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Abstract. We show that integral foliated simplicial volume of closed
manifolds gives an upper bound for the cost of the corresponding fun-
damental groups.

1. Introduction

The dynamical view on groups and spaces aims at understanding groups
and topological spaces through actions on probability spaces. If Γ is a
group and α = Γ y (X,µ) is a measure preserving action on a proba-
bility space (X,µ), then one considers, for instance, the following invariants
(see Section 2 and 3 for definitions and references): The cost Costµ α of α
is a randomised version of the minimal number of generators of Γ. The
cost Cost Γ of the group Γ is the infimum of all such Costµ α.

If M is an oriented closed connected manifold with fundamental group Γ,
then the α-parametrised simplicial volume

Mα of M is a randomised ver-
sion of the integral simplicial volume of M . The integral foliated simplicial
volume

M of M is the infimum of all such
Mα.

In the residually finite case, the profinite completion provides a link be-
tween the dynamical view and the residually finite view: If Γ is a residually
finite group, then the cost of the translation action of Γ on the profinite com-

pletion Γ̂ coincides with the rank gradient rg Γ of Γ (plus 1) [1, Theorem 1]
and the corresponding parametrised simplicial volume of M coincides with
the stable integral simplicial volume ‖M‖∞Z [15, Remark 6.7]. Moreover,
these gradient invariants are related as follows:

Theorem 1.1 (rank gradient estimate [13, Theorem 1.1]). If M is an ori-
ented closed connected manifold with fundamental group Γ, then

rg Γ ≤ ‖M‖∞Z .
It is natural to wonder whether the corresponding dynamical estimate

also holds [13, Question 1.3]. In the present article, we will complete the
dynamical part of the picture by proving the following estimate:

Theorem 1.2 (cost estimate). Let M be an oriented closed connected man-
ifold with fundamental group Γ and let α = Γ y (X,µ) be an essentially
free ergodic standard Γ-space. Then

Costµ α− 1 ≤
Mα.

In particular, Cost Γ− 1 ≤
M.
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Theorem 1.2 shows that integral foliated simplicial volume is a higher-
dimensional, geometric refinement of the cost of groups. In particular, as
in the case of the rank gradient estimate, the bound in Theorem 1.2 is far
from being sharp in general: If M is an oriented closed connected hyperbolic
surface, then [17, 10]M ×M ≥ ‖M ×M‖ ≥ ‖M‖ · ‖M‖ > 0,

but Cost(π1(M)× π1(M)) = 1 [11, Proposition 35.1].
The dependence of Costµ α and

Mα on the chosen dynamical system α
is a delicate open problem [8, 11][7, Section 1.5]. In analogy with the termi-
nology for cost of groups, we define:

Definition 1.3 (cheap manifold, manifold of fixed price). Let M be an
oriented closed connected manifold.

• The manifold M is cheap if
M = 0.

• The manifold M has fixed price if for all essentially free standard
π1(M)-spaces α and β we have

Mα =
Mβ.

As for groups, it is not known whether all manifolds have fixed price.

Corollary 1.4. Let M be an oriented closed connected manifold with fun-
damental group Γ.

(1) If M is cheap, then Γ is cheap.
(2) If M is cheap and of fixed price, then Γ is cheap and of fixed price.

Proof. Let M be cheap. We first observe that this implies that Γ is infinite

(if Γ is finite, then
M = 1/|Γ| · ‖M̃‖Z [15, Corollary 6.3], which is non-

zero). Because Γ is infinite, Cost Γ ≥ 1 [11, p. 108]. On the other hand,
Theorem 1.2 yields that Cost Γ ≤

M + 1 = 1; therefore, Cost Γ = 1,
which means that Γ is cheap.

Let now M additionally have fixed price. In view of ergodic decomposi-
tion [11, Corollary 18.6], it suffices to show that Costµ α = 1 holds for all
essentially free ergodic standard Γ-spaces α = Γ y (X,µ). In this case,
again Theorem 1.2 shows that

1 ≤ Cost Γ ≤ Costµ α ≤
Mα + 1 = 1. �

The class of cheap manifolds of fixed price is known to include all oriented
closed connected manifolds that

• are aspherical and have infinite amenable fundamental group [7, The-
orem 1.9],
• are smooth and admit a smooth S1-action without fixed points and

whose orbits are π1-injective [3, Theorem 1.1] or that are smooth
and aspherical and admit a smooth non-trivial S1-action [3, Corol-
lary 1.2],
• are generalised graph manifolds [4, Theorem 1.6],
• are a product of a cheap manifold of fixed price and another mani-

fold [17, proof of Theorem 5.34],
• are smooth, aspherical, and have trivial minimal volume [2, (proof

of) Corollary 5.4].
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For the sake of completeness, we put Theorem 1.2 in context with L2-
Betti numbers: For L2-Betti numbers, we a have a harmonic correspon-
dence between the classical, the dynamical, and the residually finite view:
L2-Betti numbers of compact manifolds can be described both in the resid-
ually finite view (as Betti number gradients) [16] and in the dynamical view
(as L2-Betti numbers of orbit relations) [9]. In contrast, it is known that
stable integral simplicial volume and integral foliated simplicial volume, in
general do not coincide with the classicial simplicial volume of aspherical
oriented closed connected manifolds [6, Theorem 2.1][7, Theorem 1.8]. Inte-
gral foliated simplicial volumes and L2-Betti numbers of an oriented closed
connected manifold M are for every k ∈ N linked by the following chain of in-
equalities [17, Corollary 5.28 (the constant factor can be improved to 1)][15,
Proposition 6.1]:

b
(2)
k (M) ≤

M ≤ ‖M‖∞Z .
Moreover, it is known that b

(2)
1 (π1(M)) ≤ Costπ1(M)− 1 (if π1(M) is infi-

nite) [9, Corollaire 3.23]. Hence, Theorem 1.2 is a refinement of this chain
of inequalities in degree 1:

b
(2)
1 (M) ≤ Costπ1(M)− 1 ≤

M ≤ ‖M‖∞Z .
However, the following problem remains open:

Question 1.5. Let M be an oriented closed connected aspherical manifold
whose simplicial volume ‖M‖ satisfies ‖M‖ = 0. Does this already imply
that π1(M) is cheap?

Remark 1.6. If the Singer conjecture for L2-Betti numbers is true and

the conjecture that b
(2)
1 (Γ) = Cost Γ − 1 holds for every (finitely presented

infinite) group is true, then Question 1.5 clearly has a positive answer (even
independently of the simplicial volume in dimension at least 3). However, as
these two conjectures seem to be wild and wide open, it would be interesting
to find an alternative, direct, answer to Question 1.5.

Organisation of this article. We first review the notion of cost of stan-
dard equivalence relations (Section 2) and establish a basic estimate for cost
of certain subrelations (Section 2.4). We then recall the notion of integral
foliated simplicial volume (Section 3). In Section 4, we will prove Theo-
rem 1.2. Finally, in Section 4.6, we will discuss the weightless version of
Theorem 1.2.

Acknowledgements. I would like to thank Daniel Fauser for many helpful
discussions.

2. Cost

The cost of a dynamical system of a group is a randomised version of
the rank (i.e., minimal number of generators) of the group. More gener-
ally, one can consider the cost of standard Borel equivalence relations on
measure spaces. More information about these subjects can be found in the
literature [8, 9, 11].
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2.1. Standard actions and equivalence relations. We will use the fol-
lowing notation and conventions on standard equivalence relations:

A standard Borel measure [probability] space is a measure space [proba-
bility space] (X,µ), where the measurable space X is isomorphic to a Polish
space with its Borel σ-algebra. For simplicity, we will only consider the case
of standard Borel measure spaces with finite total measure.

A measurable equivalence relation on a standard Borel (measure) space X
is a measurable subset S ⊂ X × X that is an equivalence relation on X.
The automorphism group of S (or full group of S) is the group [S] (via
composition) of measurable isomorphisms f : X −→ X that satisfy

∀x,y∈X x ∼S y =⇒ f(x) ∼S f(y).

Moreover, JSK denotes the set of partial automorphisms of S, i.e., of mea-
surable isomorphisms f : A −→ B between measurable subsets A,B ⊂ X
that satisfy

∀x,y∈A x ∼S y =⇒ f(x) ∼S f(y);

we write dom f := A for the domain of f .

Definition 2.1 (standard equivalence relation). A standard equivalence re-
lation on a standard Borel measure space (X,µ) is a measurable equivalence
relation S on X, where each equivalence class has cardinality at most |N|
and where each element of [S] is µ-preserving.

One of the key objects of measurable group theory and the dynamical
view is the orbit relation of a group action:

Example 2.2 (orbit relation of an action). Let Γ be a group. A standard Γ-
space is a standard Borel probability space (X,µ) together with a measurable
µ-preserving (left) action of Γ on (X,µ).

If Γ is countable and α = Γ y (X,µ) is a standard Γ-space, then the
orbit relation {

(x, γ · x)
∣∣ x ∈ X, γ ∈ Γ

}
⊂ X ×X

is a standard equivalence relation in the sense above.
Conversely, it can be shown that every standard equivalence relation arises

as orbit relation of a suitable action of a suitable countable group on the
underlying standard Borel measure space [5, Theorem 1].

Moreover, we will need the following terms and constructions: Let S be
a standard equivalence relation on a standard Borel measure space (X,µ).

• If A ⊂ X is a measurable subset with µ(A) > 0, then the restric-
tion µ|A of µ to A turns (A,µ|A) into a standard Borel measure
space.
• In this situation, the restriction

S|A :=
{

(x, y) ∈ A×A
∣∣ x ∼S y}

of S to A is a standard equivalence relation.
• A measurable subset A ⊂ X is a [almost] complete section of S, if

for [µ-almost] every x ∈ X there is a y ∈ A with x ∼S y.
• The relation S on X is aperiodic, if for µ-almost every x ∈ X the
S-orbit S · x := {y ∈ X | y ∼S x} is infinite.
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• A measurable subset A ⊂ X is S-invariant if

∀x∈A S · x ⊂ A.

• The relation S on (X,µ) is ergodic, if every S-invariant measurable
subset A of X satisfies µ(A) = 0 or µ(X \A) = 0.

2.2. Cost of a standard equivalence relation. The cost of a standard
equivalence relation is the minimal “number” of “generators” needed to
describe the relation:

Definition 2.3 (graphing, cost). Let S be a standard equivalence relation
on a standard Borel measure space (X,µ).

• Let Φ = (ϕi)i∈I be a family of elements of JSK. Then

〈Φ〉X :=
〈⋃
i∈I

{
(x, ϕi(x)) ∈ X ×X | x ∈ domϕi

}〉
X

denotes the smallest (with respect to inclusion) equivalence relation
on X containing the given set of pairs.
• A graphing of S is a family Φ = (ϕi)i∈I in JSK with 〈Φ〉X = S. The

cost of Φ is defined as

Costµ Φ :=
∑
i∈I

µ(domϕi).

• The cost Costµ S of S is the infimum of all costs of graphings of S.

Definition 2.4 (cost of a group [8]). The cost Cost Γ of a countable group Γ
is the infimum of all costs of orbit relations of standard Γ-spaces.

Example 2.5. Let Γ be a finitely generated group. Then Cost Γ ≤ rk Γ,
where rk Γ denotes the minimal number of generators of Γ (as witnessed by
the translation automorphisms associated with a smallest generating set).
If Γ in addition is residually finite and infinite, then the translation action

of Γ on its profinite completion Γ̂ is a standard Γ-space and [1, Theorem 1]

Costµ(Γ y Γ̂)− 1 = rg Γ

(where rg Γ denotes the rank gradient of Γ).

In all cases, where the cost Cost Γ of a countable infinite group Γ could

be computed so far, it coincides with b
(2)
1 (Γ)+1. This includes, for example,

amenable groups, free groups, etc. [8, 9, 11].

2.3. Cost and restrictions. We collect basic facts on cost with respect to
restrictions.

Lemma 2.6 (cost of partitions [11, p. 60]). Let (X,µ) be a standard Borel
measure space, let R be a standard equivalence relation on X, and let X =⋃m
j=1Aj be a partition of X into measurable R-invariant subsets of non-zero

measure. Then

CostµR =

m∑
j=1

Costµ|Aj
R|Aj .
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Lemma 2.7 (cost of complete sections [8, Proposition II.6][11, Proposi-
tion 21.1]). Let (X,µ) be a standard Borel measure space, let R be a stan-
dard equivalence relation on X, and let A ⊂ X be a complete section of R.
Then

CostµR = Costµ|A(R|A) + µ(X \A).

Lemma 2.8 (cost of restrictions). Let (X,µ) be a standard Borel probability
space, let R be a standard equivalence relation on X, and let A ⊂ X be a
measurable subset with µ(A) > 0. Then

Costµ|A(R|A) ≤ CostµR.

Proof. Let B := R · A =
⋃
x∈AR · x ⊂ X. Then B is a measurable subset

of X [5, p. 291]. By construction, B and X \B are measurable R-invariant
subsets of X. If µ(X \B) = 0, then A is an (almost) complete section of R
and Lemma 2.7 shows that

Costµ|A(R|A) = CostµR− µ(X \A) ≤ CostµR.

If µ(X \B) 6= 0, then we can apply Lemma 2.6 and Lemma 2.7 (because A
is a complete section of R|B on B) to obtain

CostµR = Costµ|B (R|B) + Costµ|X\B (R|X\B)

≥ Costµ|A(R|A) + µ(B \A)

≥ Costµ|A(R|A). �

2.4. Cost of translation finite extensions. The key estimate in the proof
of Theorem 1.2 will involve the following variation of the notion of finite
index subrelations. In contrast with finite index subrelations, we only require
that the orbits of the ambient relation can be covered, in a uniform way, by
finitely many translates of orbits of the subrelation:

Definition 2.9 (translation finite extension). Let (X,µ) be a standard Borel
probability space, let S be a standard equivalence relation on (X,µ), and
let R ⊂ S be a standard equivalence relation on (X,µ) that is contained
in S. Then R ⊂ S is a translation finite extension if there exists a finite
set F ⊂ [S] such that for µ-almost every x ∈ X we have

S · x =
⋃

f,g∈F
f
(
R · g−1(x)

)
.

Example 2.10. Let (X,µ) be a standard Borel probability space.

• Let Γ y (X,µ) be a standard Γ-space and let S be the corresponding
orbit relation on X. Moreover, let Λ ⊂ Γ be a finite index subgroup
and let R ⊂ S be the orbit relation of the action restricted to Λ.
Then R ⊂ S is a translation finite extension (witnessed by the left
translations of a set of coset representatives).

In this case, R is even a subrelation of finite index of S and thus we
have Costµ S ≤ CostµR [8, Proposition VI.23][11, Proposition 25.1].
• Conversely, if R ⊂ S is a translation finite extension of standard

equivalence relations on (X,µ), then R does not necessarily have
finite index in S: We consider the circle S1 = [0, 1]/(0 ∼ 1) with
the Lebesgue probability measure µ and a Z-action by irrational
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rotation. Let S be the corresponding orbit relation. Let π : [0, 1] −→
S1 be the canonical projection, let A := π([0, 1/2]), and let

R := 〈S|A〉X ⊂ S.
Then R does not have finite index in S, but R ⊂ S is a translation
finite extension.

Moreover, Costµ(S) = 1 [8, Corollaire III.4][11, Corollary 31.2]
and (Lemma 2.6 and Lemma 2.7)

Costµ(R) = Costµ|A(R|A) + Costµ|S1\A
(R|S1\A)

= Costµ|A(S|A) + 0

= Costµ(S)− µ(S1 \A)

= 1− 1

2
=

1

2
.

In particular, in this case we have Costµ S 6≤ CostµR.

Lemma 2.11 (cost estimate for translation-finite extensions). Let (X,µ)
be a standard Borel probability space, let S be an aperiodic ergodic standard
relation on (X,µ), and let R ⊂ S be a translation finite extension. Then

Costµ S ≤ CostµR+ 1.

Proof. The proof is a straightforward adaption of the (stronger) cost esti-
mate for finite index subrelations [11, Proposition 25.1]: Because R ⊂ S is
translation finite extension, there exists a finite set F ⊂ [S] such that for
µ-almost every x ∈ X we have

S · x =
⋃

f,g∈F
f
(
R · g−1(x)

)
.

Passing to an S-invariant co-null subset, we may assume without loss of
generality that this even holds for every x ∈ X. Let ε ∈ R>0 and let Φ be a
graphing of R with

Costµ(Φ) ≤ CostµR+ ε.

Furthermore, let A ⊂ X be a complete Borel section of S with 0 < µ(A) < ε
(such a set does exist [11, Lemma 6.7]). Thus, by Lemma 2.7,

Costµ(S) = Costµ(S|A) + µ(X \A) ≤ Costµ|A(S|A) + 1.

For f ∈ F , we let

ϕf := f−1|A : A −→ f−1(A)

x 7−→ f−1(x)

and ΦA := Φ ∪ (ϕf )f∈F ; finally, we set

R := 〈ΦA〉X .
Then R|A = S|A, as the following calculation shows: Let x ∈ A. By
construction, ϕf ∈ JSK for every f ∈ F . In particular, R ⊂ S and thus

R|A ⊂ S|A. Conversely, let x, y ∈ A with x ∼S y. Then there exist f, g ∈ F
with y ∈ f(R ·g−1(x)), whence f−1(y) ∼R g−1(x). By construction, we thus
have

y ∼R f
−1(y) ∧ f−1(y) ∼R g

−1(x) ∧ g−1(x) ∼R x,
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and so y ∼R x. This shows R|A = S|A.
In combination with Lemma 2.8 we obtain

Costµ|A(S|A) = Costµ|A(R|A) ≤ Costµ(R)

≤ Costµ(ΦA) ≤ Costµ(Φ) + |F | · µ(A)

≤ Costµ(R) + ε+ |F | · ε.
Taking ε→ 0 shows that

Costµ(S) ≤ Costµ|A(S|A) + 1 ≤ Costµ(R) + 1,

as claimed. �

3. Integral foliated simplicial volume

Simplicial volumes are defined as the minimal number (measured in a suit-
able sense) of singular simplices needed to build the given manifold [10, 12].
In the case of integral foliated simplicial volume, we use bounded functions
on dynamical systems of the fundamental group as coefficients. More infor-
mation and computations can be found in the literature [17, 15, 7, 3, 4, 2].

Let M be an oriented closed connected n-manifold with fundamental
group Γ and let α = Γ y (X,µ) be a standard Γ-space. Then L∞((X,µ),Z)
inherits a right ZΓ-module structure and we write

C∗(M ;α) := L∞((X,µ),Z)⊗ZΓ C∗(M̃ ;Z)

for the corresponding chain complex with twisted coefficients.
A chain c ∈ C∗(M ;α) is an α-parametrised fundamental cycle if it is

homologous (in the complex C∗(M ;α)) to the image of a Z-fundamental
cycle on M under the canonical inclusion C∗(M ;Z) −→ C∗(M ;α). If c =∑m

j=1 fj⊗σj ∈ Cn(M ;α) is in reduced form (i.e., all σ1, . . . , σm lie in different

Γ-orbits under the deck transformation action), then

|c|1 :=
m∑
j=1

∫
X
|fj | dµ ∈ R≥0.

Definition 3.1 (parametrised simplicial volume, integral foliated simplicial
volume). Let M be an oriented closed connected n-manifold.

• The α-parametrised simplicial volume of M is defined byMα := inf
{
|c|1

∣∣ c ∈ Cn(M ;α) is an α-parametrised

fundamental cycle of M
}
.

• The integral foliated simplicial volume
M of M is the infimum of

all parametrised simplicial volumes of M .

If M is an oriented closed connected manifold, then classical simplicial
volume, integral foliated simplicial volume, and stable integral simplicial
volume are related by the chain [17, Theorem 5.35][15, Proposition 6.1]

‖M‖ ≤
M ≤ ‖M‖∞Z .

Example 3.2. Let M be an oriented closed connected manifold with resid-

ually finite fundamental group Γ. Then
M̂Γ coincides with the stable

integral simplicial volume of M [15, Remark 6.7].
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4. Proof of Theorem 1.2

We will now prove Theorem 1.2.

4.1. The case of finite fundamental group. Let us first get the (patho-
logical) case that the fundamental group Γ is finite out of the way: If
α = Γ y (X,µ) is a standard Γ-space, then [8, Corollaire I.10][11, Proposi-
tion 22.1]

Costµ α− 1 ≤ 1− 1 = 0 ≤
Mα.

Taking the infimum over all such α shows that Cost Γ − 1 ≤
M. This

proves Theorem 1.2 if Γ is finite.

4.2. Setup. In view of Section 4.1, we will assume for the rest of the proof
of Theorem 1.2 that the fundamental group Γ of M is infinite. Moreover,
we will fix the following notation:

• Let α = Γ y (X,µ) be an essentially free ergodic standard Γ-space
and let S ⊂ X ×X be the corresponding orbit relation. Hence, S is
aperiodic and ergodic.

• Let D ⊂ M̃ be a set-theoretic, relatively compact, fundamental do-

main for the deck transformation action of Γ on M̃ .
• Let

c =
m∑
j=1

fj ⊗ σj ∈ Cn(M ;α) = L∞(X,Z)⊗ZΓ Cn(M̃ ;Z)

with f1, . . . , fm ∈ L∞(X,Z), σ1, . . . , σm ∈ map(∆n, M̃) be an α-
parametrised fundamental cycle of M . Moreover, we may assume
that the representation of c is in reduced form, i.e., that σj(v0) ∈ D
for all j ∈ {1, . . . ,m} and that the singular simplices σ1, . . . , σm are
all different.
• For j ∈ {1, . . . ,m} let γj ∈ Γ be the unique group element satisfy-

ing σj(v1) ∈ γj ·D. We then consider ϕj ∈ JSK given by

ϕj : Aj −→ γ−1
j ·Aj

x 7−→ γ−1
j · x,

where Aj := supp fj ⊂ X. Let R := 〈ϕ1, . . . , ϕm〉X be the standard
equivalence relation on X generated by ϕ1, . . . , ϕm.

By construction, the cost of the relation R is controlled in terms of |c|1:

Lemma 4.1. In the situation of Setup 4.2, the relation R is a subrelation
of S and

CostµR ≤
m∑
j=1

µ(Aj) ≤ |c|1.

Proof. By construction, Φ := (ϕj)j∈{1,...,m} is a graphing of R and we have
ϕ1, . . . , ϕm ∈ JSK. Therefore, R ⊂ S and

CostµR ≤ Costµ Φ =

m∑
j=1

µ(Aj).



10 CLARA LÖH

Moreover,
∑m

j=1 µ(Aj) ≤
∑m

j=1

∫
X |fj |dµ = |c|1, because each fj is integer-

valued and the representation
∑m

j=1 fj ⊗ σj of c is in reduced form. �

Remark 4.2. Integration L∞(X,Z) ⊗ZΓ C∗(M̃ ;Z) −→ C∗(M ;R) of the
coefficients and a covering theoretic argument show that 〈γ1, . . . , γm〉Γ is a
finite index subgroup of Γ. However, in general, the subrelation R of S will
not have finite index in S (this can already be seen in the case of Schmidt’s
parametrised fundamental cycles of S1 [17, proof of Proposition 5.30]).

In view of Lemma 4.1 it suffices to prove that Costµ S − 1 ≤ CostµR. To
this end, we will establish that R ⊂ S is a translation finite extension and
then apply Lemma 2.11.

4.3. Passing to locally finite chains. In order to prove that R ⊂ S is a
translation finite extension, it is convenient to pass to locally finite chains.

Remark 4.3 (locally finite cycles). In the situation of Setup 4.2, for µ-
almost every x ∈ X, the chain

cx :=
m∑
j=1

∑
γ∈Γ

fj(γ
−1 · x) · γ · σj ∈ C lf

n (M̃ ;Z)

given by evaluation on the Γ-orbit of x is a well-defined locally finite funda-

mental cycle of M̃ [7, Lemma 2.5].

We therefore recall a basic property of locally finite chains.

Lemma 4.4. Let N be an oriented connected n-manifold, let Z be a com-
mutative ring with unit, and let x ∈ N . Then the restriction map induces a
well-defined isomorphism

%x : H lf
n (N ;Z) −→ Hn(N,N \ {x};Z)[∑

j∈J
aj · σj

]
7−→

[ ∑
j∈J,x∈σj(∆n)

aj · σj
]
.

In particular: If c =
∑

j∈J aj · σj ∈ C lf
n (N ;Z) is a locally finite cycle whose

associated class [c] ∈ H lf
n (N ;Z) is non-trivial, then there exists j ∈ J such

that
x ∈ σj(∆n).

Proof. The restriction map on the chain level extends to a well-defined chain
map C lf

∗ (N ;Z) −→ C∗(N,N \ {x};Z). Checking the effect of %x on the
locally finite fundamental class of N proves the first claim.

The second part is a direct consequence of the first part. �

4.4. Establishing translation finiteness.

Lemma 4.5. In the situation of Setup 4.2, R ⊂ S is a translation finite
extension in the sense of Definition 2.9.

Proof. For the proof we will use geometric properties of c (and its locally

finite companions) on M̃ . Let

K := D ∪
m⋃
j=1

σj(∆
n) ⊂ M̃.
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Then D and K are relatively compact and hence

F := {f ∈ Γ | D ∩ f ·K 6= ∅}
is finite. We will now show that µ-almost every S-orbit is covered by the
F -translates of orbits of R:

Let x ∈ X be such that the evaluation cx is a locally finite Z-fundamental

cycle of M̃ (Remark 4.3). We associate the following graph Gx = (Vx, Ex)
with cx:

• vertices: we set Vx :=
{
γ ∈ Γ

∣∣ ∃j∈{1,...,m} γ−1 · x ∈ Aj
}
⊂ Γ.

• edges: we set

Ex :=
{
{γ, λ}

∣∣ γ, λ ∈ Vx ∧ γ 6= λ

∧ ∃i,j∈{1,...,m} ∃k,`∈{0,...,n}(
∂k(γ · σi) = ∂`(λ · σj)
∧ γ−1 · x ∈ Ai ∧ λ−1 · x ∈ Aj

)}
.

The combinatorics of Gx will allow us to link the orbits of R with the
geometry of cx. More precisely, we will establish the following facts:

(1) For all {γ, λ} ∈ Ex, we have γ−1 · x ∼R λ−1 · x.
(2) If V ⊂ Vx is (the set of vertices of) a connected component of Gx,

then

cx,V :=

m∑
j=1

∑
γ∈V

fj(γ
−1 · x) · γ · σj

is a well-defined cycle in C lf
n (M̃ ;Z).

(3) Let x0 ∈ D. There exists a connected component V ⊂ Vx of Gx such

that [cx,V ] 6= 0 in H lf
n (M̃ ;Z) and

∃g∈V ∃j∈{1,...,m} x0 ∈ g · σj(∆n) ⊂ g ·K.
Hence, any such g is in F .

(4) We have F · V −1 = Γ, where V −1 := {γ−1 | γ ∈ V }.
Proof of (1). By definition of Ex, there are i, j ∈ {1, . . . ,m} and k, ` ∈

{0, . . . , n} with

γ−1 · x ∈ Ai ∧ λ−1 · x ∈ Aj ∧ ∂k(γ · σi) = ∂`(λ · σj).
We now distinguish the following cases:

• If k > 0 and ` > 0, then

γ · σi(v0) =
(
∂k(γ · σi)

)
(v0) =

(
∂`(λ · σj)

)
(v0) = λ · σj(v0).

In particular, γ·D∩λ·D 6= ∅, and so γ = λ (whence γ−1·x ∼R λ−1·x).
• If k = 0 and ` > 0, then

γ · σi(v1) =
(
∂k(γ · σi)

)
(v0) =

(
∂`(λ · σj)

)
(v0) = λ · σj(v0).

By definition of γi, we have σi(v1) ∈ γi · D. Therefore, we obtain
that γ ·γi ·D∩λ ·D 6= ∅, and thus γ ·γi = λ. Because of γ−1 ·x ∈ Ai,
the definition of R shows that

λ−1 · x = γ−1
i · γ

−1 · x ∼R γ−1 · x.
• If k > 0 and ` = 0, we can argue as in the previous case.
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• If k = 0 and ` = 0, then

γ · σi(v1) =
(
∂k(γ · σi)

)
(v0) =

(
∂`(λ · σj)

)
(v0) = λ · σj(v1).

Similarly, to the previous cases, we obtain γ · γi = λ · γj . Hence

λ−1 · x ∼R γ−1
j · λ

−1 · x = γ−1
i · γ

−1 · x
(via ϕj) and

γ−1
i · γ

−1 · x ∼R γ−1 · x
(via ϕi). By transitivity, it follows that λ−1 · x ∼R γ−1 · x.

Proof of (2). Let π0(Gx) be the set (of vertex sets) of the connected
components of Gx. The sum decomposition cx =

∑
V ∈π0(Gx) cx,V is a locally

finite sum of locally finite chains. Hence,

0 = ∂(cx) =
∑

V ∈π0(Gx)

∂(cx,V )

=
∑

V ∈π0(Gx)

m∑
j=1

∑
γ∈V

n∑
k=0

(−1)k · fj(γ−1 · x) · ∂k(γ · σj).

By construction of the graph Gx, if V,W ∈ π0(Gx) are different components,
then the terms of ∂(cx,V ) and ∂(cx,W ) cannot interfere with each other.
Therefore, we obtain

∂(cx,V ) = 0

for all V ∈ π0(Gx).
Proof of (3). By (2), cx =

∑
V ∈π0(Gx) cx,V is a locally finite sum of

cycles. Applying the restriction homomorphism %x0 of Lemma 4.4 gives the
effectively finite decomposition

0 6= [M̃, M̃ \ {x0}]Z = %x0 [M̃ ]lfZ = %x0 [cx] =
∑

V ∈π0(Gx)

%x0 [cx,V ].

Hence, there exists a connected component V ∈ π0(Gx) with [cx,V ] 6= 0

in H lf
n (M̃ ;Z). By Lemma 4.4, there exist g ∈ V and j ∈ {1, . . . ,m} with

x0 ∈ g · σj(∆n).

By definition of F and because x0 ∈ D, this implies g ∈ F .
Proof of (4). Clearly, F · V −1 ⊂ Γ. Conversely, let γ ∈ Γ. Applying

Lemma 4.4 to the point γ−1 ·x0 and the class [cx,V ] ∈ H lf
n (M̃ ;Z) yields that

there exists a λ ∈ V and j ∈ {1, . . . ,m} with

γ−1 · x0 ∈ λ · σj(∆n).

Thus, γ−1 ·D ∩ λ ·K 6= ∅, and so γ · λ ∈ F . Hence, γ ∈ F · λ−1 ⊂ F · V −1.
Conclusion of proof : Let V ⊂ Vx and g ∈ V ∩F be as provided by fact (3).

Then (1) shows that
V −1 · x ⊂ R · g−1 · x.

Using (4), we obtain that

S · x = Γ · x =
⋃
f∈F

f · V −1 · x ⊂
⋃

f,g∈F
f ·R · g−1(x) ⊂ S · x.

Because translation by f ∈ F lies in [S], this shows that R ⊂ S is a trans-
lation finite extension. �
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4.5. Putting it all together. We continue to use the setup from Sec-
tion 4.2. Because R ⊂ S is a translation finite extension (Lemma 4.5), we
obtain

Costµ S ≤ CostµR+ 1

from Lemma 2.11. In combination with Lemma 4.1, it follows that

Costµ α = Costµ S ≤ CostµR+ 1

≤
m∑
j=1

µ(Aj) + 1 ≤ |c|1 + 1.

Taking the infimum over all α-parametrised fundamental cycles c of M thus
shows the desired estimate

Costµ α− 1 ≤
Mα.

Because integral foliated simplicial volume can be computed in terms of
ergodic essentially free parameter spaces [15, Proposition 4.17], taking the
infimum over all ergodic essentially free standard Γ-spaces α implies that

Cost Γ− 1 ≤
M.

This completes the proof of Theorem 1.2.

4.6. The weightless version. The proof of the cost estimate of Theo-
rem 1.2 does not incorporate the values of the coefficient functions. There-
fore, the estimate can be improved in a straightforward way to the case of
weightless parametrised simplicial volumes (Theorem 4.6). The advantage
of these weightless versions is that they also allow for coefficients in finite
fields and other commutative rings with unit [14].

We quickly review the definition of weightless parametrised simplicial
volumes and indicate how to prove the theorem in this case. Let M be
an oriented closed connected n-manifold with fundamental group Γ, let
α = Γ y (X,µ) be a standard Γ-space, and let Z be a commutative ring
with unit. We then write L∞(X,Z) := Z ⊗Z L

∞(X,Z) and

C∗(M ;α;Z) := L∞(X,Z)⊗ZΓ C∗(M̃ ;Z).

A cycle c ∈ C∗(M ;α;Z) is an (α;Z)-fundamental cycle of M if c is homol-
ogous to a Z-fundamental cycle of M . Moreover, we define the weightless
norm of a chain c =

∑m
j=1 fj ⊗ σj ∈ Cn(M ;α;Z) in reduced form by

|c|(α;Z) :=

m∑
j=1

µ(supp fj) ∈ R≥0.

The weightless parametrised Z-simplicial volume of M is given byM(α;Z) := inf
{
|c|(α;Z)

∣∣ c ∈ Cn(M ;α;Z) is an (α;Z)-fundamental

cycle of M
}
.

Theorem 4.6. Let M be an oriented closed connected manifold with funda-
mental group Γ, let α = Γ y (X,µ) be an essentially free ergodic standard
Γ-space, and let Z be a commutative ring with unit. Then

Costµ α− 1 ≤
M(α;Z).
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It should be noted that as coefficient ring Z in Theorem 4.6 we can also
take, e.g., finite fields. Therefore, we obtain an upper bound of cost in terms
of objects in positive characteristic.

Proof. We can prove this version in the same way as the `1-version in The-
orem 1.2. We will therefore only indicate the basic steps:

• As in the `1-case, we can assume without loss of generality that Γ is
infinite. Let S be the orbit relation of α.
• Let c =

∑m
j=1 fj ⊗ σj ∈ L∞(X,Z) ⊗ZΓ Cn(M̃ ;Z) be an (α,Z)-fun-

damental cycle of M in reduced form.
• Literally in the same way as in the `1-case, we define the relation R

on X associated with c.
• Then Lemma 4.1 shows that R is a subrelation of S and

CostµR ≤ |c|(α;Z).

• For µ-almost every x ∈ X, the chain

cx =

m∑
j=1

∑
γ∈Γ

fj(γ
−1 · x) · γ · σj

is a well-defined locally finite Z-fundamental cycle in C lf
n (M̃ ;Z) of M̃

(the proof of the Z-case [7, Lemma 2.5] also works for Z-coefficients).
• Using Lemma 4.4 and the arguments of the proof of Lemma 4.5, we

obtain that R ⊂ S is a translation finite extension.
• As in Section 4.5, we thus obtain Costµ α−1 ≤ |c|(α;Z) ≤

M(α;Z),
as claimed. �
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[14] C. Löh. Simplicial volume with Fp-coefficients, to appear in Period. Math. Hung.,

2019. Cited on page: 13
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