \(j \in \mathbb{N} \). The latter inequality implies \(\|f\|_{C^s} \leq C\|f\|_{C^s} \), since also \(\varphi_0(D_x)f\|_\infty \leq C\|f\|_\infty \).

Conversely, let \(f \in L^\infty(\mathbb{R}^n) \) be such that \(\|f\|_{C^s} < \infty \). Now, if \(|y| \leq 1 \),
\[
f(x-y) - f(x) = \sum_{2^j \leq |y|^{-1}} (f_j(x-y) - f_j(x)) + \sum_{2^j > |y|^{-1}} (f_j(x-y) - f_j(x)),
\]
where \(f_j = \varphi_j(D_x)f \). In order to estimate the first sum, we use the mean value theorem to conclude that
\[
|f_j(x-y) - f_j(x)| \leq |y|\|\nabla f_j\|_\infty. \tag{4.11}
\]
Moreover, since
\[
\partial_{x_k}f_j = \partial_{x_k}\varphi_{j-1}(D_x)f_j + \partial_{x_k}\varphi_j(D_x)f_j + \partial_{x_k}\varphi_{j+1}(D_x)f_j,
\]
due to (4.8) and
\[
\|\partial_{x_k}\varphi(D_x)g\|_{L^\infty(\mathbb{R}^n)} \leq \|\partial_{x_k}\tilde{\varphi}(l_{1(\mathbb{R}^n)})\|_{L^1(\mathbb{R}^n)}\|g\|_{L^\infty(\mathbb{R}^n)} \leq C2^l\|g\|_{L^\infty(\mathbb{R}^n)}
\]
for general \(l \in \mathbb{N}_0 \), \(g \in L^\infty(\mathbb{R}^n) \), we obtain
\[
\sum_{2^j \leq |y|^{-1}} |f_j(x-y) - f_j(y)| \leq C \sum_{2^j \leq |y|^{-1}} |y|2^j\|\nabla f_j\|_\infty
\]
\[
\leq C|y| \sum_{2^j \leq |y|^{-1}} 2^j(1-s)\|f\|_{C^s} \leq C|y|^s\|f\|_{C^s}.
\]
The second sum is simply estimated by
\[
\sum_{2^j > |y|^{-1}} |f_j(x-y) - f_j(y)| \leq 2 \sum_{2^j > |y|^{-1}} \|f_j\|_\infty
\]
\[
\leq 2\|f\|_{C^s} \sum_{2^j > |y|^{-1}} 2^{-js} = C|y|^s\|f\|_{C^s}
\]
20
Altogether \(\|f\|_{C^s} \leq C\|f\|_{C^1} \). \(\blacksquare \)

Remark 4.3 Because of (4.9) we get
\[
\|\varphi_j(D_x)f\|_{L^p(\mathbb{R}^n)} \leq \|\tilde{\varphi}_j\|_{L^1(\mathbb{R}^n)} \|f\|_{L^p(\mathbb{R}^n)} \leq \|f\|_{L^p(\mathbb{R}^n)}, \tag{4.12}
\]
\[
\|\nabla \varphi_j(D_x)f\|_{L^p(\mathbb{R}^n)} \leq \|\nabla \tilde{\varphi}_j\|_{L^1(\mathbb{R}^n)} \|f\|_{L^p(\mathbb{R}^n)} \leq C2^j\|f\|_{L^p(\mathbb{R}^n)}, \tag{4.13}
\]
for any \(f \in L^p(\mathbb{R}^n) \), \(1 \leq p \leq \infty \), \(j \in \mathbb{N}_0 \).

4.3 Bessel Potential and Besov Spaces – Definitions and Basic Properties

In the following let \(\langle \xi \rangle := (1 + |\xi|^2)^{\frac{1}{2}} \). We note that for any \(s \in \mathbb{R} \) the function \(\langle \xi \rangle^s \) is a smooth function satisfying
\[
|\partial^\alpha \langle \xi \rangle^s| \leq C_{s,\alpha}(1 + |\xi|)^{s-|\alpha|} \tag{4.14}
\]
for all \(\alpha \in \mathbb{N}_0^n \) and some \(C_{s,\alpha} > 0 \). The latter estimate can be proved by considering \(f : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R} \) defined by \(f_s(\xi, t) = |(t, \xi)|^s \). Since \(f_s \) is smooth and homogeneous of degree \(s \) in \((t, \xi) \), we have
\[
|\partial^\alpha f_s(\xi, t)| \leq C_{s,\alpha}|t| + |\xi|^{s-|\alpha|}
\]
uniformly in \((x, t) \neq 0 \) and for all \(\alpha \in \mathbb{N}_0^n \).

Using (4.14) it is easy to show, that \(\langle \xi \rangle^s \hat{f}(\xi) \in S(\mathbb{R}^n) \) for all \(f \in S(\mathbb{R}^n) \). By duality \(\langle \xi \rangle^s \hat{f} \in S'(\mathbb{R}^n) \) for all \(f \in S'(\mathbb{R}^n) \). Therefore we can define \(\langle D_x \rangle^s : S'(\mathbb{R}^n) \to S'(\mathbb{R}^n) \) is well defined as
\[
\langle D_x \rangle^s f = \mathcal{F}^{-1} \left[\langle \xi \rangle^s \hat{f} \right] \quad \text{for all } f \in S'(\mathbb{R}^n).
\]

Definition 4.4 Let \(s \in \mathbb{R} \) and let \(1 < p < \infty \). Then the Bessel potential space \(\mathcal{H}^s_p(\mathbb{R}^n) \) is defined by
\[
\mathcal{H}^s_p(\mathbb{R}^n) = \{ f \in S'(\mathbb{R}^n) : \langle D_x \rangle^s f \in L^p(\mathbb{R}^n) \}
\]
\[
\|f\|_{\mathcal{H}^s_p(\mathbb{R}^n)} = \|\langle D_x \rangle^s f\|_{L^p(\mathbb{R}^n)}.
\]

Remarks 4.5

1. If \(p = 2 \), then we have \(f \in \mathcal{H}^s_2(\mathbb{R}^n) \) if and only if \(\langle \xi \rangle^s \hat{f} \in L^2(\mathbb{R}^n) \) by Plancharel's theorem.
2. By definition \((D_x)^s : \mathcal{H}^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n) \) is an isomorphism with inverse \((D_x)^{-s} \). Since \(S(\mathbb{R}^n) \) is dense in \(L^p(\mathbb{R}^n) \) and \((D_x)^{-s} : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n) \), \(\mathcal{S}(\mathbb{R}^n) \) is dense in \(\mathcal{H}^p(\mathbb{R}^n) \) for any \(s \in \mathbb{R}, 1 < p < \infty \).

As a consequence of the Mikhlin multiplier theorem we obtain

Theorem 4.6 Let \(m \in \mathbb{N}_0 \) and let \(1 < p < \infty \). Then \(\mathcal{H}^m_p(\mathbb{R}^n) = W^m_p(\mathbb{R}^n) \) with equivalent norms.

Proof: We first prove the embedding \(\mathcal{H}^m_p(\mathbb{R}^n) \hookrightarrow W^m_p(\mathbb{R}^n) \). Let \(f \in \mathcal{S}(\mathbb{R}^n) \). Then

\[
\partial_x^\beta f = \mathcal{F}^{-1} \left[(i\xi)^\beta \hat{f}(\xi) \right] = \mathcal{F}^{-1} \left[\frac{(i\xi)^\beta}{(\xi)^m} \right] (\xi)^m \hat{f}(\xi)
\]

Hence in order to obtain

\[
\|\partial_x^\beta f\|_{L^p(\mathbb{R}^n)} \leq C_p \| (D_x)^m f \|_{L^p(\mathbb{R}^n)} \equiv C_p \| f \|_{\mathcal{H}^m_p(\mathbb{R}^n)}
\]

(4.15)

for \(\beta \in \mathbb{N}_0^n \) with \(|\beta| \leq m \) we apply Theorem 4.1 to \(m_\beta(\xi) = \frac{(i\xi)^\beta}{(\xi)^m} \). Therefore we have to verify (4.2) for \(m = m_\beta \). To this end, we use (4.14) and

\[
|\partial_x^{\alpha} (i\xi)^\beta| \leq C_{\alpha,\beta} |\xi|^{|\beta|-|\alpha|}.
\]

(4.16)

Moreover, \((1 + |\xi|)^{-m-|\alpha|} \leq |\xi|^{-|\beta|-|\alpha|} \) if \(|\beta| \leq m \). Therefore

\[
|\partial_x^{\alpha} m_\beta(\xi)| \leq C_{\alpha,\beta} |\xi|^{-|\alpha|}
\]

(4.17)

follows from (4.16), (4.14), and the following claim:

Claim: Let \(s_1, s_2 \in \mathbb{R}, N \in \mathbb{N} \) and let \(p_1, p_2 : \mathbb{R}^n \setminus \{0\} \to \mathbb{C} \) be \(N \)-times continuously differentiable satisfying

\[
|\partial_x^{\alpha} p_j(\xi)| \leq C |\xi|^{s_j-|\alpha|} \quad \text{for all } |\alpha| \leq N, j = 1, 2.
\]

Then

\[
|\partial_x^{\alpha} (p_1(\xi)p_2(\xi))| \leq C |\xi|^{s_1+s_2-|\alpha|}
\]

(4.18)

for all \(|\alpha| \leq N \).

Proof of Claim: The claim follows directly from the Leibniz’s formula.

Because of (4.17), the conditions of the Mikhlin Multiplier Theorem 4.1 are satisfied and (4.15) follows for all \(|\beta| \leq m \), which proves \(\mathcal{H}^m_p(\mathbb{R}^n) \hookrightarrow W^m_p(\mathbb{R}^n) \) since \(\mathcal{S}(\mathbb{R}^n) \) is dense in \(\mathcal{H}^m_p(\mathbb{R}^n) \).

31
Hence it remains to prove $W^m_p(\mathbb{R}^n) \hookrightarrow H^m_p(\mathbb{R}^n)$. If $m = 2k$, $k \in \mathbb{N}_0$, is even, then $\langle \xi \rangle^m = (1 + |\xi|^2)^k$ is a polynomial of degree m. Therefore $\langle D_x \rangle^m$ is a differential operator of order m and
\[
\| (D_x)^m f \|_{L^p(\mathbb{R}^n; H)} \leq C \sum_{|\alpha| \leq m} \| \partial_x^\alpha f \|_{L^p(\mathbb{R}^n; H)},
\]
which proves the embedding in this case.

If $m = 2k + 1$, $k \in \mathbb{N}_0$, is odd, then
\[
\langle \xi \rangle^m = \langle \xi \rangle^m \left(\frac{1}{\langle \xi \rangle^2} + \sum_{j=1}^n \frac{\xi_j^2}{\langle \xi \rangle^2} \right) = \frac{1}{\langle \xi \rangle^{2k}} + \sum_{j=1}^n \frac{\xi_j}{\langle \xi \rangle} \langle \xi \rangle^{2k} \xi_j,
\]
where $\langle \xi \rangle^{2k}$ and $\langle \xi \rangle^{2k} \xi_j$ are polynomials of degree at most $2k + 1$. Hence
\[
\| (D_x)^m f \|_{L^p(\mathbb{R}^n; H)} \leq C \sum_{|\alpha| \leq m} \sum_{j=0}^n \| m_j(D_x) \partial^\alpha_x f \|_{L^p(\mathbb{R}^n; H)},
\]
where $m_0(\xi) = \langle \xi \rangle^{-1}$ and $m_j(\xi) = \xi_j \langle \xi \rangle^{-1}$, $j = 1, \ldots, n$. Hence it remains to verify the Mikhlin condition (4.2) for $m_j(\xi)$. If $j = 0$, then (4.2) for $m(\xi) = m_0(\xi)$ follows from (4.14) with $s = -1$ because of $\langle \xi \rangle^{-1-|\alpha|} \leq |\xi|^{-|\alpha|}$. If $j = 1, \ldots, n$, then (4.2) follows for $m(\xi) = m_j(\xi)$ from (4.14) with $s = -1$, (4.16) with $\beta = e_j$, and (4.18).

Theorem 4.2 gives a motivation for the following definition of the Besov space $B^s_{pq}(\mathbb{R}^n)$.

Definition 4.7 Let $s \in \mathbb{R}$, $1 \leq p, q \leq \infty$. Then
\[
B^s_{pq}(\mathbb{R}^n) = \left\{ f \in \mathcal{S}'(\mathbb{R}^n) : \| f \|_{B^s_{pq}(\mathbb{R}^n)} < \infty \right\},
\]
where
\[
\| f \|_{B^s_{pq}(\mathbb{R}^n)} = \left(\sum_{j=0}^\infty 2^{jsq} \| \varphi_j(D_x) f \|_{L^p(\mathbb{R}^n)}^q \right)^{\frac{1}{q}} \quad \text{if } q < \infty,
\]
\[
\| f \|_{B^s_{pq}(\mathbb{R}^n)} = \sup_{j \in \mathbb{N}_0} 2^{js} \| \varphi_j(D_x) f \|_{L^p(\mathbb{R}^n)} \quad \text{if } q = \infty.
\]
Remarks 4.8 1. Because of Theorem 4.2, \(C^s(\mathbb{R}^n) = B^s_{\infty\infty}(\mathbb{R}^n) \) for \(0 < s < 1 \). More generally, \(C^s(\mathbb{R}^n) := B^s_{\infty\infty}(\mathbb{R}^n), s > 0 \), are called Hölder-Zygmund spaces.

2. Note that \(f \in B^s_{pq}(\mathbb{R}^n) \) if and only if
\[
(\varphi_j(D_x)f)_{j \in \mathbb{N}_0} \in \ell^s_q(\mathbb{N}_0; L^p(\mathbb{R}^n)),
\]
Here \(\ell^s_q(\mathbb{M}; X), \mathbb{M} \subseteq \mathbb{Z} \), is the space of all \(X \)-valued sequences \(x = (x_j)_{j \in \mathbb{M}} \) such that
\[
\|x\|_{\ell^s_q(\mathbb{M}; X)} = \left\{ \begin{array}{ll}
\left(\sum_{j \in \mathbb{M}} (2^{js}\|x\|_X)^q \right)^{\frac{1}{q}} & \text{if } q < \infty, \\
\sup_{j \in \mathbb{M}} 2^{js}\|x\|_X & \text{if } q = \infty.
\end{array} \right.
\]
Moreover, we set \(\ell^q(\mathbb{M}; X) = \ell^0_q(\mathbb{M}; X) \). Of course \((x_j)_{j \in \mathbb{M}} \in \ell^s_q(\mathbb{M}; X) \) if and only if \((2^{js}x_j)_{j \in \mathbb{M}} \in \ell^q(\mathbb{M}; X) \).

3. Using Plancharel’s theorem, it is not difficult to show that
\[
B^s_{22}(\mathbb{R}^n) = H^s_2(\mathbb{R}^n).
\]
The proof is left to the reader as an exercise. – But the statement will also follow from Corollary 4.15 below.

Some simple relations between the Besov spaces are summarized in the following.

Lemma 4.9 Let \(s \in \mathbb{R}, 1 \leq p, q_1, q_2 \leq \infty \), and let \(\varepsilon > 0 \). Then
\[
B^s_{pq_1}(\mathbb{R}^n) \hookrightarrow B^s_{pq_2}(\mathbb{R}^n) \text{ if } q_1 \leq q_2, \quad B^s_{p\infty}(\mathbb{R}^n) \hookrightarrow B^{s+\varepsilon}_{p1}(\mathbb{R}^n).
\]

Proof: The first embedding follows from
\[
\ell^0_q(\mathbb{N}_0; X) \hookrightarrow \ell^p_q(\mathbb{N}_0; X), \ell^s_q(\mathbb{N}_0; X) \hookrightarrow \ell^{s+\varepsilon}_{q_2}(\mathbb{N}_0; X) \text{ if } q_1 \leq q_2. \quad (4.19)
\]
The second embedding follows \(\ell^{s+\varepsilon}_{\infty}(\mathbb{N}_0; X) \hookrightarrow \ell^1_q(\mathbb{N}_0; X) \) because of
\[
\|(a_j)\|_{\ell^s_q(\mathbb{N}_0; X)} = \sum_{j=0}^{\infty} 2^{sj}\|a_j\|_X \\
\leq \left(\sum_{j=0}^{\infty} 2^{-\varepsilon j} \sup_{j \in \mathbb{N}_0} 2^{(s+\varepsilon)j}\|a_j\|_X \right) \leq C_\varepsilon \|(a_j)\|_{\ell^{s+\varepsilon}_{\infty}(\mathbb{N}_0; X)}.
\]

33
Remark 4.10 The latter lemma shows that \(q \) measures regularity of \(f \) on a finer scale than \(s \), meaning, if \(s > s' \), then \(B^s_{pq1}(\mathbb{R}^n) \hookrightarrow B^{s'}_{pq2}(\mathbb{R}^n) \) with arbitrary \(1 \leq q_1, q_2 \leq \infty \).

Exercise 1 Show that

\[
B^s_{pq1}(\mathbb{R}^n) \hookrightarrow C^0(\mathbb{R}^n).
\]

Hint: Use that \(\varphi_j(D_x)f = \hat{\varphi}_j \ast f \), where \(\|\hat{\varphi}_j\|_{L^s(\mathbb{R}^n)} \leq C2^{js} \) uniformly in \(j \in \mathbb{Z} \).

In order to get a sharp comparision of Besov and Bessel potential spaces we prove:

Theorem 4.11 Let \(s \in \mathbb{R}, 1 < p < \infty \). Then there are constants \(c, C > 0 \) such that

\[
c\|f\|_{H^s_p(\mathbb{R}^n)} \leq \left(\sum_{j=0}^{\infty} 2^{js} |\varphi_j(D_x)f(x)|^2 \right)^{\frac{1}{2}} \leq C\|f\|_{H^s_p(\mathbb{R}^n)}
\]

for all \(f \in H^s_p(\mathbb{R}^n) \).

Remark 4.12 Because of the latter equivalent norm on \(H^s_p(\mathbb{R}^n) \), one defines more generally the Triebel-Lizorkin space \(F^s_{pq}(\mathbb{R}^n) \), \(s \in \mathbb{R}, 1 < p, q < \infty \), as

\[
F^s_{pq}(\mathbb{R}^n) = \left\{ f \in S'(\mathbb{R}^n) : \|f\|_{F^s_{pq}(\mathbb{R}^n)} < \infty \right\},
\]

\[
\|f\|_{F^s_{pq}(\mathbb{R}^n)} = \left\| \left(\sum_{j=0}^{\infty} 2^{js} |\varphi_j(D_x)f(x)|^q \right)^{\frac{1}{q}} \right\|_{L^p(\mathbb{R}^n)}.
\]

Hence the latter theorem shows that \(H^s_p(\mathbb{R}^n) = F^s_{pq}(\mathbb{R}^n) \). Finally, note that

\[
\|f\|_{F^s_{pq}(\mathbb{R}^n)} = \|\varphi_j(D_x)f\|_{L^p(\mathbb{R}^n; \ell^q(\mathbb{N}))}.
\]

Proof of Theorem 4.11: First we will show that \(\|f\|_{F^s_{pq}(\mathbb{R}^n)} \leq C\|f\|_{H^s_p(\mathbb{R}^n)} \). To this end we define a mapping

\[
Q : S(\mathbb{R}^n) \subset L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n; \ell^q(\mathbb{N}))
\]
by
\[(Qg)(x) = (2^j \varphi_j(D_x)(D_x)^{-s}g(x))_{j \in \mathbb{N}_0} \in \ell^2(\mathbb{N}_0) \quad \text{for all } x \in \mathbb{R}^n.\]

Then
\[(Qg)(x) = \mathcal{F}_{\xi \rightarrow x}^{-1} \lfloor m(\xi) \hat{g}(\xi) \rfloor\]
where \(m(\xi) \in \mathcal{L}(\mathbb{C}, \ell^2(\mathbb{N}_0))\) is defined by
\[m(\xi)a = (2^j \varphi_j(\xi)\langle \xi \rangle^{-s})_{j \in \mathbb{N}_0}a \quad \text{for all } a \in \mathbb{C}, \xi \in \mathbb{R}^n.\]

In order to show that \(Q\) extends to a bounded operator
\[Q: L^p(\mathbb{R}^n) \rightarrow L^p(\mathbb{R}^n; \ell^2(\mathbb{N}_0)) \quad \text{for all } 1 < p < \infty, \quad (4.20)\]
we verify the condition for the Mikhlin multiplier theorem 4.1:

\[
\|\partial^\alpha \xi m(\xi)\|_{L^2(\mathbb{C}, \ell^2(\mathbb{N}_0))} = \sum_{j=0}^{\infty} 2^{2js} \|\partial^\alpha \xi (\varphi_j(\xi)\langle \xi \rangle^{-s})\|^2 \\
\leq C_{\alpha,s} 2^{2js} \langle \xi \rangle^{-2s-2|\alpha|} \chi_{\text{supp } \varphi_j}(\xi) \leq C_{\alpha,s} \langle \xi \rangle^{-2|\alpha|}
\]
for all \(\alpha \in \mathbb{N}_0^n\), where we have used that \(2^{-1} \leq |\xi| \leq 2^{j+1}\) on \(\text{supp } \varphi_j\) if \(j \geq 1\) and
\[|\partial^\alpha \xi (\varphi_j(\xi)\langle \xi \rangle^{-s})| \leq C_{\alpha,s} \langle \xi \rangle^{-s-|\alpha|}\]
uniformly in \(j \in \mathbb{N}_0\), which follows from (4.7), (4.14), and the product rule. Hence (4.20) follows and therefore
\[\|f\|_{F_{p,2}(\mathbb{R}^n)} = \|Q(D_x)^s f\|_{L^p(\mathbb{R}^n; \ell^2(\mathbb{N}_0))} \leq C\|\langle D_x \rangle^s f\|_{L^p(\mathbb{R}^n)} \equiv C\|f\|_{H^p_2(\mathbb{R}^n)}.
\]

Note that we have shown that
\[\tilde{Q}: H^s_p(\mathbb{R}^n) \rightarrow L^p(\mathbb{R}^n; \ell^2_q(\mathbb{N}_0))\]
is bounded, where
\[\tilde{Q}f = (2^{-js}Q(D_x)^s f)_{j \in \mathbb{N}_0} = (\varphi_j(D_x)f)_{j \in \mathbb{N}_0}. \quad (4.21)\]

Conversely, we define a mapping
\[R: S(\mathbb{R}^n; \ell^2(\mathbb{N}_0)) \subset L^p(\mathbb{R}^n; \ell^2(\mathbb{N}_0)) \rightarrow L^p(\mathbb{R}^n)\]
by

$$(Ra)(x) = \sum_{j=0}^{\infty} 2^{-js} \tilde{\varphi}_j(D_x)(D_x)^s a_j(x) \quad \text{for all } x \in \mathbb{R}^n, a \in \mathcal{S}(\mathbb{R}^n; \ell^2(\mathbb{N}_0)).$$

Here $\tilde{\varphi}_j(\xi) = \varphi_{j-1}(\xi) + \varphi_j(\xi) + \varphi_{j+1}(\xi)$, $j \in \mathbb{N}_0$, and $\varphi_{-1}(\xi) = 0$. – Note that $\tilde{\varphi}_j(\xi)\varphi_j(\xi) = \tilde{\varphi}_j(\xi)$ since $\tilde{\varphi}_j(\xi) = 1$ on supp φ_j. Then

$$(Ra)(x) = \mathcal{F}_{\xi \to x}^{-1} [m(\xi) \hat{a}_j(\xi)]$$

where $m(\xi) \in \mathcal{L}(\ell^2(\mathbb{N}_0), \mathbb{C})$ is defined by

$$m(\xi)a = \sum_{j=0}^{\infty} 2^{-js} \tilde{\varphi}_j(\xi)\varphi_j(\xi)^s a_j \quad \text{for all } (a_j)_{j \in \mathbb{N}_0} \in \ell^2(\mathbb{N}_0).$$

Similarly, as before

$$\|\partial^\alpha_{\xi} m(\xi)\|^2_{\mathcal{L}(\mathcal{S}(\mathbb{R}^n), \mathbb{C})} \leq \sum_{j=0}^{\infty} 2^{-2js} |\partial^\alpha_{\xi} (\tilde{\varphi}_j(\xi)\varphi_j(\xi)^s)|^2$$

$$\leq C_q \sum_{j=0}^{\infty} 2^{-2js} |\xi|^{2s-2|\alpha|} \chi\{2^{j-2} \leq |\xi| \leq 2^{j+2}\} \leq C_q |\xi|^{-2|\alpha|},$$

where we have used that for each $\xi \in \mathbb{R}^n$ at most 5 terms in the sum above are non-zero and that $2^{-2js} \leq C |\xi|^{-s}$ on supp $\tilde{\varphi}_j \subset \{2^{j-2} \leq |\xi| \leq 2^{j+2}\}$. Hence, applying Theorem 4.1 once more, we obtain that R extends to a bounded operator

$$R: L^p(\mathbb{R}^n; \ell^2(\mathbb{N}_0)) \to L^p(\mathbb{R}^n) \quad \text{for all } 1 < p < \infty.$$

Now we apply R to $a_j = 2^{js} \varphi_j(D_x)f$, $j \in \mathbb{N}_0$. Then

$$Ra = \sum_{j=0}^{\infty} 2^{-js} \tilde{\varphi}_j(D_x)(D_x)^s 2^{js} \varphi_j(D_x)f = (D_x)^s f$$

since $\sum_{j=0}^{\infty} \tilde{\varphi}_j(D_x)\varphi_j(D_x) = \sum_{j=0}^{\infty} \varphi_j(D_x) = I$. Thus

$$\|f\|_{H^s_0(\mathbb{R}^n)} = \|\langle D_x \rangle^s f\|_{L^p(\mathbb{R}^n)} = \|Ra\|_{L^p(\mathbb{R}^n)} \leq C \|\langle 2^{js} \varphi_j(D_x)f \rangle\|_{\ell^2(\mathbb{N}_0)} \leq C \|f\|_{F^s_{p,2}(\mathbb{R}^n)},$$

36
which proves the lemma. Finally, we note that the previous estimates imply that
\[\tilde{R}: L^p(\mathbb{R}^n; \ell^s_2(N_0)) \to H^s_p(\mathbb{R}^n) \]
is bounded, where
\[\tilde{R}(a_j)_{j \in N_0} := \langle D_x \rangle^s R(2^j sa_j)_{j \in N_0} = \sum_{j=0}^{\infty} \tilde{\varphi}_j(D_x)a_j \] (4.22)
and therefore \(\tilde{R} \tilde{Q} = I \) on \(H^s_p(\mathbb{R}^n) \).

Remark 4.13 Note that the latter proof shows that \(H^s_p(\mathbb{R}^n) \) is a retract of \(L^p(\mathbb{R}^n; \ell^s_2(N_0)) \). In general:

Definition 4.14 A Banach space \(X \) is called a retract of a Banach space \(Y \) if there are bounded, linear operators \(R: Y \to X \) and \(Q: X \to Y \) such that \(RQ = \text{id}_X \).

If \(\tilde{R}, \tilde{Q} \) are defined by (4.22) and (4.21), then \(\tilde{R} \tilde{Q} = I \) on \(H^s_p(\mathbb{R}^n) \). Note that the mappings are independent of \(p \) and \(s \). Moreover, using the same mappings \(R \) and \(Q \) as in the previous proof it is easy to show that \(B^s_p(\mathbb{R}^n) \) is a retract of \(\ell^q(N_0; L^p(\mathbb{R}^n)) \).

Corollary 4.15 Let \(1 < p < \infty, s \in \mathbb{R} \). Then
\[B^s_p(\mathbb{R}^n) \hookrightarrow H^s_p(\mathbb{R}^n) \hookrightarrow B^s_{p2}(\mathbb{R}^n) \quad \text{if } 1 < p \leq 2, \] (4.23)
\[B^s_{p2}(\mathbb{R}^n) \hookrightarrow H^s_p(\mathbb{R}^n) \hookrightarrow B^s_{p\infty}(\mathbb{R}^n) \quad \text{if } 2 \leq p < \infty. \] (4.24)

In particular, \(H^2_s(\mathbb{R}^n) = B^s_{p2}(\mathbb{R}^n) \) for all \(s \in \mathbb{R} \).

Proof: The statements follow from Theorem 4.11 and the embeddings:
\[\ell^q(N_0; L^p(\mathbb{R}^n)) \hookrightarrow L^p(\mathbb{R}^n; \ell^q(N_0)) \quad \text{if } 1 \leq q \leq p \leq \infty \] (4.25)
\[L^p(N_0; \ell^q(\mathbb{R}^n)) \hookrightarrow \ell^q(\mathbb{R}^n; L^p(N_0)) \quad \text{if } 1 \leq p \leq q \leq \infty. \] (4.26)
where X is a general Banach space, as well as from (4.19). Here (4.25) follows from
\[
\|(f_j)_{j \in N_0}\|_{L^p(\mathbb{R}^n; \ell^q(N))} \\
= \left(\int_{\mathbb{R}^n} \left(\sum_{j=0}^{\infty} |f_j(x)|^q \right)^{\frac{p}{q}} \, dx \right)^{\frac{1}{p}} = \left(\sum_{j=0}^{\infty} \|f_j(\cdot)|^q \right)^{\frac{1}{p}}_{L^p(\mathbb{R}^n)} \\
\leq \left(\sum_{j=0}^{\infty} \|f_j(\cdot)|^q \right)^{\frac{1}{p}}_{L^p(\mathbb{R}^n)} = \left(\sum_{j=0}^{\infty} \|f_j(\cdot)|^q \right)^{\frac{1}{p}}_{L^p(\mathbb{R}^n)},
\]
where we have used Minkowski’s inequality. The inequality (4.26) is proved analogously.

\[\]

4.4 Interpolation of Vector-Valued L^p-Spaces, Bessel Potential, and Besov Spaces

Recall that $H_p^s(\mathbb{R}^n)$ and $B_{pq}^s(\mathbb{R}^n)$ are retracts of $L^p(\mathbb{R}^n; \ell^2(N_0))$ and $\ell^s_q(N_0; L^p(\mathbb{R}^n))$ with same retraction and co-retractions, which are independent of p, s. More precisely,
\[
\tilde{Q}: H_p^s(\mathbb{R}^n) \to L^p(\mathbb{R}^n; \ell^2(N_0)), \\
\tilde{Q}: B_{pq}^s(\mathbb{R}^n) \to \ell^s_q(N_0; L^p(\mathbb{R}^n))
\]
and
\[
\tilde{R}: L^p(\mathbb{R}^n; \ell^2(N_0)) \to H_p^s(\mathbb{R}^n), \\
\tilde{R}: \ell^s_q(N_0; L^p(\mathbb{R}^n)) \to B_{pq}^s(\mathbb{R}^n)
\]
are bounded linear operators satisfying $\tilde{R}\tilde{Q} = I$ where
\[
\tilde{Q}f = (\varphi_j(Dx)f)_{j \in N_0}, \quad f \in H_p^s(\mathbb{R}^n) \cup B_{pq}^s(\mathbb{R}^n),
\]
and
\[
\tilde{R}(a_j)_{j \in N_0} := \sum_{j=0}^{\infty} \varphi_j(Dx)a_j, \quad (a_j)_{j \in N_0} \in L^p(\mathbb{R}^n; \ell^2(N_0)) \cup \ell^s_q(N_0; L^p(\mathbb{R}^n)).
\]
Generally we have:

\[\]
Proposition 4.16 Let (X_0, X_1) and (Y_0, Y_1) be admissible Banach spaces and let $Q: Y_0 + Y_1 \to X_0 + X_1$, $R: X_0 + X_1 \to Y_0 + Y_1$ be linear mappings such that $Q \in \mathcal{L}(Y_j, X_j)$, $R \in \mathcal{L}(X_j, Y_j)$ and $RQx = x$ for all $x \in X_j$ and $j = 0, 1$. Then

$$R(X_0, X_1)_{\theta,p} = (Y_0, Y_1)_{\theta,p} \quad R(X_0, X_1)_{[\theta]} = (Y_0, Y_1)_{[\theta]}$$

with equivalent norms for all $\theta \in (0, 1), 1 \leq p \leq \infty$, where $R(X_0, X_1)_{\theta,p}$ is equipped with the quotient norm

$$\|y\|_{R(X_0, X_1)_{\theta,p}} = \inf_{x \in (X_0, X_1)_{\theta,p}: Rx = y} \|x\|_{\theta,p}.$$

Proof: The proof of the proposition is similar to the proof of Example 3.10. ■

Because of the latter proposition, it is sufficient to obtain interpolation results for $L^p(\mathbb{R}^n; \ell^2_q(\mathbb{N}))$ and $\ell^q_s(\mathbb{N}_0; L^p(\mathbb{R}^n))$ to characterize the real and complex interpolation spaces of $H^s_p(\mathbb{R}^n)$ and $B^s_{pq}(\mathbb{R}^n)$.

We start with a result for the real interpolation method:

THEOREM 4.17 Let X be a Banach spaces, let $s_0 \neq s_1 \in \mathbb{R}$, $0 < \theta < 1$, and let $1 \leq q_0, q_1 \leq \infty$. Then for every $1 \leq q \leq \infty$

$$(\ell^s_{q_0}(\mathbb{Z}; X), \ell^s_{q_1}(\mathbb{Z}; X))_{\theta,q} = \ell^s_q(\mathbb{Z}; X),
\ell^s_s(q_0(\mathbb{N}_0; X), \ell^s_{q_1}(\mathbb{N}_0; X))_{\theta,q} = \ell^s_q(\mathbb{N}_0; X)$$

with equivalent norms, where $s = (1 - \theta)s_0 + \theta s_1$.

As a consequence we obtain

THEOREM 4.18 Let $s_0 \neq s_1 \in \mathbb{R}$, $0 < \theta < 1$ and let $s = (1 - \theta)s_0 + \theta s_1$. Then for all $1 \leq p, q_0, q_1, q \leq \infty$

$$(B^s_{\theta q_0}(\mathbb{R}^n), B^s_{\theta q_1}(\mathbb{R}^n))_{\theta,q} = B^s_{pq}(\mathbb{R}^n)$$

with equivalent norms. Moreover, for any $1 \leq p, q \leq \infty$ we have

$$(H^s_p(\mathbb{R}^n), H^s_q(\mathbb{R}^n))_{\theta,q} = B^s_{pq}(\mathbb{R}^n)$$

with equivalent norms.
Remark 4.19 Because of Example 3.10, we know that

\[(L^p(\mathbb{R}^n), W^{1/p}_p(\mathbb{R}^n))_{\theta,p} = W^p(\mathbb{R}^n)\]

for all \(1 \leq p < \infty\). On the other hand, we have by the previous theorem:

\[(L^p(\mathbb{R}^n), W^{1/p}_p(\mathbb{R}^n))_{\theta,p} = (H^0_p(\mathbb{R}^n), H^1_p(\mathbb{R}^n))_{\theta,p} = B^{\theta}_p(\mathbb{R}^n)\]

if \(1 < p < \infty\), \(\theta \in (0, 1)\). Hence \(B^{\theta}_p(\mathbb{R}^n) = W^s(\mathbb{R}^n)\) for all \(s \in (0, 1)\), \(1 < p < \infty\) and

\[\|f\|_{W^s_p(\mathbb{R}^n)} = \|f\|_{L^p(\mathbb{R}^n)} + \left(\int_{\mathbb{R}^n \times \mathbb{R}^n} \frac{|f(x) - f(y)|^p}{|x - y|^\theta p + n} d(x, y) \right)^{\frac{1}{p}}\]

is an equivalent norm on \(B^{\theta}_p(\mathbb{R}^n)\). A more general statement of this kind will be given below.

For the complex interpolation method we have:

Theorem 4.20 Let \(1 \leq p_0, p_1, q_0, q_1 < \infty\), \(0 < \theta < 1\), and let \((U, \mu), (V, \nu)\) be two measure spaces. Moreover, let \(\frac{1}{p} = \frac{1 - \theta}{p_0} + \frac{\theta}{p_1}\), \(\frac{1}{q} = \frac{1 - \theta}{q_0} + \frac{\theta}{q_1}\). Then

\[(L^{p_0}(U; L^{q_0}(V)), L^{p_1}(U; L^{q_1}(V)))_{\theta,p} = L^{p}(U; L^{q}(V))\]

with equal norms.

Remark 4.21 If \((X_0, X_1)\) is an admissible pair of Banach spaces and \(1 \leq p_0, p_1 < \infty\), \(0 < \theta < 1\), then

\[(L^{p_0}(U; X_0), L^{p_1}(U; X_1))_{\theta,p} = L^{p}(U; (X_0, X_1)_{\theta,p})\]

with equal norms, where \(\frac{1}{p} = \frac{1 - \theta}{p_0} + \frac{\theta}{p_1}\). cf. [1, Theorem 5.1.2].

Corollary 4.22 Let \(s_0, s_1 \in \mathbb{R}\), \(0 < \theta < 1\), and let \(1 \leq q_0, q_1, p_0, p_1 < \infty\). Moreover, let \(\frac{1}{p} = \frac{1 - \theta}{p_0} + \frac{\theta}{p_1}\), \(\frac{1}{q} = \frac{1 - \theta}{q_0} + \frac{\theta}{q_1}\). Then

\[\ell^{\theta}_{q_0}(N_0; L^{p_0}(\mathbb{R}^n)), \ell^{s_1}_{q_1}(N_0; L^{p_1}(\mathbb{R}^n)))_{\theta,q} = \ell^{s}_q(N_0; L^{p}(\mathbb{R}^n))\]

\[L^{p_0}(\mathbb{R}^n; \ell^{q_0}_{q_0}(N_0)), L^{p_1}(\mathbb{R}^n; \ell^{q_1}_{q_1}(N_0)))_{\theta,q} = L^{p}(\mathbb{R}^n; \ell^{s}_q(N_0))\]

with equal norms, where \(s = (1 - \theta)s_0 + \theta s_1\).

As an application we obtain:

40
THEOREM 4.23 Let \(s_0, s_1 \in \mathbb{R}, \) \(0 < \theta < 1 \) and let \(s = (1 - \theta)s_0 + \theta s_1. \) Then
\[
(H^{s_0}_{p_0}(\mathbb{R}^n), H^{s_1}_{p_1}(\mathbb{R}^n))_{[\theta]} = H^{s}_{p}(\mathbb{R}^n)
\]
with equal norms for any \(1 < p_0, p_1 < \infty \) and \(\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}. \) Moreover, for any \(1 \leq q_0, q_1, p_0, p_1 < \infty \) we have
\[
(B^{s_0}_{p_0q_0}(\mathbb{R}^n), B^{s_1}_{p_1q_1}(\mathbb{R}^n))_{[\theta]} = B^{s}_{pq}(\mathbb{R}^n)
\]
with equal norms where \(\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \) and \(\frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}. \)

4.5 Sobolev Embeddings and Traces

We start with a Sobolev-type embedding theorem for Besov and Bessel potential spaces.

THEOREM 4.24 Let \(s, s_1 \in \mathbb{R} \) with \(s \leq s_1 \) and \(1 \leq p_1 \leq p \leq \infty \) such that
\[
s - \frac{n}{p} \leq s_1 - \frac{n}{p_1}.
\]
Then
\[
B^{s_0}_{p_0q_1}(\mathbb{R}^n) \hookrightarrow B^{s}_q(\mathbb{R}^n) \quad \text{for all} \quad 1 \leq q_1 \leq q \leq \infty, \quad (4.27)
\]
\[
H^{s_0}_{p_1}(\mathbb{R}^n) \hookrightarrow H^{s}_p(\mathbb{R}^n). \quad \text{if} \quad 1 < p_1 \leq p < \infty \quad (4.28)
\]

Proof: See [1, Theorem 6.51].

Remarks on the proof: The embedding (4.27) follows from:
\[
\varphi_k(D_x)f = \tilde{\varphi}_k(D_x)\varphi_k(D_x)f
\]
with \(\tilde{\varphi}_k(D_x) = \varphi_{k-1}(D_x) + \varphi_k(D_x) + \varphi_{k+1}(D_x), \varphi_{-1}(D_x) := 0 \) as well as
\[
\varphi_k(D_x)g = \psi_{2^{-k}} * g,
\]
which implies
\[
\|\varphi_k(D_x)g\|_{L^p(\mathbb{R}^n)} \leq \|\psi_{2^{-k}}\|_{L^q(\mathbb{R}^n)}\|g\|_{L^{p_1}(\mathbb{R}^n)} \leq C2^{-kn} \|g\|_{L^{p_1}(\mathbb{R}^n)},
\]
where \(\frac{1}{p} = 1 - \frac{1}{q} = \frac{1}{p_1} - \frac{1}{p}. \) Then (4.28) follows from (4.27) by a clever interpolation.
THEOREM 4.25 Let $1 \leq p < \infty$, $1 \leq q \leq \infty$, $s > \frac{1}{p}$ and let $\text{Tr} \ f = f|_{x_n=0}$ for any continuous $f \in H^s_p(\mathbb{R}^n) \cup B^s_{pq}(\mathbb{R}^n)$. Then Tr can be extended to a bounded linear operator

\[\text{Tr}: B^s_{pq}(\mathbb{R}^n) \to B^{s-\frac{1}{p}}_{pq}(\mathbb{R}^n), \]
\[\text{Tr}: H^s_p(\mathbb{R}^n) \to B^{s-\frac{1}{p}}_{pp}(\mathbb{R}^n). \]

Proof: See [1].

Remarks on the proof: If $m = 1$, then

\[\text{Tr}: H^m_p(\mathbb{R}^n) = W^m_p(\mathbb{R}^n) \to W^{m-\frac{1}{p}}(\mathbb{R}^n-1) = B^{m-\frac{1}{p}}_{pq}(\mathbb{R}^n-1) \]

follows from the trace method as before. Using $a \in B^{m-\frac{1}{p}}_{pq}(\mathbb{R}^n-1)$ if and only if $\partial_{\alpha} a \in B^{1-\frac{1}{p}}_{pq}(\mathbb{R}^n-1)$ for all $|\alpha| \leq m-1$, the same follows for general $m \in \mathbb{N}$. Then the statement follows for $s \geq 1$ by interpolation.

In the case $\frac{1}{p} < s \leq 1$ one uses that $B^{\frac{1}{p}}_{p1}(\mathbb{R}) \hookrightarrow C^0(\mathbb{R})$. Therefore

\[|\text{Tr} \ f(x')| \leq C\|f(x',.)\|_{B^{\frac{1}{p}}_{p1}(\mathbb{R})}, \]
\[\Rightarrow \|\text{Tr} \ f\|_{LP(\mathbb{R}^{n-1})} \leq C\|f\|_{Lp(\mathbb{R}^{n-1};B^{\frac{1}{p}}_{p1}(\mathbb{R}))} \leq C\|f\|_{B^{\frac{1}{p}}_{p1}(\mathbb{R}^{n})}. \]

An iterated interpolation then yields the statement of the theorem for $\frac{1}{p} < s < 1$.

4.6 Equivalent Norms

The following theorem is the direct generalization of Theorem 4.2 for general Besov spaces $B^s_{pq}(\mathbb{R}^n)$ with $0 < s < 1$.

THEOREM 4.26 Let $0 < s < 1$ and let $1 \leq p, q \leq \infty$. Then there are constants c, C (depending on s, p, q) such that

\[c\|f\|_{B^s_{pq}(\mathbb{R}^n)} \leq \|f\|_{LP(\mathbb{R}^n)} + \left(\int_0^\infty \frac{\omega_p(t;f)^q}{t^{sq}} \frac{dt}{t} \right)^{\frac{1}{q}} \leq C\|f\|_{B^s_{pq}(\mathbb{R}^n)} \quad (4.29) \]

if $q < \infty$ and

\[c\|f\|_{B^s_{pq}(\mathbb{R}^n)} \leq \|f\|_{LP(\mathbb{R}^n)} + \sup_{t>0} \frac{\omega_p(t;f)^q}{t^{sq}} \frac{dt}{t} \leq C\|f\|_{B^s_{pq}(\mathbb{R}^n)} \quad (4.30) \]
if \(q = \infty \), where

\[
\omega_p(t; f) = \sup_{|h| \leq t} \| f(\cdot + h) - f \|_{L^p(\mathbb{R}^n)}
\]

is the \(L^p \)-modulus of continuity of \(f \).

Remark 4.27 We refer to [1, Theorem 6.2.5] for a more general statement in the case \(s > 0 \).

Proof of Theorem 4.26: We will only prove the case \(q < \infty \) since the proof in the case \(q = \infty \) is a simple variant of the proof of Theorem 4.2.

First of all, since \(t \mapsto \omega_p(t; f) \) is a monotone increasing function and \(t \) is proportional to \(2^{-j} \) on \([2^{-j+1}, 2^{-j}]\),

\[
\int_{0}^{1} \frac{\omega_p(t; f)^q}{t^q} \frac{dt}{t} \leq C \sum_{j=0}^{\infty} 2^{sjq} \omega_p(2^{-j}; f)^q
\]

and

\[
\sum_{j=0}^{\infty} 2^{sjq} \omega_p(2^{-j}; f)^q \leq C \int_{0}^{2} \frac{\omega_p(t; f)^q}{t^q} \frac{dt}{t}.
\]

Moreover,

\[
\int_{1}^{\infty} \frac{\omega_p(t; f)^q}{t^q} \frac{dt}{t} \leq 2^q \| f \|_{L^p(\mathbb{R}^n)}^q \int_{1}^{\infty} t^{-s-1} \frac{dt}{t} = C \| f \|_{L^p(\mathbb{R}^n)}^q
\]

since \(\omega_p(t; f) \leq 2 \| f \|_{L^p(\mathbb{R}^n)} \). Hence we can replace the middle term in (4.29) by

\[
\| f \|_{L^p(\mathbb{R}^n)} + \left(\sum_{j=0}^{\infty} 2^{sjq} \omega_p(2^{-j}; f) \right)^{\frac{1}{q}}.
\]

First we prove the second inequality in (4.29). For \(f \in B_{pq}^s(\mathbb{R}^n) \) we denote \(f_k = \varphi_k(D_x) f \). Then

\[
\| f_k(\cdot + h) - f_k \|_{L^p(\mathbb{R}^n)} \leq |h| \| \nabla f_k \|_{L^p(\mathbb{R}^n)}
\]

due to (4.11) and therefore

\[
\omega_p(t; f_k) \leq t \| \nabla f_k \|_{L^p(\mathbb{R}^n)} = t \| \nabla \varphi_k(D_x) \tilde{\varphi}_k(D_x) f_k \|_{L^p(\mathbb{R}^n)} \leq Ct^{2^k} \| \tilde{\varphi}_k(D_x) f_k \|_{L^p(\mathbb{R}^n)}
\]

where
because of (4.13), where \(\tilde{\varphi}_k(D_x) = \varphi_{k-1}(D_x) + \varphi_k(D_x) + \varphi_{k+1}(D_x), \) \(k \in \mathbb{N}_0, \) and \(\varphi_{-1}(D_x) = 0. \) On the other hand, \(\omega_p(t, f_k) \leq 2\|f_k\|_{L^p(\mathbb{R}^n)} \) and \(f = \sum_{k=0}^\infty f_k. \) Therefore

\[
2^{j} \omega_p(2^{-j}; f) \leq C \left(\sum_{j=0}^\infty 2^{sj} \min(1, 2^{-j+k}) \|\tilde{\varphi}_k(D_x) f_k\|_{L^p(\mathbb{R}^n)} \right)
\]

\[
\leq C \left(\sum_{j=0}^\infty 2^{(j-k)} \min(1, 2^{-j+k}) 2^{sk} \|\varphi_k(D_x) f_k\|_{L^p(\mathbb{R}^n)} \right).
\]

Now, defining \(a_j = C 2^{sj} \min(1, 2^{-j}), \) \(j \in \mathbb{Z}, b_j = 2^{sj} \|\varphi_k(D_x) f_j\|_{L^p(\mathbb{R}^n)} \) if \(j \geq 0 \) and \(b_j = 0 \) else, we see that \(2^{sj} \omega_p(2^{-j}; f) \) \(\leq (a * b)_j, \) where

\[
(a * b)_j = \sum_{k \in \mathbb{Z}} a_{j-k} b_k
\]

is the convolution of two sequences. Hence

\[
\left(\sum_{j=0}^\infty 2^{sj} \omega_p(2^{-j}; f) \right)^\frac{1}{q} \leq \|a * b\|_{\ell^q(\mathbb{Z})} \leq \|a\|_{\ell^1(\mathbb{Z})}\|b\|_{\ell^q(\mathbb{Z})} \leq C \|f\|_{B_{p,q}(\mathbb{R}^n)},
\]

where \(a \in \ell^1(\mathbb{Z}) \) since \(s \in (0,1). \) Here we have used the discrete version of Young’s inequality \(\|a * b\|_{\ell^r} \leq \|a\|_{\ell^t}\|b\|_{\ell^r}, \) which can be proved in the same way as for the usual convolution using Hölder’s inequality.

In order to prove the first inequality in (4.29), we use that

\[
\varphi_j(D_x)f = \int_{\mathbb{R}^n} (f(x - 2^{-j}z) - f(x)) \psi(z) \, dz,
\]

cf. (4.10). Therefore

\[
\|\varphi_j(D_x)f\|_{L^p(\mathbb{R}^n)} \leq \int_{\mathbb{R}^n} |f(. - 2^{-j}z) - f|_{L^p(\mathbb{R}^n)} |\psi(z)| \, dz
\]

\[
\leq \int_{\mathbb{R}^n} \omega_p(2^{-j}|z|; f) |\psi(z)| \, dz.
\]
\[
\left(\sum_{j=1}^{\infty} 2^{sjq} \| \varphi_j (D_x) f \|_{L^p(\mathbb{R}^n)}^q \right)^{\frac{1}{q}} \\
\leq \int_{\mathbb{R}^n} \left(\sum_{j=1}^{\infty} 2^{sjq} \omega_p(2^{-j} |z|; f)^q \right)^{\frac{1}{q}} |\psi(z)| \, dz \\
\leq C \int_{\mathbb{R}^n} \left(\int_{0}^{\infty} \frac{\omega_p(t|z|; f)^q \, dt}{t^{sq} / t} \right)^{\frac{1}{q}} |z|^s |\psi(z)| \, dz \\
= C \left(\int_{0}^{\infty} \frac{\omega_p(t; f)^q \, dt}{t^{sq} / t} \right)^{\frac{1}{q}} \int_{\mathbb{R}^n} |z|^s |\psi(z)| \, dz,
\]

where we can estimate \(\sum_{j=0}^{\infty} 2^{sjq} \omega_p(2^{-j} |z|; f)^q \) by the corresponding integral by the same arguments as in the beginning of the proof. Finally, \(\| \varphi_0 (D_x) f \|_{L^p(\mathbb{R}^n)} \leq C \| f \|_{L^p(\mathbb{R}^n)} \), which finishes the proof. \[\blacksquare\]