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Abstract

Let D be the Dirac operator on a compact spin manifold M . Assume that 0 is
in the spectrum of D. We prove the existence of a lower bound on the first positive
eigenvalue of D depending only on the spin structure and the conformal type.
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1 Introduction

A central problem in spectral geometry is to find estimates for small eigenvalues of the
classical elliptic differential operators on compact Riemannian manifolds. Among the most
important are the Laplace operator, the Yamabe operator and the Dirac operator. On an
n-dimensional manifold , n ≥ 3, the Yamabe operator of the Riemannian manifold (M, g)
is defined as

Yg := 4
n− 1

n− 2
∆g + scalg.

This operator plays a crucial role in the solution of the Yamabe problem, the problem
of finding a metric of constant scalar curvature in a given conformal class [g0] on the
manifold M (see [LP87] for a good overview). Yamabe observed that the metric g ∈ [g0]
has constant scalar curvature if and only if g is a critical point of the functional

F(g) :=

∫
M scalgdvolg

(vol(M, g))(n−2)/n
,
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viewed as a functional on the metrics conformal to [g0].

This functional is bounded from below, its infimum is called the Yamabe number

µ(M, [g0]) := inf
g∈[g0]

F(g).

If (Mn, [g0]) is not conformal to the sphere with its standard conformal structure (Sn, gst),
then Aubin [Aub76] and Schoen [Sch84] have proven that

µ(M, [g0]) < µ(Sn, [gst]). (1.1)

This estimate was the last step in solving the Yamabe problem, i. e. in showing that there
actually is a metric of constant scalar curvature in each conformal class.

It is easy to see that the Yamabe number µ(M, [g0]) can also be defined in terms of the
first eigenvalue λY1 (g) of the Yamabe operator Yg:

µ(M, [g0]) = inf
g∈[g0]

(
λY1 (g) · vol(M, g))2/n

)
.

In this paper we will study a similar infimum for D2, the square of the Dirac operator.
We will show that a lower bound by Lott for the first eigenvalue of D2 generalizes to the
first positive one, if D2 has a kernel. In particular, we will obtain an estimate for the
first positive eigenvalue of D2 that only depends on the conformal structure and the spin
structure.

More explicitely, let us fix a spin structure σ and a conformal class [g0] on a connected
closed oriented spin manifold M of dimension n ≥ 2. For a metric g conformal to g0, let
λk(g, σ) be the k-th eigenvalue of the square of the Dirac operator on (M, g, σ). Recall
that for g ∈ [g0] we have λk(g, σ) = 0 if and only if λk(g

0, σ) = 0.

We set
Qk(M, [g0], σ) := inf

g∈[g0]

{
λk(g, σ) · vol(M, g)2/n

}
.

For n ≥ 3 and under the condition that the Yamabe number µ(M, [g0]) is positive, Ous-
sama Hijazi [Hij86, Hij91] established a relation of Q1 with the Yamabe number. He
proved

Q1(M, [g0], σ) ≥
n

4(n− 1)
µ(M, [g0]). (1.2)

For the sphere Sn with its standard conformal structure he showed equality in equa-
tion (1.2) and the infimum in the definition of Q1 is attained for constant sectional cur-
vature metrics on Sn.

Inequality (1.2) has been extended by Christian Bär [Bär92] to the case n = 2, i. e. he
proved

Q1(S
2) = 4π
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for the unique spin structure and the unique conformal class on S2 and equality holds for
the spheres of constant Gauss curvature.

John Lott [Lot86] proved that if the Dirac operator is invertible, then

Q1(M, [g0], σ) > 0.

In contrast to Hijazi’s inequality, this result even holds if the Yamabe number is zero or
negative.

In the present article we will extend Lott’s result to the case that D is not invertible, i.e.
that it has a nontrivial kernel.

THEOREM 2.3. Let D be the Dirac operator on (M, g0, σ) and let h := dimkerD. Then

Qh+1(M, [g0], σ) := inf
g∈[g0]

{
λh+1(g, σ) · vol(M, g)2/n

}
> 0.

It is still an open problem to find explicit lower bounds for Qh+1 for the case h > 0 and
for the case µ(M, [g0]) ≤ 0 in terms of “nice” geometric data.

In Section 3 we establish for n ≥ 3 and for n = 2, h = 0 an inequality which is similiar to
inequality (1.1):

Qh+1(M, [g0], σ) ≤ Q1(S
n, [gst])

For proving the inequality, we construct a conformal blow-up of a sphere in a small neigh-
borhood of a given point. Unfortunately, it is not known to us, whether we can obtain a
strict inequality in the case that (M, [g0]) is not conformal to (Sn, [gst]).

Ackowledgement. The present paper was written while the author enjoyed the hopsi-
tality of the Graduate School of the City University New York. Many thanks to Edgar
Feldman for many stimulating discussions about the subject and several ideas for future
work. The author also wants to thank Christian Bär, Jozef Dodziuk and John Lott.

2 The estimate

Let (M, g0) be a compact connected oriented Riemannian manifold with a fixed spin
structure σ.

For any smooth function f : M → R
+ we set

gf := f2 · g0.

Hence, in our notation g1 = g0. Let Df be the Dirac operator associated to the metric gf
and the spin structure σ. The spectrum of D2

f is discrete and non-negative and will be
written as

λ1(gf , σ) ≤ λ2(gf , σ) ≤ · · · ,
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where each eigenvalue appears as many times as its multiplicity.

The following transformation formula describes how the Dirac operators for conformally
equivalent metrics are related. Σ(M, g, σ) denotes the spinor bundle of (M, g, σ).

PROPOSITION 2.1 ([Hit74, Hij86]). There is an isomorphism of vector bundles
F : Σ(M, g0, σ) → Σ(M, gf , σ) which is a fiberwise isometry such that

Df (F (Ψ)) = F
(
f−

n+1
2 D1f

n−1
2 Ψ

)
.

As a corollary the dimension h := dimkerDf of the kernel of the Dirac operator is invariant
under conformal changes of the metric. However, it does depend on the choice of spin
structure.

More explicitly

Ψ ∈ kerD1 ⇔ f−
n−1

2 F (Ψ) ∈ kerDf .

Now let Cf be the orthogonal complement to kerDf ⊂ L2(M, gf ,ΣM). Set C∗
f := Cf−{0}.

This orthogonal complement also transforms naturally, but clearly with another power
of f .

Ψ ∈ C1 ⇔ f−
n+1

2 F (Ψ) ∈ Cf .

In order to shorten our notation we write

Qk(M, [g0], σ) := inf
g∈[g0]

{
λk(g, σ) · vol(M, g)2/n

}
.

THEOREM 2.2 ([Lot86, Prop. 1]). If dimkerD1 = 0, then Q1(M, [g0], σ) > 0.

We will generalize this theorem to

THEOREM 2.3. Let (M, g0, σ) be any compact Riemannian spin manifold and h :=
dimkerD1. Then

Qh+1(M, [g0], σ) > 0.

In other words: the theorem states that the first positive eigenvalue of the Dirac operator
is uniformly bounded from below in the set of all metrics g ∈ [g0] with vol(M, g) = 1.

Remark. The corresponding statement for the Laplacian on functions is false. There is
a sequence of metrics (gi) in [g0], vol(M, gi) = 1 such that the first positive eigenvalue
λ∆

1 (gi) of the Laplacian on functions with respect to gi tends to zero.

For the proof of Theorem 2.3 we follow the arguments in [Lot86]. The proof splits into
two propositions. We will write ‖ϕ‖p for the Lp-norm of the spinor ϕ on (M, g0, σ).

4



PROPOSITION 2.4. For the first positive eigenvalue we have the following bound:

Qh+1(M, [g0], σ) = inf
ϕ∈C∗

1

‖ϕ‖4
2n/(n+1)

|
∫
〈ϕ, |D1|−1ϕ〉dvol1|

2 .

PROPOSITION 2.5. The right hand side of the above formula is positive.

inf
ϕ∈C∗

1

‖ϕ‖4
2n/(n+1)

|
∫
〈ϕ, |D1|−1ϕ〉dvol1|

2 > 0.

Proof of Proposition 2.4. We transform, substituting ψ = f−
n+1

2 F (ϕ)

λ
−(1/2)
h+1 (gf , σ) = sup

ψ∈C∗

f

∣∣∣
∫
〈ψ,D−1

f ψ〉dvolf
∣∣∣

∫
〈ψ,ψ〉dvolf

= sup
ϕ∈C∗

1

∣∣∣
∫
〈f−

n+1
2 F (ϕ), D−1

f f−
n+1
2 F (ϕ)〉dvolf

∣∣∣
∫
〈f−

n+1
2 F (ϕ), f−

n+1
2 F (ϕ)〉dvolf

= sup
ϕ∈C∗

1

∣∣∣
∫
〈f−

n+1
2 F (ϕ), f−

n−1
2 F (D−1

1 ϕ)〉dvolf
∣∣∣

∫
〈f−

n+1
2 F (ϕ), f−

n+1
2 F (ϕ)〉dvolf

= sup
ϕ∈C∗

1

∣∣∣
∫
〈ϕ,D−1

1 ϕ〉dvol1
∣∣∣

∫
f−1〈ϕ,ϕ〉dvol1

= sup
ϕ∈C∗

1

∣∣∫ 〈ϕ, |D1|
−1ϕ〉dvol1

∣∣
∫
f−1〈ϕ,ϕ〉dvol1

.

The Hölder inequality yields

∫
|ϕ|

2n
n+1 dvol1 =

∫ (
|ϕ|

2n
n+1 f−

n
n+1

)
f

n
n+1 dvol1

≤

(∫
|ϕ|2f−1 dvol1

) n
n+1

(∫
fn dvol1

) 1
n+1

=

(∫
|ϕ|2f−1 dvol1

) n
n+1

vol(M, gf )
1

n+1 .

with equality if and only f = c · |ϕ|
2

n+1 or ϕ ≡ 0. Therefore

inf
f∈C∞(M,

�
+)

(
vol(M, gf )

1/n ·

∫
f−1〈ϕ,ϕ〉dvol1

)
≥ ‖ϕ‖2

2n/(n+1) (2.6)

for any spinor ϕ.
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Combining these two expressions we obtain

Qh+1(M, [g0], σ) = inf
f∈C∞(M,

�
+)

inf
ϕ∈C∗

1

vol(M, gf )
2/n ·

(∫
f−1〈ϕ,ϕ〉dvol1

)2

|
∫
〈ϕ, |D1|−1ϕ〉dvol1|

2

= inf
ϕ∈C∗

1

inf
f∈C∞(M,

�
+)

vol(M, gf )
2/n ·

(∫
f−1〈ϕ,ϕ〉dvol1

)2

|
∫
〈ϕ, |D1|−1ϕ〉dvol1|

2

≥ inf
ϕ∈C∗

1

‖ϕ‖4
2n/(n+1)

|
∫
〈ϕ, |D1|−1ϕ〉dvol1|

2 . (2.7)

It remains to show that we have equality in (2.7). It will be sufficient to prove equality in
(2.6).

If ϕ is nowhere vanishing, we can evaluate the integral in (2.6) for f = |ϕ|2/(n+1) and
we see that (2.6) is actually an equality. For the case that ϕ vanishes somewhere this
argument has to be slightly modified: Choose smooth functions fk : M → R

+ such that

∥∥∥fk − max{1/k, |ϕ|2/(n+1)}
∥∥∥
C0

< e−k.

We conclude

vol(M, gfk
)1/n ·

∫
f−1
k 〈ϕ,ϕ〉dvol1 →

(∫
|ϕ|2n/(n+1)

)1/n

·

(∫
|ϕ|2n/(n+1)

)
= ‖ϕ‖2

2n/(n+1),

and therefore we have equality in (2.6) which implies equality in (2.7). 2

Proof of Proposition 2.5. We have to prove the boundedness of the map

H : C1 → L2(ΣM) (2.8)

ϕ 7→ |D1|
−1/2ϕ,

where C1 carries the L2n/(n+1)-topology.

Let PH be the projection operator from L2(ΣM) to the kernel of D1. Clearly PH is
an infinitely smoothing operator. Hence D1 + PH is an invertible operator on L2(ΣM).

Trivially (D1 + PH)−1|C∗

1
=

(
D1|C∗

1

)−1
. The symbols of D1 and D1 + PH are equal,

therefore D1 +PH is an elliptic pseudodifferential operator of order 1. According to Seeley

[See67] |D1 + PH |
−1/2 =

(
(D1 +PH)2

)−1/4
is a pseudodifferential operator of order −1/2.

Denote the connection Laplacian on ΣM by ∇∗∇. Then (∇∗∇ + Id)1/4 |D1 + PH |
−1/2 is

a zero order pseudodifferential operator, and hence [Tay81, XI, Theorem 2.2] a bounded
operator Lp(ΣM) → Lp(ΣM) for any p ∈ ]1,∞[, in particular for p = 2n/(n+ 1).

6



In other words, the map

A : L2n/(n+1)(ΣM) → W
1/2
2n/(n+1)(ΣM) (2.9)

ϕ 7→ |D1 + PH |
−1/2ϕ,

is a bounded operator. Here W k
p (ΣM) is the Sobolev space of sections which are Lp and

whose derivatives up to order k are also Lp. The Sobolev embedding theorem states that

W
1/2
2n/(n+1)(ΣM) embeds into L2(ΣM). Thus A is a bounded operator L2n/(n+1)(ΣM) →

L2(ΣM) extending H. 2

Note that we are in the boundary case of the Sobolev embedding theorem, therefore the
embedding is not compact.

Remark. A variation of Proposition 2.4 is still valid if we replace the Dirac operator Df

by another elliptic differential operator Tf of order j ∈ N with the following transformation
formula

Tf = f−
n+j
2 T1f

n−j
2 . (2.10)

This transformation formula holds, for example, for the Yamabe operator by setting j = 2.

For such a Tf the formula analoguous to Proposition 2.4 holds

Qh+1(M, [g0], Tf ) = inf
ϕ∈C∗

1

‖ϕ‖4
2n/(n+j)

|
∫
〈ϕ, |T1|−1ϕ〉dvol1|

2 .

The proofs runs completely analogous as for the Dirac operator.

On the other hand Proposition 2.5 is valid for j = 1, . . . , n− 1, hence Theorem 2.3 is also
true for any operator T satisfying (2.10) with j = 1, . . . , n− 1.

In contrast to this, for j = n the analogue of Proposition 2.5 is false. This can be easily
seen by studying the Yamabe operator on surfaces. On surfaces the Yamabe operator
coincides with the Laplacian on functions (see the previous remark).

3 An upper bound for Qh+1

THEOREM 3.1. Let gst be the standard metric on Sn, n = dimM ≥ 3. Then

Qh+1(M, [g0], σ) ≤ Q1(S
n, [gst]) =

n2

4
ω2/n
n

with ωn := vol(Sn, gst) =
(

2π(n+1)/2

Γ((n+1)/2)

)
.
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THEOREM 3.2. Let M be a compact surface. Let gst be the standard metric on S2. Then

Q1(M, [g0], σ) ≤ Q1(S
2, [gst]) = 4π.

Remark. If M is a compact surface of genus ≥ 1, then (M, g0, σ) may have harmonic
spinors, i. e. h ≥ 1. In this case it is still unknown whether Qh+1(M, [g0], σ) ≤ 4π.

The proofs of the two theorems run very similarly. At first, we want to give a short outline
of the proof. For n ≥ 3, we want to construct a metric ĝ in the conformal class [g0] that
satisfies

λh+1(ĝ, σ) · vol(M, ĝ)2/n ≤ Q1(S
n, [gst]) + ε.

We construct such a metric by blowing up the metric in a small neighborhood of a given
point. Near this given point, the blown-up metric is C 1-close to a round sphere with a
small disk removed. We construct a test spinor with support in the blown-up part and
whose Rayleigh quotient is close to the first eigenvalue of the square of the Dirac operator
on the sphere. If n ≥ 3, then we will finally prove that this test spinor is almost orthogonal
to the kernel of the Dirac operator.

We start the proof with the following proposition that constructs a suitable test spinor on
the round sphere.

PROPOSITION 3.3. Let Sn carry the standard metric gst. Fix a point p on the sphere Sn.
For any α > 0 there is a nontrivial spinor Ψ on the sphere Sn vanishing on a small
neigborhood U of p and satisfying

‖DΨ‖L2 ≤
(n

2
+ α

)
‖Ψ‖L2 . (3.4)

Proof of the proposition. Recall that the spinor bundle of Sn is trivialized by 2[n/2]

Killing spinors with the Killing constant 1/2. It is also trivialized by 2[n/2] Killing spinors
with the Killing constant −1/2. Killing spinors with Killing constant ±1/2 are eigenspinors
with eigenvalue ±n/2.

Pick Ψ+
τ and Ψ−

τ a pair of Killing spinors with Killing constants 1/2 and −1/2 respectively
and assume that for a given p ∈ Sn and for a given τ 6= 0, τ ∈ Σp(S

n), we have Ψ+
τ (p) =

Ψ−
τ (p) = τ . Define

Ψ0 := Ψ+
τ − Ψ−

τ .

Let ρ : [0,∞[ → [0, 1] be a smooth function with ρ ≡ 0 in a neighborhood of 0, ρ ≡ 1 in a
neighborhood of [1,∞[ and 0 ≤ ρ′ ≤ 2. For 0 ≤ δ < ε we set

ρδ,ε(x) = ρ

(
d(x, p) − δ

ε− δ

)
.

Then |gradρδ,ε| ≤
2
ε−δ .
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εδ

1

d(x, p)

ρδ,ε(x)

For sufficiently small ε > 0
Ψ(x) := ρδ,ε(x)Ψ0(x)

defines a smooth spinor vanishing in a neighborhood of p. We calculate

∇XΨ = ρδ,ε · (∇XΨ0) +X(ρδ,ε) · Ψ0

DΨ = ρδ,ε · (DΨ0) + γ(grad(ρδ,ε))Ψ0.

Here γ denotes Clifford multiplication.

For the L2-norms we have the triangle inequality.

‖DΨ‖ ≤ ‖ρδ,εDΨ0‖ + ‖γ(gradρδ,ε)Ψ0‖. (3.5)

We use
∫
M 〈Ψ+

σ ,Ψ
−
σ 〉 = 0 which implies that DΨ0 = (n/2)Ψ+

σ + (n/2)Ψ−
σ has the same

L2-norm as (n/2)Ψ0 = (n/2)Ψ+
σ − (n/2)Ψ−

σ . Hence, for small ε > 0 the first term of (3.5)
is bounded as follows:

‖ρδ,εDΨ0‖ ≤ ‖DΨ0‖ =
n

2
‖Ψ0‖ ≤

(
n

2
+
α

2

)
‖Ψ‖.

We set Cε := max
{
|∇Ψ0(y)|

∣∣∣ d(y, p) ≤ ε
}
. Then |Ψ0(x)| ≤ Cε · d(x, p) for d(x, p) ≤ ε.

Obviously Cε is an increasing function in ε.

Using |gradρδ,ε| ≤
2
ε−δ we obtain an upper bound for the second term of (3.5).

‖γ(gradρδ,ε)Ψ0‖ ≤
2ε

ε− δ
Cε vol(Bε(p)) ≤

α

2
‖Ψ‖

for sufficiently small ε > 0 and δ < ε/2. 2

COROLLARY 3.6. For any α > 0 there is ρ > 0 such that the following holds: If a closed
Riemannian spin manifold (N,h) contains an open subset Ω such that (Ω, g) is isometric
to (Sn −Bρ(p), gst), then (N,h) carries a spinor Ψ supported in Ω satisfying

‖DΨ‖L2 ≤
(n

2
+ α

)
‖Ψ‖L2 .

Note that this corollary holds for any spin structure on N . The restriction of any spin
structure to Ω is unique, as H1(Ω,Z2) = {0}.
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Proof. Take the spinor Ψ on Sn provided by Proposition 3.3. We pull it back to Ω and
obtain a compactly supported spinor. We extend it by zero to a spinor on (N,h). This
spinor clearly satisfies the above properties. 2

COROLLARY 3.7. For any α > 0 there are ρ, κ > 0 such that the following holds:
If a closed Riemannian spin manifold (N,h) contains an open subset Ω diffeomorphic to
the open disk Sn − Bρ(p) and if the distance of the metric h|Ω to the standard metric on

the sphere gst is bounded by κ in the C1
(
Sn −Bρ(p), gst

)
-topology, then (N,h) carries a

spinor Ψ supported in Ω satisfying

‖DΨ‖L2 ≤
(n

2
+ α

)
‖Ψ‖L2 .

Proof. We identify Ω with Sn −Bρ(p). The metrics on Ω satisfy ‖h− gst‖C1(Ω,gst) ≤ κ.
If κ is sufficiently small, then there is an isomorphism S : Σ(Ω, h) → Σ(Ω, gst) between
the spinor bundles satisfying

(a) S is fiberwise an isometry,

(b) for any spinor ϕ ∈ Γ(Σ(Ω, h)) we have pointwise

|S(Dhϕ) −DgstS(ϕ)| ≤ κC|ϕ|

where C only depends on the dimension n.

(See for example the claim in the proof of Proposition 7.1 in [Bär96]).

Hence, the corollary immediately follows from the previous one. 2

PROPOSITION 3.8. For any spin manifold (M, g0, σ) and any κ, ρ, ν, δ > 0 there is a
metric ĝ conformal to g0 satisfying

(1) (M, ĝ) contains an open subset Ω such that (Ω, ĝ) is C1-close to (Sn − Bρ(p), gst).
More precisely, there is a diffeomorphism i : Sn −Bρ(p) → Ω such that

‖i∗ĝ − gst‖C1(Sn−Bρ(p),gst)
≤ κ.

(2) vol(M, ĝ) ≤ vol(Ω, ĝ) + ν.

(3) If n := dimM ≥ 3, then any harmonic spinor ϕ̂ on (M, ĝ, σ) satisfies

‖ϕ̂|Ω‖L2(Ω,̂g) ≤ δ‖ϕ̂‖L2(M,̂g)
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Proof of the Proposition. At first, in (A), we will prove the proposition under the
additional assumption that the metric g0 is euclidean in the neighborhood of a point
q ∈ M . Later on, in (B), we will show that the proposition remains true even if we drop
this condition.

We fix the following notation: Br(q) is the ball around q of radius r in M with respect to
the metric g0. Similarly for p ∈ Sn we denote by Br(p) the ball of radius r around p with
respect to the standard metric gst on Sn.

(A) We assume that Br(q) is flat for a small r > 0. We will define a suitable smooth
function f and we define ĝ := f2g0. This conformal change of metric will have the
following properties:

(i) On M1 := M − Br(q) we have ĝ|M1
= ζ2g0|M1

, where ζ is a small positive
constant,

(ii) (Ω := Br/2(q), ĝ|Ω) is isometric to (Sn −Brζ(p), gst), p ∈ S
n.

(iii) On the annular region (our connecting tube) T := Br(q) − Br/2(q), we define
f2 by a simple smooth interpolation of the two boundary factors.

We want to choose f such that its restriction to the ball Br(q) only depends on
d(x, q)2.

M1 T

Ω

On Br/2(q) we define

fη(x) :=
η

1 + η2
(
d(x,q)

2

)2 .

(Br/2(q), f
2
η g

0) has constant sectional curvature 1. Thus rotational symmetry implies
that (Br/2(q), f

2
η g

0) is isometric to a truncated sphere. For sufficiently small r, ζ > 0,
let η > 0 be the largest solution of the following quadratic equation in η:

η

1 + η2
(
r
4

)2 = 2
sin(rζ)

r
.
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Hence (Br/2(q), f
2
η g

0) is isometric to Sn −Brζ(p), in particular

f |∂Br/2(q)
≡ 2

sin(rζ)

r
< 2.

We set f := fη on Br/2(q) and f := ζ on M1 = M − Br(q). We then interpolate f
smoothly on T with ζ ≤ f |T ≤ 2ζ.

Obviously

η = max f ≤
8

r sin(rζ)
<

9

r2ζ

for small r, ζ > 0.

If we choose r and ζ to be sufficiently small, we see that properties (1) and (2) of the
proposition hold.

In order to prove (3) let

K := sup
{
|ϕ(x)|

∣∣∣ x ∈M,ϕ ∈ kerD1, ‖ϕ‖L2(M,g0) = 1
}
.

K is finite. Let ϕ̂ = f−
n−1

2 F (ϕ) be a harmonic spinor.

‖ϕ̂|Ω‖L2(Ω,̂g) =

∣∣∣∣
∫

Ω
f−n+1|F (ϕ)|2 fn dvol0g

∣∣∣∣
1/2

= ‖
√
fϕ|Ω‖L2(Ω,g0)

≤
√

max fK‖ϕ‖L2(M,g0)

√
vol(Ω, g0)

≤

√
max f

min f
K‖ϕ̂‖L2(M,̂g)

√
vol(Ω, g0)

≤
3

rζ
K

√
ωn−1

n

(
r

2

)n
2

‖ϕ̂‖L2(M,̂g)

≤ K ′ r
n
2
−1

ζ
‖ϕ̂‖L2(M,̂g)

for K ′ := 3 · 2−n/2K
√
ωn−1/n. Therefore for n ≥ 3 and any ζ > 0 we can choose a

small r > 0 such that (3) of the proposition holds. Hence we have proven the theorem
under the assumption that g0 is euclidean in the neighborhood of a point q ∈M .

(B) Now we prove the general case. We write the metric g0 in Gaussian normal coordinates
centered in q defined on Br(q)

g0
ij(x) = δij +

1

3

∑

kl

Rikjl(0)x
kxl +O(‖x‖3). (3.9)
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Let χ : M → [0, 1] be a C∞-function with suppχ ⊂ Br(q) and χ|U ≡ 1 in a small
neighborhood U of q. The arguments in (A) show that for the metric gχ given by

gχij = χδij + (1 − χ)g0
ij on Br(p)

gχ = g0 otherwise

there is a blow-up function fχ : M → R
+ such that (1) and (2) hold for ĝχ := f2

χg
χ.

We define ĝ(χ) := f2
χg

0. It can be checked that for a suitable choice of χ properties

(1) and (2) also hold for ĝ(χ) with κ, ρ and ν replaced by 2κ, 2ρ and 2ν.

The proof of (3) in (A) carries over to the general case with some minor modifications
and a slightly bigger constant K ′.

2

Proof of Theorem 3.1. We will prove that the inequality

λh+1(M, ĝ, σ) vol(M, ĝ)2/n ≤ λ1(S
n, gst)︸ ︷︷ ︸

n2/4

ω2/n
n + ε (3.10)

holds for the metric ĝ given by Proposition 3.8, where ε ≥ 0 is a small term depending on
κ, ρ, ν and δ.

Corollary 3.7 states that there is a spinor Ψ on (M, ĝ, σ) satisfying

‖DΨ‖L2 ≤ (
n

2
+ α) ‖Ψ‖L2 .

Because Ψ has support in Ω we obtain the following inequality for any harmonic spinor ϕ̂.

(Ψ, ϕ̂)M,̂g ≤ ‖Ψ‖L2(Ω,̂g)‖ϕ̂‖L2(Ω,̂g)

≤ δ‖Ψ‖L2(M,̂g)‖ϕ̂‖L2(M,̂g)

We apply the following trivial lemma for A = D2, λ =
(
n
2 + α

)2
and v = Ψ.

LEMMA 3.11. Let A be a nonnegative self-adjoint operator on a Hilbert space H with
pure point spectrum. Assume that a vector v ∈ H satisfies 〈Av, v〉 ≤ λ〈v, v〉 and 〈v, w〉 ≤
δ‖v‖‖w‖ for any w ∈ kerA. Then there is a positive eigenvalue λ1 of A satisfying

λ1 ≤
λ

1 − δ2
.

Hence, the first positive eigenvalue of D2 on (M, ĝ) satisfies

λh+1(ĝ, σ) ≤

(n
2 + α

)2

1 − δ2
.

13



Because vol(M, ĝ) is bounded by ωn = vol(Sn, gst) plus a small constant ν we obtain
equation (3.10).

According to the result by Hijazi mentionned in the introduction (1.2)

Q1(S
n, [gst]) = λ1(S

n, gst)ω
2/n
n =

n2

4
ω2/n
n . 2

The proof of Theorem 3.2 runs similarly. However, the argument showing that the test
spinor is almost orthogonal to the space of harmonic spinors does not hold. Therefore we
obtain the weaker result for dimM = 2.
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