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EXPONENTIAL GROWTH RATES IN HYPERBOLIC GROUPS
[after Koji Fujiwara and Zlil Sela]

by Clara Löh

A classical result of Jørgensen and Thurston shows that the set of volumes of finite
volume complete hyperbolic 3-manifolds is a well-ordered subset of the real numbers of
order type ωω; moreover, each volume can only be attained by finitely many isometry
types of hyperbolic 3-manifolds.

Fujiwara and Sela (2020) established a group-theoretic companion of this result: If Γ
is a non-elementary hyperbolic group, then the set of exponential growth rates of Γ is
well-ordered, the order type is at least ωω, and each growth rate can only be attained
by finitely many finite generating sets (up to automorphisms).

In this talk, we outline this work of Fujiwara and Sela and discuss related results.
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1. MAIN RESULTS

Geometric group theory provides a rich interaction between the Riemannian geometry
of manifolds and the large-scale geometry of finitely generated groups. This bond is
particularly strong in the presence of negative curvature and explains a variety of
rigidity phenomena. The group-theoretic analogues of closed hyperbolic manifolds
are hyperbolic groups; more generally, the group-theoretic analogues of finite volume
complete hyperbolic manifolds are relatively hyperbolic groups.

The volume growth behaviour of Riemannian balls in the universal covering of a
compact Riemannian manifold is the same as the growth behaviour of balls in Cayley
graphs of the fundamental group. By definition, the exponential growth rates of finitely
generated groups measure the exponential expansion rate of balls in Cayley graphs and
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thus are entropy-like invariants. While there is no direct connection between the volume
of a hyperbolic manifold M and the exponential growth rates of π1(M), the results
of Fujiwara and Sela (2020) show that certain sets of such values share fundamental
structural similarities.

To state these results, for a finitely generated group Γ, we write Exp(Γ) ⊂ R for the
(countable) set of all exponential growth rates e(Γ, S) with respect to finite generating
sets S of Γ. The automorphism group Aut(Γ) acts on the set FG(Γ) of all finite
generating sets of Γ and e(Γ, f(S)) = e(Γ, S) holds for all S ∈ FG(Γ) and all f ∈ Aut(Γ).
More details on terminology and notation can be found in Appendix A.

Theorem 1.1 (well-orderedness; Fujiwara and Sela, 2020, Theorem 2.2)
If Γ is a hyperbolic group, then Exp(Γ) is well-ordered (with respect to the standard

order on R).

Theorem 1.2 (finite ambiguity; Fujiwara and Sela, 2020, Theorem 3.1)
The set {S ∈ FG(Γ) | e(Γ, S) = r}/Aut(Γ) is finite for every non-elementary

hyperbolic group Γ and every r ∈ R.

Theorem 1.3 (growth ordinals; Fujiwara and Sela, 2020, Proposition 4.3)
Let Γ be a non-elementary hyperbolic group. Then the ordinal number ordExp(Γ)

associated with Exp(Γ) satisfies ordExp(Γ) ≥ ωω.

Moreover, Fujiwara and Sela (2020, Proposition 4.3) show that ordExp(Γ) = ωω if
epi-limit groups over Γ have a Krull dimension. In analogy with the case of hyperbolic 3-
manifolds, they conjecture that ordExp(Γ) = ωω holds for all non-elementary hyperbolic
groups Γ (Fujiwara and Sela, 2020, Section 4) .

Example 1.4. — If F is a finitely generated free group of rank at least 2, then limit groups
over F have a Krull dimension (Louder, 2012). Hence, Theorems 1.1–1.3 show that
ordExp(F ) = ωω and each value in Exp(F ) is realised by only finitely many generating
sets (up to automorphisms of F ).

The key idea for the proofs of Theorems 1.1–1.3 is inspired by the proofs by Thurston
and Jørgensen for the set of volumes of hyperbolic 3-manifolds and model theory: One
passes from sequences of generating sets (of bounded size) of the given hyperbolic
group Γ to a limit group over Γ with an associated finite generating set; i.e., limit
groups play the role of cusped manifolds. The main challenge is then to compute the
exponential growth rate of this limiting object in terms of the exponential growth rates
appearing in the original sequence.

Overview
Basics on hyperbolic groups, exponential growth rates, and well-ordered countable

sets are recalled in Appendix A. We briefly explain the manifold context of the results
above in Section 2, with a focus on hyperbolic and simplicial volume. Section 3 gives
a proof outline of the main results. Finally, in Section 4, we mention applications and
extensions of the main results.
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2. CONTEXT: VOLUMES OF MANIFOLDS AND HYPERBOLICITY

The results of Fujiwara and Sela (2020) are analogues of the behaviour of volumes of
finite volume complete hyperbolic 3-manifolds. We recall this background in Section 2.1.
The situation for simplicial volume is discussed in Section 2.2. In addition, we mention
right-computability as a further structural property of “volume” sets (Section 2.3).

2.1. Hyperbolic volume
The structure and volumes of hyperbolic 3-manifolds was analysed in the breakthrough

work of Jørgensen and Thurston.

Theorem 2.1 (volumes of hyperbolic 3-manifolds; Thurston, 1979, Chapter 6)
The set

{vol(M) |M is a finite volume complete hyperbolic 3-manifold}

is well-ordered (with respect to the standard order on R) and the associated ordinal is ωω.
Moreover, every value arises only from finitely many isometry classes of finite volume
hyperbolic 3-manifolds.

We briefly summarise the main steps of the proof (Gromov, 1981); the key is to study
the convergence of sequences of hyperbolic manifolds and to understand the role of
hyperbolic manifolds with cusps as limits of such sequences:

1. Every sequence (Mn)n∈N of complete hyperbolic 3-manifolds with uniformly
bounded volume contains a subsequence that converges in a strong geo-
metric sense to a finite volume complete hyperbolic 3-manifold M and
limn→∞ vol(Mn) = vol(M). Furthermore, for “non-trivial” such sequences, one
can show that vol(M) > vol(Mn) holds for all members Mn of the subsequence.

This can be used to show that the set of hyperbolic volumes is well-ordered and
that every value can only be obtained in finitely many ways.

2. Every finite volume complete hyperbolic 3-manifold with k ∈ N cusps can be
obtained for each p ∈ {0, . . . , k} as the limit of a sequence of finite volume complete
hyperbolic 3-manifolds with exactly p cusps.

This can be used to show that the volume ordinal is at least ωk. Constructing
hyperbolic 3-manifolds with arbitrarily large numbers of cusps thus shows that the
volume ordinal is at least ωω. In combination with the first part, one can derive
that the volume ordinal equals ωω.

In contrast, in higher dimensions, the set of volumes of finite volume complete hyper-
bolic manifolds leads to the ordinal ω. This follows from Wang’s finiteness theorem and
the unboundedness of hyperbolic volumes.

Theorem 2.2 (Wang’s finiteness theorem; Wang, 1972). — Let n ∈ N≥4 and v ∈ R≥0.
Then there exist only finitely many isometry classes of finite volume complete hyperbolic
n-manifolds M with vol(M) ≤ v.
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2.2. Simplicial volume

Simplicial volume is a homotopy invariant of closed manifolds. For several geometri-
cally relevant classes of Riemannian manifolds, the simplicial volume encodes topological
rigidity properties of the Riemannian volume.

Definition 2.3 (simplicial volume; Gromov, 1982). — The simplicial volume of an ori-
ented closed connected manifold M is the `1-semi-norm of its (singular) R-fundamental
class:

‖M‖ := ‖[M ]R‖1 := inf
{ k∑

j=1
|aj|

∣∣∣ k∑
j=1

aj · σj is a singular R-fundamental cycle of M
}

For genuine hyperbolic manifolds, the simplicial volume leads to the same ordering
and finiteness behaviour as the hyperbolic volume (Section 2.1):

Example 2.4 (hyperbolic manifolds). — If M is an oriented closed connected hyperbolic
manifold of dimension n, then

‖M‖ = vol(M)
vn

,

where vn ∈ R>0 is the hyperbolic volume of ideal regular geodesic n-simplices in hyper-
bolic n-space (Thurston, 1979; Benedetti and Petronio, 1992). A similar relationship also
holds in the complete finite volume case (Thurston, 1979; Fujiwara and Manning, 2011,
Appendix A). In particular, this proportionality can be used to prove mapping degree
estimates in terms of the hyperbolic volume for continuous maps between hyperbolic
manifolds (Gromov, 1982).

Passing to the setting of fixed hyperbolic fundamental groups, we obtain:

Example 2.5 (hyperbolic fundamental group). — Let Γ be a finitely presented group
and let n ∈ N. Then the set

SVΓ(n) := {‖M‖ |M is an oriented closed connected n-manifold with π1(M) ∼= Γ}

is a subset of {‖α‖1 | α ∈ Hn(Γ;R) is integral}, where a class in Hn(Γ;R) is integral if
it lies in the image of the change of coefficients map Hn(Γ;Z)→ Hn(Γ;R) (Löh, 2023,
Section 3.1).

If Γ is hyperbolic and n ≥ 2, then ‖ · ‖1 is a norm on Hn(Γ;R) (by the results of
Mineyev (2001) on bounded cohomology and the duality principle). In particular: The
set SVΓ(n) ⊂ R is well-ordered and for n ≥ 4 the ordinal associated with SVΓ(n) is

– either 0 (if Hn(Γ;R) ∼= 0);
– or ω (if Hn(Γ;R) 6∼= 0): In this case, normed Thom realisation shows that indeed
infinitely many different values are realised (Löh, 2023, Section 3.1).
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For n ≥ 4, finite ambiguity breaks down in this general topological setting: If M is
an oriented closed connected n-manifold, then for each k ∈ N, the manifold M and the
iterated connected sumsMk := M#(S2×Sn−2)#k have the same simplicial volume (Gro-
mov, 1982) and isomorphic fundamental groups. However, the manifolds M0,M1, . . .

all have different homotopy types (as can be seen from the homology in degree 2).

2.3. Right-computability

In the previous discussion, we focussed on the order structure of volumes and ex-
ponential growth rates. Many real-valued invariants in geometric group theory and
geometric topology also carry another, complementary, structure: They tend to have
an intrinsic limit on their computational complexity. In particular, such a limit gives
additional constraints on the possible sets of values.

Definition 2.6 (right-computable). — A real number α is right-computable if the
set {x ∈ Q | x > α} is recursively enumerable.

For example, simplicial volumes of oriented closed connected manifolds are right-
computable real numbers (Heuer and Löh, 2023). On the group-theoretic side, right-
computability naturally arises for stable commutator length of recursively presented
groups (Heuer, 2019) or L2-Betti numbers of groups with controlled word problem (Löh
and Uschold, 2022). Concerning exponential growth rates, we have the follwing:

Proposition 2.7 (right-computability of exponential growth rates)
There exists a Turing machine that

– given a finite presentation 〈S | R〉 and a finite set S ′ of words over S t S−1,
– does

• not terminate if S ′ does not represent a generating set of the group Γ described
by 〈S | R〉;
• terminate and return an enumeration of {x ∈ Q | x > e(Γ, S ′)} if S ′ repre-
sents a generating set of Γ.

Corollary 2.8. — Let Γ be a finitely presented group.

1. For every S ∈ FG(Γ), the real number e(Γ, S) is right-computable.
2. For every r ∈ Q, the truncated set {S ∈ FG(Γ) | e(Γ, S) < r} is recursively

enumerable.

Proofs of these observations are provided in Appendix B. In particular, such results
could be used to give a crude a priori upper bound for ordExp(Γ) by a “large” countable
ordinal for all finitely presented groups Γ with well-ordered set Exp(Γ).
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3. PROOF TECHNIQUE

We outline the proofs of Theorem 1.1–1.3 by Fujiwara and Sela (2020). These proofs
roughly follow the blueprint of the case of hyperbolic 3-manifolds (Section 2.1), where
limit groups will play the role of cusped manifolds:

– A compactness phenomenon turns convergence of exponential growth rates into
convergence of actions (of subsequences) to the action of a limit group.

– The main challenge is then to compute the exponential growth rates of these limit
groups as the limit of the given exponential growth rates.

Before going into these arguments, we first recall basic notions on limit groups.

3.1. Limit groups

Limit groups are groups that arise as “limits” – in various senses – of groups. These
groups are convenient tools in the model theory of groups and in geometric group theory
(Kharlampovich and Myasnikov, 1998a,b; Sela, 2006; Groves and Wilton, 2018). In anal-
ogy with 3-manifolds, limit groups over hyperbolic groups admit a JSJ-decomposition
(Sela, 2009; Weidmann and Reinfeldt, 2019, Section 4). Limit groups over a given
group Γ are the finitely generated subgroups of non-principal ultraproducts of Γ. More
explicitly:

Definition 3.1 (limit group). — Let Γ be a group.

– A stable homomorphism from a group Λ to Γ is a sequence (fn : Λ → Γ)n∈N of
homomorphisms with the property

∀x∈Λ ∃N∈N (∀n∈N≥N
fn(x) = 1) ∨ (∀n∈N≥N

fn(x) 6= 1).

The stable kernel of a stable homomorphism f∗ : Λ→ Γ is defined as

ker f∗ :=
{
x ∈ Λ

∣∣∣ ∃N∈N ∀n∈N≥N
fn(x) = 1

}
⊂ Λ.

– A limit group over Γ is a group of the form Λ/ ker f∗, where Λ is a finitely generated
group and f∗ : Λ→ Γ is a stable homomorphism. The canonical projection f : Λ→
Λ/ ker f∗ is the limit homomorphism and we say that f∗ converges to f . A limit
group over Γ is an epi-limit group over Γ if the fn can be chosen to be epimorphisms.

– A limit group is a limit group over a finitely generated free group.

Example 3.2. — If Γ is a group, then every finitely generated subgroup of Γ can be
viewed as a limit group over Γ (via the inclusion homomorphisms). In particular, Γ is
an epi-limit group over Γ if Γ is finitely generated.
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3.2. Limits and their exponential growth rate

Theorem 3.3 (compactness; Fujiwara and Sela, 2020, proof of Theorem 2.2)
Let Γ be a hyperbolic group, let (X, d) be a Cayley graph of Γ, and let (Sn)n∈N be a

sequence of finite generating sets of Γ such that the sequence (e(Γ, Sn))n∈N is bounded.
Then there exists a subsequence (again denoted by (Sn)n∈N) with the following properties:

– All Sn have the same size. Let S be a set of this cardinality and let F be the free
group freely generated by S.

– There exist epimorphisms fn : F → Γ for all n ∈ N such that fn(S) is conjugate
to Sn. Moreover, f∗ is a stable homomorphism F → Γ. Let L denote the associated
limit group.

– The sequence (
F yfn

(
X,

1
maxs∈S d(1, fn(s)) · d

))
n∈N

of actions (induced by fn : F → Γ and the translation action of Γ on X) converges
in the F -Gromov–Hausdorff distance to a faithful action of L on a real tree.

Proof. — The boundedness of the exponential growth rates allows us to fix the size of
the generating set because the exponential growth rate grows at least linearly in the
size of the generating set by an estimate of Arzhantseva and Lysenok (2006).

One can then apply the Bestvina–Paulin method after conjugating and rescaling
appropriately (Fujiwara and Sela, 2020, proof of Theorem 2.2; Weidmann and Reinfeldt,
2019, Section 2).

Theorem 3.4 (limits of exponential growth rates; Fujiwara and Sela, 2020, Proposi-
tion 2.3)

Let Γ be a hyperbolic group, let Λ be a finitely generated group with finite generating
set S, and let (fn : Λ → Γ)n∈N be a stable homomorphism consisting of epimorphisms
that converges to a limit group f : Λ → L over Γ with a faithful action on a real tree.
Then e(Γ, fn(S)) ≤ e(L, f(S)) holds for all large enough n ∈ N and

lim
n→∞

e(Γ, fn(S)) = e(L, f(S))

Sketch of proof. — By precomposition, without loss of generality we may assume that
Λ is free and that S a free generating set.

We first explain why “≤” holds (provided the limit exists): Because Γ is hyperbolic,
for all large enough n ∈ N, there exists a homomorphism hn : L→ Γ with fn = hn ◦ f
(Weidmann and Reinfeldt, 2019, Lemma 6.5, Corollary 7.13):

(Λ, S)
f
��

fn

&&

(L, f(S))
hn

// (Γ, fn(S))
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Therefore, monotonicity of the exponential growth rates (Remark A.5) implies that
e(Γ, fn(S)) ≤ e(L, f(S)) for all large enough n ∈ N.

The hard work lies in proving convergence and “≥”: Given ε ∈ R>0, the goal is to
show that for all large enough n ∈ N, we have

log e(Γ, fn(S)) ≥ log e(L, f(S))− ε.

Matters would be simple if, given N ∈ N, the multiplication-projection map

BN(L, f(S))q → Bq·N(Γ, fn(S))
(w1, . . . , wq) 7→ hn(w1 · · · · · wq)

were injective for all large enough n ∈ N and all q ∈ N. However, this will not happen in
general. Using the faithful limit action of L on a real tree, Fujiwara and Sela (2020, proof
of Proposition 2.3) find enough freeness inside L to show through delicate estimates that
there exists a b ∈ N, a four-element subset U ⊂ Bb(L, f(S)), and a constant C ∈ R>0
with:

For all q ∈ N, there is a map ϕq : Lq → L of the form

(w1, . . . , wq) 7→ w1 · u1 · · · · · wq · uq,

where the “separators” u1, . . . , uq ∈ U may depend on w1, . . . , wq and satisfy a
“small cancellation condition” that ensures the following: Given N ∈ N, for all
large enough n ∈ N and all q ∈ N, the map hn ◦ϕq : Lq → Γ is injective on at least
a subset AN,n,q of size (1/C · βN(L, f(S)))q of BN(L, f(S))q. In particular,

βq·(N+b)(Γ, fn(S)) ≥ #AN,n,q ≥
( 1
C
· βN(L, f(S))

)q
.

More specifically, this works for all n ∈ N that are large enough so that hn is
injective on B2·N(L, f(S)); such n exist in view of the convergence of actions.

Given ε ∈ R>0, we choose N ∈ N large enough to have
1

N + b
· (log βN(L, f(S))− logC) ≥ 1

N
· log βN(L, f(S))− ε.

Then, we obtain for all large enough n ∈ N that

log e(Γ, fn(S)) = lim
q→∞

1
q · (N + b) · log βq·(N+b)(Γ, fn(S))

≥ 1
N + b

· log βN(L, f(S))
C

≥ 1
N
· log βN(L, f(S))− ε

≥ log e(L, f(S))− ε,

as desired.
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Remark 3.5. — The proof of Theorem 3.4 is mainly based on properties of the limit
action on the real tree. In fact, the theorem also holds under the following weaker
assumptions on Γ (Fujiwara, 2021, Proposition 3.2): The group Γ is finitely generated,
equationally Noetherian, and admits a non-elementary isometric action on a hyperbolic
graph X that satisfies a uniform weak proper discontinuity condition (Fujiwara, 2021,
Definition 2.1) and that admits a constant N such that for every S ∈ FG(Γ), the set
SN contains an element that acts hyperbolically on X.

3.3. Well-orderedness

Sketch of proof of Theorem 1.1. — If the given hyperbolic group Γ is virtually cyclic,
then Exp(Γ) = {1}, which clearly is well-ordered.

In the following, we consider the case when Γ is non-elementary hyperbolic. We
assume for a contradiction that there exists a sequence (Sn)n∈N of finite generating
sets of Γ such that (e(Γ, Sn))n∈N is strictly monotonically decreasing. In particular, the
sequence (e(Γ, Sn))n∈N is bounded. In view of the compactness theorem (Theorem 3.3)
and the invariance of the exponential growth rates under conjugation, we may assume
without loss of generality that there exists a free group F with free generating set S
and epimorphisms (fn : F → Γ)n∈N with fn(S) = Sn and such that f∗ converges to a
limit group f : F → L over Γ with a faithful action on a real tree.

We therefore obtain from Theorem 3.4 that

lim
n→∞

e(Γ, Sn) = lim
n→∞

e(Γ, fn(S))

= e(L, f(S)) (Theorem 3.4)
≥ e(Γ, SN) > e(Γ, SN+1) > . . . , (for all N � 0; Theorem 3.4)

which is impossible. This contradiction shows that no such strictly decreasing sequence
exists and hence Exp(Γ) is well-ordered.

3.4. Finite ambiguity

Sketch of proof of Theorem 1.2. — Let r ∈ R>1 and let us assume for a contradiction
that there exists a sequence (Sn)n∈N of finite generating sets that all represent different
Aut(Γ)-orbits and that satisfy e(Γ, Sn) = r for all n ∈ N.

Proceeding as before, by the compactness theorem (Theorem 3.3), we may assume
without loss of generality that there exists a free group F with free generating set S
and epimorphism (fn : F → Γ)n∈N with fn(S) = Sn and such that f∗ converges to a
limit group f : F → L over Γ with a faithful action on a real tree. Hence, Theorem 3.4
shows that

e(L, f(S)) = lim
n→∞

e(Γ, fn(S)) = r

On the other hand, by passing to a subsequence, we may furthermore assume that
for all n ∈ N, there exists a homomorphism hn : L→ Γ with fn = hn ◦f (as in the proof
of Theorem 3.4), that at most one of the epimorphisms hn is an isomorphism (because
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the Sn lie in different Aut(Γ)-orbits), and that the kernels of the hn contain no torsion.
Then a careful refinement of the proof of Theorem 3.4 shows that the strict inequality

e(L, f(S)) > e(Γ, fn(S)) = r

holds for all n ∈ N (Fujiwara and Sela, 2020, Proposition 3.2). This contradicts the
previous computation that e(L, f(S)) = r.

3.5. Growth ordinals

Sketch of proof of Theorem 1.3. — It suffices to show that ordExp(Γ) ≥ ωm for ev-
ery m ∈ N. Let m ∈ N. We consider the sequence

L1 := Γ ∗ Fm → L2 := Γ ∗ Fm−1 → · · · → Lm := Γ ∗ Z→ Lm+1 := Γ

of epimorphisms, where Fj is a free group of rank j and where the epimorphisms
successively kill free generators and keep the Γ-factor intact. It helps to think of j as
the number of cusps.

Let us first focus on a single step: If Λ is a non-elementary hyperbolic group, then
there exists a stable homomorphism (fn : Λ ∗ Z → Λ)n∈N consisting of epimorphisms
that converges to Λ ∗ Z. Let S be a finite generating set of Λ and let S̃ ⊂ Λ ∗ Z be a
generating set of Λ ∗ Z, e.g., obtained by adding a free generator of Z. By passing to
subsequences of f∗, one can achieve the following strict monotonicity:

– The sequence (e(Λ, fn(S̃)))n∈N is increasing and converges to e(Γ ∗ Z, S̃); this uses
Theorem 3.3 and Theorem 3.4, as before.

– The values in the sequence are all different; this uses a finite ambiguity theorem
for finitely generated subgroups of limit groups over Λ (Fujiwara and Sela, 2020,
Theorem 5.8).

For notational simplicity, we now restrict to the case m = 2. We choose a finite
generating set S of Γ and take the extended finite generating set S̃ of L1 = Γ ∗ F2.
Applying the single step to L1 → L2 leads to a stable homomorphism f 1

∗ with strict
monotonicity. Let f 2

∗ be a stable homomorphism for L2 → L3. For each n1 ∈ N, we
apply the single step to L2 → L3 and the generating set fn1(S̃) to select a subsequence
of f 2

∗ with strict monotonicity. By composing with fn1 , we obtain a sequence fn1,∗

from L1 to L3 = Γ such that (e(Γ, fn1,n(S̃)))n∈N is strictly increasing and converges
to e(L2, fn1(S̃)). By varying n1, we thus see that ordExp(Γ) ≥ ω2.

For higher values of m, one iterates these considerations appropriately.

To prove ordExp(Γ) ≤ ωω under additional hypotheses, Fujiwara and Sela (2020,
proof of Theorem 4.2) construct proper epimorphism chains of limit groups over Γ from
convergent sequences of convergent sequences of etc. . . of exponential growth rates of Γ;
the Krull dimension property then gives control on the maximal lengths of such chains,
whence on the maximal powers of ω that appear below a given threshold.
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4. APPLICATIONS AND EXTENSIONS

The well-orderedness of exponential growth rates (Theorem 1.1) in particular contains
the fact that all non-elementary hyperbolic groups have uniformly exponential growth.

4.1. Hyperbolic groups are Hopfian

A group Γ is Hopfian if every self-epimorphism Γ → Γ is an automorphism. This
property has applications in the context of degrees of self-maps of closed manifolds.
Hyperbolic groups are known to be Hopfian (Sela, 1999; Weidmann and Reinfeldt,
2019). Using that the exponential growth rates of hyperbolic groups are well-ordered,
Fujiwara and Sela (2020, Corollary 2.9) complete an approach to proving that hyperbolic
groups are Hopfian outlined by de la Harpe (2002); this is not an independent alternative
proof because the current proof of Theorem 1.1 uses the very results on limit groups
that go into the previous proofs that hyperbolic groups are Hopfian.

Corollary 4.1. — Every hyperbolic group is Hopfian.

Proof. — Elementary hyperbolic groups are Hopfian because they are virtually cyclic
(whence finitely generated and residually finite).

Let Γ be a non-elementary hyperbolic group and let f : Γ → Γ be an epimorphism.
Because Exp(Γ) is well-ordered (Theorem 1.1), there exists a finite generating set S
of Γ with e(Γ) = e(Γ, S). Assume for a contradiction that the kernel of f is non-trivial.
Then, Arzhantseva and Lysenok (2002) show that there is a strict monotonicity

e(Γ, S) > e(Γ, f(S)).

However, this contradicts the minimality property of S. Thus, f is an automorphism.

All finitely generated residually finite groups are Hopfian. While fundamental groups
of closed hyperbolic manifolds are residually finite and hyperbolic, it is a long-standing
open problem whether all hyperbolic groups are residually finite.

4.2. Generalisations

The methods discussed in Section 3 by Fujiwara and Sela (2020) extend to cover also
the following generalisations:

– If Γ is a hyperbolic group, then the set

{e(H,S) | H < Γ finitely generated and non-elementary, S ∈ FG(H)}

is well-ordered (Fujiwara and Sela, 2020, Theorem 5.1). This can be viewed as an
addition to the Tits alternative for hyperbolic groups.

– Moreover, in this subgroup setting, there is a corresponding finite ambiguity state-
ment for non-elementary hyperbolic groups (Fujiwara and Sela, 2020, Theorem 5.3).
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As a consequence, they also obtain analogous results for limit groups over non-elementary
hyperbolic groups (Fujiwara and Sela, 2020, Corollary 5.6–5.10). Furthermore, the
approach is robust enough to admit an extension to the case of sub-semigroups (Fujiwara
and Sela, 2020, Section 6).

Fujiwara (2021) adapted the method to obtain well-orderedness of exponential growth
rates sets for other classes of groups, including certain groups acting acylindrically on
hyperbolic spaces, rank-1 lattices, fundamental groups of strictly negatively curved
Riemannian manifolds, and certain relatively hyperbolic groups. These results can,
for instance, be applied to certain subgroups of right-angled Artin groups (Kerr, 2021,
Corollary 1.0.11).

APPENDIX A. TERMINOLOGY

For the sake of completeness, we recall the basic terminology appearing in the main
results (Section 1).

A.1. Hyperbolic groups

Finitely generated groups are hyperbolic if their Cayley graphs are “negatively curved”
in the sense that geodesic triangles in are uniformly slim (Gromov, 1987; Bridson and
Haefliger, 1999):

Definition A.1 (hyperbolic group). — A finitely generated group Γ is hyperbolic if
the Cayley graph of Γ with respect to one (whence every (Bridson and Haefliger, 1999,
Theorem III.H.1.9)) finite generating set is a hyperbolic metric space. A hyperbolic group
is non-elementary if it is not virtually cyclic.

Example A.2 (hyperbolic groups). — Fundamental groups of closed smooth manifolds
that admit a Riemannian metric of negative sectional curvature are hyperbolic in view of
the Švarc–Milnor lemma and the fact that CAT(−1)-spaces are hyperbolic metric spaces.
In particular, this includes the fundamental groups of closed hyperbolic manifolds. Such
fundamental groups are virtually cyclic if and only if the dimension is at most 1.

Finitely generated free groups are hyperbolic. The class of hyperbolic groups is closed
under quasi-isometries (Bridson and Haefliger, 1999, Theorem III.H.1.9) and under
certain amalgamations (Bestvina and Feighn, 1996).

The group Z2 is not hyperbolic. More generally, all finitely generated groups that
contain a subgroup isomorphic to Z2 are not hyperbolic (Bridson and Haefliger, 1999,
Corollary III.Γ.3.10). In general, subgroups of hyperbolic groups need not be hyperbolic.
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A.2. Exponential growth rates of groups
The exponential growth rate of groups measures the exponential expansion rate of

the size of balls in Cayley graphs (de la Harpe, 2000, Chapter VII.B):

Remark A.3. — Let Γ be a finitely generated group and let S ⊂ Γ be a finite generating
set of Γ. We write βn(Γ, S) for the number of elements in the n-ball Bn(Γ, S) of
the Cayley graph of Γ with respect to S. Then βn+m(Γ, S) ≤ βn(Γ, S) · βm(Γ, S) for
all n,m ∈ N. Therefore, the Fekete lemma shows that the limit of (βn(Γ, S)1/n)n∈N
exists and that

lim
n→∞

βn(Γ, S)1/n = inf
n∈N>0

βn(Γ, S)1/n.

Definition A.4 (exponential growth rate). — Let Γ be a finitely generated group.
– Let S ⊂ Γ be a finite generating set of Γ. The exponential growth rate of Γ with
respect to S is defined as

e(Γ, S) := lim
n→∞

βn(Γ, S)1/n.

– We write Exp(Γ) := {e(Γ, S) | S ∈ FG(Γ)} for the (countable) set of all exponential
growth rates of Γ, where FG(Γ) denotes the set of finite generating sets of Γ.

– The exponential growth rate of Γ is the infimum

e(Γ) := inf Exp(Γ).

– The group Γ has exponential growth if there exists an S ∈ FG(Γ) with e(Γ, S) > 1.
The group Γ has uniform exponential growth if e(Γ) > 1.

Remark A.5 (monotonicity of exponential growth rates). — Let Γ and Λ be finitely
generated groups.

1. If f : Γ→ Λ is an epimorphism, and S ∈ FG(Γ), then e(Γ, S) ≥ e(Λ, f(S)).
2. If Λ is a subgroup of Γ and Λ has exponential growth, then also Γ has exponential

growth.

Example A.6 (exponential growth). — Finitely generated free groups have exponential
growth if and only if they are of rank at least 2. More precisely (de la Harpe, 2000,
Proposition VII.13): If F is a free group and S ∈ FG(F ), then

e(F, S) ≥ 2 · rk(F )− 1.

Because non-elementary hyperbolic groups [uniformly] contain free groups of rank 2,
monotonicity shows that they have [uniform] exponential growth (Koubi, 1998).

There exist finitely generated groups that have exponential growth but do not have
uniform exponential growth (Wilson, 2004). In particular, for such groups Γ, the
set Exp(Γ) is not well-ordered.

Exponential growth rates seem to be fragile under quasi-isometries: It is an open prob-
lem to determine whether uniform exponential growth is stable under quasi-isometries.
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ω :

ω2 :

ω ω ω ω ω ω ω ω

ω3 : ω2 ω2 ω2 ω2 ω2 ω2 ω2 ω2

...

ωω : ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 . . .

Figure 1. The ordinals ω, ω2, . . . , ωω, schematically

A.3. Well-ordered countable sets and ordinals

Well-orderings are orderings that allow for induction principles. Moreover, well-
orderings admit an arithmetic, the ordinal arithmetic.

Definition A.7 (well-ordered sets, ordinals). — An ordered set (A,<) is well-ordered
if every non-empty subset of A contains a <-minimal element. An ordinal is an iso-
morphism class of well-ordered ordered sets. An ordinal is countable if the underlying
set is countable.

In the context of Section 1, the following ordinals are important (Figure 1):

Example A.8 (ωω). — The natural numbers N are well-ordered with respect to the
standard order. The corresponding ordinal is denoted ω. For k ∈ N, we write ωk

for the ordinal represented by Nk with the lexicographic order. Equipping the finite
support functions N → N with the lexicographic order leads to a well-ordered set; its
ordinal number is denoted by ωω. The ordinal ωω can alternatively also be described
as supk∈N ω

k.

Example A.9. — The subsets A := {1 − 1/n | n ∈ N>0} and B := ⋃
n∈N(n + A) of R

are well-ordered with respect to the standard order on R. The set A represents the
ordinal ω and B represents the ordinal ω2. The subset Q≥0 ⊂ R is not well-ordered.

APPENDIX B. RIGHT-COMPUTABILITY OF EXPONENTIAL
GROWTH RATES

We provide proofs for the right-computability claims in Section 2.3.
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Proof of Proposition 2.7. — Let F (S) be the set of reduced words over S t S−1. In
particular, F (S) is a free group, freely generated by S, with respect to the composition
given by concatenation and reduction. It is well known that we can Turing-enumerate
all finite subsets of F (S) that represent generating sets of Γ under the canonical projec-
tion F (S)→ 〈S | R〉 = Γ (by Turing-enumerating the normal closure of R in F (S)).

Therefore it suffices to show that there exists a Turing machine that given a finite
generating set S ′ ⊂ F (S) of Γ enumerates the set A(S ′) := {x ∈ Q | x > e(Γ, S ′)}. By
the Fekete lemma (Remark A.3), for all generating sets S ′, we have

A(S ′) =
{
x ∈ Q

∣∣∣ ∃n∈N>0 xn > βn(Γ, S ′)
}
.

The numbers βn(Γ, S ′) are not necessarily computable in terms of n and S ′ (as the word
problem might not be solvable in Γ), but recursively enumerating the normal closure
of R in F (S) shows that there exists a Turing machine that given a finite generating
set S ′ ⊂ F (S) of Γ enumerates {(n,m) | n,m ∈ N, m ≥ βn(Γ, S ′)}; hence, there is also
a Turing machine for A( · ).
Proof of Corollary 2.8. — The first part is a direct consequence of Proposition 2.7.

For the second part, let r ∈ Q. For all S ∈ FG(Γ), we have
e(Γ, S) < r ⇐⇒ ∃x∈Q (r > x ∧ x > e(Γ, S)).

Let 〈S | R〉 be a finite presentation of Γ. Using a Turing machine as provided by
Proposition 2.7, we can thus construct a Turing machine that enumerates all finite
sets S ′ of words over S t S−1 such that S ′ represents a generating set of Γ and such
that e(Γ, S ′) < r.

For simplicity, we restricted the discussion to finitely presented groups. Similar
arguments also apply to finitely generated recursively presented groups. Conversely,
one might wonder whether every right-computable real number ≥ 1 can be realised as
the exponential growth rate of some finite generating set of some finitely/recursively
presented group.
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