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ABSTRACT. We show that Cayley graphs of finitely generated Abelian
groups are rather rigid. As a consequence we obtain that two finitely
generated Abelian groups admit isomorphic Cayley graphs if and only
if they have the same rank and their torsion parts have the same cardi-
nality. The proof uses only elementary arguments and is formulated in a
geometric language.

1. INTRODUCTION

Cayley graphs allow us to view groups as combinatorial and geometric
objects. For instance, one of the main objectives of geometric group theory
is to understand the relation between algebraic properties of finitely gener-
ated groups and (large scale) geometric properties of their Cayley graphs.
On the other hand, the structure of Cayley graphs of finite groups plays an
important role in combinatorics.

This article shows that all Cayley graphs of finitely generated Abelian
groups are rather rigid (Theorem 1.3), and as a consequence that two finitely
generated Abelian groups admit isomorphic Cayley graphs if and only if
they have the same rank and their torsion parts have the same cardinality
(Corollary 1.4).

We now describe the results in more detail. For the sake of completeness,
let us briefly recall some basic notation:

Definition 1.1 (Cayley graph). Let G be a group and let S ⊂ G be a subset
of G. The Cayley graph of G with respect to S is the (unlabelled, undirected)
graph Cay(G, S) whose vertex set is G and whose set of edges is given by{

{g, g · s}
∣∣ g ∈ G, s ∈ (S ∪ S−1) \ {e}

}
.

Definition 1.2. Two finitely generated groups G and G′ admit isomorphic
Cayley graphs if there exist finite generating sets S ⊂ G and S′ ⊂ G′ of G
and G′ respectively such that the corresponding Cayley graphs Cay(G, S)
and Cay(G′, S′) are isomorphic (as unlabelled, undirected graphs).

If G is a finitely generated Abelian group, then the torsion subgroup tors G
of G, i.e., the subgroup of all elements of G of finite order, is a finite group.
Moreover, the quotient G/ tors G is a finitely generated free Abelian group
and the rank of G/ tors G is called the rank rkZ G of G.

A finitely generated group G is a CI-group if the following holds [3]:
Whenever S, S′ ⊂ G are symmetric finite generating sets of G such that
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Cay(G, S) and Cay(G, S′) are isomorphic, then there is a group automor-
phism ϕ ∈ Aut(G) with ϕ(S) = S′. Based on results of Trofimov about
automorphism groups of graphs, Möller and Seifter [5] showed that all
finitely generated free Abelian groups (and more generally, finitely gen-
erated torsion-free nilpotent groups) are CI-groups. Later, Ryabchenko [6]
provided an elementary proof of the fact that finitely generated free Abelian
groups are CI-groups.

Even though not every finitely generated Abelian group is a CI-group [1,
3], we will show in the following that Cayley graphs of finitely generated
Abelian groups are rigid in the following sense:

Theorem 1.3 (Cayley graph rigidity). Let G and G′ be finitely generated Abelian
groups, and let S ⊂ G and S′ ⊂ G′ be finite generating sets of G and G′ respec-
tively. If ϕ : Cay(G, S) −→ Cay(G′, S′) is an isomorphism of graphs, then ϕ
induces an affine isomorphism

G/ tors G −→ G′/ tors G′

[g] 7−→ [ϕ(g)]

of finitely generated free Abelian groups.
The proof is based on a careful analysis of sufficiently convex geodesic

lines in Cayley graphs of finitely generated Abelian groups. Similar to
Ryabchenko’s arguments, the key idea is that geodesic lines generated by
“longest” generators satisfy a certain uniqueness property that allows to
translate between the combinatorial structure of Cayley graphs and the al-
gebraic structure of the underlying Abelian groups.

Notice however that in general not every graph automorphism of a Cay-
ley graph of a finitely generated Abelian group is induced from an affine
group automorphism (Example 3.1).

As a consequence of Theorem 1.3 we can characterise which finitely gen-
erated Abelian groups admit isomorphic Cayley graphs:

Corollary 1.4. Two finitely generated Abelian groups admit isomorphic Cayley
graphs if and only if they have the same rank and their torsion parts have the same
cardinality.

As a long-term perspective one might hope that a thorough understand-
ing of the combinatorics of Cayley graphs of Abelian groups could lead to
an elementary proof of quasi-isometry rigidity of virtually Abelian groups.

This article is organised as follows: In Section 2 we will study the relation
between geometric and algebraic properties of geodesics in Cayley graphs
of Abelian groups, which will be the main tool to prove Theorem 1.3. Sec-
tion 3 contains the proof of Theorem 1.3. In Section 4 we deduce Corol-
lary 1.4 from the theorem. Finally, for the sake of completeness Section 5
contains an alternative approach to detecting the parity of the torsion part,
following a discussion on mathoverflow.net [4].

Acknowledgements. I would like to thank Lars Scheele for bringing the dis-
cussion on mathoverflow.net [4] about “Cayley graph equivalence” to my
attention. Moreover, I would like to thank the Institut Mittag-Leffler for its
hospitality, and Röggi Möller, Tobias Hartnick and Anders Karlsson for in-
teresting discussions.
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2. GEODESIC LINES IN FINITELY GENERATED ABELIAN GROUPS

Even though Theorem 1.3 and its proof are purely combinatorial we pre-
fer to formulate and organise the arguments in a geometric language, in
terms of geodesics and suitable convexity properties. In Section 2.1 we
introduce the basic geometric language for graphs and present the basic
reordering argument for geodesics in Abelian groups, in Section 2.2 and
Section 2.3 we study the relation between algebraic and convexity proper-
ties of geodesic lines, and in Section 2.4 we list basic properties of parallel
algebraic lines in Cayley graphs.

2.1. Graphs and geodesics. In the present article, graphs are unlabelled,
undirected, simple graphs. An isomorphism between graphs (V, E) and
(V ′, E′) is a bijective map ϕ : V −→ V ′ such that for all u, v ∈ V we
have that {u, v} ∈ E if and only if {ϕ(u), ϕ(v)} ∈ E′. If Γ = (V, E) is a
(connected) graph, then the graph structure induces a path-metric dΓ on V
characterised by all edges having length 1.

For our arguments the following observation will be essential: By defi-
nition of the graph metric, any graph isomorphism is an isometry between
the sets of vertices of the graphs in question. So anything that can be ex-
pressed purely in terms of metric properties of the underlying graphs will
be preserved by graph isomorphisms.

Definition 2.1 (geodesic line/segment). Let Γ = (V, E) be a graph.
– A geodesic segment in Γ is a finite path (v0, . . . , vn) (of vertices) in Γ

with
dΓ(v0, vn) = n

(equivalently, for all j, k ∈ {0, . . . , n} one has dΓ(vj, vk) = |j− k|).
– A geodesic line in Γ is an infinite path γ : Z −→ V in Γ satisfying

dΓ(γ(j), γ(k)) = |j− k|
for all j, k ∈ Z (equivalently, all consecutive finite subsequences of γ
are geodesic segments).

For the sake of readability, whenever convenient we will also use the
sequence notation “γj := γ(j)” for points on Z-paths γ in graphs.

In particular, if G is a group and S is a generating set of G, then G inherits
a metric dS from the graph structure of Cay(G, S); of course, this is nothing
but the word metric on G with respect to S.

One of the main points is that in Abelian groups, commutativity of the
group structure allows us to generate new geodesics out of old ones by
changing the order of steps (Figure 1):

Proposition 2.2 (reordering geodesic segments). Let G be an Abelian group,
let S be a symmetric generating set of G, and let (g0, . . . , gn) be a dS-geodesic
segment in G. For j ∈ {0, . . . , n− 1} we write

sj := gj+1 − gj.

Then sj ∈ S, and for every permutation σ of {0, . . . , n− 1} the reordered sequence

(g0, g0 + sσ(0), g0 + sσ(0) + sσ(1), . . . , g0 + sσ(0) + · · ·+ sσ(n−1))

is a dS-geodesic segment starting in g0 and ending in gn.
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g0 + sσ(0) + · · ·+ sσ(n−1)

FIGURE 1. Reordering geodesic segments in Abelian groups

Proof. By definition of Cay(G, S), we have sj ∈ S for all j ∈ {0, . . . , n− 1}
and the reordered sequence is a path in Cay(G, S). By construction, the
reordered path starts in g0 and ends in

g0 +
n−1

∑
j=0

sσ(j) = g0 +
n−1

∑
j=0

sj = g0 +
n−1

∑
j=0

(gj+1 − gj) = gn.

Moreover, because the reordered sequence has length n = dS(g0, gn) the
claim follows. �

2.2. Convex geodesic lines. As a first step, we will give the key argument
linking combinatorial and algebraic structure of geodesic lines in a special
and straightforward case (which, e.g., is enough for the torsion-free case).

Definition 2.3 (algebraic line). Let G be an Abelian group, let S be a sym-
metric generating set, and let s ∈ S. An algebraic line of type s in Cay(G, S)
is a Z-path in Cay(G, S) of the form

Z −→ G
n 7−→ h + n · s

for some h ∈ G.

Definition 2.4 (convex geodesic line). Let Γ = (V, E) be a graph. A convex
geodesic line in Γ is a geodesic line γ : Z −→ V with the following property:
for all n, m ∈ Z with n ≤ m there is exactly one geodesic segment in Γ
starting in γn and ending in γm, namely (γn, γn+1, . . . , γm).

The following proposition describes the interaction between algebraicity
and convexity and shows in particular that graph isomorphisms of Cay-
ley graphs of finitely generated free Abelian groups map algebraic lines of
“maximal” type to algebraic lines.

Proposition 2.5 (convex geodesic lines vs. algebraic geodesic lines).
(1) If G = Zr for some r ∈ N, and S ⊂ G is a (symmetric) finite generating

set, and s ∈ S \ {0} is a ‖ · ‖2-maximal element of S, then all algebraic
lines of type s in Cay(G, S) are convex geodesic lines.

(2) Graph isomorphisms map convex geodesic lines to convex geodesic lines.
(3) If G is an Abelian group and S ⊂ G is a finite subset, then every convex

geodesic line in Cay(G, S) is algebraic.
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Proof. Ad 1: Let h ∈ G. Then

γ : Z −→ G
n 7−→ h + n · s

is a convex geodesic line in Cay(G, S), because: Let n, m ∈ Z with m ≥ n.
Let k := dS(γn, γm) and let (g0, . . . , gk) be a geodesic segment in Cay(G, S)
starting in γn and ending in γm. Thus, gj+1− gj ∈ S for all j ∈ {0, . . . , k− 1}
and

(m− n) · s = γm − γn =
k−1

∑
j=0

(gj+1 − gj).(1)

Because s is ‖ · ‖2-maximal in S and s 6= 0, it follows that k ≥ m − n.
Furthermore, because (g0, . . . , gk) is geodesic, we must have k = m− n and
(again by ‖ · ‖2-maximality of s) we have ‖gj+1 − gj‖2 = ‖s‖2 for all j ∈
{0, . . . , k − 1}. But now Equation 1 and elementary geometry in Zr ⊂ Rr

imply that gj+1 − gj = s for all j ∈ {0, . . . , k− 1}. Hence,

(g0, . . . , gm) = (h, h + s, . . . , h + n · s) =
(
γn, . . . , γm

)
,

and so γ is a convex geodesic line in Cay(G, S).
Ad 2: Every graph ismorphism is an isometry with respect to the graph

metrics, and isometries map convex geodesics to convex geodesics. This
proves the second part.

Ad 3: Let γ : Z −→ G be a geodesic line in Cay(G, S) that is not algebraic.
Then γ is not a convex geodesic line: Because γ is not algebraic, we can
find n, m ∈ Z with n < m and

γn+1 − γn 6= γm − γm−1 =: s.

Clearly, s ∈ S and because (γn, . . . , γm) is a geodesic segment in Cay(G, S)
and G is Abelian, also the sequence(

γn, γn + s, γn+1 + s, . . . , γm−1 + s = γm
)

is a geodesic segment (Proposition 2.2). However, by construction, this
sequence does not coincide with (γn, . . . , γm). So, γ is not a convex geodesic
line. �

Notice that not every algebraic line whose type is of infinite order is ge-
odesic – for example, in Cay(Z, {±1,±2}) algebraic lines of type 1 are not
geodesic.

2.3. Quasi-convex geodesic lines. In general, torsion will introduce some
ambiguities in geodesics and we will not be able to find enough convex
geodesic lines in Cayley graphs of finitely generated Abelian groups; for
example, the graph Cay(Z×Z/2, {±(1, 0),±(1, 1)}) contains no convex
geodesic lines (even though the generating set consists of elements of infi-
nite order). Therefore, we introduce the slightly weaker notions of quasi-
algebraic lines and quasi-convex geodesic lines.

Notation 2.6. For a finitely generated Abelian group G we write

πG : G −→ G/ tors G

for the canonical projection.
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(0, 0)

(0, 1)

FIGURE 2. A quasi-convex geodesic line that is neither con-
vex nor quasi-algebraic (in Cay(Z2, {±(1, 0),±(0, 1)}) )

Definition 2.7 (quasi-algebraic line). Let G be a finitely generated Abelian
group, let S ⊂ G be a (symmetric) generating set, and let s ∈ S. A quasi-
algebraic line of quasi-type πG(s) in Cay(G, S) is a Z-path γ : Z −→ G in
Cay(G, S) with the property that for all n ∈ Z we have

πG
(
γn+1 − γn

)
= πG(s) ∈ G/ tors G.

Clearly, the quasi-type of quasi-algebraic lines is well-defined.

Definition 2.8 (quasi-convex geodesic line). Let Γ = (V, E) be a graph. A
quasi-convex geodesic line in Γ is a geodesic line γ : Z −→ V in Γ such that for
all c ∈ R≥0 there exists a C ∈ R≥0 with the following property: All geodesic
segments in Γ joining points that are c-close to γ stay uniformly C-close
to γ, i.e., for all n, m ∈ Z with n ≤ m, all points x, y ∈ Γ with dΓ(x, γn) ≤ c,
dΓ(y, γm) ≤ c and all geodesic segments γ̃ : {0, . . . , dΓ(x, y)} −→ V from x
to y we have for all j ∈ {0, . . . , dΓ(x, y)} that

dΓ(γ̃j, γn+j) ≤ C.

Notice that quasi-convexity in geometric group theory is usually associ-
ated with a slightly weaker property, and that quasi-convexity as defined
above also includes a so-called fellow-traveller property.

In a general graph, not every geodesic line needs to be quasi-convex.
Conversely, also not all quasi-convex geodesic lines are convex: We con-
sider the integer square lattice Cay(Z2, {±(1, 0),±(0, 1)}): It is not difficult
to see that the sequence

. . . , (−2, 0), (−1, 0), (0, 0), (0, 1), (1, 1), (2, 1), . . .

is a quasi-convex geodesic line that is not convex (Figure 2). Moreover, this
is an example of a quasi-convex geodesic line that is not quasi-algebraic.

However, we still have the following analogue of Proposition 2.5:

Proposition 2.9 (quasi-convex geodesic lines vs. quasi-algebraic lines).
(1) Let G be a finitely generated Abelian group, let S ⊂ G be a symmetric fi-

nite generating set of G, and let ‖ · ‖2 be the `2-norm on G/ tors G induced
by some chosen isomorphism G/ tors G ∼= ZrkZ G. Let s ∈ S \ tors G be
a ‖πG(·)‖2-maximal element of S. Then all quasi-algebraic lines of quasi-
type πG(s) in Cay(G, S) are quasi-convex geodesic lines.

(2) Graph isomorphisms map quasi-convex geodesic lines to quasi-convex ge-
odesic lines.

(3) Let G and G′ be finitely generated Abelian groups, and suppose that there
is an isomorphism ϕ : Cay(G, S) −→ Cay(G′, S′) for certain symmetric
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finite generating sets S ⊂ G, S′ ⊂ G′. Then ϕ maps algebraic quasi-
convex geodesic lines to quasi-algebraic quasi-convex geodesic lines.

Proof. Ad 1: Let γ : Z −→ G be a quasi-algebraic line of quasi-type πG(s).
We argue similarly to the proof of the corresponding part of Proposition 2.5:

As a first step, we show that γ is a geodesic line: To this end, let n, m ∈ Z

with n ≤ m, let k := dS(γn, γm), and let (g0, . . . , gk) be a geodesic segment
in Cay(G, S) starting in γn and ending in γm. In particular, gj+1 − gj ∈ S
for all j ∈ {0, . . . , k− 1}, and

(m− n) · ‖πG(s)‖2 = ‖πG(γm − γn)‖2 =

∥∥∥∥πG

(k−1

∑
j=0

(gj+1 − gj)

)∥∥∥∥
2

≤
k−1

∑
j=0
‖πG(gj+1 − gj)‖2.

Because s is ‖πG(·)‖2-maximal in S, and ‖πG(s)‖2 6= 0 it follows that

dS(γn, γm) = k ≥ m− n ≥ dS(γn, γm).

Hence, (γn, . . . , γm) is a geodesic path in Cay(G, S), and it follows that γ
indeed is a geodesic line.

Why is γ quasi-convex? Let c ∈ R≥0 and let n, m ∈ Z with n ≤ m.
Moreover, let x, y ∈ G with dS(x, γn) ≤ c and dS(y, γm) ≤ c, let k :=
dS(x, y), and let (g0, . . . , gk) be a geodesic segment in Cay(G, S) starting
in x and ending in y. In view of the triangle inequality and the fact that γ
is geodesic, we hence obtain that

m− n− 2 · c ≤ k ≤ m− n + 2 · c.

Let K be the number of steps in the geodesic segment (g0, . . . , gk) that are
not of quasi-type πG(s). We now bound K from above: We may assume
that K 6= 0; then S contains elements that are not quasi-type ±πG(s).

We embed G/ tors G (which we identified with ZrkZ G) into RrkZ G and
consider the standard scalar product on RrkZ G, which is compatible with
our choice of `2-norm on G/ tors G. Let p : G −→ R ·πG(s) ⊂ RrkZ G be the
orthogonal projection onto the line in RrkZ G spanned by πG(s). Because S
is finite and s is ‖πG(·)‖2-maximal in S, we have

µ := max
{
‖p(t)‖2

∣∣ t ∈ S, πG(t) 6= ±πG(s)
}
< ‖πG(s)‖2.

Thus, ‖πG(·)‖2-maximality of s and the triangle inequality yield

(m− n) · ‖πG(s)‖2 − 2 · c · ‖πG(s)‖2 ≤ ‖p(gk)− p(g0)‖2

≤ K · µ + (k− K) · ‖πG(s)‖2

≤ K · µ + (m− n + 2 · c− K) · ‖πG(s)‖2,

and so

K ≤ 4 · c · ‖πG(s)‖2

‖πG(s)‖2 − µ
,

which is the desired upper bound depending only on c and the geometry
of S.
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Then the segment (g0, . . . , gk) is uniformly C-close to γ, where

C := c +
8 · c · ‖πG(s)‖2

‖πG(s)‖2 − µ
+ diamdS tors G

(which depends only on c and the geometry of (G, S)): If j ∈ {0, . . . , k},
then

gj − γn+j ∈ g0 − γn +
Kj

∑
i=1

si − Kj · s + tors G,

where s1, . . . , sKj ∈ S are the steps in the segment (g0, . . . , gj) that are not of
quasi-type πG(s). Then Kj ≤ K and so

dS(gj, γn+j) ≤ c + 2 · K + diamdS tors G ≤ C,

as desired. Hence, γ is quasi-convex.
Ad 2: Every graph isomorphism is an isometry with respect to the graph

metrics, and isometries map quasi-convex geodesic lines to quasi-convex
geodesic lines. This proves the second part.

Ad 3: Let γ : Z −→ G be an algebraic quasi-convex geodesic line of type s
for some s ∈ S. By the second part, γ′ := ϕ ◦ γ is a quasi-convex geodesic
line in Cay(G′, S′). In order to show that γ′ is quasi-algebraic, we proceed
as follows:

– We will first show that all but a finite number of edges in γ′ have
the same quasi-type.

– We will then conclude that the quasi-types of all the edges of γ′ are
the same.

For the first step, assume for a contradiction that not all but a finite num-
ber of steps in γ′ have the same type. Because S′ is finite, then there exist
s′, t′ ∈ S′ with πG′(s′) 6= πG′(t′) and the following property: for all k ∈ N

there is an nk ∈ N such that the geodesic segment (γ′0, . . . , γ′nk
) contains

at least k steps of quasi-type πG′(s′) as well as at least k steps of quasi-
type πG′(t′). Because G′ is Abelian, the reordering

– start in γ′0,
– then take k steps of quasi-type πG′(s′),
– then take k steps of quasi-type πG′(t′),
– then take the remaining steps (ending in γ′nk

)
of this geodesic segment also is a geodesic segment η starting in γ′0 and
ending in γ′nk

(Proposition 2.2). Similarly, we obtain a geodesic segment η̃

between γ′0 and γ′nk
that first takes k steps of quasi-type πG′(t′) and then

k steps of quasi-type πG′(s′) (Figure 3). But then

πG′(ηk − η̃k) = k ·
(
πG′(s′)− πG′(t′)

)
,

and so dS′(ηk, η̃k) can become arbitrarily large (because πG′(s′) 6= πG′(t′)
and tors G′ is finite). This contradicts that γ′ is a quasi-convex geodesic
line.

For the second step, assume for a contradiction that not all steps of γ′ have
the same quasi-type. In view of the first step and translation invariance
of dS′ we may assume that there are s′, t′ ∈ S′ with πG′(s′) 6= πG′(t′) and

πG′(γ
′
n+1 − γ′n) = πG′(s′)
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γ′

η

η̃

ηk

η̃k

FIGURE 3. Reordered geodesics that are not close

for all n ∈N>0, as well as

πG′(γ
′
1 − γ′0) = πG′(t′).

For n, m ∈ Z let Γ(n, m) and Γ′(n, m) denote the number of geodesics
in Cay(G, S) and Cay(G′, S′) between γn and γm and between γ′n and γ′m re-
spectively. Because γ is algebraic, because translations in G are dS-isometries
and because ϕ is an isometry with respect to the word metrics dS and dS′ ,
we obtain

Γ(0, m− n) = Γ(n, m) = Γ′(n, m)

for all n, m ∈ Z. By definition of Cay(G, S), clearly

Γ(0, k) ≤ |S|k

for all k ∈ N. Hence there is a k ∈ N with Γ(0, k + 1) < k · Γ(0, k). On
the other hand, shuffling in the step γ′1 − γ′0 at the various positions of the
geodesic segments between γ′1 and γ′k+1 produces geodesic segments (by
Proposition 2.2), which are all different because πG′(t′) 6= πG′(s′); hence

(k + 1) · Γ′(1, k + 1) ≤ Γ′(0, k + 1).

Combining these estimates, we obtain

(k + 1) · Γ(0, k) = (k + 1) · Γ(1, k + 1) = (k + 1) · Γ′(1, k + 1)

≤ Γ′(0, k + 1) = Γ(0, k + 1)

< k · Γ(0, k),

which is a contradiction.
Therefore all steps of γ′ have the same quasi-type, and so γ′ is indeed a

quasi-algebraic line in Cay(G′, S′). �

2.4. Parallelism. We now discuss two basic properties of parallel quasi-
algebraic lines. On the one hand, we show that graph isomorphisms cannot
map quasi-algebraic lines of the same quasi-type to quasi-algebraic lines of
different quasi-types; on the other hand, we show that all quasi-algebraic
lines parallel to quasi-algebraic (quasi-convex) geodesic lines must also be
(quasi-convex) geodesic.

Proposition 2.10 (parallel lines and quasi-type). Let G and G′ be finitely gen-
erated Abelian groups, let S ⊂ G and S′ ⊂ G′ be symmetric finite generating
sets. Let s ∈ S and let γ, η : Z −→ G be quasi-algebraic lines in Cay(G, S) of
quasi-type πG(s). Suppose that there is a graph isomorphism ϕ : Cay(G, S) −→
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Cay(G′, S′) such that γ′ := ϕ ◦ γ and η′ := ϕ ◦ η are quasi-algebraic lines
in Cay(G′, S′). Then γ′ and η′ have the same quasi-type.

Proof. Let s′, t′ ∈ S′ be chosen in such a way that πG′(s′) and πG′(t′) are the
types of γ′ and η′ respectively. We now have to show that πG′(s′) = πG′(t′),
i.e, that s′ − t′ lies in tors G′.

In view of the definition of quasi-algebraic lines and by rearranging the
torsion contributions, we find maps h, k : Z −→ tors G, h′, k′ : Z −→ tors G′
such that for all n ∈ Z we have

γn = γ0 + n · s + hn

ηn = η0 + n · s + kn

γ′n = γ′0 + n · s′ + h′n
η′n = η′0 + n · t′ + k′n.

Because ϕ and all translations are isometries we obtain for all n ∈ Z that

dS′
(
n · (s′ − t′), η′0 − γ′0 + k′n − h′n

)
= dS′(γ

′
0 + n · s′ + h′n, η′0 + n · t′ + k′n)

= dS′(γ
′
n, η′n)

= dS′
(

ϕ(γn), ϕ(ηn)
)

= dS(γn, ηn)

= dS(γ0 + n · s + hn, η0 + n · s + kn)

= dS(γ0 − η0, kn − hn),

and hence the triangle inequality (and translation invariance) yields

dS′
(
n · (s′ − t′), η′0 − γ′0

)
≤ dS(γ0 − η0, kn − hn) + dS′(k′n − h′n, 0).

Because tors G and tors G′ are finite sets, the right hand side is bounded
independently of n. Therefore, {n · (s′ − t′) | n ∈ Z} lies in a dS′-ball of
finite radius around η′0− γ′0. Moreover, as S′ is finite, this ball is a finite set.
Thus, s′ − t′ ∈ tors G′, as desired. �

Proposition 2.11 (parallel lines stay geodesics). Let G be a finitely generated
Abelian group, let S ⊂ G be a symmetric finite generating set, and let s ∈ S.

(1) If one quasi-algebraic line in Cay(G, S) of quasi-type πG(s) is geodesic,
then all quasi-algebraic lines in Cay(G, S) of quasi-type πG(s) are geo-
desic lines.

(2) If one quasi-algebraic line in Cay(G, S) of quasi-type πG(s) is a quasi-
convex geodesic line, then all quasi-algebraic lines in Cay(G, S) of quasi-
type πG(s) are quasi-convex geodesic lines.

Proof. Ad 1: Assume for a contradiction that there exist quasi-algebraic lines
γ, η : Z −→ G of quasi-type πG(s) such that γ is geodesic but η is not.
Hence, there exist n, m ∈ Z with n ≤ m and

dS(ηn, ηm) ≤ m− n− 1.
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Out of η we now construct the “periodic” quasi-algebraic line in Cay(G, S)
of quasi-type πG(s) given by

η̃ : Z −→ G

z 7−→
⌊ z

m− n

⌋
· (ηm − ηn) + ηn+z mod (m−n).

Because γ and η̃ both are of quasi-type πG(s), we have γk − η̃k ∈ γ0− η̃0 +
tors G for all k ∈ Z. Adding the facts that dS is translation invariant and
that tors G is finite we obtain

dS(γk, η̃k) ≤ dS(γ0, η̃0) + diamdS tors G

for all k ∈ Z. By the assumption that γ is geodesic and the triangle inequal-
ity we therefore get

k · (m− n) = dS(γ0, γk·(m−n))

≤ dS(γ0, η̃0) + dS(η̃0, η̃k·(m−n)) + dS(η̃k·(m−n), γk·(m−n))

≤ dS(γ0, η̃0) + dS(0, k · (ηm − ηn)) + dS(γ0, η̃0) + diamdS tors G

≤ k · dS(ηn, ηm) + 2 · dS(γ0, η̃0) + diamdS tors G

≤ k · (m− n− 1) + 2 · dS(γ0, η̃0) + diamdS tors G

for all k ∈ Z, which leads to a contradiction for large enough k. So if γ is
geodesic, then also η must be geodesic.

Ad 2: Any two quasi-algebraic lines of the same quasi-type stay uni-
formly close (because the metric dS is translation invariant and tors G has
finite diameter). By definition, any geodesic line uniformly close to a quasi-
convex geodesic is itself quasi-convex. Therefore, the second part is a con-
sequence of the first part. �

3. PROOF OF CAYLEY GRAPH RIGIDITY

Using the properties of quasi-algebraic and quasi-convex geodesic lines
established in the previous section, we now prove Theorem 1.3:

Proof (of Theorem 1.3). Of course, we may assume that S and S′ are sym-
metric; moreover, because translations induce isomorphisms on the cor-
responding Cayley graphs, we can assume that ϕ(0) = 0. We prove the
theorem by induction on S.

For the base case, we suppose that S consists of torsion elements (in par-
ticular, this contains the case S = ∅ and G = {0}). In this case, G = tors G,
and the theorem clearly holds.

For the induction step we now may assume that S contains at least one
non-torsion element and that the theorem holds for all subgroups gener-
ated by proper subsets of S. We choose a basis of G/ tors G ∼= ZrkZ G and
consider the corresponding `2-norm on G/ tors G. Let s ∈ S be a ‖πG(·)‖2-
maximal element of S; because S contains non-torsion elements, s 6∈ tors G.
Let us fix some notation: We write s′ := ϕ(s) and

S(s) :=
{

t ∈ S
∣∣ πG(t) = πG(s)

}
,

S′(s′) :=
{

t′ ∈ S′
∣∣ πG(t′) = πG(s′)

}
,
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as well as

Ss := S \
(
S(s) ∪−S(s)

)
, S′s′ := S′ \

(
S′(s′) ∪−S′(s′)

)
.

We then let Gs and G′s be the subgroups of G and G′ generated by Ss and
S′s′ respectively.

We will now proceed in the following steps:
(1) We show that ϕ turns algebraic lines of type in S(s) into quasi-

algebraic lines of quasi-type πG′(s′); in particular, we obtain for
all y ∈ G, all t ∈ S(s) and all m ∈ Z that

πG′ ◦ ϕ(y + m · t) = πG′ ◦ ϕ(y) + m · πG′(s′).

(2) We show that ϕ induces an isomorphism ϕs between Cay(Gs, Ss)
and Cay(G′s′ , S′s′).

(3) We apply the induction hypothesis to ϕs.
(4) Using the knowledge about ϕs and algebraic lines of type in S(s)

we show that

πG′ ◦ ϕ : G −→ G′/ tors G′

is additive.
(5) We conclude that the map

ϕ : G/ tors G −→ G′/ tors G′

[g] 7−→ [ϕ(g)]

is indeed well-defined and that ϕ is an affine isomorphism.
Ad 1 (quasi-algebraic lines): Because s is ‖πG(·)‖2-maximal and s 6∈ tors G,

quasi-algebraic lines of quasi-type πG(s) in G are quasi-convex geodesic
lines (Proposition 2.9 (1)). As ϕ is a graph isomorphism, ϕ therefore maps
algebraic lines of any type in S(s) to quasi-algebraic quasi-convex geodesic
lines (Proposition 2.9 (3)), which all are of the same quasi-type (Proposi-
tion 2.10). Looking at the algebraic line of type s through 0 shows that they
all have quasi-type πG′(s′) .

Ad 2 (reduced Cayley graphs): We first show that ϕ yields a graph isomor-
phism Cay(G, Ss) −→ Cay(G′, Ss′): In view of the first part it suffices to
show that all algebraic lines in G′ of type in S′(s′) are indeed ϕ-images of
quasi-algebraic lines in G of quasi-type πG(s). By the first step, at least
one quasi-algebraic line in G′ of quasi-type πG′(s′) is a quasi-convex geo-
desic line. Thus, by parallelism (Proposition 2.11), all quasi-algebraic lines
of quasi-type πG′(s′) in G′ are quasi-convex geodesic lines.

Let ψ : Cay(G′, S′) −→ Cay(G, S) be the graph isomorphism inverse
to ϕ. The previous paragraph shows that we can apply Proposition 2.9 (3)
to deduce that ψ maps algebraic lines of type in S′(s′) to quasi-algebraic
lines in G. Again, parallelism shows that these quasi-algebraic lines in G
must all be of quasi-type πG(s) (Proposition 2.10).

Therefore, ϕ induces a graph isomorphism Cay(G, Ss) −→ Cay(G′, S′s′).
This graph isomorphism maps connected components to connected com-
ponents; the connected component of 0 in Cay(G, Ss) is Cay(Gs, Ss), and the
connected component of ϕ(0) = 0 in Cay(G′, S′s′) is Cay(G′s′ , S′s′). Hence, ϕ
induces a graph isomorphism Cay(Gs, Ss) −→ Cay(G′s′ , S′s′).
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Ad 3 (induction): By construction, Gs, G′s′ are finitely generated Abelian
groups, generated by Ss and S′s′ respectively. By induction, the map

ϕs : Gs/ tors Gs −→ G′s′/ tors G′s′
[g] 7−→ [ϕs(g)]

is well-defined and an affine isomorphism. Because of ϕ(0) = 0, it follows
that ϕs(0) = 0 and so ϕs is a group isomorphism. In particular, also the
map πG′s′

◦ ϕs = ϕs ◦ πGs is a group homomorphism; hence, also πG′ ◦ ϕs is
additive.

Ad 4 (additivity): Let x, x̃ ∈ G. We can write x and x̃ in the form

x = y +
k

∑
j=1

mj · sj, x̃ = ỹ +
k̃

∑
j=1

m̃j · s̃j,

where y, ỹ ∈ Gs, and k, k̃ ∈ N, m1, . . . , mk, m̃1, . . . , m̃k̃ ∈ Z, as well as
s1, . . . , sk, s̃1, . . . , s̃k̃ ∈ S(s). In view of the first step we obtain

πG′ ◦ ϕ(x) = πG′ ◦ ϕ(y) +
k

∑
j=1

mj · πG′(s′),

πG′ ◦ ϕ(x̃) = πG′ ◦ ϕ(ỹ) +
k̃

∑
j=1

m̃j · πG′(s′),

πG′ ◦ ϕ(x + x̃) = πG′ ◦ ϕ(y + ỹ) +
k

∑
j=1

mj · πG′(s′) +
k̃

∑
j=1

m̃j · πG′(s′).

Because y, ỹ ∈ Gs and because πG′ ◦ ϕs is additive by the third step, we
conclude that

πG′ ◦ ϕ(x + x̃) = πG′ ◦ ϕ(y) + πG′ ◦ ϕ(ỹ) +
k

∑
j=1

mj · πG′(s′) +
k̃

∑
j=1

m̃j · πG′(s′)

= πG′ ◦ ϕ(x) + πG′ ◦ ϕ(x̃),

as desired.
Ad 5 (affine isomorphism): By the previous step, πG′ ◦ ϕ : G −→ G′/ tors G′

is additive. Because ϕ(0) = 0 it follows that πG′ ◦ ϕ is a group homomor-
phism. Hence, πG′ ◦ ϕ maps tors G to tors(G′/ tors G′) = {0}. Therefore, ϕ
is well-defined, and a group homomorphism.

Applying the same arguments to the graph isomorphism inverse to ϕ
we see that the affine homomorphism ϕ has an affine inverse, and so is an
affine isomorphism.

This completes the proof of Theorem 1.3. �

The following example shows that in the theorem it is essential that we
divide out the torsion part: In general, not every isomorphism between
Cayley graphs of finitely generated Abelian groups is induced from an
affine isomorphism between the groups:
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a b

b′a′
 
flip

a b′

ba′

FIGURE 4. The graph Cay(Z×Z/2, {±(1, 0),±(1, 1)}) and
the effect of flipping

(Non-)Example 3.1. We consider the graph Cay(Z×Z/2, {±(1, 0),±(1, 1)}):
For any n ∈ Z the flip at position n, i.e., the map

Z×Z/2 −→ Z×Z/2

(x, y) 7−→
{
(x, y) if x 6= n
(x, 1− y) if x = n,

is a graph automorphism of Cay(Z ×Z/2, {±(1, 0),±(1, 1)}) (Figure 4),
but this graph automorphism is not induced by an affine isomorphism
of Z×Z/2 (even though Z and Z/2 are CI-groups).

4. EXTRACTING THE SIZE OF THE TORSION PART

We will now deduce Corollary 1.4 from Theorem 1.3:

Proof (of Corollary 1.4). Let G and G′ be finitely generated Abelian groups
with rkZ G = rkZ G′ and | tors G| = | tors G′|. We write

d := rkZ G = rkZ G′ and k := | tors G| = | tors G′|.

Let S and S′ be Z-bases of G/ tors G ∼= Zd and G′/ tors G′ ∼= Zd respec-
tively. Because of G ∼= Zd × tors G and G′ ∼= Zd × tors G′ we have

Cay(G, S ∪ tors G) ∼= Cay(Zd, {e1, . . . , ed})� Kk
∼= Cay(G′, S′ ∪ tors G′),

where (e1, . . . , ed) is the standard basis of Zd, where Kk is the complete
graph on k vertices, and “�” denotes the Cartesian product of graphs. So
G and G′ admit isomorphic Cayley graphs.

Conversely, let G and G′ be finitely generated Abelian groups that ad-
mit isomorphic Cayley graphs, i.e., there are finite generating sets S ⊂ G,
S′ ⊂ G′ such that there is an isomorphism ϕ : Cay(G, S) −→ Cay(G′, S′).
By Theorem 1.3, the graph isomorphism ϕ induces an affine isomorphism
ZrkZ G ∼= G/ tors G −→ G′/ tors G′ ∼= ZrkZ G′ .

Because affine isomorphisms between finitely generated Abelian free
groups are rank-preserving we obtain rkZ G = rkZ G′.

Moreover, the fact that ϕ induces a well-defined map between the quo-
tients shows that ϕ(tors G) ⊂ ϕ(0) + tors G′. Because ϕ is bijective it fol-
lows that

| tors G| ≤ | tors G′|.
Applying the same argument to ϕ−1 shows the reverse inequality, and
hence we obtain | tors G| = | tors G′|. �
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Of course, we cannot recover the complete algebraic structure of the tor-
sion part – there are finite Abelian groups of the same cardinality that are
not isomorphic.

Another way to see that finitely generated Abelian groups that admit
isomorphic Cayley graphs have the same rank uses the growth rate: The
rank of a finitely generated Abelian group coincides with the growth rate
of the group [2, Chapter VI] and the growth rate is preserved by graph
isomorphisms.

Problem 4.1. Can also the size of the torsion part of a finitely generated Abelian
group be extracted from the growth function of every Cayley graph (with respect
to a finite generating set)?

In Section 5, we will see that at least the parity of the torsion part can be
detected in this way. However, the general case seems to be open.

5. DETECTING THE PARITY OF THE TORSION PART,
ALTERNATIVE APPROACH

The discussion on mathoverflow.net [4] about whether the relation “ad-
mit isomorphic Cayley graphs” is transitive for finitely generated groups
contains a neat argument by G. Hainke and L. Scheele that allows to dis-
tinguish Cayley graphs of Z from Cayley graphs of Z×Z/2. The idea is
that for Abelian groups taking inverses leads to automorphisms of Cayley
graphs and that counting fixed points of these automorphisms reveals the
Z/2-factor.

In the following, we show how the same argument can be used to reveal
the parity of the torsion part of finitely generated Abelian groups:

Proposition 5.1 (parity of the torsion part via size of balls). Let G be a finitely
generated Abelian group and let S ⊂ G be a finite generating set. Moreover, let
r ∈N with r > diamdS tors G. Then

β(r) ≡ | tors G| mod 2,

where β(r) is the number of elements of the dS-ball BS(r) of radius r around 0
in G.

Proof. Because G is Abelian, the map

τ : G −→ G
g 7−→ −g

is an automorphism of Cay(G, S). Because τ(0) = 0 and because graph
isomorphisms are isometries with respect to the graph metrics it follows
that τ(BS(r)) = BS(r). Moreover, τ ◦ τ = idG, and the fixed points of τ are
exactly the elements of G of order at most 2; in particular, all fixed points
of τ lie in tors G and hence in BS(r). Therefore,

β(r) = |BS(r)| ≡
∣∣{g ∈ G | τ(g) = g}

∣∣ mod 2,

and thus

β(r) ≡
∣∣{g ∈ G | g has order at most 2}

∣∣ mod 2.

Now counting the number of elements of order 2 in G finishes the proof
(see Lemma 5.2 below). �
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Lemma 5.2 (number of elements of order at most 2). Let G be a finite Abelian
group. Then ∣∣{g ∈ G | g has order at most 2}

∣∣ ≡ |G| mod 2.

Proof. Because G is a finite Abelian group, we can write

G ∼= A×∏
i∈I

Bi,

where A is a finite Abelian group of odd order, I is a finite set, and all Bi are
finite cyclic groups of even order. An element of G has order at most 2 if
and only if all of its components in the above product decomposition have
order at most 2. The group A has exactly one element of order at most 2
(namely, 0), and each of the Bi has exactly two such elements (namely, 0 and
the element corresponding to |Bi|/2). Hence, G has exactly 2|I| elements of
order at most 2. Because |G| ≡ 2|I| mod 2, the claim follows. �
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