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Abstract. We show that the epimorphism problem is solvable for tar-
gets that are virtually cyclic or a product of an Abelian group and a
finite group.

1. Introduction

Given two finitely presented groups Γ and Λ, it is natural to wonder
if one can determine algorithmically whether there exists a group epimor-
phism Γ −→ Λ or not. For example, the existence of a group epimor-
phism π1(M) −→ π1(N) between the fundamental groups of oriented closed
connected manifolds M and N is a first, rudimentary, necessary condition
for the existence of a continuous map M −→ N of degree ±1, see [4, p. 178].

If the domain group Γ is trivial, then the epimorphism problem is equiv-
alent to deciding whether the target Λ is trivial or not. However, it is well
known that the triviality problem is undecidable [6]. Therefore, in general,
the epimorphism problem is undecidable.

Thus it is reasonable to restrict oneself to suitable classes of groups. In this
paper we want to study the following uniform version of the epimorphism
problem.

Question 1.1 (uniform epimorphism problem). Let C and D be two classes
of finitely presented groups. Does there exist an algorithm that solves the
uniform epimorphism problem from C onto D ? More precisely, does there
exist an algorithm that takes as an input a finite presentation 〈S |R〉 of
a group in C and a finite presentation 〈S′ |R′〉 of a group in D and that
determines whether there exists an epimorphism

∣∣〈S |R〉∣∣ −→ ∣∣〈S′ |R′〉∣∣ or
not. When C is the class of all finitely presented groups, then we refer to
the above as the uniform epimorphism problem onto D.

Example 1.2.

• As discussed above, the uniform epimorphism problem is undecidable
whenever C contains the trivial group and D equals the class of all
finitely presented groups.
• Let C = D be the class of all finitely presented nilpotent groups.

Remeslennikov showed that the uniform epimorphism problem from
C to D is not decidable [7]. In particular the uniform epimorphism
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problem onto C is undecidable. The proof by Remeslennikov is based
on a reduction to the unsolvability of Hilbert’s tenth problem.

In contrast note that if D is the class of finite groups or the class of
Abelian groups, then the uniform epimorphism problem onto D is actually
solvable. Indeed, for finite targets, we can compute the whole set of epi-
morphisms (Proposition 5.2), for Abelian targets, we can explicitly compute
the abelianisation of the domain group and apply the structure theory of
finitely generated Abelian groups.

It is natural to ask whether the uniform epimorphism problem is solvable
for classes of groups that are “close” to being Abelian or finite. This leads
us to the following question.

Question 1.3. Is the uniform epimorphism problem onto the class of vir-
tually Abelian groups solvable?

Our main result gives a partial answer to Question 1.3.

Theorem 1.4.

• The uniform epimorphism problem onto the class of groups that are a
direct product of a finitely generated Abelian group with a finite group
is solvable (see Theorem 5.5 for the precise formulation).
• The uniform epimorphism problem onto the class of groups that are

virtually cyclic is solvable (see Theorem 5.6 for the precise formulation).

As the epimorphism problem for virtually Abelian targets leads to a sim-
ilar problem in linear algebra (Section 3.2) as in the above case of nilpotent
targets studied by Remeslennikov [7], the following is plausible:

Conjecture 1.5. The uniform epimorphism problem onto the class of all
finitely generated virtually Abelian groups is not decidable.

We also have two questions on the two opposite rays of Bridson’s universe
of groups.

Question 1.6.

• Let D be the class of groups that are isomorphic to subgroups of prod-
ucts of a finitely generated Abelian group and a finite group. Is the
uniform epimorphism problem onto D solvable?
• Let H be the class of hyperbolic groups. Is the uniform epimorphism

problem from H onto H solvable?

We conclude this introduction with a discussion on the relevance of the
epimorphism problem for the isomorphism problem. To do so we introduce
the following notation: given a group G and a class of groups C we define
Epi(G,C) to be the class of quotients of G that lie in C. If two groups G and
H are isomorphic, then for any C we evidently have Epi(G,C) = Epi(H,C).

The set C = Fin of all isomorphism types of finite groups is well-studied.
In fact, we know that for two finitely generated groups G and H we have
Epi(G,Fin) = Epi(G,Fin) if and only if the profinite completions of the two
groups are isomorphic [8, Corollary 3.2.8].

In practice studying Epi(−,Fin) can be a very effective way for showing
that two groups are not isomorphic. For example this approach gets used
in the tabulation of knots.
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Nonetheless there are even very basic examples where this approach fails.
For example Baumslag [1] gave examples of pairs of non-isomorphic groups
G and H which are both virtually-Z, in fact they are both finite cyclic-
by-Z, but with Epi(G,Fin) = Epi(H,Fin). This shows that it is useful
to have larger classes of groups with which we can probe G and H. Let
Virt-Z be the class of groups that are virtually Z. It is not difficult to give
an algorithm that lists all isomorphism types in Virt-Z. This observation
together with Theorem 1.4 (2) implies that there exists an algorithm that
can detect the non-equality of Epi(G,Virt-Z) and Epi(H,Virt-Z) for given
finitely presented groups G and H.

A note on algorithms. In this article, we describe algorithms in natural
language. On the one hand, these pseudo-algorithms lack some concrete-
ness. On the other hand, these descriptions have the advantage that we do
not impose a programming paradigm (such as declarative, imperative, func-
tional, . . . ) and that we do not clutter the algorithmic ideas with irrelevant
technical details.

Moreover, as all of the algorithms that we consider will have ridiculous
worst-case complexity anyway, we do not pay any attention on efficiency.

Organisation of this article. After a short explanation of basic notation
(Section 2), we begin with characterisations of existence of epimorphisms
and translations of these characterisations into linear algebra (Section 3).
In Section 4, we explain how to solve the linear algebraic problems in specific
cases. Using these methods, we solve the epimorphism problem for targets
that are products of Abelian and finite groups as well as for virtually cyclic
targets (Theorem 5.5, Theorem 5.6).

Acknowledgements. We wish to thank Nicolaus Heuer, Christoforos Ne-
ofytidis, José Pedro Quintanilha and Alan Reid for helpful comments and
conversations. We would like to thank the anonymous referee for spotting a
mistake in one of the cases of the proof of Proposition 4.2.

2. Preliminaries

Here, we fix basic notation and terminology.

2.1. Generators and relations. A group presentation is a pair 〈S |R〉 con-
sisting of a set S and a subset R of the free group Free(S), freely generated
by S. We will usually view Free(S) as the set of reduced words in S ∪ S−1.
A group presentation 〈S |R〉 is finite if both S and R are finite. If 〈S |R〉 is a
group presentation, then we denote the group described by this presentation
by ∣∣〈S |R〉∣∣ := Free(S)/〈R〉/Free(S).

Definition 2.1 (symmetric presentation). A group presentation 〈S |R〉 is
symmetric if the following hold:

• Each relation in R is a positive word in S.
• For each s ∈ S there exists an s′ ∈ S with ss′ ∈ R or s′s ∈ R.
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Here, a word is positive with respect to a generating set if it only consists
of positive powers of generators. It should be noted that this notion of
symmetry of a presentation is different from the notion of “symmetrized
sets of relators” by Lyndon and Schupp.

2.2. Virtually Abelian groups. A group is virtually Abelian if it contains
a finite index subgroup that is Abelian.

Proposition 2.2. Let Λ be a finitely generated virtually Abelian group.
Then there exists a short exact sequence (of groups) of the form

1 // A // Λ // F // 1 ,

where F is a finite group and A ∼= Zd for some d ∈ N. In particular, Λ has
a finite presentation and is residually finite.

Proof. Let Λ be a finitely generated virtually Abelian group. We only need
to show that Λ contains a finite-index finitely generated free Abelian nor-
mal subgroup. By hypothesis, Λ contains a finite-index Abelian normal
subgroup B. Since Λ is finitely generated we see that B is also finitely gen-
erated. The normal core of a finite index free Abelian subgroup of B now
has all the required properties. �

In Proposition 5.4, we will explain how a constructive description of vir-
tually Abelian groups can be obtained from any finite presentation.

3. Characterisations of existence of epimorphisms

Setup 3.1. Let 〈S |R〉 be a symmetric finite presentation, let Γ :=
∣∣〈S |R〉∣∣

be the corresponding group, and let Λ be a finitely generated virtually
Abelian group, fitting into a short exact sequence

1 // A
i // Λ

π // F // 1 ,

where F is a finite group, A ∼=Z Zd, and i is the inclusion of a subgroup.

The key idea is to split the epimorphism problem Γ −→ Λ into finitely
many cases by

• first determining all epimorphisms Γ −→ F ,
• and then checking for each epimorphism ϕ : Γ −→ F whether there

exists an epimorphism Γ −→ Λ that induces ϕ.

3.1. An abstract characterisation.

Definition 3.2 (lifting/epimorphism set). In the situation of Setup 3.1, let
ϕ : Γ −→ F be an epimorphism and let K := kerϕ ⊂ Γ. Then we write
(Figure 1)

L(ϕ) :=
{
ϕ̃ ∈ Hom(Γ,Λ)

∣∣ π ◦ ϕ̃ = ϕ
}

K(ϕ) :=
{
ϕ̃|K

∣∣ ϕ̃ ∈ L(ϕ)
}

E(ϕ) :=
{
ψ ∈ K(ϕ)

∣∣ ψ(K) = A
}
.

Proposition 3.3. In the situation of Setup 3.1, let ϕ : Γ −→ F be an epi-
morphism. Then there exists an epimorphism ϕ̃ : Γ −→ Λ with π ◦ ϕ̃ = ϕ if
and only if E(ϕ) is non-empty.
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Figure 1. Some basic notation (Definition 3.2)

Proof. We begin with a simple observation: If ϕ̃ ∈ L(ϕ) and K = kerϕ,
then

im(ϕ̃) ∩A = im(ϕ̃) ∩ kerπ = ϕ̃(K).

Hence, if ϕ̃ ∈ L(ϕ) is an epimorphism, then ϕ̃(K) = A.
Conversely, suppose that A = ϕ̃(K). If y ∈ Λ, then we can write y in the

form
y = y′ · a

where y′ ∈ im ϕ̃ and a ∈ A (because π ◦ ϕ̃ = ϕ is surjective). Therefore,
there exist x′ ∈ Γ and k ∈ K with y′ = ϕ̃(x′) and a = ϕ̃(k). In particular,

ϕ̃(x′ · k) = y′ · a = y,

which shows that ϕ̃(Γ) = Λ. �

Corollary 3.4. In the situation of Setup 3.1, the following are equivalent:

(1) There exists an epimorphism Γ −→ Λ.
(2) There exists an epimorphism ϕ : Γ −→ F with E(ϕ) 6= ∅.

Proof. Let ϕ̃ : Γ −→ Λ be an epimorphism. Then ϕ := π ◦ ϕ̃ : Γ −→ F is an
epimorphism and thus E(ϕ) 6= ∅ by Proposition 3.3.

Conversely, if ϕ : Γ −→ F satisfies E(ϕ) 6= ∅, then Proposition 3.3 shows
in particular that there exists an epimorphism Γ −→ Λ. �

3.2. Translation to linear algebra. In view of Corollary 3.4, the epi-
morphism problem for Λ basically reduces to checking whether for given
epimorphisms ϕ : Γ −→ F , the set E(ϕ) is non-empty or not. However, in
general, the set K(ϕ) is not finite. Therefore, in order to be able to han-
dle E(ϕ) it will be useful to have an efficient description/parametrisation
of K(ϕ). We will now give such a description in terms of (integral) linear
algebra:

Setup 3.5. In the situation of Setup 3.1, we add a choice of a set-theoretic
section σ : F −→ Λ to our data.

Definition 3.6. In the situation of Setup 3.5, let ϕ : Γ −→ F be an epimor-
phism, let K := kerϕ ⊂ Γ, and let T ⊂ Free(S) be a finite set representing
a generating set of K.
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• A map f : S −→ A is hom-like if the map

σ ∗ f : S −→ Λ

s 7−→ σ
(
ϕ(s)

)
· f(s)

induces a well-defined group homomorphism Γ =
∣∣〈S |R〉∣∣ −→ Λ. If f

is hom-like, we denote this homomorphism by ψf : Γ −→ Λ.
• We then set

L(ϕ) :=
{
f ∈ map(S,A)

∣∣ f is hom-like
}

K(ϕ) :=
{
ψf |T ∈ map(T,A)

∣∣ f ∈ L(ϕ)
}

E(ϕ) :=
{
f ∈ K(ϕ)

∣∣ f(T ) generates A
}
.

The notion of being hom-like depends on both ϕ and σ. A straightforward
calculation shows that the notation in Definition 3.6 is just a translation of
Definition 3.2 into a more explicit framework:

Remark 3.7. In the situation of Setup 3.5, let ϕ : Γ −→ F be an epimor-
phism, let K := kerϕ ⊂ Γ, and let T ⊂ Free(S) be a finite set representing
a generating set in K. Then the diagram

L(ϕ)
·|S

//

·|K
��

L(ϕ)

ψ·|T
��

K(ϕ)
·|T

// K(ϕ)

E(ϕ)
·|T

//
?�

OO

E(ϕ)
?�

OO

is commutative and all three horizontal maps are bijections.

Corollary 3.8. In the situation of Setup 3.5, the following are equivalent:

(1) There exists an epimorphism Γ −→ Λ.
(2) There exists an epimorphism ϕ : Γ −→ F with E(ϕ) 6= ∅.

Proof. We only need to combine Corollary 3.4 with the translation from
Remark 3.7. �

Hence, the epimorphism problem for Λ reduces to deciding whether, for a
given epimorphism ϕ : Γ −→ F , the set E(ϕ) is non-empty or not (this will
be explained in full detail in the proofs of Theorem 5.5 and Theorem 5.6).

Proposition 3.9. In the situation of Setup 3.5, let ϕ : Γ −→ F be an epi-
morphism, let K := kerϕ ⊂ Γ, and let T ⊂ Free(S) be a finite set represent-
ing a generating set in K. Then

L(ϕ) ⊂ map(S,A)

K(ϕ) ⊂ map(T,A)

are empty or they are affine subspaces of the (finitely generated free) Z-
modules map(S,A) and map(T,A), respectively (with respect to the point-
wise module structures).
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Proof. Because the map ψ·|T : L(ϕ) −→ K(ϕ) is Z-linear and surjective (by
construction), it suffices to show that L(ϕ) is an affine subspace of map(S,A)
or empty. By construction, we have

L(ϕ) =
⋂
r∈R

L(ϕ, r),

where

L(ϕ, r) :=
{
f ∈ map(S,A)

∣∣ Free(σ ∗ f)(r) = e
}

(and Free(σ ∗ f) : Free(S) −→ Λ denotes the unique group homomorphism
extending the map σ ∗ f). Thus, it suffices to show that for each r ∈ R, the
set L(ϕ, r) is an affine subspace of map(S,A). We will accomplish this by
interpreting L(ϕ, r) as solution space of a suitable (inhomogeneous) Z-linear
equation.

Let r ∈ R, say r = s1 . . . sm with s1, . . . , sm ∈ S. Moreover, let

λj := σ
(
ϕ(sj)

)
for each j ∈ {1, . . . ,m}; then π(λ1 · · · · · λm) = ϕ(r) = e and thus the
product λ := λ1 · · · · · λm lies in A. We now proceed as follows:

Let f ∈ map(S,A) and, for j ∈ {1, . . . .m}, let

xj := f(sj).

Because A is a normal subgroup of Λ, for each λ ∈ Λ, the conjugation
homomorphism Cλ : Λ −→ Λ by λ restricts to an automorphism of A. We
then have

Free(σ ∗ f)(r) = λ1 · x1 · · · · · λm · xm
= Cλ1(x1) · Cλ1·λ2(x2) · · · · · Cλ1·····λm(xm) · λ1 · · · · · λm.

Hence, f lies in L(ϕ, r) if and only if

e = Cλ1(x1) · Cλ1·λ2(x2) · · · · · Cλ1·····λm(xm) · λ1 · · · · · λm.
Because λ = λ1 · · · · · λm ∈ A and the Cλj are automorphisms of A, we can
reformulate this condition equivalently as the additive linear inhomogeneous
equation

Cλ1(x1) + Cλ1·λ2(x2) + · · ·+ Cλ1·····λm(xm) = −λ.(1)

This shows that L(ϕ, r) is the solution set of an (inhomogeneous) Z-linear
equation in the A-valued variables “f(s)” with s ∈ S. More precisely, L(ϕ, r)
is the preimage of −λ under the Z-linear map

AS −→ A

(ys)s∈S 7−→
∑
s∈S

∑
j∈{1,...,m} with sj = s

Cλ1·····λj (ys). �

Remark 3.10. In the situation of Proposition 3.9, a finite “generating set”
for K(ϕ) can be computed from the given data, a basis of A, and matrices
for the conjugations Cσ(x) with x ∈ F . We just need to follow the proof of
Proposition 3.9:

• Using a basis of A, we can write down the corresponding “dual” bases
of map(S,A) and map(T,A), respectively.
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• For r ∈ R, we check whether ϕ(r) = e or not (using a multiplication
table for F ).
– If ϕ(r) 6= e, then L(ϕ, r) = ∅.
– If ϕ(r) = e, then we can write down the corresponding inhomo-

geneous Z-linear equation (1) for L(ϕ, r). Here, we use the fact
that

Cλj = Cσ(π(λj))

holds for all j ∈ {1, . . . ,m} (because A is Abelian). Using the
Smith normal form algorithm [3, Algorithm 2.4.14] we can then
determine whether L(ϕ, r) is empty or not. In the latter case, we
can compute a finite set X ⊂ map(S,A) and a b ∈ map(S,A) with

L(ϕ, r) = SpanZXr + br.

• Note that the finite intersection L(ϕ) =
⋂
r∈R L(ϕ, r) is just the solu-

tion set to an affine linear equation system. Thus once again using the
Smith normal form algorithm [3, Algorithm 2.4.14] we can compute
the finite intersection L(ϕ) =

⋂
r∈R L(ϕ, r) in the following sense: We

compute whether this intersection is empty or not; in the latter case,
we compute a finite set X ⊂ map(S,A) and an offset b ∈ map(S,A)
with

L(ϕ) = SpanZX + b.

• Because the (surjective) linear map ψ·|T : L(ϕ) −→ K(ϕ) admits an
explicit description (e.g., by a matrix), we can also compute a corre-
sponding description for K(ϕ).

3.3. Product targets. When dealing with targets that are a product of
a finitely generated free Abelian group and a finite group, the following
alternative description will be convenient:

Setup 3.11. Let 〈S |R〉 be a symmetric finite presentation, let Γ :=
∣∣〈S |R〉∣∣

be the corresponding group, let A be an Abelian group (in the applications,
this will be Zd), let F be a finite group, and let

Λ := A× F.
We write i : A −→ Λ for the inclusion as first factor and π : Λ −→ F for the
projection onto the second factor.

Definition 3.12. In the situation of Setup 3.11, let ϕ : Γ −→ F be an
epimorphism, let K := kerϕ ⊂ Γ, and let κ : Kab −→ Γab be the homomor-
phism on the Abelianisations induced by the inclusion K −→ Γ. Then, we
write (Figure 2)

Lab(ϕ) := Hom(Γab, A)

Kab(ϕ) :=
{
f ◦ κ ∈ Hom(Kab, A)

∣∣ f ∈ Lab(ϕ)
}

Eab(ϕ) :=
{
f ∈ Kab(ϕ)

∣∣ f(Kab) = A
}
.

Proposition 3.13. In the situation of Setup 3.11, the following are equiv-
alent:

(1) There exists an epimorphism Γ −→ A× F .
(2) There exists an epimorphism ϕ : Γ −→ F with Eab(ϕ) 6= ∅.
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K
πK // //

��

Kab
f◦κ

//

κ
��

A

i
��

Γ
πΓ // //

(f◦πΓ,ϕ)

44Γab

f

66

A× F

Figure 2. Some basic notation in the product case (Defini-
tion 3.12)

Proof. We consider the following commutative diagram:

L(ϕ) oo
À

·|K
��

Lab(ϕ)

·◦κ
��

K(ϕ) oo
Á Kab(ϕ)

E(ϕ) oo
Â

?�

OO

Eab(ϕ)
?�

OO

Let πΓ : Γ −→ Γab and πK : Γ −→ Kab denote the canonical projections.
Because the target group splits as a product A×F , homomorphisms to the
target split into pairs of homomorphisms to A and F , respectively. Thus,
we define

À : Lab(ϕ) −→ L(ϕ)

f 7−→ (f ◦ πΓ, ϕ)

Á : Kab(ϕ) −→ K(ϕ)

f 7−→ (f ◦ πK , e)
Â : Eab(ϕ) −→ E(ϕ)

f 7−→ (f ◦ πK , e).

Then the above diagram is commutative and the horizontal maps are bi-
jections (by definition of the various homomorphism sets). Therefore, the
claim follows from the corresponding statement on the left column (Corol-
lary 3.4). �

4. Solving the problems in linear algebra

In view of Corollary 3.8, Proposition 3.9 and Remark 3.10, we are inter-
ested in solving the following problem:

Question 4.1 (column-generation problem). Let d,N ∈ N. Does there
exist an algorithm that given a finite subset X ⊂ Md×N (Z), and a b ∈
Md×N (Z) decides whether there exists an element in SpanZX + b whose
columns generate Zd ?

In general, such algorithms do not exist [7]. However, as we will see,
special cases of the column-generation problem are solvable.
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4.1. The one-dimensional case. For the treatment of virtually cyclic tar-
get groups, we will use the following solution of the one-dimensional column-
generation problem:

Proposition 4.2. Let N ∈ N. Then there exists an algorithm that given a
finite subset X ⊂ ZN and b ∈ ZN decides whether there exists an element
in SpanZX + b whose entries generate Z.

Proof. Let X ⊂ ZN and let b ∈ ZN . In view of the Smith normal form
algorithm [3, Algorithm 2.4.14], we may assume without loss of generality
that

X = {α1 · e1, . . . , αN · eN},
where (e1, . . . , eN ) is the standard basis of ZN and α1, . . . , αN ∈ Z satisfy

α1 | α2, α2 | α3, . . . , αN−1 | αN
(note that these coefficients also can be zero). Moreover, we write A :=
SpanZX + b and we denote the coefficients of b by b1, . . . , bN .

The original decision problem is then equivalent to deciding whether there
exist x1, . . . , xN ∈ Z with

gcd(α1 · x1 + b1, . . . , αN · xN + bN ) = 1.

This problem can be solved as follows:

• If gcd(b1, . . . , bN ) = 1, then the answer is yes (we can take x1 = · · · =
xN = 0).
• If b = 0, then:

– If α1 = ±1, then the answer is yes (we can take x1 = 1, x2 = · · · =
xN = 0).

– If α1 = 0, then α2 = · · · = αN = 0 and so A = {0} + 0 = {0}.
Hence, the answer is no.

– If α1 6∈ {−1, 0, 1}, then gcd(α1, . . . , αN ) > 1, and so the answer is
no.

• If b 6= 0 and c := gcd(b1, . . . , bN ) > 1, then:
– If gcd(α1, c) > 1, then the answer is no because then we have also

gcd(α1, . . . , αN , c) > 1 and so gcd(α1 ·x1 +b1, . . . , αN ·xN +bN ) > 1
for all x1, . . . , xN ∈ Z.

– If gcd(α1, c) = 1, then:
∗ If there exists a j ∈ {2, . . . , N} with bj 6= 0, then the answer is

yes: By Lemma 4.3 below, there exists an x ∈ Z such that

gcd(x · α1 + b1, b2, . . . , bN ) = 1.

Hence, we can take x1 = x, x2 = · · · = xN = 0.
∗ If bj = 0 for all j ∈ {2, . . . , N}, then:

· If N = 1 or α2 = 0 (whence α2 = · · · = αN = 0), then the
answer is yes if and only if c is congruent to 1 modulo α1.
· If α2 6= 0, then the answer is yes: We can apply Lemma 4.3

below to α1, b1, α2 to find an x ∈ Z with

gcd(x · α1 + b1, α2) = 1.

Hence, we can take x1 = x, x2 = 1, x3 = · · · = xN = 0. �
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Lemma 4.3. Let N ∈ N≥2, let α1, b1, . . . , bN ∈ Z such that there exists
a j ∈ {2, . . . , N} with bj 6= 0 and

gcd(α1, b1, . . . , bN ) = 1.

Then there exists an x ∈ Z with

gcd(x · α1 + b1, b2, . . . , bN ) = 1.

Proof. Assume for a contradiction that for all x ∈ Z we have

cx := gcd(x · α1 + b1, b2, . . . , bN ) > 1.(2)

Let P ⊂ N be the set of primes that divide gcd(b2, . . . , bN ) (because bj 6= 0,
this set is finite). Let p ∈ P . Then we claim that there exists a dp ∈ Z with

Dp := {x ∈ Z | p divides cx} ⊂ dp + p · Z.

Let us prove this claim: Let x, y ∈ Dp. It then suffices to show that p
divides x−y (as then all elements of Dp share the same remainder modulo p).
On the one hand, we have p | x · α1 + b1 and p | y · α1 + b1, and so

p
∣∣ (x− y) · α1.

On the other hand, p does not divide α1: Because of p | cx, we have that
p | gcd(b2, . . . , bN ). If p | α1, then p | b1 (because p | x · α1 + b1) and so
p | gcd(α1, b1, . . . , bN ), which contradicts the assumptions in the proposition.
therefore, p does not divide α1.

Because p is prime, it follows that p | (x− y). This proves the claim.
By assumption (2), the construction of the sets Dp, and the fact that

each cx has prime factors in P , we have

Z =
⋃
p∈P

Dp ⊂
⋃
p∈P

(dp + p · Z).

Because P is finite, the Chinese remainder theorem yields an element z ∈ Z
such that for all p ∈ P we have

z 6≡ dp mod p.

But this contradicts Z =
⋃
p∈P Dp. Hence, we can conclude that there must

be an x ∈ Z with cx = 1. �

4.2. The symmetric homogeneous case. Let us now turn to the sit-
uation of target groups that decompose as a product A × F of a finitely
generated free Abelian group A and a finite group F . In this case, in the
situation of Proposition 3.9, the subset K(ϕ) ⊂ map(T,A) is linear sub-
space (and not only an affine subspace) and the equation (1) is invariant
under automorphisms of A (because all the conjugations C... are just the
identity map). Therefore, we end up with a very special version of the
column-generation problem (which turns out to be solvable).

However, instead of using the notation of the column-generation problem
(which is rather confusing in this case), we prefer to use an alternative de-
scription of K(ϕ) and E(ϕ), which is more convenient (see Proposition 3.13).
Proposition 4.4 will then enter in the proof of Theorem 5.5.
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Every finitely generated Z-module is finitely presented (because Z is
Noetherian) and can thus be described by a matrix over Z. If m,n ∈ N
and A ∈Mn×m(Z), then we write

M(A) := Zn/{A · x | x ∈ Zm}
for the finitely generated Z-module presented by A.

Proposition 4.4. There exists an algorithm that, given the input

• matrices A1 ∈Mn1×m1(Z) and A2 ∈Mn2×m2(Z),
• a homomorphism κ : M(A1) −→M(A2) (given as an n2 × n1-matrix ),
• a d ∈ Z,

decides whether there exists an epimorphism ψ : M(A1) −→ Zd such that

there is a homomorphism ψ̃ : M(A2) −→ Zd with ψ̃ ◦ κ = ψ.

M(A1)
ψ

// //

κ
��

Zd

M(A2)
ψ̃

77

Proof. Using the Smith normal form of A1 and A2, we can compute the
maximal free quotients of M(A1) and M(A2) and the corresponding contri-
bution of κ. Because the target group Zd is free Abelian, we can therefore
assume without loss of generality that M(A1) and M(A2) are free. More-
over, the image of κ can be computed and so we may assume that κ is the
inclusion of a submodule (of which we know a basis in Smith normal form).

Hence, we reduced the original problem to the following decision problem:
Given the input

• d, n ∈ N,
• α1, . . . , αn ∈ Z with α1 | α2, . . . , αn−1 | αn,

decide whether there exists an epimorphism ψ : N −→ Zd that admits an
extension to a homomorphism Zn −→ Zd, where

N := SpanZ{α1 · e1, . . . , αn · en} ⊂ Zn

This problem can be solved as follows: Let r ∈ {0, . . . , n} be the minimal
index for which αr+1 6∈ {1,−1} (where we set r := n if αn ∈ {1,−1}). We
then distinguish the following cases:

• If r ≥ d, then the answer is yes: clearly, the projection

ψ : Zn −→ Zd

x 7−→ (x1, . . . , xd)

onto the first d coordinates restricts to an epimorphism N −→ Zd.
• If r < d, then the answer is no:

– If n < d or αr+1 = 0, then the rank of N is smaller than d (and so
there does not exist any epimorphism N −→ Zd).

– If n ≥ d and αr+1 6= 0, then: Let ψ̃ : Zn −→ Zd be a homomorphism

and let ψ := ψ̃|N . We will now show that ψ is not surjective:
Let N ′ := ψ(N) and let p be a prime factor of αr+1. Then N =
Zr ⊕ p ·R for some submodule R ⊂ Zn−r and hence

N ′ ⊗Z Z/p =
(
ψ(Zr) + p · ψ(R)

)
⊗Z Z/p = ψ(Zr)⊗Z Z/p
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has Z/p-dimension at most r, which in turn is smaller than d. In
particular, ψ cannot be surjective. �

5. Solvability

Using the tools of Section 3 and Section 4, we will now establish solvability
of the epimorphism problem for targets that are products of Abelian groups
with finite groups or targets that are virtually cyclic (Theorem 5.5 and
Theorem 5.6).

5.1. Preparation. For the sake of completeness, we recall some basics from
algorithmic group theory.

Proposition 5.1. There exists an algorithm that, given the input

• a finite presentation 〈S |R〉,
determines a symmetric finite presentation 〈S′ |R′〉 with S ⊂ S′ such that
the inclusion S −→ S′ induces an isomorphism

∣∣〈S |R〉∣∣ −→ ∣∣〈S′ |R′〉∣∣.
Proof. For instance, we can take

S′ := S × {−1, 1}
R′ :=

{
(s, 1)(s,−1)

∣∣ s ∈ S}
∪
{

(s1, ε1) · · · (sm, εm)
∣∣ m ∈ N, s1, . . . , sm ∈ S, ε1, . . . , εm ∈ {−1, 1},
sε11 · · · s

εm
m ∈ R

}
.

Strictly speaking, in this construction, S is not a subset of S′, but this can
be fixed by renaming. �

Proposition 5.2. There exists an algorithm that, given the input

• a finite presentation 〈S |R〉,
• a finite group F (as set of elements and its multiplication table),

determines the set of all epimorphisms
∣∣〈S |R〉∣∣ −→ F .

Proof. Because S is a generating set of Γ :=
∣∣〈S |R〉∣∣, group homomor-

phisms Γ −→ F can be represented by maps S −→ F . We will compute the
set of all epimorphisms Γ −→ F in the sense that we compute the subset
of map(S, F ) consisting of all maps corresponding to epimorphisms Γ −→ F .

Let n := |S| and let S = {s1, . . . , sn}.
• Then we can compute the finite set map(S, F ).
• For each f ∈ map(S, F ), we can check whether for each r ∈ R, we have

Free(f)(r) = e in F (using the multiplication table in F ). Hence, we
can compute the finite set

H :=
{
f ∈ map(S, F )

∣∣ ∀r∈R Free(f) = e in F
}
,

which corresponds to the set of all homomorphisms Γ −→ F (via the
universal property of generators and relations).
• We then compute the set of all generating sets of F as follows: For

each subset T ⊂ F , the set

G(T ) :=
{
t1 · · · · · tn

∣∣ n ∈ {0, . . . , |F |}, t1, . . . , tn ∈ T ∪ T−1
}
⊂ F

equals the subgroup of F generated by T (by the pigeon-hole principle,
longer words in T ∪ T−1 cannot contribute new elements).
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Therefore, we can compute the set of all generating sets of F as the
(finite) set

G := {T ⊂ F | G(T ) = F}.
• Hence, we can compute

E :=
{
f ∈ H

∣∣ f(S) ∈ G
}
,

which corresponds to the set of all epimorphisms Γ −→ F . �

Proposition 5.3. There exists an algorithm that, given the input

• a symmetric finite presentation 〈S |R〉,
• a finite group F (as set of elements and its multiplication table),
• an epimorphism ϕ :

∣∣〈S |R〉∣∣ −→ F (given by the images on S),

determines a symmetric finite presentation of kerϕ (where the generators
are specified as words in S).

Proof. The given data allows to find a map σ : F −→ Free(S) with

ϕ ◦ π ◦ σ = idF ,

where π : Free(S) −→
∣∣〈S |R〉∣∣ denotes the canonical projection (by enu-

merating all elements in Free(S) and computing their images in F via ϕ◦π,
until a preimage is found for every element in F ); without loss of generality,
we may assume that σ(e) = ε. In other words, σ specifies a coset represen-
tative system for kerϕ in

∣∣〈S |R〉∣∣ (expressed in terms of words over S). We
write

c := σ ◦ ϕ ◦ π : Free(S) −→ Free(S)

for the map that determines the coset representative of an element selected
by σ. Then the words{

σ(f) · s(c(σ(f) · s))−1
∣∣ s ∈ S, f ∈ F}

describe a generating set of kerϕ [5, Theorem 2.7]. The Reidemeister rewrit-
ing process associated with respect to this generating set and the map c then
computes a finite presentation of kerϕ [5, Corollary 2.7.2, Theorem 2.8]. Fi-
nally, we symmetrise this finite presentation via Proposition 5.1. �

For virtually Abelian targets that do not decompose as a product of a
free Abelian group and a finite group, we first want to clarify what it means
that a virtually Abelian group is given as “input”. Naively, we could just
take a finite presentation 〈S |R〉 of which we know for some external reason
that the group

∣∣〈S |R〉∣∣ is virtually Abelian. A more constructive point of
view would require to include a reason why and how the given group is
virtually Abelian, i.e., that we are given a constructive description of this
group as extension of a finitely generated free Abelian group by a finite
group. In fact, every naive description can be turned algorithmically into a
constructive description. We will explain this now in detail:

Proposition 5.4. There exists an algorithm that, given the input

• a finite presentation 〈S |R〉 of a virtually Abelian group

determines

• a finite group F (as set of elements and its multiplication table),
• a d ∈ N,
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• a group homomorphism C : F −→ Aut(Zd),
• a cocycle c ∈ C2(F ;Zd) (with respect to the action C)

such that
∣∣〈S |R〉∣∣ is isomorphic to the extension group of Zd by F that

corresponds to the cocycle c.

Before giving the proof, we briefly review the cocycle notation: Let F be a
group, let A be an Abelian group, and let C : F −→ Aut(A) be an F -action
on A. Then C2(G), the bar resolution of G in degree 2 is the free ZF -module,
freely generated by the pairs ([g1|g2])g1,g2∈F . Then a cocycle c ∈ C2(F ;A)
is a ZF -linear map C2(G) −→ A that satisfies the cocycle condition

0 = C(g1)
(
c[g2|g3]

)
− c[g1 · g2|g3] + c[g1|g2 · g3]− c[g1|g2]

for all g1, g2, g3 ∈ F .
Now let us recall the following explicit description of the extension group Λ

of Zd by F corresponding to c [2, Chapter IV.3]: As underlying set, we take
the Cartesian product A× F and as multiplication, we use

(A× F )× (A× F ) −→ (A× F )(
(x, y), (x′, y′)

)
7−→

(
x+ C(y)(x′) + c(1 · [y|y′]), y · y′

)
;

the neutral element of Λ is (e′, eF ), where e′ = −c(1 · [eF |eF ]). Then Λ fits
into the extension

1 // A
i // Λ

π // F // 1

where

i : A −→ A× F
x 7−→ (x+ e′, eF )

π : Λ −→ F

(x, y) −→ y.

A set-theoretic section of π is, for instance,

σ : F −→ Λ

y 7−→ (0, y).

Proof of Proposition 5.4. Let Γ :=
∣∣〈S |R〉∣∣. We enumerate all (multipli-

cation tables of isomorphism types of) finite groups (e.g., as subgroups of
finite permutation groups). For every finite group F , we then perform the
following steps:

• We compute the (finite) set of all epimorphisms Γ −→ F (using Propo-
sition 5.2).
• For each epimorphism f : Γ −→ F , we compute a finite presenta-

tion 〈T |Q〉 of ker f (Proposition 5.3), where the elements of T are
specified as words in the given generating set S of Γ.
• We then check whether all elements in T commute with each other.

This is possible for the following reason: As finitely generated virtually
Abelian group, Γ is residually finite and therefore the uniform solution
of the word problem for residually finite groups [6, Theorem 5.2] pro-
vides us with an explicit algorithm to solve the word problem for Γ in
the presentation 〈S |R〉.
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• If not all elements in T commute with each other, then ker f is not
Abelian and we discard f and proceed with the next epimorphism/finite
group.
• If all elements in T commute with each other, then ker f is Abelian.

From the presentation 〈T |Q〉, we can compute (via the Smith normal
form algorithm) whether ker f is free Abelian or not.
– If ker f is not free Abelian, then we discard f and proceed with the

next epimorphism/finite group.
– If ker f is free Abelian, then we proceed as follows:
∗ We set A := ker f and we determine a basis B of A (via the

standard algorithm). This also provides us with a transformation
that allows to rewrite elements in T in this basis.
∗ We then compute the F -conjugation action F : Aut(A) with re-

spect to this basis: We search for f -lifts of each element in F and
then compute for each of these lifts x and each member b of B
the conjugation x · c · x−1 in Γ. The result will first be a word
in S ∪ S−1. We then rewrite this word in terms of T (via the
Reidemeister rewriting process; proof of Proposition 5.3), and
then in terms of B.
∗ Finally, we compute the cocycle c ∈ C2(F ;A) of the extension

1 // A = ker f // Γ
f
// F // 1

through the well-known explicit formula [2, Chapter IV.3].

Because
∣∣〈S |R〉∣∣ is known to be virtually Abelian, Proposition 2.2 guaran-

tees that this algorithm terminates. �

5.2. Product targets.

Theorem 5.5. There exists an algorithm that, given the input

• a finite presentation 〈S |R〉,
• a finite group F (as set of elements and its multiplication table),
• a d ∈ N,

decides whether there exists an epimorphism
∣∣〈S |R〉∣∣ −→ Zd × F or not.

Proof. We write Γ :=
∣∣〈S |R〉∣∣. In view of Proposition 3.13, it suffices to

check for each epimorphism ϕ : Γ −→ F , whether Eab(ϕ) = ∅ or not.

• By Proposition 5.1, we may assume without loss of generality that
〈S |R〉 is a symmetric finite presentation.
• We compute the set E of all epimorphisms Γ −→ F (as a subset

of map(S, F ); Proposition 5.2).
• We determine a finite presentation of Γab, namely

〈S |R ∪ {sts−1t−1 | s, t ∈ S}〉.

For each ϕ ∈ E, we determine finite presentations ofK := kerϕ (Propo-
sition 5.3) and then also of Kab. This allows us to find integral ma-
trices A1 and A2 with canonical isomorphisms Kab

∼=Z M(A1) and
Γab
∼=Z M(A2) as well as a matrix description of the corresponding

homomorphism M(A1) −→M(A2) induced by the inclusion K −→ Γ.



EPIMORPHISM TESTING WITH VIRTUALLY ABELIAN TARGETS 17

• We then compute (using these finite presentations in matrix form and
Proposition 4.4) the subset

Ẽ := {ϕ ∈ E
∣∣ Eab(ϕ) 6= ∅}

• – If Ẽ 6= ∅, then the answer is yes, there exists an epimorphism Γ −→
F .

– If Ẽ = ∅, the answer is no.

Correctness of this algorithm is guaranteed by Proposition 3.13. �

5.3. Virtually cyclic targets.

Theorem 5.6. There exists an algorithm that, given the input

• a finite presentation 〈S |R〉,
• a finite presentation 〈S′ |R′〉 of a group Λ that is virtually Z,

decides whether there exists an epimorphism
∣∣〈S |R〉∣∣ −→ Λ or not.

Proof of Theorem 5.6. We write Γ :=
∣∣〈S |R〉∣∣. In view of Corollary 3.8, it

suffices to check for each epimorphism ϕ : Γ −→ F , whether E(ϕ) = ∅ or
not.

• By Proposition 5.1, we may assume without loss of generality that
〈S |R〉 is a symmetric finite presentation.
• Using the algorithm of Proposition 5.4, we transform the presenta-

tion 〈S′ |R′〉 into
– a finite group F (as set of elements and its multiplication table),
– a group homomorphism C : F −→ Aut(Z),
– a cocycle c ∈ C2(F ;Z) (with respect to the action C),

such that Λ is isomorphic to the extension of Z by F corresponding to
the cocycle c.
• We compute the set E of all epimorphism Γ −→ F (as a subset

of map(S, F ); Proposition 5.2).
• We then compute (using the algorithm outlined in Remark 3.10, and

Proposition 4.2) the subset

Ẽ :=
{
ϕ ∈ E

∣∣ E(ϕ) 6= ∅
}
.

– If Ẽ 6= ∅, then the answer is yes, there exists an epimorphism Γ −→
F .

– If Ẽ = ∅, the answer is no.

Correctness of this algorithm is guaranteed by Corollary 3.8. �
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Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg
stefan.friedl@mathematik.uni-r.de, http://www.mathematik.uni-r.de/friedl
clara.loeh@mathematik.uni-r.de, http://www.mathematik.uni-r.de/loeh


	1. Introduction
	A note on algorithms
	Organisation of this article
	Acknowledgements.

	2. Preliminaries
	2.1. Generators and relations
	2.2. Virtually Abelian groups

	3. Characterisations of existence of epimorphisms
	3.1. An abstract characterisation
	3.2. Translation to linear algebra
	3.3. Product targets

	4. Solving the problems in linear algebra
	4.1. The one-dimensional case
	4.2. The symmetric homogeneous case

	5. Solvability
	5.1. Preparation
	5.2. Product targets
	5.3. Virtually cyclic targets

	References

