
Report on the Tenth ICFP Programming Contest

Eelco Dolstra ∗ Jurriaan Hage † Bastiaan Heeren ‡ Stefan Holdermans † Johan Jeuring †

Andres Löh † Clara Löh § Arie Middelkoop † Alexey Rodriguez † John van Schie †

Abstract
The ICFP programming contest is a 72-hour contest, which attracts
thousands of contestants from all over the world. In this report we
describe what it takes to organise this contest, the main ideas behind
the contest we organised, the task, how to solve it, how we created
it, and how well the contestants did.

This year’s task was to reverse engineer the DNA of a stranded
alien life form to enable it to survive on our planet. The alien’s DNA
had to be modified by means of a prefix that modified its meaning
so that the alien’s phenotype would approximate a given “ideal”
outcome, increasing its probability of survival. About 357 teams
from 39 countries solved at least part of the contest. The language
of choice for discriminating hackers turned out to be C++.

Categories and Subject Descriptors D.3.0 [Programming Lan-
guages]: General

General Terms Design, Languages

1. Introduction
The Tenth Annual ICFP Programming Contest was a 72-hour con-
test held 20–23 July 2007, and organised in conjunction with the
12th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP 2007). As in the previous nine editions, the goal of
the contest was to allow teams from all over the world to demon-
strate the superiority of their favourite programming languages.

This year’s task was to construct a DNA prefix that helps Endo,
an alien life form stranded on earth, to survive. The DNA is a se-
quence of the letters I, C, F, P that encodes a program. In each
reduction step, the beginning of the string is interpreted as a search-
replace operation with a regular expression as pattern, and the op-
eration is used to modify the rest of the string. In addition, specific
sequences in the DNA generate commands to draw a picture. The
contestants were given an operational semantics of DNA and an
initial DNA string which produces an image of Endo and its im-
mediate surroundings – the “source” image given in Figure 1. The

∗ Department of Software Technology, Delft University of Technology,
e.dolstra@tudelft.nl
† Software Technology, ICS, Utrecht University, {jur, stefan, johanj, an-
dres, ariem, alexey, jcschie}@cs.uu.nl
‡ Open Universiteit Nederland, bastiaan.heeren@ou.nl
§ WWU Münster, clara.loeh@uni-muenster.de

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’08, September 22–24, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-59593-919-7/08/09. . . $5.00

Figure 1: Source image

Figure 2: Target image

“target” image in Figure 2 is the goal: concatenating the prefix and
the original DNA should result in an image that matches the tar-
get as closely as possible. Prefixes were evaluated according to the
following criteria:

• the number of incorrect pixels in the resulting picture compared
to the target picture – the fewer, the better;

• the length of the prefix – the shorter, the better;
• the energy consumption of the synthesis, i.e., the time and space

complexity of performing the algorithm – in this case only a
limit was given.

397

In this report we describe what it takes to organise an ICFP
contest, the main ideas behind the contest we organised, the task,
how to solve it, how we created it, and how well the contestants did.
Section 2 discusses the organization of the ICFP contest, including
the main design choices we made for this edition of the contest. In
Section 3 we give a summary of the story behind the task, and we
have a closer look at the DNA language and the algorithm that turns
DNA into a picture. Endo’s specific DNA string has some peculiar
properties, and in Section 4 we show how these properties can
be used to obtain the target picture from the source picture. We
also discuss some alternative approaches to producing the target
picture. Section 5 discusses the design choices behind our DNA
and RNA languages, and it shows some of the languages and tools
we built to produce the task for the contest. In Section 6 we look
back on the actual contest, give statistics about the participants, and
announce the winners. The last section presents the aftermath and
our reflections on organising the contest.

2. The ICFP contest
Organising an ICFP programming contest is a challenge. To allow
contestants to demonstrate the superiority of their favourite pro-
gramming languages and programming skills, the contest should at
least test language capabilities and programming skills, and should
require intelligent behaviour. Moreover, we wanted many teams to
get somewhere into the contest, and at least a number of teams to
get very far. On the other hand, getting very far should not be a
direct consequence of being very knowledgeable about any niche
domain within or outside computer science. Finally, and most im-
portantly, the contest should be fun!

2.1 Requirements
Recent contests, including this one, had thousands of contestants,
working from anywhere in the world, with very different back-
grounds. The idea behind an ICFP contest is that contestants may
use any tools they like, and any information at their disposal. Fur-
thermore, teams may be of arbitrary size, although in some previ-
ous editions of the ICFP contest restrictions on team size were im-
posed. Organisers have to think about the following practical issues
to cope with these “contestant-friendly” rules:

1. The programming task should not be easily solvable.

2. The programming task should not be solvable by using a lot of
computing power.

3. A solution to the programming task should not be lying around
(or for sale) somewhere.

4. The fact that contestants are going to use many different pro-
gramming languages and compilers needs to be dealt with.

5. The solution space of the programming task should be large:
we don’t want many teams to submit the same, correct, or best
solution.

6. There should be a clear way to determine the winner of the con-
test: the solution space of the task should have a total ordering,
preferably without a top (or bottom).

Our problem satisfied all of these requirements, except for require-
ment 6: since the solution with the lowest score wins, there obvi-
ously is a bottom. However, this bottom is very hard to find, and
the prefix that leads to the best possible score is not even known to
be unique. Indeed, it may well be that the best score is obtained for
a prefix that does not even generate a pixel-precise image. At the
moment we know that the best score lies somewhere in between
1 and 3685, and we conjecture it to be closer to 3685 than to 1.
The problem that contestants use many programming languages

(requirement 4) is solved by designing our own low-level program-
ming language, namely DNA. Some of the previous contests (2004,
2006) used a similar approach to this problem. We did not reuse an
existing low-level language to meet the third requirement. Satisfy-
ing requirement 5 also helped us satisfy requirement 2: the solution
space was so large that a brute-force approach of simply trying pre-
fixes quickly becomes infeasible.

2.2 Design choices
We started thinking about ideas for the task in November 2005, but
it wasn’t until August 2006, after participating in the ICFP contest
2006, that we began to put real effort into it. We settled for the task
of reverse engineering a large piece of complex low-level code.

We tried to devise a task in a way that contestants had to do the
following:

• Understand how high-level languages are translated into low-
level code, in order to get an idea of what the high-level lan-
guage from which the code is generated looks like. Use this
understanding to patch and/or generate low-level code.

• Write an efficient interpreter, using an advanced data structure,
and test the interpreter on some small examples that would
reveal sufficient information to start writing tools.

• Write debuggers, disassemblers, analysers, and whatever means
to understand and repair the low-level code.

Contestants had to submit a piece of low-level code, which patches
the original code we published. We scored patches on size and level
of correctness.

We wanted the best tool writers with a good understanding
of programming languages and compilers to win the contest. In
Section 3.3, we explain in detail the measures we took to ensure
this.

3. The task
In this section, we present the contest task. We briefly summarise
the background story. Then, we explain the design of the DNA
language. We also evaluate how our task relates to the design
choices listed in Section 2.2. The full task description is available
as a technical report (Dolstra et al. 2007a).

3.1 Background story
Endo, an alien life form belonging to the species of the Fuun, has
crashed on Earth by accident. The pictures shown in Figure 3 show
how. Endo has been severely hurt by the crash, and in addition,
his physique is not adjusted to Earth’s environmental conditions.
Endo’s intelligent spaceship called Arrow devised a plan to save
Endo by mutating its DNA, but being damaged itself, it could not
perform both the transformation itself and the search for a suitable
DNA modification in the little time until Endo’s imminent death.
Arrow therefore contacted the ICFP contest community via us.

3.2 DNA and RNA

Simulating the synthesis of Endo from Fuun DNA is a two-phase
process. First, Endo’s DNA is converted into RNA using a process
called execution. Then, the resulting RNA is used to build Endo and
its immediate surroundings, or rather to produce a two-dimensional
image of it.

Modifications of Endo such as requested by the task are per-
formed by concatenating a prefix to Endo’s original DNA, and exe-
cuting the resulting DNA.

DNA is a sequence where each element is one of four letters (I,
C, F, or P), called bases. Endo’s original DNA string is 7523060
bases long. RNA is a sequence of commands, each command being
a DNA string consisting of seven bases.

398

Figure 3: Arrival sequence

3.2.1 Execution
Execution is a process that consists of one operation – a match-
replace – on the DNA string, that is performed repeatedly. In each
iteration, the DNA string is inspected from the beginning. The DNA
is scanned until an initial segment is recognized as a pattern. The
rest of the DNA is then scanned until an initial segment is recognized
as a template. The rest at that point is matched against the pattern.
The part that matches is removed and replaced by an instantiation
of the template. If the match fails, nothing happens.

While scanning for the pattern and the template, a special three-
base sequence III indicates that an RNA command is to follow;
the RNA command is then output immediately.

I, C, F, P match a literal I, C, F, or P, respectively
!n skip n bases
?DNA search for DNA string DNA
(p) grouping: match pattern p and save the match

Figure 4: Pattern language

I, C, F, P insert a literal I, C, F, or P, respectively
ln insert saved group n at quoting level l
|n| insert the length of saved group n

Figure 5: Template language

As long as the resulting DNA string of a match-replace operation
can be interpreted again as another match-replace command, the
process continues. If the end of the DNA string is reached while
scanning for the pattern or template, the process stops. Executing
Endo’s original DNA performs 1891886 match-replace operations
before it stops.

The pattern language comprises constant patterns (literal se-
quences of bases), skipping a non-negative number of bases,
searching for a certain sequence of bases, and grouping (Figure 4).
Templates contain literal sequences of bases, but can also refer to
grouped parts of the DNA that the pattern has matched, and query
the length of such parts (Figure 5).

Quoting Encoding constant bases in patterns and templates re-
quires an escape mechanism: it is necessary to distinguish a literal
I from the pattern that matches a literal I. At the very least, we
have to know where a pattern ends. Therefore, DNA uses a quoting
mechanism in many places, which works as follows:

I becomes C

C becomes F

F becomes P

P becomes IC

As a result, we know that if we are looking for a quoted string, the
sequences II, IF, and IP can never occur. Even if a string is quoted
multiple times, this observation remains true. Sequences starting
with one of those three pairs are therefore associated with special
meaning. For instance, IIC and IIF both denote the end of a group,
pattern, or template, III indicates a subsequent RNA command, IP
introduces a skip in a pattern, and IF introduces a reference in a
template.

When strings are reinserted into the DNA via template refer-
ences, one can choose an arbitrary quoting level at which they
should be inserted.

Here is a full example of a single execution step – let us assume
we have the following DNA:

IIPIPICPIICICIIF ICCIFPPIIC CFPC

For better readability, the above DNA is split into three parts. The
first two parts are interpreted as a match-replace operation which is
then applied to the rest – the third part.

The first part is interpreted as the pattern (!2)P, i.e., start a
group, skip two bases, end a group, match a P. The middle part
is interpreted as the template PI00, i.e., insert PI, and insert what
was matched against the first group. The match-replace command,
which can be written as

(!2)P 7→ PI00

399

is now applied to CFPC, i.e., the remainder of the DNA. Two bases
are skipped, thus the group is bound to CF, and the third base is
a P, so the match is successful. The part that has been matched
– the string CFP – is then removed, and instead, the template is
instantiated (00 by CF) and inserted, so that the final result is PICFC.

Numbers Execution also makes use of encoded numbers in vari-
ous places. A simple binary encoding is used, where I and F both
represent 0, C represents 1, and P indicates the end.

Issues The DNA language as interpreted by the execution process
is a Turing-complete language. We have encoded both an impera-
tive and a functional (combinator-based) language in DNA, which
are described in Sections 5.3 and 5.4, respectively.

Execution of Endo’s DNA makes extensive use of skipping,
matching, and inserting large chunks of DNA, and given the total
number of iterations, efficiency becomes very important. It turns
out that the central issue is the choice of a suitable data structure.
Some additional details are given in Section 4.1 and Section 5.1.

3.2.2 Building
After executing DNA, we end up with a sequence of RNA com-
mands. Although RNA commands are seven bases long, only 20
commands have an effect on the resulting picture. Other commands
produced by Endo’s DNA are ignored and have no documented ef-
fect (but see Section 4.3).

The 20 commands form an extended turtle control language for
generating a 600 by 600 bitmap picture. In addition to the basic
commands for moving the turtle one step forward and turning it
left or right by 90 degrees, there is support for changing the colour,
for saving a position, for drawing a line between the current and
the saved position, for flood-filling an area of the picture, and for
maintaining a stack of pictures where the top-two elements can be
composed in different ways, allowing alpha-blending and clipping.

Endo’s original DNA produces 302450 RNA commands, of
which 237484 are among the 20 “legal” RNA commands. Perform-
ing these commands results in the source picture shown in Figure 1.

Changing the colour with a limited set of commands while al-
lowing a full range of 8-bit RGBA values is achieved by maintain-
ing a colour bucket. There is one command to empty the bucket, and
there are ten commands to add different base colours to the bucket.
Each colour can be added to the bucket multiple times if desired.
The currently active colour is then given by the average of all the
colours in the bucket. As a result of this approach, some RGBA val-
ues are very cheap to compute, while others are very costly. For in-
stance, producing the opaque RGB colour (254, 255, 255) requires
255 RNA commands.

3.3 How our task satisfies the design choices
In Section 2.2 we described a number of design choices for our
task. Here we describe how our task satisfies these design choices.

Reverse engineering In the contest, we wanted to encourage re-
verse engineering of the given DNA string. The DNA string is not a
straightforward drawing of the source picture, but contains a sig-
nificant amount of structured code, including functions that can be
adapted in various ways, code that is unused in the original string,
but might be helpful for the target picture, and documentation.

We included a hint in the task description that the DNA might
contain messages and hints from the creators of Endo as well as
genes that might help with the transformation.

Despite all this information, a brute-force approach remains
attractive: if the target image can be generated from scratch, there is
no need to look at the given code and to understand its structure. We
did not want to disallow the brute-force approach, and we wanted
participants to follow different routes – however, we decided to

make this approach more difficult in order to encourage teams to
use reverse engineering. We certainly did not want teams to feel
that they had wasted time by looking at the internals of the given
DNA.

Naive redrawing of the target by just RNA commands is pre-
vented by choosing a very inefficient encoding of RNA: ten bases
each for just 20 commands. We also designed the target picture
such that there are no large areas of the same colour that can be
flood-filled. Instead, we use gradients in many places. Furthermore,
we placed a Moiré pattern on top of the image to make compression
harder. We also checked that the PNG encoding of the target image
has reasonable size (235 KB).

In the contest, this balancing seems to have worked quite well:
brute-force approaches were tried and were even able to compete,
but they were not superior. All teams that managed to hand in
a good brute-force solution were required to also do some DNA
programming – for instance, some participants managed to extract
the Moiré pattern.

Writing an efficient interpreter We provided the possibility to
see the best picture so far to registered teams. We decided against
having a full web-based machine or freely providing reference code
for a machine. This was not just for practical reasons, but also
because teams without their own machines would have a hard time
writing debugging tools, which profit from being integrated into the
machine. Therefore, the choice of language for a running reference
implementation would have put a strong bias on the contest.

Implementing the interpreter consisted of following a relatively
long semi-formal description correctly, and choosing the right data
structure to manage the DNA string. We warned in the task de-
scription that executing Endo’s DNA performs 192646205 reduction
steps in the machine.

Choosing the wrong data structure can easily lead to machine
implementations that perform less than a hundred iterations per
second. However, it certainly isn’t necessary to engage in heavy
bit-fiddling, hand optimisation, or assembler programming to get
a reasonably fast machine: our straightforward, 347-line Haskell
reference implementation using finger trees (Hinze and Paterson
2006) takes about 50 seconds for drawing the initial images. Our
optimised C++ implementation using a variation of ropes (Boehm
et al. 1995) takes about 5 seconds. Despite the hint about using a
suitable data structure in the task description, writing an efficient
machine turned out to be harder than we thought for many contes-
tants.

Exploration In order to keep the already long task description
manageable, we decided to include documentation on how Endo’s
DNA is structured not into the problem description, but into the DNA
itself. We gave one prefix (a self-test) to try in the description, and
made it easy to discover, with a bit of analysis, more prefixes from
there that would lead to documentation pages. The documentation
includes many hints on the machine model that most of the DNA
code uses, the locations of specific functions, calling convention,
etc. In addition, there were some puzzles for advanced parts of
the target picture, for which some additional work or debugging
would need to be performed. All this is explained in more detail in
Section 4.

During the contest, it turned out that many participants had dif-
ficulties in interpreting the algorithm to generate prefixes for doc-
umentation pages, and considered this a stumbling block. It was
possible to continue and start writing tools without this informa-
tion, or to find out by simply analyzing the code, but many teams
did not. At this point the structure of the task was thus probably too
linear.

Tools To generate the target picture, it is helpful to analyse all as-
pects of the DNA machine, by tracing the execution, tracing parts of

400

the changing DNA string, and observing the generated RNA instruc-
tions.

Once documentation is found, more possibilities become avail-
able: with knowledge of the machine model, it is possible to trace
function calls, observe values of mutable variables, extract encoded
strings, find hidden documentation pages and so on.

Unfortunately, since the task was to submit prefixes, and only
relatively few teams submitted their code for the judges prize, we
have no clear overview on how many teams wrote what tools. What
we can say is that the top teams, whether using a brute-force or a
reverse-engineering strategy, all wrote tools to help them. The fact
that many secrets and some easter eggs in the DNA were found
during or soon after the contest also indicates that a significant
amount of analysis was performed on the DNA.

4. Solving the task
To reiterate, the task for the contestants is to adapt Endo’s DNA to
life on Earth. This adaptation is in the form of a prefix, a (hope-
fully) small piece of DNA that, when prepended to Endo’s DNA and
executed, produces the picture in Figure 2. How would we proceed
to solve this task?

4.1 Getting started
The task description says that “something curious” happens if the
prefix IIPIFFCPICICIICPIICIPPPICIIC is used. Obviously, we
should try this first. If our DNA machine is correct, we get a “self-
check” screen showing a number of tests, each followed by “OK”.
On the other hand, if some subtle aspect of the specification is
implemented incorrectly, then some or all of the screen will be
mangled, e.g., everything drawn after a certain test will be rotated
by 90 degrees.

Of course it is good to know that the machine is at least partially
correct, but it doesn’t really help us get further (except that it is
now clear that there are things hidden in Endo’s DNA). So maybe
we should look more closely at the DNA. It starts with III – an RNA
command. In fact, there are thousands of RNA commands right at
the start of Endo’s DNA, before it goes off doing mysterious match-
replace operations. What does the RNA do? Here it really helps if
the DNA machine allows us to step through commands interactively,
like a debugger – an indispensable tool for reverse engineering.
When we do, we see that a message is drawn before it is overwritten
by a black flood fill:

IIPIFFCPICFPPICIICCIICIPPPFIIC

There are other ways to discover this prefix. In fact, it is even pos-
sible to see the hidden prefix by accident if, for instance, flood fills
or bitmap operations do not work correctly yet; or if the machine
is just very slow (which was the case for many contestants). This
bit of DNA is another prefix, like the one for the self-check. And in-
deed, when we prepend it to Endo’s DNA and execute it, we make a
remarkable discovery: the first page of the Fuun Field Repair Guide
(Figure 6).

Apparently Endo’s designers helpfully created information on
repairing broken Fuun in the field. The page shows two prefixes: a
prefix that shows the next repair guide page, and one that rotates
the planet, i.e., turns the picture from night into day. This prefix
alone fixes a huge number of pixels, although the survival chance
(see Section 6.3) only increases to 1.27% to reflect the fact that
this is far from enough to save Endo. About 160 teams managed to
discover this prefix.

Actually, the other prefix sounds even more interesting and
indeed, when used, it shows a repair guide page that describes
how integers are encoded in DNA, and suggests that one can access
other pages by taking a known repair guide prefix and changing

Figure 6: First field repair guide page

the embedded number to the number of the desired page. It also
mentions that the catalog has page number 1337.

This page presented a serious obstacle for many contestants:
the first page renders quickly even on slow DNA machines, but the
second one (like the actual picture) takes an excruciating amount of
time if skips and template replacement aren’t sublinear, as the task
advises. Thus, contestants would be stuck at this point unless they
fixed the time complexity of their machine.

Given that we have a DNA machine by now, we proceed to
disassemble a known repair guide prefix. Let’s take the prefix for
Figure 6. It disassembles to the following DNA operation:

(?IFPCFFP)I 7→ 00C

We use the notation pattern 7→ template to denote the DNA
string encoding the corresponding match-replace operation. The
above prefix searches for the base sequence IFPCFFP (and binds
everything up to and including that sequence), then matches a
single I; it then rewrites the matched DNA string by putting back
everything up to and including the IFPCFFP, and writing a single C.
Thus, it replaces a certain I with a C. According to the description
of the encoding of numbers on the second help page, that would be
changing the number 0 to 1. To test this a bit further, we could look
at the prefix for the second page:

(?IFPCFFP)II 7→ 00IC

and indeed, this would appear to change 0 to 2.
According to the second page, we have to set the number to

1337 to get access to the catalog page. The encoding of 1337 is
CIICCCIICIC, and the necessary prefix would be

(?IFPCFFP)IIIIIIIIIII 7→ 00CIICCCIICIC

or, in concrete DNA,

IIPIFFCPICFPPICIICCCCCCCCCCCCIICIPPPFCCFFFCCFCFIIC

This prefix finally reveals the catalog page, which lists the numbers
of many other repair guide pages. With the same technique as above
we can now access all of them. There are a lot of interesting pages,
although many are quite cryptic – a lot of talk about red zones and
green zones and blue zones (e.g. Figure 7), and at least one page is
“encrypted” according to the catalog.

There is one page in particular that looks very interesting: page
number 42 shows a “gene list” (Figure 8). For each “gene”, it
shows the size and offset relative to a special base sequence. Alas,
this is only the first page. But there is a colossal hint in there: the
gene named AAA geneTablePageNr . So what if we constructed

401

Figure 7: Repair guide page with strange terminology

a prefix that searches for the special sequence IFPICFPPCFFPP
(the marker to which the gene offset are relative according to the
gene table), then skips 0x510 bases (minus the length of the special
sequence), and writes a number? To write page number 10 would
be, for instance,

(?IFPICFPPCFFPP!1283)!4 7→ 00ICIC

where !n denotes a skip over n bases. In DNA, this would be:

IIPIFFCPICCFPICICFPPICICIPCCIIIIIIC
ICPIICIPIICPIICIPPPCFCFIIC

Of course, this prefix has to be appended to the prefix that sets the
help page number to 42.

From the gene list we learn that there are hundreds of these
genes, although some entries in the gene table appear to be dam-
aged.

4.2 Improving the picture
Now we have enough information to try to find ways to improve the
picture. For instance, there are lots of apparent variables in the gene
table (like AAA geneTablePageNr). Perhaps tweaking them will
have some effect on the picture. Of course, the more you know
about the code (say, through tracing or disassembling), the easier
this becomes.

For instance, there is a variable polarAngleIncr , which deter-
mines the rotation of the blades of the windmill. How could you
know? The blades are rotated slightly in the target picture com-
pared to the original picture, which makes one hopeful that the ver-
tices of the blades are not positioned absolutely but are subject to
some transformation. Plus, there are sine and cosine tables in the
gene list. Finally, the call graph (see below) shows that the function
windmill calls drawPolylinePolar . It takes a bit of experiment-
ing, but it turns out that setting it to 5 gives the rotation that matches
with the target picture. The command to do so is:

(?IFPICFPPCFFPP!823763)!3 7→ 00CIC

Figure 8: Gene list (or symbol table)

Other interesting variables include enableBioMorph (which
adapts Endo to the local ecosystem, though not necessarily in
the desired way) and weather (which enables various weather
patterns).

Not every change can be made by changing a variable. Some
changes involve modifying DNA code in some way, such as dis-
abling certain bits of code or enabling dead code. An example is
removing the λx.x stuck in the windmill:

(?IFPICFPPCFFPP!5049987)!33 7→ 00

ˆ
!727 7→

˜
where [pattern 7→ template] denotes the encoding of a match-
replace instruction in DNA. The encoding of this instruction is 33
bases, hence the !33. In other words, this prefix places a skip of 727
bases at offset 5049987, which is the start of the code that draws
the lambda. Similarly,

(?IFPICFPPCFFPP!5043058)!33 7→ 00

ˆ
!154 7→

˜
causes the ducks to appear. The ducks, it turns out, are drawn in a
conditional: if true then nop else drawSomeDucks . The skip
jumps over the conditional to the else-branch.

4.3 Calling convention
One important secret of Endo’s DNA is the presence of certain
undocumented RNA sequences. These RNA sequences are of the
form IIICFPICFP or IIICnnnnnn, where each n is one of I, P,
or C. A bit of analysis (plus a hint in the help screen on “abnormal
RNA”) makes it clear that the former indicates a return from a
function (a.k.a. “gene”), while the latter indicates the entry of a
function, where the ns denote a unique function number in base-3
notation. Thus, these RNA sequences reveal the dynamic call graph
within Endo’s DNA.

4.4 Memory model
When we step through the DNA code, and from the help screens
and the gene table, we should get a picture of the operation of the
DNA, which is useful – we have to patch the code, after all. Endo’s
designers – the misnamed FuunTech – seem to have programmed

402

Endo in an imperative language called Imp. It is a useful language
though: it has functions, recursion, local and global variables, con-
ditionals, loops, arrays, and even pointers. Due to the strange prop-
erties of Fuun DNA, the compilation scheme and memory model is
not quite the same as what we know from standard Von Neumann
machines. But there are many similarities, and it is only a matter of
understanding the FuunTech terminology.

The repair guide page in Figure 7 talks about several “zones”
in the DNA: red, green and blue, which appear in the DNA string
in that order. The blue zone (which “waxes and wanes”) is just
a stack: it contains return addresses, local variables, and function
arguments (and there is even a page on the precise layout of stack
frames). The green zone contains code and global variables. But
DNA does not have an instruction pointer – it can only execute
instructions at the front of the DNA string. So we cannot execute
a function directly within the green zone, since then we would
lose the function forever (plus all the functions and variables that
precede it).

That is where the red zone comes in: it is a copy of (the re-
mainder of) the current function from the green zone. A function
is called by copying it to the front of the DNA, i.e. the red zone.
The caller pushes the return address on the stack, then discards its
remaining code and copies the callee to the front of the string.

A function returns by popping the return address from the stack,
discarding its own remaining code, and copying the remaining code
of the caller back to the front of the DNA string. Here it has to
know how much of the remaining code of the caller to copy back.
Therefore, an address consists not just of an offset (relative to the
start of the green zone) but also a size in bases.

As each instruction is executed (appears at the front of the
string), the offsets of all functions and variables that it references
are statically known. This is because the compiler for the imper-
ative language knows the size of the remaining “red zone” code
and it knows the size of each object in the green zone. Similarly, it
knows the offset of the start of the stack, and therefore of all vari-
ables in the current stack frame.

All of this means that we have to be very careful about modi-
fying DNA. We cannot insert code into the green zone, since that
would invalidate offsets. We have to be very careful to also discard
the current red zone code when calling functions. And when we
call a function from a prefix, we do not have a return address in the
green zone, unless we patch the green zone first. Calling functions
from a prefix is therefore tricky.

However, the Fuun engineers were aware of this difficulty and
provided a “function call adapter” that makes it easier to call func-
tions from prefixes. It is explained in detail in a repair guide page,
but essentially it just saves the current red zone on a special stack
(i.e., it saves the actual code, rather than a return address in the
green zone, which we do not have when calling from within a pre-
fix).

4.5 Secrets
Endo’s DNA contains many secrets that can help to produce a short
prefix fixing as many pixels as possible. There are documentation
pages for the imperative and functional languages used to build
Endo’s DNA, an audio prefix, L-systems, spirographs, a virus, easter
eggs, and many more secrets hidden in the DNA. A brief description
of the secrets can be found in a technical report (Dolstra et al.
2007b).

The secrets in the DNA turn the contest into an adventure style
game, in which problems have to be solved at several levels in
order to produce a good prefix. Finding secrets and using them
to solve a problem requires advanced programming skills, more
than required for the development of the DNA to RNA machine.

Here participants can demonstrate their programming skills and the
capabilities of their favourite programming language.

The secrets vary in difficulty: some are very easy to find and
solve, others are much more difficult. Some of the easier secrets are
included to give away some helpful information about the structure
of the DNA. We expected the contestants to find these secrets early
during the contest, and we hoped these would help the contestants
to get started. An example of such an early secret is the sequence
of RNA commands at the start of Endo’s DNA, eventually leading
to the daylight prefix and the catalog page. For this, the contestants
had to go through a sequence of four steps.

Once the catalog page is found (and the gene table listed on
this page), many more secret pages become accessible, including
the more difficult ones. In most cases, the challenging secrets cor-
respond to the more valuable information, such as cheap fixes for
certain parts of the picture, or keys to unlock some other informa-
tion. To avoid giving some contestants an advantage, we included
secrets about a variety of topics, so that it is extremely unlikely
that a contestant is an expert in all of these topics. Although we
carefully designed the paths in which we expected the secrets to be
explored, we anticipated that the information could also be found
in unforeseen ways.

5. Creating the task
Section 2.1 explains that we used a low-level programming lan-
guage because we wanted contestants to reverse engineer a large
piece of complex low-level code, and because we had to deal with
contestants using many different programming languages. This sec-
tion discusses how we arrived at the design of our low-level code
languages DNA and RNA. Since it is extremely hard to program in
these languages, we developed higher-level languages and tools to
produce this low-level code. This section discusses these languages
and tools. Knowledge about these languages and tools makes it eas-
ier to reverse engineer the low-level code. Part of this information
can be found in the low-level code we handed out, see for instance
sections 4.3 and 4.4.

5.1 The DNA language
The initial DNA language looked a lot like regular expressions.
We verified that all necessary programming features – variables,
loops, conditionals, stacks, functions – could be implemented using
regular expressions.

Programming in pure regular expressions turns out to have
some challenging implementation issues. The most vexing problem
is to make DNA evaluation efficient enough. Our original DNA
language relied exclusively on pattern matching to locate variables
and functions in memory. For instance, each variable would be
preceded by a unique “marker”, and could be updated by searching
for its marker and updating the succeeding bases, e.g.

(?ICFP) . . . 7→ 00IPI

to update the 3-base variable marked ICFP to IPI. However, this
means that every DNA instruction takes O(n) time in the length of
the DNA, which is much too slow1.

The solution is the skip operation, which allowed us to have
random-access memory while still retaining the flavour of regular
expressions. After all, a skip operation of n bases is really just the
regular expression . repeated n times. If DNA is stored in a data
structure like a rope (Boehm et al. 1995), or even just a sufficiently
short list of strings, programs can be executed efficiently.

Still, Endo’s DNA requires a lot of arithmetic. Initially we used
Peano arithmetic, which for some uses (such as a small loop

1 This is exactly the problem that many contestants encountered if they
didn’t use an efficient datatype for DNA.

403

counter) is very efficient in DNA. But Peano doesn’t scale very
well, so we moved towards a binary encoding of numbers and
wrote DNA functions to do addition, subtraction, and multiplica-
tion. As these operated at the bit level, they were quite slow. We
cheated once more and added addition into the DNA specification
in the form of the “length of match” operation: to add natural num-
bers n and m, you skip n and m bases within a group, then in the
replacement store the length of the group thus matched. However,
this fails when n + m is longer than the length of the DNA, which
is why Endo’s DNA starts with a mysterious list of instructions that
“grow” his DNA to 224 bases.

But now subtraction was a bottleneck, so we used a final trick
and changed the semantics of DNA quotation such that we could use
it to do efficient subtraction. (Hint: in two’s complement, x− y =
x+(~y)+ 1, so all we need is a way to perform bitwise negation.)

5.2 Making pictures with RNA

The RNA language is inspired by turtle graphics (Abelson and
diSessa 1981), although ultimately our “turtle” is primitive in some
respects and advanced in others. We added an alpha channel and
compositing operations to be able to draw nice-looking images (see
for instance the transparent backgrounds in the repair guide pages).
Floodfills were added to obviate the need for an explicit polygon
drawing operation.

5.3 The Imp language
In terms of ease of programming, Fuun DNA lies somewhere be-
tween assembler and Turing machines. Therefore, we designed a
simple, high-level imperative language called Imp that compiles to
DNA code. (Some code, such as the self-check, was more-or-less
written by hand.) The Imp compiler is written in Haskell, and Imp
programs are written as an embedded domain-specific language
in Haskell. Imp is a conventional C-like imperative language, ex-
cept for some tricky details. For instance, you cannot really pass a
pointer to a stack variable to a function, because pushing things on
the stack causes the addresses of stack variables to shift.

Here is an example of an Imp function that returns the length of
a string. Strings are sequences of 9-base integers, terminated by the
value 0xff.

stringLength =
comment "Return the length of a string." $
function "stringLength" intType -- return type

[stringArg "s"] -- parameters
[intVar "i" 0] -- local variables
[while ("s" !!! "i" 6= byte 0xff)

["i"←− "i" + 1]
, ret "i"
]

Haskell functions such as while , ret , and function are combinators
that build the abstract syntax tree that the compiler translates into
DNA. We used operator overloading to be able to write object-
language expressions such as "i" + 1.

Embedding the Imp language in Haskell obviates the need for
a grammar and parser, but more importantly, it allows all kinds of
meta-programming in Haskell. After all, the full expressive power
of Haskell is available to transform abstract syntax trees at compile
time. For instance, here is the definition of a function that performs
a bitwise increment of an integer; note that the foldr essentially
unrolls a loop that iterates over the bits.

incInt = comment "Increment an integer by one." $
function "incInt" intType -- return type

[intArg "x"] -- parameters
[] -- local variables

[foldr (λindex carryToNextBit →
iff (base "x" index ≡ encodeOneBit)

-- bit at index is 1, set it to 0 and go to the next bit
[base "x" index←− encodeZeroBit , carryToNextBit]

-- bit at index is 0, set it to 1
[base "x" index←− encodeOneBit]

)
Nop -- overflow; ignore
[0 . . (defaultIntLength − 2)]

, ret "x"
]

We wrote quite a bit of code in Imp, such as arithmetic opera-
tions, string operations, turtle graphics, RC4 encryption, Hamming
error correction, functions for drawing L-systems and spirographs,
and more. Also, the functions that draw the Endo scene and the
repair guide screens were generated from a picture combinator lan-
guage that translated into Imp code.

5.4 The Fuun language
The code that positions the fish is generated using a compiler for a
functional language called Fuun. Like the Imp language, the Fuun
language is a DSL embedded in Haskell. A nice detail of the em-
bedding is that Fuun programs are statically typed by the Haskell
compiler using phantom types. Fuun is a call-by-name functional
language, so expressions are evaluated only if their values are de-
manded. It is not a call-by-need language, so expressions are eval-
uated repeatedly rather than that they reuse previous evaluations.

5.5 Tools
We developed a lot of tools to generate, execute, and analyse
DNA programs. For this, we used many programming languages:
Haskell, C++, C, Java, Perl, PHP, and Ruby.

DNA machines We wrote implementations of the execute func-
tion in Haskell (several implementations), C++ (several), Perl, and
Java. In the end, we decided to use the C++ version for our sub-
mission system, but the Haskell implementations were pretty fast
as well. Some of these implementations offered additional features
to support basic debugging.

Renderers Renderers (the function build) were written in Haskell
and Java. For the submission system, we used a Haskell/C imple-
mentation: we used Haskell’s Foreign Function Interface to com-
municate with the libpng library to do some low-level bitmap op-
erations. The algorithms for drawing lines, doing flood fills, and
composing bitmaps were also implemented in C. This renderer also
supported a debug option to see some intermediate bitmaps.

Being essential to our contest, the renderers and the DNA ma-
chines were implemented in different languages and by different
people (N -version programming), to increase our confidence that
(1) the machine specifications were correct and unambiguous, and
(2) both machines could be implemented with comparable effort
in a variety of languages. For example, if different people, us-
ing widely different languages, can implement a renderer from the
same specification, and experiments show that these give exactly
the same results, then this increases our confidence that (1) holds.

Picture combinators We designed an embedded domain-specific
language to compose pictures from primitive elements such as texts
and circles. This combinator library was written in Haskell, and
was used to describe the source and the target picture, as well as all
the help pages. It supported both relative and absolute positioning,
allowed us to apply some gradients to elements, and to rotate and
scale parts of a picture. Picture descriptions in this EDSL were
translated to the Imp language and from there into DNA.

404

Font generators Endo’s DNA sequence contains three embedded
fonts. In fact, these fonts were embedded in various sizes and in
different styles (e.g., italic). We made a tool in Java to translate an
existing font by turning its characters into RNA commands. Border
pixels are drawn semi-transparently to achieve some anti-aliasing,
which is essential for the readability of the smaller fonts. We also
included the Wingdings font and used this for the help page on
viruses.

Curve tool We wanted some of the picture elements to be car-
toonish (such as the cow), and for this we implemented a sim-
ple tool for drawing curves interactively. This tool was written in
Haskell using the wxHaskell GUI toolkit. The curves were approx-
imated by quadratic Bézier curves, which were then rendered to a
collection of points.

Image tools A couple of tools were developed (in Haskell) for
embedding images. The first tool simplifies the images: colours
are slightly changed to simpler colours (requiring fewer RNA com-
mands) and larger areas of one colour are created by merging ar-
eas that are sufficiently close to each other. The degree of simpli-
fication was determined for each of the images individually. The
second tool converts the image to a sequence of RNA commands.
Connected areas of one colour are determined, the border is drawn
(only where it is really necessary), and if needed, some flood fills
are performed. The order in which the areas are dealt with highly
influences the number of RNA commands. A few simple heuristics
were used to determine the ordering. The last tool turns a list of RNA
commands into DNA commands and performs some compression.
All RNA commands are mapped to natural numbers: the more oc-
currences, the lower the natural number. A simple combinator, writ-
ten in DNA commands, can turn the natural numbers back into RNA
commands. The compression ratio is acceptable: although higher
ratios could be obtained, a requirement was that decompression at
execution-time should be reasonably efficient. The following table
shows for two embedded images the sizes before and after sim-
plification (number of bytes in PNG format), the number of RNA
commands, and the number of DNA bases:

image before after RNA DNA

world map 95111 30687 111350 246500
contest team 284158 58634 226020 455133

Call graph A small Ruby script (88 loc) visualises the call graph
by inspecting the undocumented RNA commands, linking them to
the symbol table.

Strings tool We wrote a simple tool in Haskell that finds all
(quoted) strings in a piece of DNA. Care was taken that not too
much information could be found in this way.

6. The contest
The contest took place from 12:00 (noon) CEST on 20 July 2007
till 12:00 on 23 July, giving contestants 72 hours to save Endo’s
life. Teams were not required to pre-register, but could do so. There
was no limit on team sizes. Teams with members associated with
the Information and Computing Sciences department of Utrecht
University were allowed to participate, but were ineligible for any
of the prizes.

Teams could submit DNA prefixes any number of times during
the 72-hour period, with a ten minute waiting period between
submissions to prevent overloading the server, but also to make
sure that teams did not use our DNA machine as an alternative to
constructing their own. This was also the reason why we did not
allow teams to register twice.

Each submission was immediately evaluated by our submission
system. The score of the submission was then reported back to the

#teams Countries

130 USA
35 Japan
33 Germany
30 France
29 Russia
15 UK
10 Australia, Ukraine

9 India, Sweden
7 Canada, Netherlands
6 Belgium, New Zealand
5 Austria, Belarus, Latvia, Switzerland
4 Finland, Italy
3 China, Ireland, Norway, Spain
2 Denmark, Greece, Hungary, Israel, Poland, Singa-

pore, Slovakia, South Africa
1 Bulgaria, Colombia, Romania, South Korea, Taiwan,

Thailand, Uzbekistan

Table 1. Countries of team members

team. Also, a rendering of the best submission of the team so far
was shown. We didn’t show each team’s latest submission, again
to prevent teams from using our submission system as a substitute
for writing a DNA machine. Teams were judged on the basis of their
best submission over the course of the contest.

6.1 The contestants
869 teams registered before and during the contest. Ultimately,
357 teams submitted at least one prefix. The average size of the
submitting teams was 2.6 members.

Teams were asked to specify their physical locations. Some
teams were distributed across countries or even continents. Table 1
lists how many teams had members in each country, for those teams
that gave this information. There were 137 teams with members in
North America, 1 in South America, 55 in Asia, 188 in Europe
including Russia (with 136 in the European Union), 16 in Oceania,
and 2 in Africa. Incidentally, Africa was the continent with the
highest percentage of winning teams.

Teams were not required to submit source code and other con-
test materials unless they wished to be eligible for a prize (in partic-
ular the Judges’ prize). Thus, we cannot make certain pronounce-
ments regarding the programming languages used by teams. How-
ever, teams were asked to specify the languages they used on their
team information page, which they could change during and after
the contest.

Table 2 shows how many times languages were mentioned by
teams. Some entries may need to be taken with a grain of salt.
Imperative languages continue to dominate the field. Haskell and
OCaml are the most popular functional languages by some margin.
Interpreted languages are also popular.

6.2 During the contest
As described before, teams could submit entries every ten minutes,
but only the result of their best submission would be shown. This
discouraged teams to submit anything but their current best prefix
to us. Since we expected teams to implement their own DNA ma-
chine, our data on how the contest proceeded from the perspective
of the participating teams is limited.

Teams started submitting shortly after the contest opened. Team
escape started very early submitting seemingly random strings of
relatively short length (mostly length 200 or 100) nearly every ten
minutes – they submitted 273 times throughout the contest. Most of

405

#teams Languages

81 C++
67 C
66 Haskell
64 Python
52 OCaml
48 Java
35 Perl
26 Ruby
22 Lisp
22 C#
17 Scheme

9 Unix shell (sh, bash)
8 D
5 PHP
4 Erlang, Delphi
3 ML
2 AWK, Fuun DNA, LOLCODE, Lua, Octave, Prolog,

Refal, Scala
1 2D, Basic, Blub, Brainfuck, CWEB, Cobol, Dylan,

Emacs Lisp, Excel, FP, F#, Grep, Hub, MUMPS,
Nemerle, PL/I, Pascal, R, Sed, Silcc, Smalltalk, Un-
lambda

Table 2. Languages mentioned by the teams

these pictures resulted in a completely black or a completely white
square.

During the first hours we often saw the prefix given in the task
description that produces the reference output for the self-check.
This picture could actually be seen by the contestants as it results
in a slightly better score than the beginning picture.

Teams were then obviously trying to come up with implementa-
tions of the DNA machine, since this was necessary to get to the first
help screens and the “daylight” picture. The daylight picture pro-
duced the first noteworthy improvement in score, and the first team
to submit this prefix of length 28 was camelimelo, seven hours into
the contest. After twelve hours, eight teams had submitted daylight.

After 15 hours, team Smartass was the first to improve on the
daylight score by finding a prefix of length 27 that results in the
same picture, improving their score by 1. In the remaining time of
the first day, we saw teams submitting some help screens, and teams
trying brute-force approaches, but none of this was leading to any
measurable success yet. After 24 hours, team PurelyFunctionalIn-
frastructure had also found this shorter prefix, and more than 20
teams had found the daylight picture, thus the first teams with a
non-zero chance of Endo surviving became visible on the score-
board (the top 20 were shown without score and in random order).
Since Endo would never have survived after only 24 hours of work
and we had essentially a tie at the time, we decided not to hand out
the “lightning division” prize.

The first significant improvement over daylight was submitted
by PurelyFunctionalInfrastructure 36 hours into the contest: they
managed to change the colour of the cargo box correctly. Only
six minutes later, United Coding Team changed the trees correctly
and then ranked second. After four more hours, a few more teams
were beginning to improve upon daylight. One of them was jabber-
ru, one of the most successful brute-force teams. Team jabber-ru
tried to approximate the target picture with hand-drawn polygons.
Despite being a one-man team, he submitted very often, making
small incremental improvements to his picture all the time, sleeping
at most a couple of hours during the contest. Figure 9 shows the
score development of the top teams from hour 35 on.

We kept the contest office manned by at least two persons
throughout the contest at all times. We monitored the submissions,
looked at discussions taking place on the internet, and answered
questions on the official mailing lists. Some clarifications regard-
ing the task description were asked for, but, fortunately, no bugs
were found. The submission system was offline once for about fif-
teen minutes, but worked flawlessly for the rest of the contest. We
realised that implementing the DNA machine was providing a big-
ger hurdle for the teams than anticipated. After multiple requests,
we therefore decided to publish an execution trace of the first ten
iterations of Endo’s DNA online, in hour 37.

After 48 hours, a small number of teams was fiercely competing
for the top spot. Teams pursuing brute-force approaches were com-
petitive with those reusing the given DNA, but at most times, one of
the reusing approaches was leading. It was not at all obvious who
would win.

In hour 49, the first teams were beginning to discover the
Biomorphological Unit (BMU) and playing with different shapes
of Endo.

At the same time, slowly, more and more teams found daylight.
However, even after 55 hours, there were still less than 20 teams
with a score higher than daylight. We noticed that in certain discus-
sion channels frustration rose because the scoreboard still did not
show a single team that had achieved more than the daylight score.
In order to give away at least this positive message, we decided to
lower the amount of hidden scoreboard entries from 20 to 15.

This step also made the 27-length daylight prefix widely known
for the first time. Until then, six teams had found this small vari-
ation. After the knowledge about the score became public, several
teams managed to come up with this prefix as well – 14 of them
within the next hour.

Shortly thereafter the first teams having significantly higher
scores than daylight appeared in the public part of the scoreboard,
sparking some optimism among the teams.

In hour 65, team cultboundvariable managed as the only team
throughout the contest to submit a prefix that produced the target
picture exactly. However, the prefix was more than seven million
bases long, thus the score was not competitive.

The last few hours of the contest were by far the most exciting.
Several teams managed to get significant improvements of their
score shortly before the end of the contest. Most amazing probably
was Celestial Dire Badger who made a few big leaps within the last
ten hours. Several teams, including Team Smartass, discovered that
simply eliminating incorrect elements of the source picture already
improves the score significantly, which is part of the reason that the
winning picture looks relatively empty.

6.3 The winners
Table 3 lists the scores and survival chances of the best 15 teams.
A team’s score is the length of its best prefix, plus the number
of incorrect pixels in the generated image times 10. The survival
chance is defined as 100 e−1 (0.000018 score)2 .

Judges’ prize While the first and second prizes followed directly
from the teams’ scores, for the Judges’ prize we looked at the
materials that 31 teams submitted. We were looking in particular
for clever techniques and tools that resulted in a good score.

Quite a number of teams were using various brute-force ap-
proaches to draw Endo. Of these, Celestial Dire Badger (using
OCaml and C++) had the most elegant approach. He combined a
more-or-less brute-force approximation of parts of the target pic-
ture (with increasing resolution in the final hours of the contest)
with a re-use not of Endo’s DNA but its captured RNA output, as
well as a compressor for the generated DNA. This resulted in the

406

Place Score Survival
chance

Team name

1 178246 90.22% Team Smartass
2 224623 84.92% United Coding Team
3 293898 75.59% Celestial Dire Badger
4 321617 71.52% ryba
5 358246 65.98% PurelyFunctionalInfrastructure
6 453744 51.32% jabber-ru
7 498781 44.66% Begot
8 514121 42.47% Basically Awesome
9 543163 38.45% SwtPl

10 608964 30.07% shinh
11 682894 22.07% SzM
12 819614 11.34% kuma–
13 862213 8.99% Unknown?
14 865556 8.83% voyo
15 872788 8.47% kokorush

Table 3. Top 15 teams

0

200000

400000

600000

800000

1000000

1200000

1400000

 35 40 45 50 55 60 65 70

S
co

re

Hours passed

Team Smartass
United Coding Team
Celestial Dire Badger

ryba
PurelyFunctionalInfrastructure

jabber-ru

Figure 9: Scores of the Top 6 during the contest

third-best survival chance (75.59%). Therefore the jury is happy to
declare that

Celestial Dire Badger (Jed Davis) is an extremely
cool hacker.

Second prize The second-best survival chance of 84.92% was
achieved by United Coding Team (Cape Town, South Africa). The
team used various languages to implement tools to execute, reverse-
engineer and debug Endo’s DNA and to generate prefixes: Python,
C++, Unix shell scripts, but primarily Perl. Therefore the jury is
pleased to declare that United Coding Team has proven that

Perl is a fine tool for many applications.

The members of this team were Richard Baxter, Marco Gallotta,
James Gray, Carl Hultquist, Alexander Karpul, Julian Kenwood,
Bertus Labuschagne, Hayley McIntosh, Bruce Merry, Max Rabkin,
Ian Saunder, and Harry Wiggins.

First prize The best survival chance during the contest, 90.22%,
was accomplished by Team Smartass (Mountain View, California).
They used C++ to implement the DNA/RNA simulator and for
various reverse engineering tasks, as well as Python for reverse
engineering and generating prefixes. The team identified C++ as the

primary language used for the contest. The jury is thus honoured to
declare that Team Smartass has demonstrated beyond doubt that

C++ is the programming language of choice for
discriminating hackers.

This team consisted of Ambrose Feinstein, Christopher Hendrie,
Derek Kisman, and Daniel Wright. Team Smartass also won the
2006 ICFP Programming Contest.

7. Conclusions
Many contestants posted a blog message about their experience
with the contest. For example, Gallotta (Gallotta 2007) provides
a list of dozens of blogs, including post-mortems of all teams that
ended up in the top ten. Together, these blog messages give a good
idea of the experience of participating in the contest. We observed
that most of the secrets we included in Endo’s DNA were discov-
ered. The messages often not only discuss technical issues, but also
give an evaluation of what the participants liked and disliked. Based
on these messages, and other reactions we received after the con-
test, we found that reactions to the contest were mixed. The ma-
jority of the reactions was positive to very positive, in particular
from the teams that did well in the contest. Still, participating in
the contest was not a pleasant experience for everybody, with some
blaming the contest, some blaming themselves. We had hoped for
more teams to get further than they did. In retrospect, having a few
more easier secrets to solve would probably have helped in this re-
spect. All in all we are happy with how the contest went.

Since we did not put a limit on the size of teams, we were happy
to see that the size of the teams did not seem to correlate with how
they scored: the three prizes we handed out were for a single-person
team, a team of moderate size, and a very large team.

One thing that struck us during and after the contest, reading
IRC channels and blog postings, was that many programmers have
little confidence in their favourite (functional) language: when they
realised that their implementation of the DNA machine was too
slow, their first instinct was often to switch to a “faster” language
such as C. But the problem here wasn’t the language but algorith-
mic complexity: a straightforward Haskell implementation using
the right data structure, such as Data.Sequence (Hinze and Pater-
son 2006), would be fast enough and outperform by several orders
of magnitude an optimised C implementation using an unsuitable
data structure. So programmers should worry less about languages
and more about complexity.

Quite a few blogs showed that people continued to work on the
contest after the deadline passed, as witnessed by for example the
submission of Jochen Hoenicke of team SwtPl (see Appendix A).
Furthermore, we have seen libraries appear that would have been
useful in the contest: pattern matching in Haskell’s bytestrings, and
finger trees in OCaml.

As far as functional programming is concerned, functional lan-
guages didn’t fare too well (although in the Top 15 there were five
users of OCaml and three of Haskell).

So what happened to Endo? Thanks to the hard work of the
contestants, Endo survived. It joined us on our trip to Freiburg to
say “thank you” to the contestants present at the conference.

Acknowledgements We would like to thank several people that
helped in organising this contest. Atze Dijkstra and Doaitse Swier-
stra participated in our early brainstorming sessions. Chris Eid-
hof, Maaike Gerritsen, Jeroen Leeuwestein, Eelco Lempsink, Mar-
tijn van Steenbergen, and Mark Stobbe tested an early version of
the problem, and helped extending it. Eric Bouwers, Thomas van
Noort, Sander Mak, and Michiel Overeem tested the second ver-
sion of the problem. The systems people at the Information and

407

Computing Sciences department of Utrecht University kindly pro-
vided us with an environment in which we could set up and run the
contest. The Information and Computing Sciences department of
Utrecht University provided us with the necessary facilities for the
contest. Rinus Plasmeijer commented on an earlier version of the
report. Jonathan Jeuring supported Endo to the end.

References
Harold Abelson and Andrea diSessa. Turtle Geometry: The Com-

puter as a Medium for Exploring Mathematics. MIT Press, 1981.

Hans-J. Boehm, Russ Atkinson, and Michael Plass. Ropes: an
alternative to strings. Software—Practice and Experience, 25
(12):1315–1330, December 1995.

Eelco Dolstra, Jur Hage, Bastiaan Heeren, Stefan Holdermans, Jo-
han Jeuring, Andres Löh, Arie Middelkoop, Alexey Rodriguez,
John van Schie, and Clara Löh. Morph Endo! Task Description
of the Tenth Interstellar Contest on Fuun Programming. Tech-
nical Report UU-CS-2007-027, Department of Information and
Computing Sciences, Utrecht University, 2007a.

Eelco Dolstra, Jur Hage, Bastiaan Heeren, Stefan Holdermans, Jo-
han Jeuring, Andres Löh, Arie Middelkoop, Alexey Rodriguez,
John van Schie, and Clara Löh. Morph Endo! Report on the
Tenth Interstellar Contest on Fuun Programming. Technical Re-
port UU-CS-2007-029, Department of Information and Comput-
ing Sciences, Utrecht University, 2007b.

Marco Gallotta. ICFP: How we reached the top 15.
Blog message on http://marco-za.blogspot.com/2007/07/
icfp-how-we-reached-top-15.html, July, 24 2007.

Ralf Hinze and Ross Paterson. Finger trees: A simple general-
purpose data structure. Journal of Functional Programming, 16
(2):197–217, 2006.

A. Best known solution
The following 3685-base prefix was supplied by Jochen Hoenicke
of team SwtPl after the contest. It is a perfect solution: it pro-
duces the target image exactly. It has a survival chance of about
99.9956%. The best prefix that the organisers made before the con-
test scored a meager 45.3%.

IIPIFICCFPIICIICIPPPIPPPIICIPCCCCCICICPFCIIPIFICCFPIICIICIPPPIPPPIICPIIPIFICCFPIICIIPIFIIC

IICIIPIFIPIICIIPIFIPIICIICCCICCICFIFCPCCPCCFCCICCICIFPCPCICFIFCPICPCCFCICFIFCPCCPCCFIFCPPI

FCPPCCICFICCPICFICCPICICCCFIICFCPIPPIIPCCCPFCCCPFFICCCFCPCFCFCCFCPIICFCCFCPICCFCCFIICPPCPF

FFIICPPPIIPCPIFCCCPPFPCCCCCIIIIIIIIIIIIIIIIIIPICCICIICPIICIICCIPCCIIICCIPCICCICIIPICCICICI

PICCIIICIPCICCICIIPICIIIIICPCIIIIICIPCICICICIPIICIIICIPCICCICIIPCIICIIICPCIICIIICPCCCCCCCC

PIIIPICPCPCPPCPCFPIFIIIIIICCCCCCCCCPCCCCPPFIFCICIIIIIICPIICCCPFFPPPICFIFCCIPFFCCCCPCFFCPII

PCFFICCPFFCICPIFFPCPCFFCIIIIIFFIPICPCFFCICCCPFFCCFFCPIIPFFICPCFFCCPICCCCPIFPFCICCIFPFIIIII

CFFIIPPIPIPFIFPPICCCPPICPIICFCCPFPCCIIIIIICCPIICIIIIIIIPCCPIIICPCPCFFCFFCPICPIIIFFIPPIIFFI

CPICFFCPPIIICCFFIICFFCCPCPCFFCPIICFFICCCCPCFFICCPFFCCPICPIPIIIIPFIFCFICPIIIFFPICPCCCCPICPI

IIIFPFFFFFFPPIFPFCCCCCPICPCCCCPIIIFIPFCICCICICCCICCPPPIIICFFIIICPCPPPPIIFFCCPPIPIPCCCCCCCP

FIPFFFCCCCCCFCFIIFPFCFFCFIIPPCPIICCCPCPFFFFFFIPPICCPCFPFCCCCCPPIICCPFIIFPCFCFFFPCCPFIFFFCC

PPCCCPFIIFFCCCFCCICCCPFIFCFFPICCPCPIPIICPFIIPFFPFCCCFIIFCPCPPPFPIIIFFPIFIPFPPIICFFICFPPICC

FFCPCFFFPCFFFIIPCPIIIIPCCPFFCPIPFPFFCCFCIIIPIFIFCFCIIIPPIIPIFFIFIFIIIPICPCPPCCFCPFFCFCFCFC

CPIIIFIIFFCFFCCFIPCCCPICFIIFFFCCCCFPFIFFFCCFIIFCCCFFFCPFIFCCCIIIPPPIFPFFFCFCIFFCIPIIFPFCCF

CFIICCPIIPFIPFCCCFCCCFFFFCPIICFIPFCFCFFFCCFFCPPPIFIIPFIICCCICICICCCICCIICICIICPFIIIFCCIICC

CCIIIIIICFIIPFICCCIIICCCICICCCCCIIICIIPCPIPCCCPFPFCFCFFCCCCPCFPFFCCFFPIPCPFIFIPPIPICCCPFII

FFFFCFFCCCCCPCFIFCFFPIIPIFPIFIIICCCICCICICIIFPFICIICIFPFPICICPFIFIICPCFCPFCCCIICICCFPFICCC

ICFIFCCIIPCCPCPFIIFCCFFFCCCCCCPFIFCFCPCCCPIPCCFFCCPCFPFCCFCFCFPFCFFCFCFPFFCCFFPCFFFCFPFCCC

FCCFPFFCFCCPFIFFCCCFPFFFCCCPCPIICPCFIIPFIIICIICIICCCCCCCIICCIICPICCFCPFICCCICICIPFIFCCCPIP

FPFCPIICPCPCCCPPIIPPFPFFFFFCIPIICFIIFCFCFFCCPPPICFPFPFFFFIFIFIIICCCCCPFIIFIPFFFFFPIPICPCPI

PICPFIIFFCCFFCCPCCCPIICCFPFFFFCFIIPICPFIFCFCPPPCPCFIFFCCCCPICPFPFCCFCFPPIIIPIPCPCPCFFIPPPC

CPPIICPCFPIIFICFCFCFCFCICCFFCFCFCICFCCCFFCFIPIFCFFFFCCICFCCCCCCFICFFFCCFFCPPFPFCCFFCIFIFFF

FPPPIIFIIPFCFFFFFCFFFCCFCFCFCFCCFIIICPIIPFCPFCCCIIICPIIIPPIIIPCFPPFFFCFFFFCFCCFCFCFFFFCCPI

PIIPFIFIICCFPFPIICIPIPPICCPIIFICPFPICCIICCIIICPIICIICCPPICCPFIIFCICCIICIIPIIFIFIICCPIIPIPC

CCCPCFFCPIIIFIIFFFFFCCCIIPCCCPIPFIFFFFCFIFFFFCCCPIFIPFFCFCFCCFFFFCCCCPFIFFFFCFFFCPPIFCPPFF

FCCCCCFCCFCFCCCCCFCCFFICFCFCFFCFCCCCCCFFICPCCCPCPIIIIIIFFPIIPICPPCFIFFFCIPIICPCFFFIIIIICFI

FCFFFIFFFCICPIPIFFFPIIICFPFCCCFCPIICCPIPFPFFCFCFPPICPCCFPFCCFCCIPIIFIPFFCFCCCFCFFCPPPCPIIF

IIFCCFFFFCPCCCPIIIICPIICFPFFCFCFIIIIIFPFFCCFCPIPIIIICFIIFCFCCFFCCPIIFCPFPFCCFCFCFIPPCPIFFF

FFCIIIIIPPIIFIFCCFIIIPIICPCFFIIPCCPPFFIIIPICCCPICPCFFCCPCPIPIFIIPIFCCCIIIIICICIICCCICIPIIP

IPIICICICICIIPIICIICIICIPPPIPPCPCPIPIPICPCCPCFPFCIICIPPIPPCFIIIFIICICIICICIIICCIPIICCCPPIF

IIFCCCCCCICCCPFIIFICCCIICCIIPCCICCICIICPFCIIPIFIFPCCFIICIICIPPPIPPPIICPIIPIFICCFPIICIIPIFI

ICIICIIPIFIPIICIICCCICCPCICCFCCFFCFCCFFFCFFCFFCCICICFFPFICFICFFPFCFCFCFFFPCPICICFCFFCFFCFF

FFFFFCCFCCICCICIFCPICPCICFFFFFFFFFFFICCCFCCFFFCFFCFPPFPCFFFPFICFFPFFCFFCFIPCPCPFICFPICFFPF

CFPPFPCFFFPIPICPPIPICPPFFCFPCFFICCFPCFFICPCFCFFFPCCICICCPICICCCFIICFIICCCCIICCIICCCICCCCIC

CPCPIPFIIIIPPFFICFIFIIICFCCPFPCFCPCPFIPIICFIIFICFICFPCFICFCCFCCFPCFIFICFICFICFFICFIFPICFII

IFICCFCPFCFIIFCFIPFICFCFIICFCFPCFFCCCFIIFIICCFCPFIICFIIFICFIIIFPCFPIFCFIIIFCFIIIFFPFPFIIPF

CPFPPFIIIFIPFCPFIIIFPPFPFPIFCFIPIFFPFCFCPFICFPIFCFIIFICCFIPFCCFCPFIPCFIIFPCCFIFICCFFPCFIIF

CCFPIFCFIIFIFIPIFIIFCPFCPFPIFIIFIIIFPIFIIIFICFPIFCFPFCCFCCPFFIFICFCPFCPCFPIIFCPICFPCPFIFCP

FPFPIFCPFPIFIPFIPFPIFPFPFPFPIFIFIFPFFIFCFIPFICFCFFIFIICFCFPPFPPFCIIIPIPIICICCICPIICIIPIPCI

CCPFIICICIICCCICCICCCFCCCFCFCFFCCCCFCCCCFFICCCICCICFICCICIPPCPICCCFCCFCICFICCCICCICCIPCPCP

ICCCICCICFICCCFCCFCCFIPCPPIPCPPCCICICCPICFICCPICCFICCPICFFICCCFIICICIICIICICCIICPIIII

408

http://marco-za.blogspot.com/2007/07/icfp-how-we-reached-top-15.html
http://marco-za.blogspot.com/2007/07/icfp-how-we-reached-top-15.html

	Introduction
	The ICFP contest
	Requirements
	Design choices

	The task
	Background story
	DNA and RNA
	Execution
	Building

	How our task satisfies the design choices

	Solving the task
	Getting started
	Improving the picture
	Calling convention
	Memory model
	Secrets

	Creating the task
	The DNA language
	Making pictures with RNA
	The Imp language
	The Fuun language
	Tools

	The contest
	The contestants
	During the contest
	The winners

	Conclusions
	Best known solution

