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Abstract

We prove upper and lower bounds for the eigenvalues of the Dirac operator and
the Laplace operator on 2-dimensional tori. In particluar we give a lower bound
for the first eigenvalue of the Dirac operator for non-trivial spin structures. It is the
only explicit estimate for eigenvalues of the Dirac operator known so far that uses
information about the spin structure.

As a corollary we obtain lower bounds for the Willmore functional of a torus
embedded ints?.

In the final section we compare Dirac spectra for two different spin structures on
an arbitrary Riemannian spin manifold.
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1 Introduction

The Dirac operator is an elliptic differential operator of order one playing an important
role both in modern physics and in mathematics. In physics, particles with non-integer
spin, so-called fermions, are described by the Dirac equation. Let us assume that the
space-timeV/ is stationaryM = R x N and that the spatial componeNtis compact

and admits a spin structure. Then stationary fermions have a wave function of the form

U(t,z) = 'y (z) teR, xeN
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whereU, is an eigenspinor ab%,, the square of the Dirac operator 8 that belongs to
the eigenvalue . The energy and the eigenvalug are related via the formula

E?=)\+m?

with m being the rest mass of the particle. Knowing the spectrum therefore means know-
ing possible energies. The first eigenvalue is of particular interest as it characterizes the
energy of the state of lowest energy — the vacuum. On an arbitrary Riemannian mani-
fold, exact calculation of the spectrum is impossible, thus one tries try to find bounds for
the eigenvalues.

Bounding eigenvalues of the Dirac operator on a compact Riemannian maniieldiso

an important tool in differential geometry and topologyMfis spin and carries a metric
whose scalar curvature is greater than or equa te 0 at every point, then with the help

of the Schodinger-Lichnerowicz formula it is easy to prove that the first eigenvalue

of D? is bounded from below by, /4. On the other hand Atiyah-Singer index theorem
tells us that positivity of the first eigenvalue Bf on a compact Riemannian manifald
implies that theA-genus vanishes. Therefore any compact spin manifold admitting a
positive scalar curvature metric has vanishibgenus.

Lower bounds for Dirac eigenvalues can also be applied to problems in classical differen-
tial geometry. For any immersiof : N — R”" of a compact manifoldV, Christian Bir

/N |H|* > pyarea(N). (1)

Here N carries the induced metrig; is the first eigenvalue of the square of a twisted
Dirac operator and{ is the mean curvature vector field 6fNV) C R™. If N is the 2-
dimensional toru§™, then the left hand side of:(1) is the so-called Willmore functional.
The Willmore conjecture states

/2 \H? > 272
T

for any immersiont” : T? — R". This conjecture first appeared in [Wil65] for the
casen = 3. In the meantime the conjecture has been verified for several classes of
immersions, for example for immersions with rotational symmetry JLS84] or for non-

Now assume for simplicity thak’ is an embedding an#(7?) c S* C R*. In this case,

the twisting bundle is trivial, ang; is the first eigenvalue of the square of the classical
Dirac operator associated to a non-trivial spin structure. Our goal is to use inequality (1)
in order to derive lower bounds for the Willmore functional. If the induced metri¢dn

is flat, the spectrum oD has been explicitely calculated [Fri84] and we obtain a lower
bound for[,. | H|?.



Obtaining lower eigenvalue estimates for non-flat tori is much harder. John_Lott [Lot86,
Proposition 1] proved the existence of a const@pgy; > 0 depending on the spin-
conformal type of the torus such that

marea > C ot 2)

Unfortunately, Lott's article does not give an explicit value and it seems hard to express
such a constant’ ¢ in terms of meaningful geometric data. Lott's estimate uses the
LP-boundedness of zero order pseudo-differential operators and Sobolev embedding the-
orems, hence corresponding constants are hard to interpret without using explicit coordi-
nates.

______

an explicit lower bound foy; that uses information about the spin structure. All explicit
lower estimates known before did not use any information about the spin structure.

For general compact Riemannian manifolds the problem of finding such estimates is
rather difficult. It is not clear at all what kind of data from the spin structure could be
used in order to get an additional term in a lower eigenvalue estimate. Take for example a
compact manifold with non-vanishingrgenus. It hag, = 0 for any spin structure, thus

the contribution of the spin structure in the estimate has to vanish.

As the general case is hard to handle, most of the article will specialize to the 2-dimen-
sional torus7™. By the uniformization theorem any 2-dimensional torus is conformally
equivalent to a flat torus. We use this fact in order to control the geometry. An important,
but also very technical step for this is the estimate of the oscillation of the conformal
factor (Section}9). Although our main goal was to find lower estimates for the Dirac
eigenvalues, it turns out that this method gives upper and lower bounds for all eigenvalues
both of the Laplace operator and the Dirac operator and for any spin structure. We prove
different versions of the estimates. Theorem 2.2 for example states for the first eigenvalue
11 of the square of the Dirac operator

marea > Cammann® # 3

whereCammann > 0 is an explicit constant depending on the spin-conformal class and
r < 11is a curvature expression that satisfies- 1 if the metric is flat. This estimate is
sharp for any flat metric.

In view of Lott’s result (2), it is tempting to conjecture that we can drop the curvature
term, i. e.p;area > Cammann This is false however: we can prove by example at the
end of section 12 that for many spin-conformal structures the optimal constant in Lott’s
estimate is not attained by a flat torus.

In section' I2 we will prove some lower bounds for the Willmore functional that are
strongly related to our lower estimates of the Dirac eigenvalues. In particular we prove



for embeddingg™ — S? that under a curvature condition the Willmore functional con-
verges tooo if the spin-conformal type of the embedding converges to one end of the
spin-conformal moduli space (Corollary 12.5).

The results in this paper about the Willmore conjecture are strongly related to another

preprint of the author, JAMMOO]. The results of the present article are stronger near one
of the ends of the spin-conformal moduli space but they have other drawbacks. Namely,
they do not generalize easily to higher codimensions and they impose a restriction on the

spin-conformal class.

The structure of the article is as follows: In sectipn 2 we will state our spectral estimates
on 2-tori. Sections;3 t0 11 provide proofs of the statements in section 2. We then ap-
ply Theorem 9:1 once again and derive an application to the Willmore functional that is
related to our lower eigenvalue estimates.

Finally in section 13 we will prove a result for arbitrary spin manifolds Let M carry
two different spin structure$ and)’. The difference of these spin structures= 9 —

is an element inH' (M, Z,) = Homy(H,(M,Z),Z>). Assume thaly vanishes on the
torsion part ofd; (M, Z). We will define a normj|x||, -, the stable norm of. We prove
that the eigenvalue;);cz of the Dirac operator correspondingd@and the eigenvalues
(p)icz corresponding t@’ can be numbered so that

o0 = pil < 2m |9 = '] s -
If the spectrum is known fa# and if | p;| > 27 ||¢ — ¥'|| ;- for any: € Z, then this yields
a lower bound for any,.

At the end of the introduction we want to mention some other publications that treat the
interplay between spin structures and the spectrum of the Dirac operator. However, they
do not derive explicit eigenvalue bounds for generic metrics. We will restrict to the most

calculated the spectrum and thenvariants of flat Bieberbach manifolds. These spectra
also depend on the spin structure.



2 Main results

In this section we summarize our results about the spectra of Dirac and Laplace operators
on 2-tori.

The spectrum of the Dirac operator depends on the spin structure. At first, we recall some
important facts about spin structures and introduce some notation. Spin structures will be
discussed in more detail in sectign 4.

Let M be a compact orientable manifold with vanishing second Stiefel-Whitney class
we(TM) = 0. Such manifolds admit a spin structure. However, the spin structure is
not unique in general. The group! (M, Z,) acts freely and transitively on the set of
spin structureSpin(M), i.e. Gpin(M) is an affine space associated to the vector space
H*(M,Z). After fixing a spin structure and a Riemannian metricAddnwe can define

the spinor bundl&M — M and a Dirac operatad : I'(X M) — I'(XM).

We are mainly interested in the cas& = T2. The2-dimensional torug™ is spin. Be-
cause of# Gpin(T?) = #H'(T? Z,) = 4 there are 4 spin structures @4. There is
exactly one spin structure i@&pin(7?) for which0 lies in the spectrum ob, regardless

of the underlying metrigy. This spin structure will be callettivial (see section; 4 for
other characterizations). We will identify the trivial spin structure wita H'(77,Z,).

This identification yields an identification of the affine sp&ggn(72) with H* (772, Z).

On the other hand, we will identif§i ! (T2, Z,) with Homy(H, (T2, Z), Z,). Hence spin
structures orf™? are in a canonical one-to-one relation to such homomorphisms. Fre-
guently, we will use the termspin homomorphisirinstead of “spin structure” in order

to indicate that we regard the spin structure as an elemétiiny, (H, (72, Z), Zs).

If the torusT™? carries a flat metric, it is very helpful to write the torusR%/T with a
latticeT" = H,(7T?,7Z). We always assume th&?/T" carries the metric induced by the
Euclidean metric ofR?. LetT™* be the lattice dual t&'. Elementsy € Homy(T, Z,) are
represented by vectorse (1/2)I™* with the property

x(z) = (—1)%® Ve el
Note thaty determinesy only up to elements ifi™*.

We define the functiots : [0, 47| x [0, 0o[x]1, o[ X ]0, 0] — ]0, 00| by

1 (1—£>‘+L1 KN &Y
8 A st—ok BlK 8

S(K, K\ p,V) == % [f—ﬂ + %
for L > 0andS(0, K, p, V) :=0.
Let Area, be the area of7?, g).
THEOREM 2.1. Let(T?, g) be a Riemannian 2-torus with spin homomorphjsn€hoose
alatticeT" in R? with vol(R?/T") = 1 together with a conformal mag : R?/T" — (7%, g).
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Assume thatl*(y) is represented by € (1/2)I™. Let0 < ¢y < ¢; <l < ... be the
sequence of lengths &f + « (with multiplicities), and let(u; |¢ = 1,2,...) be the
spectrum ofD? on (T2, g, x).

Then
e—2oscu 42 Ef;l] < p; Area, < e205cu Y2 Ef;l]
B) 2
15,1172, < 4, then
oscu <8 (HKgHLl(T{g) , ]\KgHLP(T{g) Areagl—(l/p)’p’ o1 (T2, g)_z) (4)

with o1(T?2, g) := inf {length(3) | 8 € T — {0} }.

The numbew, (T?, g) is a conformal invariant of 7%, ¢) which will be calledcosystole

The most difficult step in the proof of this theorem is to find the estimate (4). This step
will be performed in Theorern 9.1. For proving the above theorem, we will use the explicit

the proof is the following proposition.

PROPOSITION 5.2. Let M be a compact manifold with two conformal metricandg =

e’"g. LetD and D be the corresponding Dirac operators with respect to a common spin
structure. We denote the eigenvaluesBfby 1, < pp < ... and the ones ob? by
< pg <...

Then

(; min e24(m
me

—_ ILLZ — ILLZ AT ? )=

In section’6 we will define a norm oA (72, Z,), the L?>-norm. This norm allows us to
derive explicit lower bounds for the first eigenvalug@fon72. This lower bound is non-
trivial if the spin structure is non-trivial. The cosystelg(T?, g) can also be expressed in
terms of thel?-norm

o1(T% g) == inf {||al| 2 |@ € H'(T* Zs), o #0}.
(see section; 6, in particular Proposition 6.1 (a)).

THEOREM 2.2. Let(7?, g) be a Riemannian 2-torus with spin homomorphjsmssume
that[| K| ;1 (72 5 < 47. Then the first eigenvalye of D* satisfies

4 2,
xb (2515 1oy [ Kallogrs g Areay 0P, p, 1 (T2, 9)2)

The equality is attained if and only dfis flat.

p1Area, >

Y
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From this theorem we will obtain two corollaries estimatjagin terms of thesystole
sysy, thespinning systolepin-sys and thenon-spinning systolaonspin-sys

sys,(T?,g) := inf {length{~) |~ is a non-contractible loop.
spin-sys(7?,g,x) := inf {length(y) |~ is aloop withy([y]) = —1.}
nonspin-sys(7T?, ¢g,x) := inf {length(y)|~ is a non-contractible loop witR([y]) = 1

and[v] is a primitive element i/, (T?,Z).}

An elementa € H,(T? 7Z) is calledprimitive if there are nok € N, k > 2, 3 €
H\(T* Z)witha =k - 3.

COROLLARY 2.3. Let (77, g) be a Riemannian 2-torus withon-trivial spin homomor-
phismy. Assume that K| ;. ,, < 4m. Then the first eigenvalye of D? satisfies

2 nonspin-sys(7? 2
,ulAreagZ > m p y?( 7g7 X)

= _ Ar '
exp (QS(HKgHLl(T2,g) ) HKQHLP(TQ,g) Areagl (l/p)7p7 sysl(;aQ?g)Q)

The equality is attained if and only dfis flat.

COROLLARY 2.4. Let (T2, g) be a Riemannian 2-torus withon-trivial spin homomor-
phismy. Assume that K| ;. , < 4m. Then the first eigenvalye of D? satisfies

’/T2

— Ar .
50 (1R, gy Bl Aresg 7. S

pSpin-sys(T?, g, x)* >
The equality is attained if and only if

(@) gisflat,i.e.(T?, g) is isometric taR?/T" for a suitable latticel”, and

(b) there are generators,, - for I statisfyingy; L 72, x(71) = 1 andx(vs) = —1.

Using Proposition 6:1 and the inequalities from section 10 the two corollaries immediately
follow from Theorem 2.:2.

We now turn to the Laplace operator and to the Dirac operator associated to a trivial spin
structure. We recall a well-known proposition that is the analogue of Proposition 5.2 for
the Laplacian on surfaces (section 5).

PROPOSITION 6.1. Let M be a compact 2-dimensional manifold with two conformal met-
rics g andg = e*“g. The eigenvalues of the Laplacian on functions corresponding to
andg will be denoted a® = \g < A\ < Xp...and0 = )y < \; < \y... respectively.

Then B
A miﬂr} e2um) < ), < \; max e24(™) Vi=1,2,....



Together with Proposition 7.1 and Theorem 9.1 we obtain

THEOREM 2.5. Let (T2, g) be a torus conformally equivalent ®*/T, vol(R?/T") = 1.
LetI™ be the lattice dual ta". Let0 < ¢/, < ¢; < {5 < ... be the sequence of lengths of
I, and let()\;|i = 0,1,2,...) be the spectrum of the Laplacian on functiong @4, g),
then

gm2oscu 42 E? < \; Area, < e20sct Y2 E?.

| Kgll 1 (r2 4 < 4m, then
oscu <S8 (HKgHLl(T2,g) ’ HKgHLp(TZ,g) Area,' (/7 p, Ul(TQag)_2) -

Note that this theorem also provides bounds for the Laplacian on forms: By Peuhear”
ality the spectrum on 2-forms is the same as the spectrum on functions, and the Laplacian
on 1-forms also has the same non-zero eigenvalues, but each with multiplicity two.

The theorem implies, in particular, a lower bound on the first positive eigenvalue.

THEOREM 2.6. Let (T2, g) be a Riemannian 2-torus. Assume thély[| 1 (72, < 4.
Then the first positive eigenvalue of the Laplacian on functions satisfies

472 01(T? g)*
50 (25 (1Ky sz g [Kollore,y Area =07, p, (12, 6)2)

M Area, >

The equality is attained if and only dfis flat.

COROLLARY 2.7. Let(7T?, g) be a Riemannian 2-torus. Assume &L [ 1 (2 ) < 4.
Then the first positive eigenvalue of the Laplacian on functions satisfies

47T2 5YSy (T27 9)2

— Ar .
eXp (zs(y‘KgHLl(T27g) ? HKQHLP(TQM(]) Areagl (l/p)’p’ ﬁ)

M Areaug2 >

The equality is attained if and only dfis flat.

Remark. Theorem 2.6 and Corollafy 2.7 also hold for the first positve eigenvalii# of
if the spin structure is trivial. Theorem 2.5 holds for the spectru4fif we double the
multiplicities.

The structure of the paper is as follows: In the following sections (sections 3—11) we will
prove our main results. In section;12, we will apply the inequalities in Proposition 9.1
in order to obtain a lower bound on the Willmore functional. Finally, in section 13 we
assume that a manifold of abitrary dimensioi 2 carries two spin structures. We derive
an upper bound for the spectra of the corresponding Dirac operators.



3 Overview

We want to obtain upper and lower bounds for the eigenvalues of the Dirac operator and
the Laplace operator on a Riemannian 2-tqfli% g).

The Clifford action of the volume element on spinors anticommutes with the Dirac opera-
tor D. Thus, the spectrum db is symmetric and is uniquely determined by the spectrum
of its squareD?. Therefore we will study the spectrum @f instead of the spectrum

of D. In the literatureD? is often called the Dirac Laplacian.

In order to prove bounds on eigenvalues we use the uniformization theorem which tells
us that we can writg asg = e?“g, with a real-valued function and a flat metrigy,. For

flat tori the spectrum of the Laplacian and the Dirac operator is known: the spectra can be
calculated in terms of the dual lattice correspondingité go).

We obtain bounds through the following steps.
(a) Comparison of the spectrum @2, g) and the spectrum ¢f™2, go) (Propositions 5:1
and:5.2).

(b) Introduction of certain spin-conformal invariants that contain information about the
dual lattice corresponding @2, o) (section’ ).

(c) The knowledge of spectra of flat tori (section 7).
(d) A bound oroscu = maxu — minu (Section:9).
(e) Derivation, in sectiom 710, of certain inequalities that are in a sense inverse to the

inequalities in Proposition 6.1 and contain a curvature term.

In section 111, we combine the inequalities and derive the main results.

4 Spin structures

The eigenvalues oD depend on the spin structures and we want to find estimates de-
pending on the spin structure. In this section we recall some important facts about spin
structures. Good references about spin structures are JLM89], [BG92] and [Swi93, sec-
tion I1]. We will define spin structures without fixing a Riemannian metric. This definition
will allow us to identify spin structures on diffeomorphic but not isometric manifolds (see
Proposition 5:2).

Let M be an oriented manifold of dimension> 2. The bundleGL* (M) of oriented
bases ovel is a principalGL ™" (n, R)-bundle. The fundamental group Gf.* (n, R) is
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Z for n = 2 andZ, for n > 3. ThereforeGL " (n, R) has a unique connected double
covering® : GL"(n,R) — GL*(n,R).

Definition. A spin structure on/ is a pair(éfﬂM),piwheredfﬂM) is a principal
GL*(n,R)-bundle overM andd is a double covering:L.* (M) — GL* (M) such that

GL*(M) x GL*(n,R) — GL*(M)
N\
19x© 19 M (5)
/!
GL*(M) x GL*(n,R) — GL*(M)

commutes. The horizontal arrows are given by the group action.

There is a spin structure al if and only if the second Stiefel-Whitney clagss (7'M)
vanishes. Such manifolds are callggn From now on we assume thaf is spin.

Two spin structure$éLv+(M),z9) arE((A}if(M),ﬁl) are identified if there is a fiber
preserving isomorphism of princip@L™ (n, R)-bundlesy : GL* (M) — (A}EIL(M) with
¥ =100

The set of all spin structurés}T’L(M), ) over M will be denoted bySpin(M). The set

Spin(M) has the structure of an affine space associated to the vector Bpate Z, ),
i.e. H'(M,Z,) acts freely and transitively o&pin(1)). We will describe this action:

pendix A]. Letw : P, — M be theZ,-bundle defined byy € H'(M,Z,). Let
(GL*(M), ") be a spin structure. The grod acts by deck-transformation both on
GL* (M) andP,. We define

GL{ (M) = (GL*(M) xus P)/Zs
whereZ, acts diagonally on the fiberwise product of the bundles. The map
9 xarm: GLY(M) xar Py — GLY(M) (A4, a) — 9(A)

is invariant under thé&,-action and therefore defines a map: (A}ET(M) — GLT(M)
compatible with{5). The action af maps(GL " (M), 9) to the spin structuréGL, (M), 9;).
This action is free and transitive [LM89 §i].

Now we fix a Riemannian metrigon M. This reduces our structure group fré* (n, R)
to SO(n). The bundle of positively oriented orthonormal baSex M, g) is a principal
SO(n)-bundle. Thespin groupis defined bySpin(n) := ©7!(SO(n)) and is the unique
connected double covering 80(n). A metric spin structuras a pair(Spin(M, g), 9)

10



where Spin(M, g) is a principalSpin(n)-bundle overM and is a double covering
Spin(M, g) — SAQ(M, g) satisfying a compatibility condition analogous b (5). For any
spin structuré GL ™" (M), 1) we obtain a metric spin structu(gpin (M, g),?’) by restric-
tion:
: 91 .
Spll’l(M, g) =1 (SO<M7 g)) V= 19|Spin(M,g)'
Via this restriction map, the set of metric spin structures is in a natural one-to-one corre-

Metric spin structures are used to define spinors and the Dirac operatoy, L&pin(n) —
SU(X,) be the complex spinor representationXyfin(n). This is a complex repre-
sentation of dimension™/2. It is irreducible forn odd. Forn even, it consists of

two irreducible components” and,, v : Spin(n) — SU(XE). The representa-
tion ~,, is not a pullback from a representation3#(»). The associated vector bundle
XM := Spin(M) x., ¥, is calledspinor bundleand its sections argpinors The Dirac
operator (sed [CLM89] for a definition) is an elliptic operator acting on the space of smooth
spinors.

Large parts of this article will deal with the cadé = T2. In this case many of our
definitions simplify. Letf : R? — T2 be a smooth covering map with deck transformation
groupZ? acting by translation. Then

mr:T? x GLT(2) — GL™(T?)
(f®),A) — (9uf(p),0yf(p))- A
yields a trivialization ofGL " (77?).
Dgﬂnition. Thetrivial spin structure oril™® (with respect tof) is the one given by ; :=
(GL*(T?),9) with
GL*(T?) :=T? x GL*(2) ¢ :=1s0 (id xO).

Consider the bijection

vy HY(T? Zy) — G&pin(T?), x +— x + 0y
The following proposition shows that does not depend on the choice fof This will
allow us to identifyH' (72, Z) andGpin(T?) via ¢;.

PROPOSITION 4.1. Let (GL™(T2),9) be a spin structure off2. Let x s be the element
in HY(T? Zy) = Homgz(H,(M,Z),Z,) with 1;(x;) = (GL*(T?),9). Fix a complex
structure.J onT'T".

Then for any non-contractible smooth embeddingS' — 7 the following conditions
are equivalent
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D) xs(le)) = 1.
(2) (¢,J(¢)) : S* — GLT(T?) lifts to GL*(T?) via .

Characterization (2) is independent from the choic¢,afharacterization (1) is indepen-
dent from the choice of. Therefore ; depends neither ofinor.J. The above proposition
is an immediate consequence of the following lemma.

LEMMA 4.2, Letc : S — R?/Z? be a non-contractible smooth embedding. Choose a
lift C:R — R2=C,i.e.C(t)/Z? = c(e*™) . Then

(1) the homology clask] € H,;(R?/Z? 7Z) is primitive, i.e. not a multiple of another
element inf; (R?/Z?, Z).

(2) the map _
U(C) . Sl N 5176271'# s C(t)

|C(t)]
has degre®.

Proof. The curvec can be lifted to the cylindeZ := R?/{[c]). The lift will be denoted
by ¢Z. Itis a simple closed curve generating(Z). By Jordan’s theorem about simple
closed curves ifik? we know that this curve divide® into two connected components
Z*t andZ~. Each of the components contains one end of the cylinder.

Let us assume that] is not primitive,i.e[c| = k-awithk € N, k > 2anda € H,(M,7Z)
primitive. The action of; on Z mapsZ™* to Z* andZ~ to Z~. Hence the image af is
mapped to itself. This contradicks> 2. Thus we have proven (1).

Now letc; : St — T2 be another embedding, homotopicdtoA suitable lift cZ of ¢,
divides Z* into a bounded and an unbounded part. The bounded parfhasdc? as
boundaries and has Euler characteristicTherefore the Gauss-Bonnet theorem for the
Euclidean metric or¥ yieldsv(c) = v(c¢;). Thus the lemma only has to be checked for
one representative in each primitive class. As this is trivial, (2) follows. O

From now on we will identifyGpin(7?) with H'(T?,Z,) and Homy (H,(T?,Z), Z>).
Frequently, we will use the termspin homomorphistninstead of “spin structure” in
order to indicate that we regard the spin structure as an elemEotin (H, (72, Z), Z»).

From Proposition 5.2 below it is clear that the trivial spin structure is the only spin struc-
ture such thao is in the spectrum of the Dirac operatbr Therefore our definition of
“trivial spin structure” coincides with the definition in sectign 2.

12



Remark. On oriented surfaces there is an alternative approach to define spin structures.
We fix a conformal structure ol/. Thereforel’ M is complex line bundle. Aine bundle
spin structures a pair(X* M, ) of a complex line bundI&* M and a map) : "M —
T M satisfying

I(z-q)=2*-9(q), Yge Xt M, zecC.
It is not hard to show that there is a natural bijection from the set of line bundle spin
structures to the set of spin structures. Bér= T2, the trivial spin structure is charac-
terized by the fact that for any non-contractible embeddihg— 7 the tangent vector
field ¢ : S* — TT? lifts to X*72. The line bundle spin structure definition is used by
spin structure from the non-trivial ones. The Arf invariant is equal-tofor the trivial
spin structure, and equal tdfor all others.

5 Comparing spectra of conformal manifolds

In this section we will compare Dirac and Laplace eigenvalues on 2-tori. We recall a
proof of a well-known proposition (see e.g. [Dod82, Proposition 3.3] for a more general
version).

PROPOSITION 5.1. Let M be a compact 2-dimensional manifold with two conformal met-
rics g andg = e?“g. The eigenvalues of the Laplacian on functions corresponding to
and g will be denoted a® = Ay < A < Xo...and0 = Xy < \; < )\, ... respectively.

Then B
A miﬂr} e2um) < ); < \; max e24(™) Vi=1,2,....

Proof. Let fy,..., f; be eigenfunctions ai\, to the eigenvaluey,, . . ., \;. LetU; be the
subspace of := C'(T?) generated by, . .., f;. We are bounding; by the Rayleigh
guotient:
%< max (/g
= reui—{or (f, [f)g
We obtain for the numerator and the denominator:

(Agf flg = /(Agf)f dvol; = /(Agf)f dvol,
= (Agfaf)g S )\z(faf)g

N

(f:1)s= [ FFavoly = [ ffe 2 avol, = e2m (1, p),.

Therefore we obtain B
)\i S )\z €2maxu'

The other inequality can be proven in a completely analogous way. 0
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There is a similar proposition for the Dirac operator.

PROPOSITION 5.2. Let M be a compact manifold with two conformal metricandg =

e*"g. LetD and D be the corresponding Dirac operators with respect to a common spin
structure. We denote the eigenvaluesBfby 1, < po < ... and the ones oD? by
< e <.l

Then

i min 2 < < max e2m =12 .

Proof. Letn := dim M. We have

dvol, = e""dvolj.

There is an isomorphism of vector bundles THit74], [Bgu81, Satz 3.14] or [Hij86, 4.3.1]

YM — SM
U — U

over the identityid : M — M satisfying
D(¥) = DU

and
n-1

B| = "))

Let (¥, |7 = 1,2,...) be an orthonormal basis of the section3i/ with ¥; being an
eigenspinor ofD? to the eigenvalug,;. The vector space spanned by, ..., U, will be
denoted byJ;.

We can boundi; by the Rayleigh quotient
DU, DV),
,l]i S . max M
velU;—{0} (\IJa \IJ)?]
We look at the numerator and the denominator separately:
(DU, DV, = / ¢(DW, DV) dvol;
- / =D DY DY dvol,
- / (D, D) dvol,
< (DY, DV), max e"

meM

< u
< i (¥, W)y max e

14



=
S

&
I

/ (T, ) dvol,
- / e~ (U, 1) dvol,
Z e—maxu(\y’ W)g

IhUS
Mi > i Me

which is one of the inequalities stated in the proposition.

The other inequality can be proven in a completely analogous way. 0

6 Systoles and norms o (77, Z,)

In this section we define norms on the space of spin structéipes(1/). These norms
are strongly related to systoles.

Recall that for any compact Riemannian manifohd, ), the spacei' (M, R) carries a
naturalL?-norm defined to be the quotient norm of the-norm on 1-forms

|||, :=inf {||w]|;, |w closed 1-form representing} .

Forp = oo this norm is the so-called stable norm andget dim M it is invariant under
conformal changes of the metric.

In our special cas@/ = T2, we know thaf™* = H'(T?,Z) = Homz(H:(T% Z),Z) is a
lattice in H' (72, R) and that the surjective map
P: %r* —  Homg(H,(T? Z),Zs) = H'(T?, Zy)
of.) = (=1t
has kernel™.
Definition. The LP-norm onH' (T2, Z,) is the quotient norm of thé&”-norm onl™* with

respect to the quotient mdp, i. e. forn € Homy (H, (1%, Z), Z>)

: 1,
Il = nf {lall s o € 5T°, Pla) =n}.

Therefore we have norms on the space of spin structurég?onThe L?-norm is of
particular interest as it is invariant under conformal changes and therefore it is a spin-
conformal invariant. In the following section it will turn out that the smallest eigenvalue

15



of D? on a flat torus with spin structureis

A2 || x|l
area

Another quantity will be used for our estimate @& « (section'9): Thecosystoler; is
defined to be
o1(T?,g) »= inf {[|a ;2 |a € T* = {0}}.

For flat tori the first positive eigenvalue of the Laplacian is

4% o2

area,

The aim of the rest of this section is to relate flfenorms to some systolic data.

Definition. For a Riemannian 2-torud™, g) with spin structurey we define thesystole
sys; (T2, g) € R, thespinning systolepin-sys(72, g, x) € RU{cc} and thenon-spinning
systolenonspin-sys(7?, g, x) € R to be

sys,(T? g) := inf{length(y) |~ is a non-contractible loop.
spin-sys(7?,g,x) := inf{length(y)|~ is aloop withy([y]) = —1.}
nonspin-sys(7T?, g,x) := inf{lengthy)|~ is a non-contractible loop witR([y]) = 1

and[v] is a primitive element i/, (T?,Z).}

An elementa € H,(T? 7Z) is calledprimitive if there are nok € N, k > 2, 3 €
H\(T* Z)witha =k - 3.

These quantities have the following relationships
sys (77, g) = min{spin-syg(7*, g, x), nonspin-sygT?, g, x) }

sysi(T2,g) = min{2 - spin-sy§(T”, g, x), nonspin-sys(T”, g, x)}
whereT? is the covering off? associated ther y C (T?). This covering is 2-fold for
non-trivialy, and7? = T2 for y = 1.

PROPOSITION 6.1. Let g be any Riemannian metric ¥ and lety be any spin homo-
morphism. There is a flat metrig which is conformal tg;. This metricg, is unique up
to a multiplicative constant.

Furthermore, the following inequalities hold:

@) SYS1(T279)2 < Sysl(T2790)2
area(T?, g) area (72, go)

= 01(T2790)2 = 01(T279)2

16



nonspin-sys(7® g, x)* _ nonspin-sys(7*, go, x)*

b
(b) area(712, g) - area(72, go)
2 2
=4 HXHL2(T2,gO) =4 HXHL2(T2,g)
© spin-sys(7?, g, x)* _ spin-sy$(T™, go, x)*
area(1?, g) - area(1?, go)

Spin_sy T27g07 X > 1

@ au"ef((T2 ) ) = 41|
» 90 X272 4)

(e)Foranyn € H (1% 7Z;) and1 < p < ¢ < o0

171l 1o (72,45 area(T?, go) "7 = 171l agz2,g) area(T?, go)~M/9
171l 1o (2.9 area(T7, g)~'/7 < 171l a2 g) area(T?, g)~(1/

77”1;2(T2,g0) H77HL2(T2,g)

(f) Foranyn € HY(T% Z;)and1 <p <2< ¢ < o0

1 1

19l gy area(T%, ) 375) < [l o, avea(T2, go)

=

)
)

s =

=

1o gy area(T2, g) 375 > [1nll o) avea(T2, go)

SE
N[

Q=

We have equality in the inequalities of (a)—(c) if and only i flat.

For the characterization of the equality case in (d) we choose a laftimgether with an
isometryl : R?/T" — (T2, go). Then equality in (d) is equivalent to the fact that there are
generatorsy;, 7, for the latticel” satisfyingy; L v2, I*(x)(71) = 1 andI*(x)(y2) = —1.

Proof. The existence and uniquenessggffollows from the uniformization theorem

for 2-dimensional tori. The equations for the flat meyjdollow directly from elemen-

tary calculations. As already stated previously, fienorm is invariant under conformal
changes, thus the last equations in (a), (b) and (e) hold. The inequality in (e) follows from
the Holder inequality.

The first equation in (e) then follows from the fact, thas represented by a real harmonic
1-formw with [|n{| iz g0y = w1724, The pointwise normwly, is constant and
therefore

HWHLl(T2,gO) = HWHLOO(T2,gO) area(T?, go) > HUHLOO(T2,gO) area(T?, go).
The inequalities in (f) follow from (e).

The remaining inequalities in (a), (b) and (c) are direct consequences from Lemma 6.2
below.

The discussion of the equality case is straightforward. 0
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define forv € H,(1%,7Z)
Ly(v) := min {lengthy(c) | c: ' — T* represents} ,
and L, (v) similarly. Then

ﬁg(U)Q < ‘Cgo(v)2
area(T2,g) — area(T?,go)

We have equality for # 0 if and only ifg is flat.

Proof of lemma. The proof of lemma follows the pattern of the proof of Loewner’s
theorem in [Gro81, 4.1].

Let g = e*“go. We start with a minimizee of £, (v). There is an isometric torus action
on (7%, go) acting by translations. Translation byc 72 will be denoted byL,.. An easy
calculation shows that

/TQ,go dx |engﬂ‘b(Lm(C)) = ‘Cgo (U) /T dr eu(m) < ‘Cgo (U) area(TQ, 90)1/2 area(TQ, g)1/2'

2,90

Because the left hand side is an upper bound’fgp) area(7%, go) the inequality of the
lemma follows. The case of equality is then obvious. 0

7 Spectra of flat 2-tori

In this section we recall the well-known formulas for the spectrum of the Laplacian and
of the Dirac operator on flat 2-tori.

Because it is clear how the eigenvalues change under rescaling we will restrict to the case

RQ

1 T
r, Towaf(o) (5)}) v>o0

whereT™? carries the metrig, induced by the Euclidean metric &°. The dual lattice
I, = H'(T? Z) = Homg(I',,, Z) is generated by the vectors

e (—;/y> und 7 = (19y>'

fy:T* = C f,(v):=exp (27m' (’y,x}) vely,

T2

The function

18



is an eigenfunction of the Laplace operafoon complex valued functions to the eigen-
value4r?|y|> where| . | denotes the Euclidean norm &3. Moreover, the family 1, |y €
I';,) is a complete system of eigenfunctions. Note thaan also be viewed aslaform
onT?and if|| .||, is the L?-norm defined in the previous section then

171172 = |v|*area.
Therefore we obtain

PROPOSITION 7.1. The spectrum of the Laplacian @t is given by the family

472 [|~|?
{ 7 || 7 VGF;,}

area
where each eigenvalue appears with the correct multiplicity.

The first three eigenvalues can be easily expressed using the invariants of the previous

section
472 o2

X =0 Al =N =

area,

The eigenfunctions and eigenvalues of the square of the Dirac operator are very similar
if the spin structure is trivial. Let); and, be parallel orthonormal spinors df¥,
then(f ;7 = 1,2;v € I';,) is a complete system of eigenfunctions to the eigenvalues
47?|y|2. Therefore the eigenvalugs < o < us... are the same as for the Laplace
operator, but the multiplicities are doubled. In particular

4% o2

P :O P P P P .
M1 = H2 M3 = g = b5 = e area

Now we assume th&t? carries a non-trivial spin structure. After a rescaling of the metric
and an orthonormal transformation®&f we can assume that the spin structure is trivial

on (é) and non-trivial on(i) and that

0<gl;<l x2+(y—1>2>1 y > 0. (6)
-0 =2 2) — 4’

The set of all(z,y) satisfying [6) is called thepin-conformal moduli spaca(SP"

The elements of\SP'N correspond to equivalence classes of tori with non-trivial spin

structures under the equivalence relation of conformal diffeomorphisms preserving the

spin structure.

Let (11,v2) be a basis of parallel sections of the spinor bundléRérand assume that
they are pointwise orthogonal. Then

72

W)y = exp(2mi(y,x)) vy, v €T, +
2
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is a spinor that is invariant under the actionlaf,. Thus it defines an eigenspinor for
D?: ¥T? — XT° with eigenvaluedr®|y|* and the family(¥;,|j; = 1,2,y € T}, +
(72/2)) is a complete system of eigenspinors.

We obtain a similar proposition as above.

PROPOSITION 7.2 ([FriB4]). Assume that™ carries a non-trivial spin structure as above.
Then the spectrum of the square of the Dirac operddion 77 is given by the family

472 ||~
mverz_i_ﬁ ’
area v

and the multiplicity of each eigenvalue in the spectrunbdfis twice the multiplicity in
the family.

We want to prove thalf;, + (72/2) contains no vector that is shorter than/2. For this
we need a lemma.

LEMMA 7.3. If linearly independent vectors , v, € R? satisfy
0 < (v1,v2) < |1 < |vaf?,
then for any integers, b with a # 0 and b # 0 the following inequality holds
lavy 4 bug| > vy — v1].

If |avy + buvg| = |va — v4], then|a| = |b] = 1.

Proof of lemma. Let |av; + bvs| < v, — v1|. Without loss of generality we can assume
thata andb are relatively prime. We obtain

a®or]* = 2abl - (v1,v2) + B?[va|* < [v1]* — 2 (01, v2) + [0a]?
and therefore

(a® +b* — 2) |1 |? (a® = 1) |[vr|* + (b% — 1) |va)?

<
< 2(Jabl = 1) {v1, v2) < 2(|ad] = 1) Jur [

Thus(|a|] — |b])? < 0 holds, i.e.|a] = |b|, and as we assumed thaandb are relatively
prime we obtairja| = |b| = 1. Because ofv; + v3| > |v2 — v1] the lemma holds. O

COROLLARY 7.4. If (z,y) € MSPIN then:

(@) There is no vector ili’;, + (72/2) that is shorter thany, /2.
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(b) The shortest vectors it;, — {0} have length

, {1 \/x2+y2}
min{ —, —— % .

) )

Proof.

(a) Because of relations; (6) the vecteis:= ~,/2 andvy := (71 + 72)/2 satisfy the
conditions of the lemma. Any elemenf I';, + (72/2) can be written agv; + bvs,
a,b € Z — {0}. The lemma yields

72|

M = Jvz — o = =

(b) This time we set; = v, andvy = 71 + 72. As befored < (vy, v2) < |v1|? < |ugl?.
Any v € Ty, — {0} is either a multiple ofu; or vy (then|y]> > |vi]* = |[n]* =
1+ (2%/y?)) or

1
Y| = vz —or] = —.
Yy

Thus the smallest eigenvalug of D? satisfies

2

T
=7l = = (7)
Yy

Using the notations of the previous section we see easily thattheorm of the spin-

structurey satisfies
9 1
Ixllz> = I

With area = y we obtain
i avea = 42 x|

Analogously, we see for the cosystole that

2 . {1 $2+y2}
oy =min{ —, .
Yy Yy
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8 Regqular bipartitions of 2-tori

Definition. A regular bipartitionof 72 is a pair(X;, X») of disjoint open subset¥; C
T? such thav X; = 90X, is a smooth 1-manifold, i. €1.X; = 90X, is a disjoint union of
finitely many smooth circles. In particular this impli€¢§ = X; UX,U0X;.

PROPOSITION 8.1. Let (X1, X;) be a regular bipartition of. Then exactly one of the
following conditions is satisfied

(i) The inclusionX; — T2 induces the trivial mapr; (X;) — w1 (T?).
(i) TheinclusionX,; — T induces the trivial mapr (X5) — 71 (77?).

(iii) The boundarypX; has at least two components that are non-contractibl&in

Proof. Assume a regular bipartitionX, X,) satisfies (iii), therv X; contains a non-
contractible loop. By a small perturbation we can achieve that this loop lies completely
in X;. Thereforer;(X;) — m1(T?) is not trivial. Hence( X1, X») does not satisfy (i).
Similarly we prove that it does not satisfy (ii).

Now assume that a regular bipartitioN;, X) satisfies both (i) and (ii). Van-Kampen'’s
theorem impliesr;(72) = 0. Therefore we have shown that at most one of the three
conditions is satisfied.

It remains to show that at least one condition is satisfied. For this we assume that neither
(i) nor (i) is satisfied, i. e. there are continous pathsS! — X that are non-contractible
within 72, Obviouslyd.X; is homologous to zero. We will show that at least one com-
ponent 0f0 X, is non-homologous to zero. Then there has to be a second component that
is non-homologous to zero, becau8&;] = 0 is the sum of the homology classes of the
components.

We argue by contradiction. Assume that each componen&ofis homologous to zero.
Letr : R* — T2 be the universal covering. Ther!(9.X,) is diffeomorphic to a disjoint
union of countably many!. We write

™ H(0X1) = Y
1€EN
with ¥; = S'. We choose lifts; : R — R? of ¢;, i.e. 7 (¢;(t +2)) = «(t) for all
t € [0,1], z € Z andi = 1,2. Then we take a path : [0,1] — R? joining ¢;(0) to
¢2(0). We can assume thatis transversal to any;. We definel to be the set of all € N
such thaty; meets the trace of. The set! is finite. Using the Theorem of Jordan and
Schoenfliess about simple closed curveRirwe can inductively construct a compact set
K c R? with boundarylJ;c; Y;. The number of intersections 6fwith ;-; Y; is odd.
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Thus, eithei; (0) or é(0) is in the interior of K. But if ¢;(0) is in the interior of K, then
the whole trace;(R) is contained inX. Furthermoreg;(R) = 7! (¢;([0, 1])) is closed
and therefore compact. This implies tliats homologous to zero in contradiction to our
assumption. O

9 Controling the conformal scaling function

Let T2 carry an arbitrary metrig. According to the uniformization theorem we can write
g = e**gy with a real function: : 72 — R and a flat metrigy,. The functionu is unique
up to adding a constant.

The aim of this section is to estimate the quantity« := max v — min u. The estimate

The main difference is that the previous estimate needed the assumption

1-(1/p)
1Kol o2 ) (area(T?, g)) < dr

which is no longer needed in the estimate presented here.

THEOREM 9.1. We assume
HKgHLl(T2,g) < Ar.

Then for anyp € |1, oo[ we obtain a bound for the oscillation of
1-(1 —
@ oseu < S(IKyll o gy s 1Koll o) (arealT?, ) =7 p, oy (T2, 9)72),

1—(1 r 2
()  oscu < S(IKyll i roy) - 1Kl o2, (area(T?, g)) (Wp) , area(T 2,

P sys (T2,9)2
where we use the definition
P ICp 1‘ ( IC1> ‘ ICl (2/Cp>] IC1V
S(Ki, K = |24 1] 1 - =4 ]
(K1, Ky, p, V) p—1[47r+2 g TR W o L
for ; > 0andS(0, 1Cp, p, V) := 0.

The functionsS is continuous inC; = 0.

COROLLARY 9.2. Let F be a family of Riemannian metrics conformal to the flat met-
ric go. Assume that there are constarits € ]0,47[ and K, € |0,00[, p € ]1,00]
with

1—-1
1Kol 1o gy < K @nd ||l o (area(T?, ) 7 < K, foranyg e F.

Then the oscillationsc u, of the scaling function correspondinggas uniformly bounded
onF by
oscuy < S(lCl, Ky, p, V(TQ,gO)).
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Before proving the theorem we will present some examples showing that the theorem and
the corollary no longer hold if we drop one of the assumptiH)KgHLl(T%g) <Ky <dm

1-1
or || Kyl o724 (area(T?, g)) » < K,.

Example. For anyK; > 0 there is a sequendg;) of Riemannian metrics with fixed
conformal type, bounded volume, constant systole, with

(e

In order to construct such a sequence we take a flat torus and replace a ball by a rota-

LN(T2g) = K1 and oscu, — oo.

details).

Y=y Ay A b

Example. For anys > 0 there is a sequencgy;) of Riemannian metrics with fixed
conformal type, bounded volume, constant systele, < K, < 1, [[Ky,|[11(72,,) <
A + ¢, | Ky, Lo(r2gy < CONstandosc ug, — oo. In order to construct such a sequence
we take a ball out of a flat torus and replace it by a hyperbolic part, a cone of small opening
angle, and a cap as indicated in the following picture. While the injectivity radius of the

hyperbolic part shrinks to zero, the oscillatiomofends to infinity.
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In the picture the dots in the “limit space” indicate the hyperbolic part with injectivity
radius tending t® and diameter tending teo.

Proof of Theorem©9.1. As Morse functions form a dense subset of the spag&°of
functions with respect to thé€°-topology, we can assume without loss of generality that
u is a Morse function. We setrea, := area(7?, g) and Areay := area(T?, go). We
define

G<(v) = {x€T2|u(x)<v} G=(v) == {a:ET2|u(a:)>v}

¢ : [0, Areay,] — R

A +— inf {sup u(x) ‘X C T? open area(X) > A} (8)

zeX

= sup< inf u(z)| X¢C T? open area(X¢) > Area, — Ay (9)
9

reXe

maxu

U+

min v

| | | | A
A Al Ay Area, :=
area(T?, g)

The infimum in (8) is actually a minimum and ass a Morse function the only minimum
is attained forX = G.(p(A)). Similarly the supremum in(9) is attained exactly in
X¢ = G=(¢(A)). The functiony is strictly increasing and is continously differentiable.
The inverse ofy is given by

¢ (v) = area(G<(v)).
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The differentialy’(A) is zero if and only ifp(A) is a critical value ofu.

Now letv € [minu, max u| be a regular value af. We obtain

(@_1)/(0) :/8 1 >|engti’(8G<(v),g) (10)

G<(v).g |dulg — f8G<(v),g |dulg

where lengtloG- (v), g) is the length of the boundary 0. (v) with respect ta;. This
inequality will yield an upper bound fay’ which will provide in turn an upper bound for

oscu = (Areay) — ¢(0) = 37 /. We transform
du :/ *du:—/ Aju=— K,. (11)
/ac<<v>,g s = o Gy Ge(wg

definex using the Gaussian curvature functifip : 72 — R
k1[0, Areay] — R, k(A) :=inf {sup K,(x) ‘ X C T? open area(X) > A} .
zeX

Any open subseX C 77 satisfies

area(X,q) Areag
/ Kk < K, < K
0 X, Areag—area(X,g)

and forX = T we have equality. Using Gauss-Bonnet theorem we see that

Areag
/ k= 0.
0

The right hand side of equation (11) now can be estimated as follows.

A Areay (12)
— K, < —/ H:/ K
Gelp(A)g 0 A

Putting (10), {I1) and (12) together, we obtain

Areay

P = gt oG- (o (A)), 97

Our next goal is to find suitable lower bounds for lergfi- (p(A)).

Note that for any regular value of u, (G-(v), G~ (v)) is a regular bipartition of™.
According to Proposition 8.1 exactly one of the following conditions is satisfied

(i) The inclusionG(v) — T? induces the trivial mag; (G- (v)) — w1 (T?).
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(i) The inclusionG- (v) — T? induces the trivial map (G- (v)) — 71 (T%).

(iii) The boundaryyG_(v) has at least two components that are non-contractiii&.in

If condition (i) is satisfied by, itis obvious that it is also satisfied by < [0, v]. Similarly,
if condition (ii) is satisfied by, then it is also satisfied by € [v, Area,.

v := sup{v € [0, Area,] | (i) is satisfied for }
vy = inf{v € [0, Area,] | (i) is satisfied forv}
Ar = ¢ (va).

In each of the three cases we derive a different estimate for lehgth(v), g) and there-
fore we obtain a different bound faor.

(i) In this caseG.(v) can be lifted to the universal coverifiRf of 72. We will also
write g and g, for the pullbacks of; andg, to R%. The isoperimetric inequality of
the flat spacéR?, go) yields

length(0G - (v), go)? > 4 area(G(v), go).

Using the relations

engtHaG(v),9) = ¢ length9G-(v), go) (13)
area(G-(v),g) < e*area(G-(v), ) (14)
we obtain
length 0G - (v), g)* > 4marea(G - (v), g). (15)

Together with the ldlder inequality

[ < || K, Al-(/p)
o = 11Bglle(rz,g)

we get
/ 1 — Jg!
PA) = ——m < o 5
(™) ((A)) length9G < (#(4)), 9)
1 _1
< E HKgHLp(T2,g)A !

Integration yields

vo —minu = (¢~ (v-)) = ¢(0)
p 1

e -1 1-(1/p)
< p—14r HKgHLp(T2,g) (v~ (v-))
p 1 1
< p—14r HKgHLp(Tag) (Areay)" (/r) (16)
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(i) This case is similar to the previous one, but unfortunately because of opposite signs
some estimates do not work as before. For example (14) and (15) are no longer true
for G- (v) replaced by=-. (v). Instead we use Topping’s inequalify [Top98a, Top99].

2 \ A \
(length @G- (v), ¢))* > 4w A — 2 / (A—
0

a) k(Area, — a)da (a7
with A = area(G~ (v), g). Using the estimate

A . A

/0 (A —a)k(Area;, —a)da < A/O max{0, k(Area, — a)} da
A
2

IN

1Kl 1 72,g)
we obtain
) .
(length 96 (v), 9))° > (47 — | Kyll s ey ) A. (18)
The obvious inequality
Areag
Jo kS ma{0, Ky Hlpaey < (U 1Kl sy

yields

. 1 K|l ;1
S(hren, — ) < 15,1,

el (T%9)
A 8t — 2| K, HLl(T2,g)

Integration yields

. Area, — A Kol pi 2
sO(Areag—A)—w(AHSlog( S +> s lprng

A = 2 Kyl s

(T29)

The right hand side converges to for A — 0. Thus we have to improve our
estimates for smalll. The integral in{17) also has the following bound.

Aatl 1
= <q T 1) ) HKgHLP(T2,g) (19)

where we wrote := p/(p — 1) in order to simplify the notation.
We obtain a second lower bound on the length

(length 9G- (v), 9))* > 4m A — A 7 [| Ky || e (20)
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foranyc > 2/y/q+1, e.g.c = 2. Note that our assumptiofi<y|| . ;. ,, < 47
does not imply that the right hand side of the above inequality is always positive.
Although (20) is better for small, it is not strong enough to control the length for

larger A. However, for
q
A 4
A< i
¢ HKgHLp(Tzvg)

Areaq ~
/ k< AYe HKgHLP(T%g)

Areag—A

we use {20) and

to obtain the estimate

N AP || K
SOI(Areag — A) < AlH g HL”(TQ,g) '
47— AV K, ey

With the substitution
w = w(A) = 4m — ¢(Area, — A)/ HKQHLP(TQ,g)

integration yields

plhweay) —p(Ay) = [ (4

Ay
w(Areag)

</ 6L gy = 9 1pg WATR)
w(Ay) €W c w(Ay)

q | 4T
¢ 7 dm—c(Areag — Ay)l HKQHLP(TQ,g)

for any A, betweenArea, — (47 /(c - || K, , )" andArea,. We choose
# 9 gllLr(T2,9) g

1Kl gy )
Ay :=max{ Area, — | ——— L | A, }.
2 HKgHLp(Tz,g)

Finally we obtain the estimates

8

4q
maxu — p(Ag) < =log (21)
¢ 8t —c HKgHLl(T2,g)
1Kl 11 (72 2Areagl/q 1K gl o2
p(Ag) — v < gyl = 2 )(22)
m—2| gHLl(T2,g) I gHLl(T2,g)

For ¢ = 2 the right hand sides of these inequalities contribute two summands to the
formula forS.
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(iii) If v = ¢(A) is a regular value ofi betweenv_ andv., thendG(v) contains at
least two components that are non-contractiblEinHence, for any metrig on7
we get

length0G < (v), 9) > QSYS1(T27§)-

Irkorder to prove (a) of Theorem B.1 we apply this equatiog te= go. Using
Wk < (1/2) | Kgll 1 g2, @nd lengthdG < (v), g) = €”lengt(dG(v), go) we
obtain

Areay

o) < e 4sys (T2, go)?

< 1 2o HK“”‘L&. (23)
-8 Sy$Sy (T27 g0)2
Integration yields
Ay
vy —v- = / ' (A)dA

1 1Kl 1 e aa
8 sys (12, 90)* Ja

1 HKgHLl(T2,g)

A 24
S sys, (T2 go)2 &9

where we usedreay = area(T?, gy) = Jrers o=20(A) g A
Together with inequalities (16}, (21) and (22) we obtain statement (a) of the theorem.
Similarly, settingg := g we get statement (b).

10 Some “inverse” inequalities

In Proposition 6.1 and Lemnia 6.2 we proved some inequalities relating the mttiyg.
It is easy to prove that they also hold in the other direction if we add a facto¢3ike".

Explicitely we obtain:

(a) M > 6—2oscuM
area(1?,9) — area(1, go)
(b) nonSpin-syl'S(TQ, g, X)2 > 6—205Cu nOﬂSpin-Syl'S(TQ’ 90, X)2
area(1?, g) N area(72, go)
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© SPIN-Sy$(7”, 9: X)* 2054 SPIN-SY$(T™ g0, x)”
area(1?, g) - area(172, go)

(d) Foranyn € H (T?%,Z,) and1 < p<2<¢< o

)

) < 6(1_

(Sl

~—

N[=

)
)

Q=

6(1_%

Q=

v

19l 2 ) axe8( T, 9) 1] ) 2r02(T2, g0)

N

Q|-
QN
N

Q=

1] o) area(T2, g) )l e gy areal(T?, go)

A combination of these inequalities together with our upper bounddot in the pre-

vious section enables us to compare the quantities under consideration for a flat and an
arbitrary metric in the same (spin-)conformal class.

11 Proof of the main results

Combining the inequalities derived in the previous sections, we are now able to derive our
main results.

Theorem 21 is a consequence of Proposition 7.2 together with Propasiiion 5.2 and The-
orem:9.1. Theorem 2.2 then follows from the calculation of the first eigenvalii® oh

flat tori at the end of section 7. Using the inequalities in Proposition 6.1 and section 10
we can derive Corollaries 2.3 and:2.4.

Similarly, Theorem 2,5 is a consequence of Proposition 7.1 together with Propesition 5.1

and Theorem G.1. Theorem 2.6 then follows from the calculation of the first positive
eigenvalue ofA on flat tori at the end of sectign 7. Using the inequalities in Proposi-
tion 6.1 we obtain Corollary 2.7.

12 An application to the Willmore functional

In this sectionS? always carries the metrigs of constant sectional curvatute For any
immersionF : 7% — S3 we define the Willmore functional

W(F) = / |Hpz o] + 1
(T2,F*gg3)

whereH is the relative mean curvature 6f72) in S® and integration is the usual inte-
gration of functionsI'> — R over the Riemannian manifold™, F'*g¢s). Note that the
mean curvaturé! of F'(7?) in R* satisfies

|FI|2 - |HT2—>S3|2 + 1
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The Willmore conjecture states that(F') > 2x2. Li and Yau [LY82, Fact 3] proved that
the conjecture holds if’ is not an embedding.

Any immersionF : T? — S? induces a spin structurgr on 72. The spin structure
wr is non-trivial if and only if F' is regularly homotopic to an embedding. Thus for any
immersion/’ which is regularly homotopic to an embedding, the paitgss, ) defines

an elementz, y) in the spin-conformal moduli spaoMSpi”_(defined in sectio!7). In
order to shorten our notation we writg] := (z,y) € MSPN.If T2 already carries a
spin structure, we say thatis spiniff o = ¢.

Li and Yau proved:

THEOREM 12.1 ([LY82, Theorem 1]). Let F' : (T2, g) — (53, gss) be a conformal em-
bedding, letArea, be the area of 77, g) and let\; be the first positive eigenvalue of the
LaplacianA on (72, g) then

1
W(F) > 5 A Area,,.

From this theorem the conjectured inequality F') > 27 follows, if [F] lies in a com-
pact subset of\SP'Nwith positive measure (see Figute 1).

A similar lower bound fonV(F') in terms of Dirac eigenvalues has been given lay.B”

sion. Then for the first eigenvalye of the square of the Dirac operator the inequlity
W(F) > i Area,
holds.

Note that this estimate is only non-trivial i is regularly homotopic to an embedding.

Remark. At the end of this section we will show by example that in general “isometric”
can not be replaced be “conformal” in this theorem.

Our goal now is to apply our previous estimates and derive lower boundg fér). One
way to deduce such bounds is to combine the theorem with our lower estimates for the
first eigenvalue of the square of the Dirac operator. These lower etimates for the Willmore

functional are weaker than the ones derived by the auth¢rin [ArhmO0Q], therefore we skip
this approach.

In this article, our approach is to modify the techniques of Thearem 12.2. This yields
together with Theorem 9.1 new results about the Willmore functional.

As in the previous sections we define

) e )2
S(’Cl’lcp’p’v)‘_p—1[47r+210g V=) P ar—ar 8\, ) T 75
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The spin conformal moduli space
MSpin

1.0 -

Li and Yau proved the Will-

\\\\\\
more conjecture for these spin-
\ conformal classes
A\\\\ Clifford

0.5
torus
For these spin-conformal classes
. we prove the Willmore conjec-
ture under a curvature assump-
tion
: x

0.5

Figure 1: The spin conformal moduli space

for K; > 0andS(0, K, p, V) := 0.

THEOREM 12.3. Let F' : T? — S® be an immersion of the 2-dimensional torus9h
carrying the standard metrigss. Let F' be regularly homotopic to an embedding. We set

g := F*ggs. Let(z,y) = [F] € MSPN. Then

1
W(F) > ; — g (OSC U) HKgHLl(TQ,g) )

In particluar if [ K| ;1 (72 ,, < 47 and anyp > 1

2 1
WF) 2 5 = 281K, ey
Yy
. — Areaq
withS := 8§ (HKgHLl(TQ,g) ) HKQHLP(TQ,g) Areagl (1/p)’p’ sys;(T2,9)2 ) or

§:=85 (HKgHLl(Tag) ) HKgHLp(Tzﬁg) Areagl_(l/p)apa o1(T?,9)7? )

Proof. We write the induced metrig on 72 in the formg = e?“g, with ¢, flat. Any
Killing spinor on S* with the Killing constantv = (1/2) induces a spino on (7%, g)
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satisfying
Dy = Hp +vip,
where .
V= 7(61)7(62) - (62 Q) € End (2777 & E‘TQ)

YT - 272

v — U
with -
u/—’\ ~ 1 ~
" DyV = Dy, U + 2 Va0 (grad, u)¥
and ~
(W[ = |¥].

Here~,, means Clifford multiplication corresponding to the metyic Note that® from
section 5 satisfied = ¢(“/2,

We apply this transformation for = ) and we obtain

1
Dyt = 50 (grad, )Y + e"He + e"vip.

As v, v(V) andvy (V) are skew-hermitian for any vectdf, this yields
Pudl = mleady )3+ 225+ i
— i |du|§0 + e*H? 4 v
Integration over7?, g,) provides
Marea(T?, go) / |du| dvoly, + W(F),

where)\; denotes the smallest eigenvalue of the square of the Dirac operatot an).
On the other hand

/Tz |du|§0 dvoly, = /T , ulA g4 u dvoly,
= /T2 e*uk, dvoly,
= /T2 uK, dvoly
< 5 (oseu) |yl

Together with Theorem 9.1 and the results of section 7 we get the statement. O
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COROLLARY 12.4. Forany«; € |0, 47, anyp > 1 and anyx, > 0 there is a neighbor-

hoodU of the(y — 0)-end of MSPMwith the following property:
If F:7T? — S3is animmersion such that the induced metrie= £'* ¢4 and the induced
spin structurepr represent a spin-conformal classihand if the curvature conditions

HKgHLl(TQg) < K1 and HKgHLP(T{g) Areayl_(l/p) < Hp
are satisfied, then the Willmore conjecture
W(F) > 27r2

holds.

COROLLARY 12.5. LetF; : T? — S® be a sequence of immersions. The induced metrics
g: = F}gss together with the induced spin structures define a sequence;) in the
spin-moduli spaceVSP'N. Assume thag; — 0 and that the curvature conditions

(e

Li(r2gy < K1 < 4T and HKgHLP(T%g) Areagl—(l/P) <Ky

are satisfied for somg > 1 andx, < co. Then

W(F;) — oo.

The conclusion of the second corollary is false if we drop the curvature conditions. To
see this we construct a sequence of immersions with- 0 and W(F;) < const We

start with an embedding : 72 — S® which looks in a neighborhood of some point like

a cylinder. Now we “strangle” the torus as in the picture below:

We get a sequendg : 7% — S® of C'-embeddings with the following properties:

(i) Fi(T?) coincides withF'(7%) in regiona
(i) F;(T?) coincides with a part of a half-sphere in regign

(i) F;(T?) coincides with a minimal surface in regien
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Note that the regions, b andc depend on. In the limiti — oo, regionc disappears.
After smoothing we get a family of smooth embeddings satisfying pth- 0 and
W(F;) < constandarea(T?, F}ggs) — const

Hence, the first eigenvalue @¥* is bounded from above. But the first eigenvalue of the
spin-conformally equivalent flat torus with unit volume convergesitorhis implies that
there are spin-conformal classes in which the optimal constants in Lott's inequality (2)
are not attained by flat metrics.

From this example we can also conclude that Thegrem 12.2 does no longer hold, if we
replace the condition “isometric spin immersion” by “conformal spin immersion”.

13 Comparing spectra for different spin structures

In this section we remove the assumptitim M/ = 2 and assume that a compact Rie-
mannian spin manifold}, ¢g) of arbitrary dimension carries at least two different spin
structuresy and’. The space of spin structures @n is an affine space associated
to the vector spacél/' (M, Z,) which will be identified withHomy (H, (M, Z), Z) and
HOHI(?Tl (M), Zg)

Forr € R, let H} (M, rZ) be the set of allw] € H}

deRha

(M, R) satisfying
/ w € rZ for any closed 1-chairX.
X

Generalizing our definition in sectioh 6 we define
P HL (M, %Z) — Homg(Hy(M,Z),Zs) = H' (M, Z,)
w] — ([X] — eXp(Zm'/ w))
X

The kernel of P is H} (M,Z). We now define thestable normfor elements ofy of
Hl (M7 ZQ)

x| oo := inf {Jlwll oo [ P([w]) = X}
In generalP is not surjective, hence this norm takes valuef)imo]. The elements in
the image ofP are calledrealizable by a differentiable formA homomorphismy €
Homy (H,(M,Z),Z,) is realizable by a differentiable form if and onlyf vanishes on
the torsion subgroup aff; (M, Z).

Definition. Two families(\;|i € Z) and(\|i € Z) of real numbers are said to beclose
if there is a bijective map : Z — Z with the property

[ An) — Ail <.
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PROPOSITION 13.1. Assume that)/, g) carries two spin structures whose differenge
is realizable as a differential form. Then the spectraofor the two spin structures are
27 || x| ~-Close.

Proof. We modify a technique used by FriedrichTF¥i84] for calculating the spectrum of
the Dirac operator on a flat torus.

Let us assume that the differengef the spin structures is realizable as a differentiable
form. We takew € Hj (M, (1/2)Z) with P([w]) = x and||w||;« < |Ix]|;~ + € for a
small numbee > 0. Then there is complex line bundlg, on M which is trivialized by

a sectionr and a connectioW on L., such that

Vx1 = 2miw(X)T.

The holonomy of the bundlel{,, V) is x. Therefore the square df.,, V) admits a
parallel trivialization. LetZ,, carry the hermitian metric characterized|by = 1.

Denote by>X M and¥’ M the spinor bundles to the two spin structures. Then
M =YM® L,

where the isomorphism preserves the connection, the hermitian metric and the Clifford
multiplication. Now we define

H:T(ZM) — T(X'M)
UV — VT
The Dirac operator® and D’ for the two spin structures then satisfy
DV =HoDoH W+ 2miw- ¥

where- denotes the Clifford multiplication. Multiplication Bsriw is a bounded operator
on the space af?-sections of’ M. Its operator norm i&x ||w||; ... The following well-
known lemma completes the proof. O

LEMMA 13.2. Let D and D' be two self-adjoint densely defined endomorphisms of a
complex separable Hilbert space. We assume that the specivaaoid D’ are discrete
with finite multiplicities. Suppose thd& — D’ is a bounded operator of operator norm
K. Then the spectra dP and D’ (with multiplicities) areK-close.

The lemma is well-known in perturbation theory. For example it can be deduced from
considerations in [Kat66]. The eigenvalues(t) |i € Z) of

Ay:=1—-t)D+tD', te]0,1]

can be numbered such thsgi?) is a Lipschitz function it with Lipschitz constants’.
From this observation the lemma is evident.
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