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Abstract

New constructions in group homology allow us to manufacture high-
dimensional manifolds with controlled simplicial volume. We prove that
for every dimension bigger than 3 the set of simplicial volumes of ori-
entable closed connected manifolds is dense in R≥0. In dimension 4 we
prove that every non-negative rational number is the simplicial volume of
some orientable closed connected 4-manifold. Our group theoretic results
relate stable commutator length to the l1-semi-norm of certain singular
homology classes in degree 2. The output of these results is translated
into manifold constructions using cross-products and Thom realisation.

1 Introduction

The simplicial volume ‖M‖ of an orientable closed connected (occ) manifold M
is a homotopy invariant that captures the complexity of representing fundamen-
tal classes by singular cycles with real coefficients (see Section 2 for a precise def-
inition and basic terminology). Simplicial volume is known to be positive in the
presence of enough negative curvature [Gro82, Thu97, IY82, LS06] and known
to vanish in the presence of enough amenability [Gro82, Iva85, Yan82, BCL18].
Moreover, it provides a topological lower bound for the minimal Riemannian
volume (suitably normalised) in the case of smooth manifolds [Gro82].

Until now, for large dimensions d, very little was known about the precise
structure of the set SV(d) ⊂ R≥0 of simplicial volumes of occ d-manifolds. The
set SV(d) is countable and closed under addition (Remark 2.3). However, the
set of simplicial volumes is fully understood only in dimensions 2 and 3 with

SV(2) = N[4] (Example 2.4) and SV(3) = N[vol(M)
v | M ], where M ranges over

all complete finite-volume hyperbolic 3-manifolds with toroidal boundary and
where v > 0 is a constant (Example 2.5).

This reveals that there is a gap of simplicial volume in dimensions 2 and 3:
For d ∈ {2, 3} there is a constant Cd > 0 such that the simplicial volume of an
occ d-manifold either vanishes or is at least Cd. It was an open question [Sam99,
p. 550] whether such a gap exists in higher dimensions. For example, until now
the lowest known simplicial volume of an occ 4-manifold has been 24 [BK08]
(Example 2.6).

In the present paper, we show that dimensions 2 and 3 are the only dimen-
sions with such a gap.
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2 1 Introduction

Theorem A (no-gap; Section 8.2). Let d ≥ 4 be an integer. For every ε > 0
there is an orientable closed connected d-manifold M such that 0 < ‖M‖ ≤ ε.
Hence, the set of simplicial volumes of orientable closed connected d-manifolds
is dense in R≥0.

In dimension 4, we get the following refinement of Theorem A.

Theorem B (rational realisation; Section 8.3). For every q ∈ Q≥0 there is an
orientable closed connected 4-manifold Mq with ‖Mq‖ = q.

Method

We first compute the l1-semi-norm of certain integral 2-classes in finitely pre-
sented groups by relating these semi-norms to stable commutator length.

To formulate this connection, we recall some definitions. For a group G and
a class α ∈ Hd(G;R), the l1-semi-norm ‖α‖1 of α is the semi-norm induced
by the l1-norm of chains in the singular chain complex of any model of BG
(Section 2.1). The class α is integral if it lies in the image under the change of
coefficients map map induced by Z→ R.

For an element g ∈ [G,G] in the commutator subgroup of G, the commutator
length clG g of g is the minimal number of commutators in G needed to express g
as their product. The stable commutator length (scl) of g is the limit sclG g :=
limn→∞ clG(gn)/n. Stable commutator length is now well-understood for many
classes of groups thanks largely to Calegari and others [Cal09a].

Theorem C (Corollary 6.16). Let G be a finitely presented group with
H2(G;R) ∼= 0 and let g ∈ [G,G] be an element of infinite order. Then there is a
finitely presented group D(G, g) and an integral class αg ∈ H2(D(G, g);R) such
that

‖αg‖1 = 8 · sclG g.

We apply Theorem C to the universal central extension E of Thompson’s
group T . Recall that T is the group of piecewise linear homeomorphisms of
the circle with dyadic breakpoints and whose slopes are integer powers of 2. In
Propostion 5.1, we show that the universal central extension E of T is a finitely
presented group withH2(E;R) ∼= 0 and that every non-negative rational number
may be realised by the stable commutator length of some element in E. Using
Theorem C this shows:

Theorem D (Corollary 6.17). For every q ∈ Q≥0 there is a finitely presented
group Gq and an integral class αq ∈ H2(Gq;R) such that ‖αq‖1 = q. In partic-
ular, for every ε > 0 there is a finitely presented group Gε and an integral class
αε ∈ H2(Gε;R) such that 0 < ‖αε‖1 ≤ ε.

We can now take cross-products in homology to obtain integral classes in
degree greater than 3 with crude norm control. An application of a normed
version of Thom realisation (Theorem 8.1) proves Theorem A.

In dimension 4, we refine this construction by taking products with surfaces
and using an exact computation of the product norm. This generalises a result
of Bucher [BK08]. Theorem B will follow from these computations.

Theorem E (Corollary 7.2). Let G be a group, let α ∈ H2(G;R), and let
Γg be the fundamental group of the oriented closed connected surface Σg of
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genus g ≥ 2 with fundamental class [Σg]R ∈ H2(Γg;R). Then the l1-semi-norm
of α× [Σg]R ∈ H4(G× Γg;R) satisfies∥∥α× [Σg]R

∥∥
1

= 6 · (g − 1) · ‖α‖1.

In particular, we establish the following connection between stable commu-
tator length and simplicial volume in dimension 4:

Theorem F (Corollary 8.3). Let G be a finitely presented group that satisfies
H2(G;R) ∼= 0 and let g ∈ [G,G] be an element in the commutator subgroup.
Then there is an orientable closed connected 4-manifold Mg with

‖Mg‖ = 48 · sclG g.

Organisation of this article

Sections 2, 3, and 4 recall basic properties and known results on simplicial
volume, bounded cohomology and stable commutator length, respectively.

In Section 5 we compute scl on the universal central extension E of Thomp-
son’s group T (Proposition 5.1). This will be used in Section 6 to construct in-
tegral 2-classes with controlled l1-semi-norms. There we also show Theorems C
and D.

In Section 7 we get the refinement for dimension 4 in group homology: We
compute the l1-semi-norm of cross-products of general 2-classes with certain
Euler-extremal 2-classes (Theorem 7.1). As a corollary we obtain Theorem E.

All manifolds constructed in this article will arise via a suitable version
of Thom’s realisation theorem in Section 8. This allows us to manufacture
manifolds with controlled simplicial volume and to prove Theorems A, B, and F.

A discussion of related problems may be found in Section 8.4.
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2 Simplicial volume

We recall the l1-semi-norm on homology and simplicial volume and establish
some notation. In particular, we collect basic properties related to classes in
degree 2.

2.1 The l1-semi-norm and simplicial volume

The notion of simplicial volume of manifolds is based on the l1-semi-norm on
singular homology. More precisely: Let X be a topological space and let d ∈ N.
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Then the l1-semi-norm on Hd(X;R) is

‖ · ‖1 : Hd(X;R)→ R≥0

α 7→ inf
{
|c|1

∣∣ c ∈ Cd(X;R), ∂c = 0, [c] = α
}

;

here, Cd(X;R) is the singular chain module of X in degree d with R-coefficients
and | · |1 denotes the l1-norm on Cd(X;R) associated with the basis of singular
simplices. More generally, if A ⊂ X is a subspace, one can also consider the
relative l1-semi-norm on Hd(X,A;R) induced by the l1-semi-norm on Cd(X;R).

The l1-semi-norm is a functorial semi-norm in the sense of Gromov [Gro99,
p. 302]:

Remark 2.1. If f : X → Y is continuous, d ∈ N, and α ∈ Hd(X;R), then∥∥Hd(f ;R)(α)
∥∥

1
≤ ‖α‖1.

Definition 2.2 (simplicial volume [Gro82]). Let M be an oriented closed con-
nected d-dimensional manifold. Then the simplicial volume of M is defined
by

‖M‖ :=
∥∥[M ]R

∥∥
1
,

where [M ]R ∈ Hd(M ;R) denotes the R-fundamental class of M .
More generally, if (M,∂M) is an oriented compact connected d-manifold

with boundary, then one defines the relative simplicial volume of (M,∂M) by

‖M,∂M‖ :=
∥∥[M,∂M ]R

∥∥
1
,

where [M,∂M ]R ∈ Hd(M,∂M ;R) denotes the relative R-fundamental class
of (M,∂M).

Because the definition of simplicial volume is independent of the chosen
orientation, we will also speak of the simplicial volume of orientable manifolds.

On the one hand, simplicial volume clearly is a topological invariant of (ori-
entable) compact manifolds that is compatible with mapping degrees. On the
other hand, simplicial volume is related in a non-trivial way to Riemannian
volume, e.g., in the case of hyperbolic manifolds [Gro82, Thu97]. Therefore,
simplicial volume is a useful invariant in the study of rigidity properties of man-
ifolds.

Basic examples of simplicial volumes are listed in Examples 2.4, 2.5, and 2.6.
In addition to geometric arguments, a key tool for working with simplicial vol-
ume is bounded cohomology (see Proposition 3.4 below).

2.2 Simplicial volume in low dimensions and gaps

We collect the low-dimensional examples of simplicial volume as stated in the
introduction. Recall that for d ∈ N we define SV(d) ⊂ R≥0 via

SV(d) :=
{
‖M‖

∣∣M is an orientable closed connected d-manifold
}
.

Remark 2.3. As there are only countably many homotopy types of orientable
closed connected (occ) manifolds [Mat65], the set SV(d) is countable for ev-
ery d ∈ N.
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The set SV(d) is also closed under addition. For d ≥ 3, this follows from
the additivity of simplicial volume under connected sums [Gro82][Fri17, Corol-
lary 7.7] and for d = 2 this follows from the explicit computation of SV(2) as
seen in Example 2.4.

Clearly, SV(0) = {1} (the only relevant manifold being a single point) and
SV(1) = {0} (the only manifold being the circle).

Example 2.4 (dimension 2). For an orientable closed connected surface Σg
of genus g ≥ 1 we have ‖Σg‖ = 2 ·

∣∣χ(Σg)
∣∣ = 4 · (g − 1) [Gro82, BP92][Fri17,

Corollary 7.5]. Hence,

SV(2) = {0, 4, 8, . . .} = N[4].

We observe that the gap in simplicial volume of dimension 2 is 4.

Example 2.5 (dimension 3). We have [Gro82, Som81][Fri17, Corollary 7.8]

SV(3) = N
[vol(M)

v3

∣∣∣M is a complete hyperbolic 3-manifold

with toroidal boundary and finite volume
]

and where v3 is the maximal volume of an ideal simplex in H3. This shows that
there is a gap of simplicial volume in dimension 3, namely w/v3 ≈ 0.928 . . . ,
where w is the volume of the Weeks manifold [GMM09]. Moreover, the set SV(3)
has countably many accumulation points (because the set of hypbolic volumes
has the order type ωω [Thu97]).

Example 2.6 (dimension 4). The smallest known Riemannian volume vol(M)
of an occ hyperbolic 4-manifold is 64·π2/3 [CM05]. In view of the computation of
the simplicial volume of hyperbolic manifolds [Gro82, Thu97][Fri17, Chapter 7.3]
this means that the smallest known simplicial volume of a hyperbolic occ 4-

manifold is 64·π2

3·v4 ∈ [700, 800] where v4 is the maximal volume of an ideal 4-

simplex in H4.
If Σg, Σh are orientable closed connected surfaces of genus g, h ≥ 1, respec-

tively, then Bucher [BK08] showed that ‖Σg × Σh‖ = 3
2 · ‖Σg‖ · ‖Σh‖. Hence,

‖Σ2×Σ2‖ = 24. This has been the smallest known non-trival simplicial volume
of a 4-manifold. More general surface bundles over surfaces do not yield lower
estimates [HK01, Buc09]. Also the recent computations/estimates for mapping
tori in dimension 4 [BN20] do not produce improved gap bounds.

2.3 The l1-semi-norm in degree 2

As classes in degree 2 will play an important role in our constructions, we collect
some basic properties concerning the l1-semi-norm in degree 2.

Proposition 2.7 (l1-semi-norm in degree 2; [CL15, Proposition 2.4]). Let X
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be a topological space and let α ∈ H2(X;R). Then

‖α‖1 = inf

{ k∑
j=1

|aj | · ‖Σ(j)‖
∣∣∣∣ k ∈ N, a1, . . . , ak ∈ R \ {0},

Σ(1), . . . ,Σ(k) orientable closed connected surfaces,

f1 : Σ(1) → X, . . . , fk : Σ(k) → X continuous

with

k∑
j=1

aj ·H2(fj ;R)[Σ(j)]R = α in H2(X;R)

}
.

Remark 2.8. Let X be a path-connected topological space, let α ∈ H2(X;Z),
and let αR ∈ H2(X;R) be the image of α under the change of coefficients map
Z→ R. Then the description of ‖αR‖1 from Proposition 2.7 simplifies as follows:
We have

‖αR‖1 = inf
(f,Σ)∈Σ(α)

‖Σ‖
|n(f,Σ)|

= inf
(f,Σ)∈Σ(α)

4 ·
(
g(Σ)− 1)

|n(f,Σ)|
,

where Σ(α) is the class of all pairs (f,Σ) consisting of an orientable closed
connected surface Σ of genus g(Σ) ≥ 1 and a continuous map f : Σ → X
with H2(f ;Z)[Σ] = n(f,Σ) · α in H2(X;Z) for some integer n(f,Σ) ∈ Z.

In Section 6, we will relate l1-semi-norms of relative classes in degree 2 to
filling invariants and stable commutator length.

2.4 Simplicial volume of products

We recall basic results on l1-semi-norms of homological cross-products.

Proposition 2.9. Let X, Y be topological spaces, let m,n ∈ N, and let α ∈
Hm(X;R), β ∈ Hn(Y ;R). Then the cross-product α × β ∈ Hm+n(X × Y ;R)
satisfies

‖α‖1 · ‖β‖1 ≤ ‖α× β‖1 ≤
(
m+ n

m

)
· ‖α‖1 · ‖β‖1.

Proof. The lower estimate follows from the duality principle (Proposition 3.4)
and an explicit description of the cohomological cross-product (in bounded co-
homology), the upper estimate follows from an explicit description of the ho-
mological cross-product [Gro82][BP92, Theorem F.2.5] (this classical argument
works also for general homology classes, not only for fundamental classes of
manifolds).

However, in general, it seems to be a hard problem to compute the exact
values of l1-semi-norms of products. One of the few known cases are products
of two orientable closed connected surfaces, whose simplicial volumes have been
computed by Bucher:

Theorem 2.10 ([BK08, Corollary 3]). Let Σg,Σh be orientable closed connected
surfaces of genus g, h ∈ N≥1. Then

‖Σg × Σh‖ =
3

2
· ‖Σg‖ · ‖Σh‖ = 24 · (g − 1) · (h− 1).
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We will generalise this theorem in Section 7. For now, let us note that in
combination with the description of the l1-semi-norm in degree 2 in terms of
surfaces, we obtain the following general, improved, upper bound:

Corollary 2.11. Let X and Y be path-connected topological spaces and let
α ∈ H2(X;R), β ∈ H2(Y ;R). Then

‖α× β‖1 ≤
3

2
· ‖α‖1 · ‖β‖1.

Proof. We use the description of ‖α‖1 and ‖β‖1 from Proposition 2.7. Let

α =

k∑
i=1

ai ·H2(fi;R)[Σ(i)]R and β =

m∑
j=1

bj ·H2(gj ;R)[Π(j)]R

be surface presentations of α and β as in Proposition 2.7. Then

H4(fi × gj ;R)[Σ(i) ×Π(j)]R = H2(fi;R)[Σ(i)]R ×H2(gj ;R)[Π(j)]R,

and so α × β =
∑k
i=1

∑m
j=1 ai · bj · H2(fi × gj ;R)[Σ(i) × Π(j)]R. Therefore, by

applying the triangle inequality, functoriality (Remark 2.1), and Theorem 2.10,
we have

‖α× β‖1 ≤
k∑
i=1

m∑
j=1

|ai| · |bj | ·H2(fi × gj ;R)[Σ(i) ×Π(j)]R

≤
k∑
i=1

m∑
j=1

|aj | · |bj | ·
3

2
· ‖Σ(i)‖ · ‖Π(j)‖

=
3

2
·
k∑
i=1

|aj | · ‖Σ(i)‖ ·
m∑
j=1

|bj | · ‖Π(j)‖.

By Proposition 2.7, taking the infimum over all such surface presentations of α
and β, we obtain ‖α× β‖1 ≤ 3/2 · ‖α‖1 · ‖β‖1.

3 Bounded cohomology

Bounded cohomology of discrete groups and topological spaces was first sys-
tematically studied by Gromov [Gro82]. Gromov established the fundamen-
tal properties of bounded cohomology using so-called multicomplexes. Later,
Ivanov developed a more algebraic framework via resolutions [Iva85, Iva17].

The reference to this introduction is the recent book by Frigerio [Fri17].
Having applications to stable commutator length and the l1-semi-norm in mind
we will only define bounded cohomology for trivial real and integer coefficients.

Sections 3.1, 3.2 and 3.3 discuss the (relationships between) bounded coho-
mology of groups and topological spaces. In Section 3.4 we state the duality
principle, which allows us to compute the l1 semi-norm. In Section 3.6 we define
the Euler class.
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3.1 Bounded cohomology of groups

Let V be R or Z and let G be a group. We will define the bounded cohomology
Hn
b (G;V ) of G using the homogeneous resolution. There is also an inhomoge-

neous resolution, which is useful in low dimensions. We use this resolution only
in Section 5 for central extensions and refer to the literature [Fri17, Chapter 1.7]
for the definition.

Let Cn(G;V ) := map(Gn+1, V ) be the set of set-theoretic maps from Gn+1

to V . The group G acts on Cn(G;V ) via g ·φ(g0, . . . , gn) = φ(g−1 · g0, . . . , g
−1 ·

gn). We denote by Cn(G;V )G the subset of elements in Cn(G;V ) that are
invariant under this action. Let ‖ · ‖∞ be the l∞-norm on Cn(G;V ) and let
Cnb (G;V ) be the corresponding subspaces of bounded functions.

Define the simplicial coboundary maps δn : Cn(G;V )→ Cn+1(G;V ) via

δn(α)(g0, . . . , gn+1) :=

n+1∑
i=0

(−1)i · α(g0, . . . , ĝi, . . . , gn+1)

where α(g0, . . . , ĝi, . . . , gn+1) means that the i-th coordinate is omitted. Then
δn restricts to a map Cnb (G;V )→ Cn+1

b (G;V ). The cohomology of the cochain
complex (C•(G;V )G, δ•) is the group cohomology of G with coefficients in V
and denoted by H•(G;V ). Similarly, the cohomology of the cochain com-
plex (C•b (G;V )G, δ•) is the bounded cohomology of G with coefficients in V
and denoted by H•b (G;V ). The embedding C•b (G;R) ↪→ C•(G;R) induces a
map c• : H•b (G;V )→ H•(G;V ), the comparison map.

Bounded cohomology carries additional structure, the semi-norm induced
by ‖ · ‖∞: For an element α ∈ Hn

b (G;V ), we set

‖α‖ := inf
{
‖β‖∞

∣∣ β ∈ Cnb (G;V ), δnβ = 0, [β] = α ∈ Hn
b (G;V )

}
.

Bounded cohomology is functorial in both the group and the coefficients.

3.2 Bounded cohomology of spaces

Let X be a topological space and let Sn(X) be the set of singular n-simplices
in X. Moreover, let Cn(X;V ) be the set of maps from Sn(X) to V . For an
element α ∈ Cn(X;V ) we set

‖α‖∞ := sup
{
|α(σ)|

∣∣ σ ∈ Sn(X)
}
∈ [0,∞]

and let Cnb (X;V ) ⊂ Cn(X;V ) be the subset of elements that are bounded
with respect to this norm. Let δn : Cnb (X;V ) → Cn+1

b (X;V ) be the restric-
tion of the singular coboundary map to bounded cochains. Then the bounded
cohomology H•b (X;V ) of X with coefficients in V is the cohomology of the com-
plex (C•b (X;V ), δ•) and denoted by H•b (X;V ). For α ∈ Hn

b (X;V ) we define

‖α‖∞ = inf
{
‖β‖∞

∣∣ β ∈ Cnb (X;V ), δnβ = 0, [β] = α ∈ Hn
b (X;V )}

and observe that ‖ · ‖∞ is a semi-norm on Hn
b (X;V ). The bounded cohomology

of spaces is also functorial in both spaces and coefficients.
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3.3 Relationship between bounded cohomology of groups
and spaces

Analogously to ordinary group cohomology, bounded cohomology of groups may
also be computed using classifying spaces (and thus, we will freely switch be-
tween these descriptions).

Theorem 3.1 ([Fri17, Theorem 5.5]). Let X be a model of the classifying
space BG of the group G. Then H•b (X;R) is canonically isometrically iso-
morphic to H•b (G;R).

Remarkably, this statement holds true much more generally: every topolog-
ical space with the correct fundamental group can be used to compute bounded
cohomology of groups; moreover, bounded cohomology ignores amenable ker-
nels [Gro82]:

Theorem 3.2 ([Fri17, Theorem 5.8][Iva17]). Let X be a path-connected space.
Then H•b (X;R) is canonically isometrically isomorphic to H•b (π1(X);R).

Theorem 3.3 (mapping theorem [Fri17, Corollary 5.11][Iva17]). Let f : X → Y
be a continuous map between path-connected topological spaces. If the induced
homomorphism π1(f) : π1(X) → π1(Y ) is surjective and has amenable kernel,
then H•b (f ;R) : H•b (Y ;R)→ H•b (X;R) is an isometric isomorphism.

3.4 Duality

Bounded cohomology of groups and spaces may be used to compute the l1-semi-
norm of homology classes. For what follows, let 〈·, ·〉 : Hn

b (X;V )×Hn(X;V )→
V be the map given by evaluation of cochains on chains.

Proposition 3.4 (duality principle [Fri17, Lemma 6.1]). Let X be a topological
space and let α ∈ Hn(X;R). Then

‖α‖1 = sup
{
〈β, α〉

∣∣ β ∈ Hn
b (X;R), ‖β‖∞ ≤ 1

}
.

Moreover, the supremum is achieved.

Cocycles β ∈ Cnb (X,R) that satisfy ‖β‖∞ = 1 and 〈[β], α〉 = ‖α‖1 are called
extremal for α.

Corollary 3.5 (mapping theorem for the l1-semi-norm). Let f : X → Y be a
continuous map between path-connected topological spaces. If the induced homo-
morphism π1(f) : π1(X) → π1(Y ) is surjective and has amenable kernel, then
H•(f ;R) : H•(X;R)→ H•(Y ;R) is isometric with respect to the l1-semi-norm.

Proof. We only need to combine the duality principle (Proposition 3.4) with the
mapping theorem in bounded cohomology (Theorem 3.3).

3.5 Alternating cochains

Recall that V denotes R or Z and let α ∈ Cnb (G;V ) be a bounded homogeneous
cochain. We say that α is alternating, if for every g0, . . . , gn ∈ G and every
permutation σ ∈ Sn+1 we have that

α(gσ(0), . . . , gσ(n)) = sign(σ) · α(g0, . . . , gn).
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Every (bounded) cochain α ∈ Cnb (G;R) has an associated alternating (bounded)
cochain altn(α) defined via

altn(α)(g0, . . . , gn) :=
1

(n+ 1)!
·
∑

σ∈Sn+1

sign(σ) · α(gσ(0), . . . , gσ(n)).

Observe that ‖altn(α)‖∞ ≤ ‖α‖∞. The subcomplex of alternating cochains is
denoted by Cnb,alt(G;V ). It is well-known that one can compute real bounded
cohomology using alternating cochains:

Proposition 3.6 ([Fri17, Proposition 4.26]). Let G be a group. The com-
plex C•b,alt(G,R) isometrically computes the bounded cohomology with real coef-
ficients. Moreover, for every α ∈ Cnb (G,R) the cocycle altnb (α) represents the
same class as α in Hn

b (G;R).

3.6 Euler class and the orientation cocycle

We describe the Euler class associated to a circle action. For details we refer to
the literature [BFH16, Ghy87].

For three points x1, x2, x3 ∈ S1 on the circle let Or(x1, x2, x3) ∈ {−1, 0, 1}
be the (respective) circular order. The group Homeo+(S1) of orientation pre-
serving homeomorphisms on the circle preserves Or ∈ C2

b (S1;Z) ⊂ C2(S1;Z)
and satisfies a (homogeneous) cocycle condition. Hence, Or induces a (bounded)
cocycle on Homeo+(S1): For ξ ∈ S1, the map

(g1, g2, g3) 7→ Or(g1.ξ, g2.ξ, g3.ξ)

is a cocycle in C2
b (Homeo+(S1);Z) and the bounded cohomology class is in-

dependent of the choice of the point ξ. It turns out that this class is divisible
by 2, i.e., there is a cocycle Eu ∈ C2

b (Homeo+(S1);Z), called Euler cocycle, with
−2 · [Eu] = [Or] in H2

b (Homeo+(S1);Z).

Remark 3.7. Let H := Homeo+(S1). For Euler classes (and the orientation
cocycle) we will use the following notation: Capital letters (Eu) denote cocycles
and lower case letters (eu) denote classes. The classes euZ ∈ H2(H;Z), euR ∈
H2(H;R), euZ

b ∈ H2
b (H;Z) and euR

b ∈ H2
b (H;R) are the ones represented by

Eu in the corresponding cohomology groups. If a group G acts on the circle
by ρ : G → Homeo+(S1), and α is a class or a cocycle defined on Homeo+(S1)
then ρ∗α will be the pullback of α via ρ. If Γ < Homeo+(S1) is a subgroup of
Homeo+(S1), then we will denote the restriction of a class or a cocycle α to Γ
by Γα. Hence, for example, ΓeuR

b ∈ H2
b (Γ;R) denotes the restriction of the real

bounded Euler class to Γ.

Let G be a group with a circle action ρ : G → Homeo+(S1). Then ρ∗euZ ∈
H2(G;Z) is called the Euler class associated to the action ρ. The Euler class
induces a central extension

1 // Z // G̃ // G // 1

of G by Z, the associated Euler extension G̃. This group has the following
explicit description. It is the group defined on the set Z×G with multiplication
(z, g) · (z′, g′) = (z+ z′+ ρ∗ Eu(1, g, g · g′), g · g′). Euler extensions are useful for
constructing groups with controlled stable commutator length; see Section 5.
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We note that ρ∗OrR is extremal (in the sense of Proposition 3.4) for surface
groups:

Example 3.8. Let g ∈ N≥2 and let Σg be an oriented closed connected sur-
face of genus g ∈ N≥2. Recall that ‖[Σg]R‖1 = ‖Σg‖ = 4g − 4, where [Σg]R ∈
H2(Γg;Z) denotes the fundamental class and Γg = π1(Σg). Then Γg induces
an action on its boundary. By identifying ∂Γg ∼= S1, we obtain a circle ac-
tion ρ : Γg → Homeo+(S1) and〈

[ρ∗Or]R, [Σg]R
〉

= −2 ·
〈
ρ∗euR

b , [Σg]R
〉

= −2 · χ(Σg) = 4 · g − 4 = ‖Σg‖,

i.e., ρ∗Or ∈ C2
b (Γg;R) is an extremal cocycle for the fundamental class [Σg]R.

Indeed, it is the renormalised volume cocycle of ideal simplices in H2; see [BK08].

4 Stable commutator length

In recent years the topic of stable commutator length (scl) has seen a vast
developemet thanks largely to Calegari and his coauthors [Cal09a]. In this
section, we will only give a brief overview of scl. The definition and basic
properties will be given in Section 4.1. A useful tool to compute scl is Bavard’s
duality theorem, described in Section 4.2. We discuss examples and general
properties of scl in Section 4.3.

4.1 Definition and basic properties

For a group G let G′ be its commutator subgroup. The commutator length clG g
of an element g ∈ G′ is defined as

clG g := min
{
n ∈ N

∣∣ ∃x1,...,xn,y1,...,yn∈G g = [x1, y1] · · · [xn, yn]
}
,

where [x, y] := xyx−1y−1. The stable commutator length of g in G is defined as

sclG g := lim
n→∞

clG(gn)

n
.

If g1, . . . , gm ∈ G are such that g1 · · · gm ∈ G′, we will call g1 + · · ·+ gm a chain
and define the corresponding (stable) commutator length on chains by

clG(g1 + · · ·+ gm) := min
t1,...,tm∈G

clG(t1g1t
−1
1 · · · tmgmt−1

m ), and

sclG(g1 + · · ·+ gm) := lim
n→∞

clG(gn1 + · · ·+ gnm)

n
.

If ϕ : G→ H is a group homomorphism, then sclG g ≥ sclH ϕ(g) for all g ∈
G′; the analogous result holds for chains. In particular, scl is invariant under
automorphisms, whence under conjugation. Thus, scl on single chains agrees
with the usual definition of stable commutator length.

Stable commutator length has the following geometric interpretation: If X
is a connected topological space and γ : S1 → X is a loop, then the stable
commutator length of the associated element [γ] ∈ π1(X) measures the least
complexity of the surface needed to bound γ (we will not use this interpretation
in this paper). In Section 6.2, we will describe yet another interpretation of scl,
namely as a topological stable-filling invariant.
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4.2 Bavard’s duality theorem and bounded cohomology

Let G be a group. A map φ : G → R is called a quasimorphism if there is a
constant C > 0 such that

∀g,h∈G
∣∣φ(g) + φ(h)− φ(g · h)

∣∣ ≤ C.
The smallest such C is called the defect of φ and is denoted by D(φ). A quasi-
morphism φ is homogeneous if in addition we have that φ(gn) = n · φ(g) for all
g ∈ G, n ∈ Z. Every quasimorphism φ : G → R is in bounded distance to a
unique homogeneous quasimorphism φ̄ : G→ R, defined by setting

φ̄(g) := lim
n→∞

φ(gn)

n

for every g ∈ G. Moreover, it is well-known that D(φ̄) ≤ 2 · D(φ) [Cal09a,
Lemma 2.58]. Analogously to the duality principle (Proposition 3.4) we may
compute scl using homogeneous quasimorphisms:

Theorem 4.1 (Bavard’s duality theorem [Bav91]). Let G be a group and let
g ∈ G′. Then

sclG g = sup
φ

|φ(g)|
2 ·D(φ)

,

where the supremum is taken over all homogeneous quasimorphisms φ : G→ R.
Moreover, this supremum is achieved by an extremal quasimorphism.

Remark 4.2. (Homogeneous) quasimorphisms are intimately related to second
bounded real cohomology. Using the inhomogeneous resolution, it can be seen
that the kernel of c2G : H2

b (G;R) → H2(G;R) corresponds to the space of ho-
mogeneous quasimorphisms modulo Hom(G,R). It follows then from Bavard’s
dualtiy theorem that the comparison map c2G : H2

b (G;R)→ H2(G;R) is injective
if and only if sclG vanishes on G.

It is well known that H2
b (G;R) vanishes if G is abelian [Gro82]. Thus every

homogeneous quasimorphism on an abelian group is an honest homomorphism.

4.3 Examples

We collect some known results for stable commutator length.
In Sections 6 and 8 we will promote scl in a finitely presented group G to

the simplicial volume of manifolds in higher dimension. For this we need to
assert that H2(G;R) vanishes. Thus, we will have a particular emphasis on this
condition in the examples.

4.3.1 Vanishing

An element g ∈ G′ may satisfy that sclG g = 0 for “trivial” reasons, such as if
g is torsion or if g is conjugate to its inverse. There are many classes of groups
where – besides these trivial reasons – stable commutator length vanishes on the
whole group. Recall that this is equivalent to the injectivity of the comparison
map c2G : H2

b (G;R)→ H2(G;R). Examples include:

• amenable groups: This follows from the vanishing of H2
b (G;R) for every

amenable group G by a result of Trauber [Gro82],
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• irreducible lattices in semisimple Lie groups of rank at least 2 [BM02], and

• subgroups of the group PL+(I) of piecewise linear transformations of the
interval [Cal07].

4.3.2 Non-abelian free groups

In contrast, Duncan and Howie [DH91] showed that every element g ∈ F ′ \ {e}
in the commutator subgroup of a non-abelian free group F satisfies sclF g ≥ 1/2.
In a sequence of papers [Cal09b, Cal11] Calegari showed that stable commutator
length is rational in free groups and that every rational number mod 1 is realised
as the stable commutator length of some element in the free group. Moreover,
he gave an explicit, polynomial time algorithm to compute stable commutator
length in free groups. This revealed a surprising distribution of those values.
We note that these results generalise to free products of cyclic groups [Wal13]
and that all these groups G satisfy H2(G;R) ∼= 0.

4.3.3 Gaps and groups of non-positive curvature

A group G has a gap in scl if there is a constant C > 0 such that for every
group element g, we have sclG g ≥ C unless sclG g = 0 for “trivial” reasons such
as torsion or if g is conjugate to its inverse.

In the previous example, we already have seen that non-abelian free groups
have a gap in stable commutator length of 1/2. This result has recently been gen-
eralised to right-angled Artin groups [Heu19b]. Many classes of non-positively
curved groups have a gap in scl, though this gap may not be uniform in the
whole class of groups. Prominent examples include hyperbolic groups [CF10],
mapping class groups [BBF16], free products of torsion-free groups [Che18] and
amalgamated free products [CFL16, Heu19b, CH19].

4.3.4 Hyperelliptic mapping class groups

Let g ∈ N, let ι ∈ Mg be the mapping class of a hyperelliptic involution of the
orientable closed connected surface Σg of genus g, and let

Hg :=
{
x ∈Mg

∣∣ ι · x · ι−1 = x
}
⊂Mg

be the hyperelliptic mapping class group of Σg. The group Hg is finitely pre-
sented [BH71] and satisfies H2(Hg;R) ∼= 0 [Kaw97, Corollary 3.3][BC91, The-
orem 1.1][BCP01]. We now let g ≥ 2. Let t ∈ Hg be a Dehn twist about a
ι-invariant non-separating curve on Σg. Then we have

0 <
1

4 · (2 · g + 1)
≤ sclHg

t ≤ 1

2 · (2 · g + 3 + 1/g)
;

the first estimate is a computation by Monden [Mon12, Theorem 1.2] (simi-
lar estimates also appear in the work of Endo and Kotschick [EK01, proof of
Corollary 8]), the second estimate is due to Calegari, Monden, Sato [CMS14,
Theorem 1.7].
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5 The universal central extension of Thompson’s
group T

Thompson’s group T was introduced in 1965 by Richard Thompson as the first
example of an infinite but finitely presented simple group. It is the subgroup
of PL+(S1) which maps dyadic rationals to dyadic rationals, with dyadic break-
points and where each derivative – if defined – is an integer power of 2 (here,
we identify R/Z ∼= S1) [CFP96].

Stable commutator length on Thompsons’s group T vanishes [Cal09a, Chap-
ter 5], but interesting values for stable commutator length arise on the central
extensions of T and its generalisations associated to the Euler class [Zhu08] (for
the definition of the Euler extension, see Section 3.6).

In this section, we extend these results about stable commutator length on
these extensions to the universal central extension E of T . For a perfect group G
the universal central extension G̃ is the unique group that is a Schur covering
group of G. It satisfies that H1(G̃;Z) ∼= 0 and H2(G̃;Z) ∼= 0 and there is an
explicit construction of G̃ in terms of G and H2(G̃;Z) (which we recall during
the proof of Proposition 5.1).

Proposition 5.1. The universal central extension E of Thompson’s group T is
finitely presented and satisfies that H1(E;Z) ∼= 0 ∼= H2(E;Z). For every non-
negative rational number q ∈ Q≥0, there is an element eq ∈ E with sclE eq = q.

In Section 5.1, we recall results of Zhuang [Zhu08], which describe stable

commutator length on the central extension T̃ of T associated to the Euler class.
Using information on the (bounded) 2-cohomology of Thompson’s group T (Sec-
tion 5.2), we reduce stable commutator length on E to stable commutator length

on T̃ and show Proposition 5.1 (Section 5.3).

5.1 The Euler central extension of Thompson’s group T

We recall the connection between stable commutator length and rotation num-
ber. This connection has been established by Barge and Ghys [BG88] and has
been used by Zhuang [Zhu08] to construct finitely presented groups with tran-
scendental stable commutator length.

Theorem 5.2 ([BG88, Zhu08]). Let T̃ be the central extension of Thompson’s
group T associated to the Euler class T euZ ∈ H2(T ;Z). Then there is a homo-

geneous quasimorphism rot : T̃ → R of defect 1, called rotation number, that
generates the space of homogeneous quasimorphisms. Hence, for all t̃ ∈ T̃ ,

sclT̃ t̃ =

∣∣rot(t̃)
∣∣

2
.

The rotation number is well studied and has a geometric meaning [BFH16].

Hence, one obtains the full spectrum of stable commutator length for T̃ .

Corollary 5.3 ([Cal09a]). Let T̃ be the central extension of Thompson’s group T

by the Euler class. Then the image of stable commutator length on T̃ is Q≥0.

Proof. Ghys and Sergiescu [GS87] showed that the rotation number on T̃ is
rational. Moreover, it is well known that every rational number is realised as
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such a rotation number. To see this observe that for every integer n ∈ N there
is an element tn ∈ T with a periodic orbit of size n that cyclically permutes
the elements of this orbit. An appropriate lift t̃n of this element to T̃ will
satisfy rot t̃n = 1/n. By taking powers of such elements we may realise every

rational as a rotation number in T̃ .

However, Ghys and Sergiescu [GS87] showed that H2(T̃ ;Z) ∼= Z. Thus, we

cannot apply Theorem C to the group T̃ .

5.2 (Bounded) 2-cohomology of Thompson’s group T

The cohomology of Thompson’s group T was computed by Ghys and Sergi-
escu [GS87]. Ghys and Sergiescu showed that the 2-cohomology H2(T ;Z) is
generated by the Euler class T euZ (see Section 3.6) and another class α, which
has the following combinatorial description.

For a function φ : S1 → R that admits limits on both sides at every point
in S1, let φ(x+) be the right and let φ(x−) be the left limit at x ∈ S1. In this
case, set ∆φ(x) := φ(x+) − φ(x−). Moreover, for an element u ∈ T we denote
by u′r(x) the right derivative of u at x ∈ S1, i.e., u′r(x) = u′(x+).

Definition 5.4 (discrete Godbillon-Vey cocycle [GS87, Theorem E]). The dis-
crete Godbillon-Vey cocycle gv : T × T → Z is defined as

gv(u, v) :=
∑
x∈S1

∣∣∣∣ log2(v)′r log2(u ◦ v)′r
∆ log2(v)′r ∆ log2(u ◦ v)′r

∣∣∣∣ (x)

where the (finite) sum runs over all x ∈ S1 that are breakpoints of v, u or u ◦ v.

The map gv is an inhomogeneous cocycle. In this section only we will use
inhomogeneous cocycles as they are better to work with in the context of cen-
tral extensions; the precise definition can for instance be found in Frigerio’s
book [Fri17, Chapter 1.7].

Theorem 5.5 ([GS87, Corollary C, Theorem E]). Thompson’s group T sat-
isfies that H2(T ;Z) ∼= Z ⊕ Z. Free generators are the Euler class T euZ and a
class α. This class satisfies that 2 ·α = [gv] ∈ H2(G;Z), where gv is the discrete
Godbillon-Vey cocycle (Definition 5.4).

For what follows we will also need to compute the bounded cohomology of T
in degree 2.

Proposition 5.6. The class α ∈ H2(T ;Z) from Theorem 5.5 cannot be repre-
sented by a bounded cocycle, i.e., α is not in the image of the comparison map
H2
b (T ;Z)→ H2(T ;Z). In particular, we have that

H2
b (T ;R) ∼= R,

generated by the Euler class.

Proof. Note that it is enough to show the unboundedness statement for [gv] as
2 · α = [gv] (Theorem 5.5). We will show the proposition by evaluating gv on
the subgroup Z2 ∼= 〈a, b〉T ⊂ T , where a and b are the elements depicted in
Figure 1.
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Figure 1: The generators a (left) and b (right).

Claim 5.7. The cocycle gv restricts on 〈a, b〉T to a cocycle representing a non-
trivial element of H2(Z2;Z) ∼= Z.

Proof of Claim 5.7. This claim is implicitly stated in the work of Ghys and
Sergiescu [GS87, proof of Lemma 4.6]. For the convenience of the reader we
provide an explicit proof here.

Observe that (i, i′) 7→ gv(ai, ai
′
) is a (inhomogeneous) 2-cocycle on Z. Since

H2(Z;Z) ∼= 0, we see that there is a function f : Z → Z such that gv(ai, ai
′
) =

f(i) + f(i′)− f(i+ i′) for all i, i′ ∈ Z. Similarly, we see that there is a function
g : Z→ Z such that gv(bj , bj

′
) = g(j) + g(j′)− g(j + j′). Observe that we have∣∣∣∣ log2(ai)′r log2(ai+i

′
)′r

∆ log2(ai)′r ∆ log2(ai+i
′
)′r

∣∣∣∣ (x) =

∣∣∣∣0 0
0 0

∣∣∣∣ = 0

for any x ∈ [0, 1/2) and that∣∣∣∣ log2(ai)′r log2(ai+i
′
)′r

∆ log2(ai)′r ∆ log2(ai+i
′
)′r

∣∣∣∣ (1/2) =

∣∣∣∣i i+ i′

i i+ i′

∣∣∣∣ = 0.

This way we see that

f(i) + f(i′)− f(i+ i′) = gv(ai, ai
′
) =

∑
x∈(1/2,1]

∣∣∣∣ log2(ai)′r log2(ai+i
′
)′r

∆ log2(ai)′r ∆ log2(ai+i
′
)′r

∣∣∣∣ (x)

=
∑

x∈(1/2,1]

∣∣∣∣ log2(aibj)′r log2(ai+i
′
bj+j

′
)′r

∆ log2(aibj)′r ∆ log2(ai+i
′
bj+j

′
)′r

∣∣∣∣ (x)

for all i, j, i′, j′ ∈ Z. Similarly, we see that

g(j) + g(j′)− g(j + j′) = gv(bj , bj
′
) =

∑
x∈(0,1/2)

∣∣∣∣ log2(bj)′r log2(bj+j
′
)′r

∆ log2(bj)′r ∆ log2(bj+j
′
)′r

∣∣∣∣ (x)

=
∑

x∈(0,1/2)

∣∣∣∣ log2(aibj)′r log2(ai+i
′
bj+j

′
)′r

∆ log2(aibj)′r ∆ log2(ai+i
′
bj+j

′
)′r

∣∣∣∣ (x).
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We moreover calculate∣∣∣∣ log2(aibj)′r log2(ai+i
′
bj+j

′
)′r

∆ log2(aibj)′r ∆ log2(ai+i
′
bj+j

′
)′r

∣∣∣∣ (1/2) =

∣∣∣∣ i (i+ i′)
(i− j) (i+ i′ − j − j′)

∣∣∣∣
= −

∣∣∣∣i i′

j j′

∣∣∣∣ .
Putting the above calculations together, we can now compute the restriction
of gv to 〈a, b〉T . For all i, j, i′, j′ ∈ Z we see that

gv(aibj , ai
′
bj
′
) =

∑
x∈S1

∣∣∣∣ log2(aibj)′r log2(ai+i
′
bj+j

′
)′r

∆ log2(aibj)′r ∆ log2(ai+i
′
bj+j

′
)′r

∣∣∣∣ (x)

= −
∣∣∣∣i i′

j j′

∣∣∣∣+ δ1f0

(
(i, j), (i′, j′)

)
+ δ1g0

(
(i, j), (i′, j′)

)
,

where f0(i, j) := f(i) and g0(i, j) := g(j). Hence, evaluating gv on a funda-
mental cycle shows that gv restricted to 〈a, b〉T represents twice a generator
of H2(Z2;Z) ∼= Z. This proves Claim 5.7.

It is well-known that non-trivial elements of H2(Z2;Z) cannot be represented
by a bounded cocycle (Z2 is amenable). Hence, also [gv] cannot be represented
by a bounded cocycle, which proves the first part of Proposition 5.6.

Stable commutator length vanishes on T (Example 4.3.1) and so the compar-
ison map c2T : H2

b (T ;R)→ H2(T ;R) is injective (Remark 4.2). We now assume
for a contradiction that λ · T euR +µ ·α ∈ H2(T ;R) lies in the image of the com-
parison map c2T : H2

b (T ;R) → H2(T ;R) and µ 6= 0. As T euR is bounded and
〈a, b〉T is amenable, T euR restricts to a trivial class on 〈a, b〉T . Thus λ·T euR+µ·α
restricts to µ · α on 〈a, b〉T and generates H2(Z2;R) (by Claim 5.7). This is a
contradiction as these classes are not bounded. Hence, the only classes in the
image of c2T are multiples of T euR. We conclude that

H2
b (T ;R) ∼= R,

generated by the Euler class. This completes the proof of Proposition 5.6.

5.3 Proof of Proposition 5.1

We will now prove Proposition 5.1 by explicitly computing the quasimorphisms
on E and then invoking Bavard’s duality theorem. We note that there is an
alternative proof using diagrams by applying Gromov’s mapping theorem. A
variation of this may be found in the forthcoming paper [HL19b, Section 3.3].

Proof of Proposition 5.1. As E arises as a group extension of finitely presented
groups it is itself finitely presented. The group T is simple [CFP96] and thus
in particular perfect. The universal central extension E of a perfect group T
always satisfies that H1(E;Z) ∼= 0 ∼= H2(E;Z) [Wei94, Chapter 6.9].

It remains to show that every rational number q ∈ Q is the stable commu-
tator length of some element eq ∈ E. For this note that E may be explicitly
described as the group on the set Z2 × T with multiplication((

i
j

)
, t
)
×
((

i′

j′

)
, t′
)
7→
((

i+i′+T Eu(t,t′)

j+j′+A(t,t′)

)
, t · t′

)
,
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where T Eu (resp. A) is an inhomogeneous cocycle representing T euZ ∈ H2(T ;Z)

(resp. α ∈ H2(T ;Z)). Similarly T̃ may be described as the set Z×T with group
multiplication (i, t)× (i′, t′) 7→ (i+ i′ +T Eu(t, t′), t · t′).

Claim 5.8. For every (i0, t0) ∈ T̃ , we have that sclT̃ (i0, t0) = sclE
((

i0
0

)
, t0
)
.

Proof of Claim 5.8. The homomorphism κ : E → T̃ defined by κ :
((

i
j

)
, t
)
7→

(i, t) shows by monotonicity of scl that sclE
((

i0
0

)
, t0
)
≥ sclT̃ κ

((
i0
0

)
, t0
)

=
sclT̃ (i0, t0). We now prove the converse inequality.

Let φ : E → R be a homogeneous extremal quasimorphism to the element((
i0
0

)
, t0
)
. Then φ restricted to the centre of E is a homogeneous quasimorphism

on an abelian group, and thus a homomorphism; see Remark 4.2. Thus there
are constants λEu , λA ∈ R such that φ

((
i
j

)
, id
)

= λEu · i+λA · j for all i, j ∈ Z.
We will first show that λA = 0. For every element z in the centre and an

element e ∈ E, the group 〈z, e〉 generated by z and e is abelian and hence φ
restricts to a homomorphism on 〈z, e〉 by again using Remark 4.2. Hence we have
φ(z · e) = φ(z) +φ(e) for all z in the centre and e ∈ E. We define ∆ ∈ C2(T ;R)
as ∆(t, t′) := δ1φ

((
( 0

0 ) , t
)
,
(
( 0

0 ) , t′
))

for all t, t′ ∈ T . Then ∆ is uniformly
bounded, because φ is a quasimorphism. We compute

∆(t, t′) = φ
(
( 0

0 ) , t
)

+ φ
(
( 0

0 ) , t′
)
− φ

((
( 0

0 ) , t
)
·
(
( 0

0 ) , t′
))

= δ1ψ(t, t′)− λEu ·T Eu(t, t′)− λAA(t, t′)

for all t, t′ ∈ T and for ψ : T → R defined via ψ : t 7→ φ(( 0
0 ) , t). Thus

λA ·A− δ1ψ = −λEu ·T Eu−∆

and hence λA · A − δ1ψ defines a bounded cocycle as the right hand side is
uniformly bounded. If λA 6= 0, then this would imply that α may be represented
by a bounded cocycle, which would contradict Proposition 5.6. Thus λA = 0.

Define a quasimorphism φT̃ on T̃ by setting φT̃ (i, t) = φ(( i0 ) , t) and observe
that φT̃ is homogeneous as well and that φT̃ (i0, t0) = φ(

(
i0
0

)
, t0)). For all

i, i′, j, j′ ∈ Z, t, t′ ∈ T we compute that

δ1φ
(((

i
j

)
, t
)
,
((

i′

j′

)
, t′
))

= δ1ψ(t, t′)− λTEu Eu(t, t′) = δ1φT̃
(
(i, t), (i′, t′)

)
and thus D(φ) = D(φT̃ ).

Using Bavard’s duality theorem we compute

sclT̃ (i0, t0) ≥
φT̃ (i0, t0)

2D(φT̃ )
=
φ(
(
i0
0

)
, t0)

2D(φ)
= sclE(

(
i0
0

)
, t0).

This proves the other inequality and thus finishes the proof of Claim 5.8.

We may now finish the proof of Proposition 5.1. Every q ∈ Q≥0 is the stable

commutator length of some element tq ∈ T̃ by Corollary 5.3. Using Claim 5.8,
we may construct an element eq ∈ E with sclE eq = sclT̃ tq = q.
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6 Fillings

Stable commutator length can be interpreted as a homological filling norm (Sec-
tion 6.2). After recalling the basic notions and properties, we will use this in-
terpretation to compute the l1-semi-norm of classes related to decomposable
relators and thus prove Theorem C (Section 6.3). This will allow us to establish
the group-theoretic version of the no-gap theorem (Theorem D); for the proof of
theorem C and Theorem D, we will only need the filling norm in dimension 2, as
already considered by Bavard [Bav91] and Calegari [Cal09a, Chapter 2.5/2.6].
Moreover, we will explain how in the higher-dimensional case the simplicial
volume of manifolds can also be viewed as a filling norm (Section 6.4).

6.1 Stable filling norms

We first recall the stable filling norm for the bar complex. We will then extend
this notion to topological spaces and higher degrees. For a group G, the bar
complex C•(G;R) (computing H•(G;R)) has the following form in low degrees:
We have C1(G;R) = R[G] and ∂1 = 0 as well as C2(G;R) = R[G]2 and

∂2 : C2(G;R)→ C1(G;R)

G×G 3 (g, h) 7→ g + h− g · h.

Moreover, the chain modules of C•(G;R) are endowed with the l1-norm corre-
sponding to the bar bases.

Definition 6.1 ((stable) filling norm). Let G be a group.

• If c ∈ ∂C2(G;R), the filling norm of c is defined as

fillG c := inf
{
|b|1

∣∣ b ∈ C2(G;R), ∂b = c
}
.

• Let m ∈ N and let r1, . . . , rm ∈ G′. The stable filling norm of r1 + · · ·+rm
is defined as

sfillG(r1 + · · ·+ rm) := lim
n→∞

1

n
· fillG(rn1 + · · ·+ rnm).

Notice that the limit in the definition of the stable filling norm indeed ex-
ists [Cal09a, p. 34].

For the generalisation to topological spaces, we replace group elements by
loops (or maps from simplicial spheres) and we replace taking powers of group
elements by composition with self-maps of spheres of the corresponding degree.

Definition 6.2 (topological (stable) filling norms). Let d ∈ N, let X be a
topological space, and let σ : ∂∆d → X be continuous.

• If c ∈ ∂(Cd(X;R)), the filling norm of c is defined as

fillX c := inf
{
|b|1

∣∣ b ∈ Cd(X;R), ∂b = c
}
.

• The filling norm of σ is then defined as

fillX σ := fillX cσ = inf
{
|b|1

∣∣ b ∈ Cd(X;R), ∂b = cσ
}
,

where cσ := Cd−1(σ;R)(∂ id∆d) ∈ Cd−1(X;R) is the canonical singular
cycle associated with σ.
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• The stable filling norm of σ is defined as

sfillX σ := lim
n→∞

fillX σ[n]

n
,

where for n ∈ N, we write wn : ∂∆d → ∂∆d for “the” standard self-map
of ∂∆d ∼= Sd−1 of degree n and σ[n] := σ ◦ wn.

• If m ∈ N and σ1, . . . , σm : ∂∆d → X are continuous maps, then we define

fillX(σ1 + · · ·+ σm) := fillX(cσ1
+ · · ·+ cσm

)

sfillX(σ1 + · · ·+ σn) := lim
n→∞

1

n
· fillX

(
σ1[n] + · · ·+ σm[n]

)
Remark 6.3 (existence of the stabilisation limit). The limits in the situation
of the definition above indeed exist: For notational convenience, we only prove
the existence in the case of sfillX σ; the general case can be proved in the same
way (with additional indices). The argument is similar to the one for the stable
filling norm in the bar complex. The only complication is that, in order to
compare different “powers”, we will need to use the uniform boundary condition
for C•(∂∆d;R).

Because π1(∂∆d) is amenable, there exists a constant K ∈ R>0 with the
following property [MM85, FL19]: For every z ∈ ∂(Cd(∂∆d;R)) there is a b ∈
Cd(∂∆d;R) with

z = ∂b and |b|1 ≤ K · |z|1.

If n,m ∈ N, then the chains cwn
+ cwm

and cwn+m
are homologous in the

complex C•(∂∆d;R) (because degwn + degwm = n + m = degwn+m). Thus,
there exists a chain bn,m ∈ Cd(∂∆d;R) such that

cwn+m − cwn − cwm = ∂bn,m and |bn,m|1 ≤ K · 3 · (d+ 1).

Hence, for every continuous map σ : ∂∆d → X we obtain

cσ[n+m] − cσ[n] − cσ[m] = ∂Cd(σ;R)(bn,m) and∣∣Cd(σ;R)(bn,m)
∣∣
1
≤ |bn,m|1 ≤ K · 3 · (d+ 1),

and so
fillX σ[n+m] ≤ fillX σ[n] + fillX σ[m] +K · 3 · (d+ 1).

Now elementary analysis shows that the limit limn→∞ 1/n ·fillX σ[n] does exist.

Remark 6.4 (change of the self-maps). The map wn is only unique up to homo-
topy, but homotopic choices for wn lead to the same stable filling norm; this can
be seen using the uniform boundary condition as in the proof of the existence
of the stable filling limits (Remark 6.3). Therefore, this ambiguity will be of no
consequence for us.

Remark 6.5 (change of the singular models). In the situation of Definition 6.2,
we could choose other singular cycle models of σ than cσ: If c′ ∈ Cd−1(∂∆d;R)
is a fundamental cycle of ∂∆d, if b′ ∈ Cd(∂∆d;R) satisfies ∂b′ = c′ − c, and if
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c′σ := Cd−1(σ;R)(c′), then

sfillX σ = lim
n→∞

1

n
· inf

{
|b|1

∣∣ b ∈ Cd(X;R), ∂b = cσ[n]

}
= lim
n→∞

1

n
· inf

{∣∣b+ Cd(σ[n];R))(b′)
∣∣
1

∣∣ b ∈ Cd(X;R), ∂b = cσ[n]

}
= lim
n→∞

1

n
· inf

{
|b|1

∣∣ b ∈ Cd(X;R), ∂b = c′σ[n]

}
.

For the second equality, we use that |Cd(σ[n];R)(b′)|1 ≤ |b′|1 holds for all n ∈ N
(so that the difference in norm is negligible when taking n→∞).

Remark 6.6 (bar filling vs. topological filling). Let G be a group, let m ∈ N,
and let r1, . . . , rm ∈ G′. If X is a model of BG and σ1, . . . , σm : ∂∆2 → X are
loops representing r1, . . . , rm, respectively, then

sfillG(r1 + · · ·+ rm) = sfillX(σ1 + · · ·+ σm).

This can be seen as follows: The standard constructions produce chain
maps ϕ : C•(G;R) → C•(X;R) (choosing paths in X̃ for each group element
and inductively filling the simplices) and ψ : C•(X;R) → C•(G;R) (choosing a

set-theoretic fundamental domain D for the deck transformation action on X̃
and looking at the translates of D that contain the vertices of the lifted sim-
plices) with the following properties:

• ψ ◦ ϕ = idC•(G;R),

• ϕ ◦ ψ ' idC•(X;R) through a chain homotopy h that is bounded in every
degree,

• ‖ϕ‖ ≤ 1 and ‖ψ‖ ≤ 1.

The first and third conditions easily imply that

fillG(r1 + · · ·+ rm) ≤ fillX(σ1 + · · ·+ σm);

moreover, we have ψ(σj [n]) = rnj for all j ∈ {1, . . . ,m} and all n ∈ N. Hence,

sfillG(r1 + · · ·+ rm) ≤ sfillX(σ1 + · · ·+ σm).

Conversely, if b ∈ C2(G;R) satisfies ∂b = r1 + · · ·+ rm, then

b := ϕ(b) + h(σ1 + · · ·+ σm)

satisfies

∂b = ∂ϕ(b) + ∂h(σ1 + · · ·+ σm)

= ϕ(∂b) + σ1 + · · ·+ σm − ϕ ◦ ψ(σ1 + · · ·+ σm)

= ϕ(r1 + · · ·+ rm) + σ1 + · · ·+ σm − ϕ(r1 + · · ·+ rm)

= σ1 + · · ·+ σm.

Thus, fillX(σ1 + · · · + σm) ≤ |b|1 ≤ |b|1 + ‖h‖ ·m. Taking the infimum over all
such b results in

fillX(σ1 + · · ·+ σm) ≤ fillG(r1 + · · ·+ rm) + ‖h‖ ·m.
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Passing to the stabilisation limit, we obtain

sfillX(σ1 + · · ·+ σm) = lim
n→∞

1

n
· fillX

(
σ1[n] + · · ·+ σm[n]

)
≤ lim
n→∞

1

n
·
(
fillG(rn1 + · · ·+ rnm) + ‖h‖ ·m

)
= lim
n→∞

1

n
· fillG(rn1 + · · ·+ rnm)

= sfillG(r1 + · · ·+ rm).

6.2 Stable commutator length as filling invariant

The fact that every commutator consists of four pieces has the following gener-
alisation in terms of filling norms:

Lemma 6.7 (scl as filling invariant). Let G be a group, let m ∈ N, and let
r1, . . . , rm ∈ G′. Then

sclG(r1 + · · ·+ rm) =
1

4
· sfillG(r1 + · · ·+ rm).

Proof. In the case of a single relator, this observation goes back to Bavard [Bav91,
Proposition 3.2][Cal09a, Lemma 2.69]. Calegari extended this equality to the
case of linear combinations [Cal09a, Lemma 2.77].

Furthermore, as Calegari [Cal08b] puts it: “One can interpret stable com-
mutator length as the infimum of the L1 norm (suitably normalized) on chains
representing a certain (relative) class in group homology.” We will prove this
statement in Corollary 6.9 as a special case of the following generalisation:

Proposition 6.8 (relative l1-semi-norm as filling invariant). Let Z be a CW-
complex, let m ∈ N>0, d ∈ N≥2, let ∂Z ⊂ Z be a subspace that is homeomorphic
to
∐
m ∂∆d and such that the inclusions σ1, . . . , σm : ∂∆d → Z of the m com-

ponents of ∂Z into Z are π1-injective (this is automatic if d ≥ 3).

1. If β ∈ Hd(Z, ∂Z;R) with ∂β = [∂Z]R, then

‖β‖1 ≥ sfillZ(σ1 + · · ·+ σm).

2. If the connecting homomorphism ∂ : Hd(Z, ∂Z;R) → Hd−1(∂Z;R) is an
isomorphism and if β ∈ Hd(Z, ∂Z;R) is the class with ∂β = [∂Z]R, then

‖β‖1 = sfillZ(σ1 + · · ·+ σm).

Proof. We first show the estimate sfillZ(σ1 + · · · + σm) ≤ ‖β‖1: Clearly, the
group π1(∂∆d) is amenable; because σ1, . . . , σm are π1-injective, the equivalence
theorem [Gro82][BBF+14, Corollary 6] ensures that for every ε ∈ R>0 there
exists a relative cycle c ∈ Cd(Z;R) representing β in Hd(Z, ∂Z;R) with

|c|1 ≤ ‖β‖1 + ε and |∂c|1 ≤ ε. (1)

Moreover, because the fundamental group of the m components of ∂Z are
amenable, there exists a constant K ∈ R>0 implementing the uniform boundary
condition [MM85]: For every z ∈ ∂(Cd(∂Z;R)) there is a b ∈ Cd(∂Z;R) with

z = ∂b and |b|1 ≤ K · |z|1.
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Let ε ∈ R>0, let c be a relative cycle as in (1), and let n ∈ N with n ≥ 1/ε.
Then z := ∂c− 1/n · (cσ1[n] + · · ·+ cσm[n]) ∈ Cd−1(∂Z;R) is a boundary (both
summands are fundamental cycles of ∂Z). Hence, there exists a b ∈ Cd(∂Z;R)
with

∂b = ∂c− 1

n
· (cσ1[n] + · · ·+ cσm[n]) and

|b|1 ≤ K ·
∣∣∣∂c− 1

n
· (cσ1[n] + · · ·+ cσm[n])

∣∣∣
1
≤ K ·

(
ε+m · d+ 1

n

)
≤ K ·

(
1 +m · (d+ 1)

)
· ε.

The chain n · (c− b) ∈ Cd(Z;R) then witnesses that

1

n
· fillZ

(
σ1[n] + · · ·+ σm[n]

)
≤ 1

n
· n · |c− b|1 = |c− b|1

≤ ‖β‖1 + ε+K ·
(
1 +m · (d+ 1)

)
· ε.

Taking first n→∞ and then ε→ 0 shows that sfillZ(σ1 + · · ·+ σm) ≤ ‖β‖1.
Conversely, we will now prove that ‖β‖1 ≤ sfillZ(σ1 + · · · + σm) under the

additional assumption that ∂ : Hd(Z, ∂Z;R)→ Hd−1(∂Z;R) is an isomorphism:
Let n ∈ N>0 and let b ∈ Cd(Z;R) with ∂b = cσ1[n] + · · ·+cσm[n]. In particular, b
is a relative cycle for (Z, ∂Z); moreover, 1/n·b represents β (because ∂(1/n·b) =
1/n · (cσ1[n] + · · ·+ cσm[n]) is a fundamental cycle of ∂Z). Hence,

‖β‖1 ≤
1

n
· |b|1.

Taking first the infimum over all such b and then n → ∞ yields the desired
estimate ‖β‖1 ≤ sfillZ(σ1 + · · ·+ σm).

Corollary 6.9 (scl as relative l1-semi-norm). Let G be a group with H2(G;R) ∼=
0, let m ∈ N, let r1, . . . , rm ∈ G′ be elements of infinite order, and let X be a
model of BG. Let

Z := X ∪r1,...,rm
(∐
m

S1 × [0, 1]
)

:= X ∪∐m
j=1 γj on

∐
m S1 × {0}

(∐
m

S1 × [0, 1]
)

be the mapping cylinder associated with (loops γ1, . . . , γr in X representing) the
elements r1, . . . , rm, and let ∂Z :=

∐
m S

1 × {1} ⊂ Z. Then there exists a
unique relative homology class β ∈ H2(Z, ∂Z;R) whose boundary class ∂β is the
fundamental class of

∐
m S

1; the class β satisfies

‖β‖1 = 4 · sclG(r1 + · · ·+ rm).

Proof. The long exact homology sequence of the pair (Z, ∂Z) shows that the
connecting homomorphism ∂ : H2(Z, ∂Z;R) → H1(∂Z;R) is an isomorphism
(by hypothesis, H2(Z;R) ∼= H2(X;R) ∼= H2(G;R) ∼= 0, and the inclusion ∂Z ↪→
Z induces the trivial homomorphism on H1( · ;R) because r1, . . . , rm are in the
commutator subgroup of G). This shows the existence of β.

Because r1, . . . , rm ∈ G′ all have infinite order, the corresponding inclu-
sions σ1, . . . , σm : ∂∆2 → Z of the components of ∂Z into Z are π1-injective.
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Applying Proposition 6.8 (using S1 ∼= ∂∆2), we obtain

‖β‖1 = sfillZ(σ1 + · · ·+ σm).

In combination with Remark 6.6 and Lemma 6.7, this shows that

‖β‖1 = sfillF (S)(r1 + · · ·+ rm) = 4 · sclS(r1 + · · ·+ rm).

Corollary 6.10 (scl as relative l1-semi-norm; free groups). Let S be a set, let
m ∈ N, let r1, . . . , rm ∈ F (S)′ be non-trivial, let

Z :=
(∨
S

S1
)
∪r1,...,rm

(∐
m

S1 × [0, 1]
)

:=
(∨
S

S1
)
∪∐m

j=1 γj on
∐

m S1 × {0}

(∐
m

S1 × [0, 1]
)

be the mapping cylinder associated with (loops γ1, . . . , γr representing) r1, . . . , rm,
and let ∂Z :=

∐
m S

1×{1} ⊂ Z. Moreover, let β ∈ H2(Z, ∂Z;R) be the relative
homology class whose boundary class ∂β is the fundamental class of

∐
m S

1.
Then

‖β‖1 = 4 · sclS(r1 + · · ·+ rm).

Proof. Clearly,
∨
S S

1 is a model of BF (S) and H2(F (S);R) ∼= 0. Therefore,
we can apply Corollary 6.9.

6.3 Decomposable relators

The filling view allows us to compute the l1-semi-norm for certain classes in
degree 2 associated to “decomposable relators” in terms of stable commutator
length. Let us first describe these homology classes:

Setup 6.11 (decomposable relators I). Let G1 and G2 be groups that sat-
isfy H2(G1;R) ∼= 0 and H2(G2;R) ∼= 0 and let r1 ∈ G′1, r2 ∈ G′2 be elements of
infinite order. We then consider the glued group

D(G1, G2, r1, r2) := (G1 ∗G2)/〈r1 · r2〉/ ∼= G1 ∗Z G2,

where the amalgamation homomorphisms Z→ G1 and Z→ G2 are given by r1

and r−1
2 , respectively.

Associated with this situation, there is a canonical homology class α ∈
H2(D(G1, G2, r1, r2);R): Let X1 and X2 be classifying spaces for G1 and G2,
respectively. We consider the cylinder spaces

Z1 := X1 ∪r1 on S1 × {0}
(
S1 × [0, 1]

)
Z2 := X2 ∪r2 on S1 × {0}

(
S1 × [0, 1]

)
for the relators r1 and r2, respectively. Then

P := Z1 ∪(z,1)∼(z,1) Z2

is a CW-complex such that the canonical maps Z1 → P and Z2 → P induce an
isomorphism π1(P ) ∼= D(G1, G2, r1, r2) =: G.
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Let β1 ∈ H2(Z1, S
1 × {1};R) and β2 ∈ H2(Z2, S

1 × {1};R) be the relative
classes whose boundaries are fundamental classes of S1×{1} (corresponding to
the relators r1 and r2, respectively). Moreover, let α̃ ∈ H2(P ;R) be the class
obtained by glueing β1 and β2. Then, we define α ∈ H2(G;R) as the image
of α̃ under the classifying map P → BG (which is induced by the canonical
maps Z1 → P and Z2 → P ).

Remark 6.12 (integrality of the canonical class). In the situation of Setup 6.11,
the canonical homology class α is integral: It suffices to show that α̃ ∈ H2(P ;R)
is integral. Comparing the long exact sequences of (Z1, ∂Z1) with Z- and R-co-
efficients shows that β1 ∈ H2(Z1, ∂Z1;R) is an integral class. Analogously, β2

is integral. Thus, also the glued class α̃ is integral.

Setup 6.13 (decomposable relators II). Let G1 be a group with H2(G1;R) ∼= 0
and let r1, r2 ∈ G′1 be elements of infinite order. We then consider the group

T (G1, r1, r2) :=
(
G1 ∗ 〈t〉

)
/〈r1 · t · r2 · t−1〉/,

where t is a fresh generator of 〈t〉 ∼= Z.
Also here, there is a canonical homology class α ∈ H2(T (G1, r1, r2);R),

which is defined as follows: Let X1 be a model of BG1 and let

Z := X1 ∪r1,r2
(
S1 × [0, 1] t S1 × [0, 1]

)
be the cylinder space associated with r1 and r2. Let β ∈ H2(Z, ∂Z;R) be the rel-
ative “fundamental” class as in Corollary 6.9. Glueing the two cylindrical ends
of Z by an orientation reversing homeomorphism leads to a CW-complex P such
that π1(P ) ∼= T (G1, r1, r2) =: G in the obvious way (the additional generator t
corresponds to the loop {1} × ([0, 1] ts∼s [0, 1]) in the looped cylinder. Let
α̃ ∈ H2(P ;R) be the class obtained by glueing β to itself via the cylinder. Then
we define α ∈ H2(G;R) as the image of α̃ under the classifying map P → BG
(which is induced by the canonical map X1 → P and the cylinder loop).

Theorem 6.14 (decomposable relators). Let G1 be a group with H2(G1;R) ∼= 0
and let r1 ∈ G′1 be an element of infinite order.

1. Let G2 also be a group with H2(G2;R) ∼= 0, let r2 ∈ G′2 be an element
of infinite order, and let α ∈ H2(D(G1, G2, r1, r2);R) be the canonical
homology class (Setup 6.11). Then

‖α‖1 = 4 · (sclG1
r1 + sclG2

r2) = 4 ·
(

sclG1∗G2
(r1 · r2)− 1

2

)
.

2. Let r2 ∈ G′1 be an element of infinite order, let α ∈ H2(T (G1, r1, r2);R) be
the canonical class (Setup 6.13), and let t be the fresh letter in T (G1, r1, r2).
Then

‖α‖1 = 4 · sclG1
(r1 + r2) = 4 ·

(
sclG1∗〈t〉(r1 · t · r2 · t−1)− 1

2

)
.

Proof. In both cases, we will use that the stable commutator length and the
canonical CW-complexes of decomposable relators can be expressed in terms of
the stable commutator lengths and cylinder complexes of the sub-relators.
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Ad 1. It is known that [Cal09a, Proposition 2.99]

sclG1∗G2(r1 · r2) = sclG1 r1 + sclG2 r2 +
1

2
.

We will now show that ‖α‖1 equals 4 · (sclG1 r1 + sclG2 r2). In the following, we
will use the notation from Setup 6.11. By construction, we have

α = H2(c;R)(α̃),

where c : P → BD(G1, G2, r1, r2) is the classifying map of P . The mapping
theorem (Corollary 3.5) shows that ‖α‖1 = ‖α̃‖1. Therefore, it suffices to
compute ‖α̃‖1.

Because r1 and r2 have infinite order, the inclusions of S1 × {1} into Z1

and Z2, respectively, are π1-injective. As π1(S1 × {1}) ∼= Z is amenable, the
amenable glueing theorem [BBF+14, Section 6] shows that

‖α̃‖1 = ‖β1‖1 + ‖β2‖1;

the proofs of Bucher et al. carry over from the manifold case to this setting,
because they established the necessary tools in bounded cohomology in this full
generality. Moreover, we know that (Corollary 6.9)

‖β1‖1 = 4 · sclG1
r1 and ‖β2‖1 = 4 · sclG2

r2.

Putting it all together, we obtain ‖α‖1 = ‖α̃‖1 = 4 · (sclG1 r1 + sclG2 r2), as
claimed.

Ad 2. We argue in a similar way as in the first part: In this situation, it is
known that [Cal09a, Theorem 2.101]

sclG1∗〈t〉(r1 · t · r2 · t−1) = sclG1
(r1 + r2) +

1

2
.

We will now use the notation from Setup 6.13. The classifying map c : P →
BT (G1, r1, r2) maps α̃ to the canonical class α ∈ H2(G;R) and the mapping
theorem (Corollary 3.5) shows that ‖α‖1 = ‖α̃‖1.

Because r1 and r2 have infinite order, we can again use the amenable glueing
theorem to deduce that

‖α̃‖1 = ‖β‖1.

Moreover, Corollary 6.9 shows that

‖β‖1 = 4 · sclG1(r1 + r2).

Therefore, we obtain ‖α‖1 = ‖α̃1‖1 = 4 · sclG1(r1 + r2).

In the case that G1 and G2 are free groups, statements of this type are also
contained in arguments of Calegari [Cal08a, p. 2004].

Unfortunately, there does not seem to be an easy way to remove the con-
dition H2(G1;R) ∼= 0 in Theorem 6.14: Without this condition, we have too
much ambiguity in the proof of Proposition 6.8 to ensure integrality and norm
control simultaneously.
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6.4 Simplicial volume as filling invariant

We mention that also simplicial volume of higher-dimensional manifolds admits
a description as a filling invariant (this result will not be used in the rest of the
paper):

Theorem 6.15 (simplicial volume as filling invariant). Let d ∈ N≥2, let M be
an orientable closed connected d-manifold, let τ : ∆d → M be an embedding of
the standard d-simplex into M (i.e., τ is a homeomorphism onto its image), let
∆ := τ(∆d) ⊂M , and let σ := τ |∂∆d : ∂∆d →M .

1. Then ‖M \∆◦, ∂∆‖ = sfillM\∆◦ σ.

2. If d ≥ 3, then ‖M‖ = sfillM\∆◦ σ.

3. If d = 2 and M 6' S2, then ‖M‖ = sfillM\∆◦ σ − 2.

Proof. Ad 1. This is a special case of Proposition 6.8: We consider Z := M \∆◦.
The map σ : ∂∆d →M \∆◦ = Z is π1-injective (if d ≥ 3, then π1(∂∆d) is trivial;
if d = 2, this holds by the classification of surfaces and the assumption M 6' S2).
In view of Poincaré duality, the hypothesis on Hd(Z, ∂Z;R) is satisfied. We
therefore can apply Proposition 6.8 to obtain

‖Z, ∂Z‖ =
∥∥[Z, ∂Z]R

∥∥
1

= sfillZ σ.

Ad 2. In view of the first part, it suffices to show that ‖M‖ = ‖M \∆◦, ∂∆‖.
The amenable glueing theorem for simplicial volume [Gro82, BBF+14, FM18]
shows that

‖M‖ = ‖M \∆◦, ∂∆‖+ ‖∆d, ∂∆d‖

(because d ≥ 3, both inclusions ∂∆ → M \∆◦ and ∂∆ → ∆ are π1-injective).
Moreover, ‖∆d, ∂∆d‖ = 0 [Gro82]. Hence, we obtain ‖M‖ = ‖M \∆◦, ∂∆‖.

Ad 3. Again, in view of the first part, it suffices to show that ‖M‖ =
‖M \∆◦, ∂∆‖− 2. In this, two-dimensional, case, this equality follows from the
classification of compact surfaces and the computation of the (relative) simplicial
volume of compact surfaces in terms of their genus [Gro82, Thu97].

6.5 Proof of Theorems C and D

Theorem C is a special case of Theorem 6.14 with the decomposable relators
of Setup 6.11. Let G be a group that satisfies H2(G;R) ∼= 0 and let r ∈ G′ be
an element of infinite order. Then we define the double D(G, r) of G and r by
setting

D(G, r) := D(G,G, r, r) = (Gleft ? Gright)/〈rleft · rright〉/,

where Gleft and Gright are isomorphic copies of G and rright ∈ Gright, rleft ∈
Gleft are the elements corresponding to r ∈ G. Observe that if G is finitely
presented, then so is D(G, r). As in Setup 6.11 there is a canonical integral
class α ∈ H2(D(G, r);R).

Corollary 6.16 (Theorem C). Let G be a group with H2(G;R) ∼= 0 and let
r ∈ G′ be of infinite order. Then the canonical integral class α ∈ H2(D(G, r);R)
satisfies

‖α‖1 = 8 · sclG r.
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Proof. This is an immediate corollary of Theorem 6.14 (1).

Applying Theorem C to the universal central extension E of Thompson’s
group T , we deduce Theorem D:

Corollary 6.17 (Theorem D). For every q ∈ Q≥0, there is a finitely presented
group Gq and an integral class αq ∈ H2(Gq;R) such that ‖αq‖1 = q. In par-
ticular, for every ε > 0 there is a finitely presented group Gε and an integral
class αε ∈ H2(Gε;R) such that 0 < ‖αε‖1 ≤ ε.

Proof. Let q ∈ Q≥0. For q = 0 we can take the zero class of the trivial group
(or any integral 2-class in any finitely presented amenable group).

For q > 0, let rq ∈ E be an element in the universal central extension E of
Thompson’s group T with sclE rq = q/8. Proposition 5.1 asserts that such an
element exists, that E is finitely presented and that H2(E;Z) ∼= 0 and hence
H2(E;R) ∼= 0. As sclE rq > 0 the element rq ∈ E has infinite order.

Let Gq := D(E, rq) be the double and let αq ∈ H2(Gq;R) be the associated
integral 2-class. Theorem C shows that

‖αq‖1 = 8 · sclE rq = q.

We note that one can prove the second part of Theorem D also via previously
known examples of stable commutator length (Example 4.3.4).

7 The l1-semi-norm of products with surfaces:
Proof of Theorem E

Bucher [BK08] computed the simplicial volume of the product of two surfaces
(see Theorem 2.10). We will use her techniques to generalise this statement to
the product of more general 2-classes. This will allow us to construct integral
4-classes whose l1-semi-norm can be expressed in terms of the l1-semi-norm of
2-classes. Theorem E will be a corollary (Corollary 7.2) of these constructions.

Theorem 7.1. Let G and Γ be groups, let α ∈ H2(G;R), and β ∈ H2(Γ;R).
Furthermore, let ρ : Γ→ Homeo+(S1) be a circle action of Γ. Assume further-
more that ρ∗Or ∈ C2

b (Γ;R) is an extremal cocycle for β; see Section 3.6. Then
the class α× β ∈ H4(G× Γ;R) satisfies

‖α× β‖1 =
3

2
· ‖α‖1 · ‖β‖1.

Theorem 7.1 is a strict generalisation of Bucher’s result [BK08] and our
proof follows the outline of Bucher’s work. Recall that for g ≥ 2 we denote
the oriented closed connected surface of genus g by Σg, its fundamental group
by Γg, and its fundamental class by [Σg]R ∈ H2(Σg;R) ∼= H2(Γg;R). Fix a
hyperbolic structure on Σg and let ρ : Γg → Homeo+(S1) be the corresponding
action on the boundary ∂Γg ∼= S1. The cocycle ρ∗Or ∈ C2

b (Γg;R) is extremal
to [Σg]R (see Section 3.6) and satisfies〈

[ρ∗Or], [Σg]R
〉

= ‖Σg‖ = 4 · g − 4.

Therefore, we obtain the following immediate corollary to Theorem 7.1:
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Corollary 7.2 (Theorem E). Let g ≥ 2, let G be a group, let α ∈ H2(G;R)
and let Γg and [Σg]R ∈ H2(Γg;R) be as above. Then the class α × [Σg]R ∈
H4(G× Γg;R) satisfies∥∥α× [Σg]R

∥∥
1

=
3

2
· ‖α‖1 · ‖Σg‖ = 6 · (g − 1) · ‖α‖1.

Proof of Theorem 7.1. In this proof, all cocycles will be given in the homoge-
neous resolution. The upper bound holds for all classes in degree 2 (Corol-
lary 2.11). For the lower bound we will use duality (Proposition 3.4):

Let ΓorRb := [ρ∗Or]R = −2 · ΓeuR
b ∈ H2

b (Γ;R) be the orientation class for the
given action ρ : Γ → Homeo+(S1). Moreover, let ω ∈ C2

b (G;R) be an extremal
cocycle for α ∈ H2(G;R) in the homogeneous resolution; see Proposition 3.4.
By possibly replacing ω by alt2

b(ω), we may assume that ω is alternating; see
Section 3.5. By assumption, ‖ω‖∞ ≤ 1 and〈

[ω], α
〉

= ‖α‖1 and 〈ΓorRb , β〉 = ‖β‖1.

The cross-product ω × ρ∗Or ∈ C4
b (G× Γ;R) of ω and ρ∗Or is defined via

ω × ρ∗Or:
(
(g1, γ1), . . . , (g5, γ5)

)
7→ ω(g1, g2, g3) · ρ∗Or(γ3, γ4, γ5)

and satisfies 〈
[ω × ρ∗Or], α× β

〉
= ‖α‖1 · ‖β‖1.

This recovers the estimate ‖α‖1 · ‖β‖1 ≤ ‖α× β‖1 as seen in Proposition 2.9.

Claim 7.3. Let Θ := alt4
b(ω×ρ∗Or) be the associated alternating cocycle of ω×

ρ∗Or; see Section 3.5. Then ‖Θ‖∞ ≤ 2/3.

Once Claim 7.3 is established, we can argue as follows: Recall that Θ and
ω × ρ∗Or represent the same class in H4

b (G× Γ;R) by Proposition 3.6. Hence,
〈Θ, α×β〉 = ‖α‖1 · ‖β‖1. Moreover by the claim we have that ‖ 3

2 ·Θ‖∞ ≤ 1 and
by duality we conclude that 3

2 · ‖α‖1 · ‖β‖1 ≤ ‖α× β‖1. Putting both estimates
together, we will obtain

3

2
· ‖α‖1 · ‖β‖1 = ‖α× β‖1,

as claimed in Theorem 7.1. To complete the proof, it thus only remains to show
Claim 7.3.

Proof of Claim 7.3. We will follow the outline of Bucher’s proof [BK08, Proposi-
tion 7], quoting parts of the proof verbatim. Let g0, . . . , g4 ∈ G and γ0, . . . , γ4 ∈
Γ. Moreover, let ξ ∈ S1 be a point to define Or and set xi := ρ(γi).ξ for
all i ∈ {0, . . . , 4}. We will give upper bounds to |Θ((g0, γ0), . . . , (g4, γ4))| in
different cases. By construction,

Θ
(
(g0, γ0), . . . , (g4, γ4)

)
may be written as

1

|S5|
·
∑
σ∈S5

sign(σ) · ω(gσ(0), gσ(1), gσ(2)) ·Or(xσ(2), xσ(3), xσ(4)), (2)
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where Or is the orientation; see Section 3.6. Every permutation σ ∈ S5 may
be written uniquely as σ = (0 1 2 3 4)k ◦ υ, where k ∈ {0, . . . , 4} and υ ∈ S5

is a permutation with υ(2) = 0. Using that both Or and ω are alternating we
obtain that

Θ
(
(g0, γ0), . . . , (g4, γ4)

)
=

1

30
·

4∑
k=0

A(k), (3)

where

A(k) = ω(gτ(0), gτ(1), gτ(2)) ·Or(xτ(0), xτ(3), xτ(4))

+ ω(gτ(0), gτ(3), gτ(4)) ·Or(xτ(0), xτ(1), xτ(2))

− ω(gτ(0), gτ(1), gτ(3)) ·Or(xτ(0), xτ(2), xτ(4))

− ω(gτ(0), gτ(2), gτ(4)) ·Or(xτ(0), xτ(1), xτ(3))

+ ω(gτ(0), gτ(1), gτ(4)) ·Or(xτ(0), xτ(2), xτ(3))

+ ω(gτ(0), gτ(2), gτ(3)) ·Or(xτ(0), xτ(1), xτ(4))

for τ = (0 1 2 3 4)k. Observe also that we may assume that the xi are cyclically
ordered, as Θ is alternating.

In what follows we will estimate the terms A(k), depending on the relative
position of the xi:

• All x0, . . . , x4 are distinct. As all Or-terms in A(k) equal 1 we have

A(k) = ω(gτ(0), gτ(1), gτ(2)) + ω(gτ(0), gτ(3), gτ(4))

− ω(gτ(0), gτ(1), gτ(3))− ω(gτ(0), gτ(2), gτ(4))

+ ω(gτ(0), gτ(1), gτ(4)) + ω(gτ(0), gτ(2), gτ(3))

= ω(gτ(2), gτ(3), gτ(4)) + ω(gτ(0), gτ(1), gτ(2))

− ω(gτ(0), gτ(1), gτ(3)) + ω(gτ(0), gτ(1), gτ(4))

for τ = (0 1 2 3 4)k, where in the last equation we used that

0 = δ2ω(gτ(0), gτ(2), gτ(3), gτ(4))

= ω(gτ(2), gτ(3), gτ(4))− ω(gτ(0), gτ(3), gτ(4))

+ ω(gτ(0), gτ(2), gτ(4))− ω(gτ(0), gτ(2), gτ(3))

by the cocycle condition. In particular, we see that |A(k)| ≤ 4 as ‖ω‖∞ ≤
1. Hence,

∣∣Θ((g1, γ1), . . . , (g5, γ5))
∣∣ ≤ 1

30
·

4∑
k=0

|A(k)| ≤ 20

30
=

2

3
.

• Two of the xi are identical and the others are distinct. Without loss of gen-
erality assume that x0 = x1. Observe that in this case Or(xi, xj , xk) = 0
whenever two of the xi, xj , xk are equal to x0 or x1. We will estimate |A(k)|
in different cases:

– k = 0: Then A(0) = ω(g0, g1, g2) − ω(g0, g1, g3) + ω(g0, g1, g4) and
hence |A(0)| ≤ 3.
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– k = 1: Then A(1) = ω(g1, g4, g0) − ω(g1, g3, g0) + ω(g1, g2, g0) and
hence |A(1)| ≤ 3.

– k = 2: Then

A(2) = ω(g2, g0, g1)− ω(g2, g3, g0)− ω(g2, g4, g1)

+ ω(g2, g3, g1) + ω(g2, g4, g0).

By the cocycle condition, it follows that

0 = δ2ω(g2, g4, g0, g1)

= ω(g4, g0, g1)− ω(g2, g0, g1) + ω(g2, g4, g1)− ω(g2, g4, g0).

Therefore, A(2) = ω(g4, g0, g1) − ω(g2, g3, g0) + ω(g2, g3, g1) and so
|A(2)| ≤ 3.

– k = 3: Then

A(3) = ω(g3, g4, g0) + ω(g3, g1, g2)− ω(g3, g4, g1)

− ω(g3, g0, g2) + ω(g3, g0, g1)

and hence |A(3)| ≤ 5.

– k = 4: Then

A(4) = ω(g4, g0, g1)− ω(g4, g0, g2)− ω(g4, g1, g3)

+ ω(g4, g0, g3) + ω(g4, g1, g2)

and hence |A(4)| ≤ 5.

Putting things together we see that

∣∣Θ((g1, γ1), . . . , (g5, γ5))
∣∣ ≤ 1

30

4∑
k=0

|A(k)| ≤ 19

30
< 2/3.

• Three of the xi are identical, the other ones are different. As Θ is alternat-
ing we may assume that x0 = x1 = x2. A permutation σ ∈ S5 for which
the Or(xσ(2), xσ(3), xσ(4)) term in Equation (2) is non-trivial has to map
exactly one of the elements in {2, 3, 4} to one of the elements {0, 1, 2}, and
has to map the remaining two elements of {2, 3, 4} to {3, 4}. We then have
two more choices for σ(0) and σ(1). We compute that the total number
of such permutations is 36. For all other permutations, the Or-term in
Equation (2) will vanish. We may then estimate∣∣Θ((g0, γ0), . . . , (g4, γ4))

∣∣ ≤ 36

5!
=

36

120
<

2

3
.

• Two pairs are identical and one element is different from these pairs. As-
sume without loss of generality that x0 = x1, x2 = x3. A permutation
σ ∈ S5 for which the Or(xσ(2), xσ(3), xσ(4))-term in Equation (2) is non-
trivial has to map each of {2, 3, 4} to different sets {0, 1}, {2, 3}, and {5}.
Moreover, there are two choices for the two elements that get mapped to
the sets with two elements. Again, there are two more choices for σ(0)
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and σ(1). We compute that there are a total of 48 such permutations. For
all other permutations the Or-term in Equation (2) will vanish. We may
then estimate ∣∣Θ((g0, γ0), . . . , (g4, γ4))

∣∣ ≤ 48

5!
=

48

120
<

2

3
.

• If more than three of the xi are identical or if exactly three of the xi
are identical and the two remaining xi are identical, then the Or-term in
Equation (2) always vanishes and we get that∣∣Θ((g0, γ0), . . . , (g4, γ4))

∣∣ = 0 <
2

3
.

In summary, in each case we have seen that∣∣Θ((g0, γ0), . . . , (g4, γ4))
∣∣ ≤ 2

3

and hence ‖Θ‖∞ ≤ 2
3 . This finishes the proof of Claim 7.3 (and also the proof

of Theorem 7.1).

8 Manufacturing manifolds with controlled sim-
plicial volumes

The computation of `1-semi-norms of 2-classes in group homology allows us to
construct manifolds with controlled simplicial volume.

This construction will involve a normed version of Thom’s realisation the-
orem, which we recall in Section 8.1. Theorem A is proven in Section 8.2 and
the theorems for dimension 4 (Theorems B and F) are proven in Section 8.3.
Finally, in Section 8.4 we discuss related problems and further research topics.

8.1 Thom’s realisation theorem

In order to turn classes in group homology into manifolds with controlled sim-
plicial volume, we will use the following normed version of Thom’s realisation
theorem:

Theorem 8.1 (normed Thom realisation). For each d ∈ N≥4, there exists a
constant Kd ∈ N>0 with the following property: If G is a finitely presented
group (with model X of BG) and α ∈ Hd(X;R) is an integral homology class,
then there is an oriented closed connected (smooth) d-manifold M , a continuous
map f : M → X and a number m ∈ {1, . . . ,Kd} with

Hd(f ;R)[M ]R = m · α and ‖M‖ = m · ‖α‖1.

Moreover, one can choose K4 = 1 and K5 = 1.

Proof. Everything except for the condition on the simplicial volume is contained
in Thom’s classical realisation theorems [NT07, Theorems III.3, III.4]. (Thom’s
original theorems apply to X because every singular homology class of X is
supported on a finite subcomplex; as G is finitely presented, we can choose the
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subcomplex in such a way that the inclusion into X induces a π1-isomorphism.)
One can then apply surgery to obtain a manifold representation of α, where
f : M → X in addition is a π1-isomorphism [CL15, (proof of) Theorem 3.1]
(this will not touch the multiplier m). Therefore, the mapping theorem for the
l1-semi-norm (Corollary 3.5) shows that

‖M‖ =
∥∥Hd(f ;R)[M ]R

∥∥
1

= ‖m · α‖1 = m · ‖α‖1.

8.2 No gaps in higher dimensions: Proof of Theorem A

We promote the computations of l1-semi-norms in degree 2 to higher dimensions
using cross-products. The manifolds will then be provided by the normed Thom
realisation (Theorem 8.1).

Proof of Theorem A. Let d ∈ N≥4. We fix an oriented closed connected hyper-
bolic (d − 2)-manifold Nd; in particular, ‖Nd‖ > 0. Moreover, let Kd ∈ N be
the constant provided by Thom’s realisation theorem (Theorem 8.1).

Let ε ∈ R>0. By Theorem D, there exists a finitely presented group G and
an integral class α ∈ H2(G;R) with 0 < ‖α‖1 ≤ ε. Let X be a model of BG.
Then the product class

α′ := α× [Nd]R ∈ Hd(X ×Nd;R)

is integral and satisfies (by Proposition 2.9)

0 < ‖α‖1 · ‖Nd‖ ≤ ‖α′‖1 ≤
(
d

2

)
· ‖Nd‖ · ε.

The normed version of Thom’s realisation theorem (Theorem 8.1) provides
an orientable closed connected d-manifold M and a number m ∈ {1, . . . ,Kd}
with

‖M‖ = m · ‖α′‖1.

We conclude that

0 < ‖M‖ ≤
(
d

2

)
· ‖Nd‖ ·Kd · ε.

As the constants on the right hand side just depend on d, this shows that there is
no gap at 0 in SV(d), the set of simplicial volumes of orientable closed connected
d-manifolds. By additivity (Remark 2.3), the set SV(d) is also dense in R≥0.

8.3 Dimension 4: Proofs of Theorems B and F

In dimension 4, we have more control on the l1-norm of integral 4-classes in
group homology (Theorem E). This allows us to prove Theorems B and F.

Proposition 8.2. Let G be a finitely presented group and let α ∈ H2(G;R) be an
integral class. Then there exists an orientable closed connected 4-manifold Mα

with
‖Mα‖ = 6 · ‖α‖1.
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Proof. We proceed as in the proof of Theorem A and consider the product class

α′ := α× [Σ2]R ∈ H4(G× Γ2;R)

of α with the fundamental class [Σ2]R of a surface of genus 2. Observe that α′

is also integral. Then the normed Thom realisation (Theorem 8.1) shows that
there exists an orientable closed connected 4-manifold Mα with ‖Mα‖ = ‖α′‖1.
We now apply the norm computation from Corollary 7.2 and obtain

‖Mα‖ = ‖α′‖1 = 6 · ‖α‖1.

Proof of Theorem B. We only need to combine Theorem D (which allows to
realise any non-negative rational number as l1-semi-norm of an integral 2-class
of a finitely presented group) with Proposition 8.2.

Moreover, we can summarise the relation between stable commutator length
and simplicial volumes in dimension 4 as follows:

Corollary 8.3 (Theorem F, dimension 4, exact values via scl). Let G be a
finitely presented group with H2(G;R) ∼= 0 and let g ∈ G′ be an element in
the commutator subgroup. Then there exists an orientable closed connected 4-
manifold Mg with

‖Mg‖ = 48 · sclG g.

Proof. We may assume without loss of generality that r has infinite order (oth-
erwise we can just take M = S4). We again consider the doubled group D(G, r)
(as in Corollary 6.16) and the canonical homology class α ∈ H2(D(G, r);R),
which is integral (Remark 6.12); as G is finitely presented, also D(G, r) is finitely
presented. Applying Corollary 6.16 shows that

‖α‖1 = 8 · sclG r.

In combination with Proposition 8.2, we therefore obtain an orientable closed
connected 4-manifold M with

‖M‖ = 6 · ‖α‖1 = 48 · sclG r.

Remark 8.4. The concrete example manifolds in the proof of Theorem B, in
general, might have different fundamental group; however, by construction, their
first Betti numbers are uniformly bounded: For each q ∈ Q, we have

b1(Mq;Q) ≤ rkπ1(Mq) = rkπ1

(
D(E, eq)× Γ2

)
≤ 2 · rkE + 4.

8.4 Related problems

The techniques of this paper may be adopted to construct 4-manifolds with
transcendental simplicial volume. Theorem F reduces this problem to finding
an appropriate finitely presented group with transcendental stable commuta-
tor length. By constructing such groups explicitly, we could show that there
are 4-manifolds with arbitrarily small transcendental simplicial volume [HL19b,
Theorem A]. Moreover, we could also show that the set of simplicial volumes is
contained in the (countable) set RC≥0 of non-negative right-computable num-
bers [HL19b, Theorem B]. It is unkown which real numbers arise as the stable
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commutator length of elements in the class of finitely presented groups. How-
ever, it is known [Heu19a] that for the class of recursively presented groups this
set is exactly RC≥0.

Our techniques for manufacturing manifolds with controlled simplicial vol-
umes are based on group-theoretic methods and not on genuine manifold-geo-
metric constructions. One might wonder whether Theorem A also holds under
additional topological or geometric conditions such as asphericity or curvature
conditions.

Originally, we set out to study simplicial volume of one-relator groups and
its relation with stable commutator length. However, we then realised that some
of the techniques applied in a much broader context (with a weak homological
condition). We discuss a connection between the l1-semi-norm of the relator-
class in one-relator groups with the stable commutator length of the relator in
the free group in a separate article [HL19a].
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