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ABSTRACT. Functorial semi-norms on singular homology give refined
“size” information on singular homology classes. A fundamental exam-
ple is the `1-semi-norm. We show that there exist finite functorial semi-
norms on singular homology that are exotic in the sense that they are not
carried by the `1-semi-norm.

1. INTRODUCTION

Functorial semi-norms on singular homology give refined “size” infor-
mation on singular homology classes. On the one hand, functorial semi-
norms lead to obstructions for mapping degrees. On the other hand, map-
ping degrees allow to construct functorial semi-norms on singular homol-
ogy. A fundamental example of a finite functorial semi-norm on singular
homology is the `1-semi-norm underlying the definition of simplicial vol-
ume (see Section 2 for the definitions).

While the general classification of functorial semi-norms on singular ho-
mology is out of reach, one can ask for the role of the `1-semi-norm among
all finite functorial semi-norms [1, Question 5.8]. A simple rescaling manip-
ulation shows that not all finite functorial semi-norms on singular homol-
ogy are dominated by a multiple of the `1-semi-norm [1, Section 5]. Relax-
ing the domination condition, we introduce the following relation between
functorial semi-norms:

Definition 1.1 (carriers of functorial semi-norms). Let d ∈ N. A functorial
semi-norm | · | on Hd( · ; R) carries a functorial semi-norm | · |′ if for all
topological spaces X and all α ∈ Hd(X; R) we have

|α| = 0 =⇒ |α|′ = 0.

In these terms, the current paper is concerned with the question whether
every finite functorial semi-norm on singular homology is carried by the
`1-semi-norm. All finite functorial semi-norms on Hd( · ; R) that are multi-
plicative under finite coverings are carried by the `1-semi-norm in a strong
sense [1, Proposition 7.11]. However, if the multiplicativity condition is
dropped, then exotic finite functorial semi-norms appear:

Theorem 1.2. Let d ∈ {3} ∪N≥5. Then there exists a finite functorial semi-
norm on Hd( · ; R) that is not carried by the `1-semi-norm.
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In particular, this answers a question by Crowley and Löh on “maximal-
ity” of the `1-semi-norm in the negative [1, Question 5.8].

Our construction of exotic finite functorial semi-norms is based on the
parallel observation about mapping degrees of manifolds:

Theorem 1.3. Let d ∈ {3}∪N≥5. Then there exists a strongly inflexible oriented
closed connected d-manifold M with ‖M‖ = 0. Moreover, we can choose M to be
aspherical.

In contrast, Theorem 1.3 is clearly wrong in dimension 2. However,
it is an open problem to decide whether all finite functorial semi-norms
on H2( · ; R) are carried by the `1-semi-norm. In the case of dimension 4,
both Theorem 1.2 and 1.3 remain open.

Organisation of this article. We recall the basic terminology for functorial
semi-norms in Section 2. Strongly inflexible manifolds are discussed in Sec-
tion 3. The proof of Theorem 1.3 is given in Section 3.3 and Theorem 1.2 is
then derived in Section 4. Moreover, we briefly we explain the relation with
secondary simplicial volume in Section 3.4.

2. FUNCTORIAL SEMI-NORMS

We begin by recalling the terminology for functorial semi-norms and the
`1-semi-norm in particular.

2.1. Terminology. In the following, semi-norms are allowed to have val-
ues in R≥0 ∪ {∞}, where we use the usual conventions that a + ∞ = ∞
and b ·∞ = ∞ holds for all a ∈ R≥0 and all b ∈ R>0.

Definition 2.1 (functorial semi-norm). Let d ∈ N. A functorial semi-norm
on Hd( · ; R) is a lift of the functor Hd( · ; R) : Top −→ VectR to a func-
tor Top −→ VectsnR , where VectsnR denotes the category of semi-normed R-
vector spaces with norm non-increasing R-linear maps. More concretely, a
functorial semi-norm on Hd( · ; R) consists of a choice of a semi-norm | · |
on Hd(X; R) for every topological space such that the following compati-
bility holds: If f : X −→ Y is a continuous map, then

∀α∈Hd(X;R)

∣∣Hd( f ; R)(α)
∣∣ ≤ |α|.

A functorial semi-norm on Hd( · ; R) is finite if |α| < ∞ for all singular
homology classes α in degree d.

Remark 2.2. If | · | is a functorial semi-norm on Hd( · ; R) and if f : N −→ M
is a continuous map between oriented closed connected d-manifolds, then

|deg f | ·
∣∣[M]R

∣∣ ≤ ∣∣[N]R
∣∣.

In particular: If 0 < |[M]R| < ∞, then M is strongly inflexible (Defini-
tion 3.1).

The classical example of a finite functorial semi-norm on Hd( · ; R) is
the `1-semi-norm (see Section 2.2 below). Other examples of functorial
semi-norms can be constructed by means of manifold topology, e.g., the
products-of-surfaces semi-norm [1, Sections 2, 7] or infinite functorial semi-
norms that exhibit exotic behaviour on certain classes of simply connected
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spaces of high dimension [1, Theorem 1.2]; such a construction principle
via manifold topology will be recalled in Section 4.1.

2.2. The `1-semi-norm and simplicial volume. For the sake of complete-
ness we include the definition of the `1-semi-norm on singular homology
and simplicial volume.

Definition 2.3 (`1-semi-norm). Let d ∈ N and let X be a topological space.
For a singular chain c = ∑m

j=1 aj · σj ∈ Cd(X; R) (in reduced form) we define

|c|1 :=
m

∑
j=1
|aj|.

I.e., | · |1 is the `1-norm on Cd(X; R) associated with the basis given by all
singular d-simplices in X. The semi-norm ‖ · ‖1 on Hd(X; R) induced by
the norm | · |1 via

‖ · ‖1 : Hd(X; R) −→ R≥0

α 7−→ inf
{
|c|1

∣∣ c ∈ Cd(X; R), ∂c = 0, [c] = α
}

is the `1-semi-norm on Hd(X; R).

A straightforward calculation shows that the `1-semi-norm indeed is a
functorial semi-norm on Hd( · ; R). Applying this semi-norm to funda-
mental classes of manifolds gives rise to Gromov’s simplicial volume [4]:

Definition 2.4 (simplicial volume/Gromov norm). The simplicial volume of
an oriented closed connected manifold M is defined by

‖M‖ :=
∥∥[M]R

∥∥
1 ∈ R≥0.

Geometrically speaking, simplicial volume measures how many singu-
lar simplices are needed to reconstruct (the real fundamental class of) the
given manifold. Simplicial volume allows for interesting applications, link-
ing topology and geometry of manifolds [4, 9]. Useful algebraic tools in the
context of simplicial volume are so-called bounded cohomology [4, 5] and
`1-homology [8].

3. STRONGLY INFLEXIBLE MANIFOLDS

We will now focus on the manifold aspects, discussing the basic termi-
nology of (strong) inflexibility and proving Theorem 1.3. Moreover, we will
discuss the meaning of this result in terms of secondary simplicial volume
(Section 3.4).

3.1. Terminology. We first recall the definition of (strong) inflexibility [1].

Definition 3.1 (inflexibility). Let M be an oriented closed connected mani-
fold of dimension n ∈N. For oriented closed connected n-manifolds N we
write

D(N, M) :=
{

deg f
∣∣ f ∈ map(N, M)

}
.

We call M inflexible if D(M, M) is finite. We call M strongly inflexible if for
every oriented closed connected n-manifold N the set D(N, M) is finite.
Conversely, we call M weakly flexible if it is not strongly inflexible, i.e., if
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there exists an oriented closed connected n-manifold N such that D(N, M)
is infinite.

For example, spheres and tori are flexible (i.e., not inflexible). Oriented
closed connected hyperbolic manifolds are strongly inflexible [4, 1]. In fact,
all oriented closed connected manifolds with non-zero simplicial volume
are strongly inflexible. More conceptually, all finite functorial semi-norms
provide obstructions to strong inflexibility and vice versa [1, 10]. We will
discuss this relation in more detail in Section 4.1.

3.2. Products of strongly inflexible manifolds. In many examples it is
known that products of inflexible manifolds are inflexible [1]. However,
it is not clear that this holds in general. In the case of strongly inflexible
manifolds, the situation simplifies as follows:

Proposition 3.2 (products of strongly inflexible manifolds). Let M1 and M2
be oriented closed connected strongly inflexible manifolds. Then also M1 ×M2 is
strongly inflexible.

The proof is based on Thom’s representation of homology classes by
manifolds and straightforward calculations in singular homology and co-
homology; similar arguments appear in related work on domination of/by
product manifolds [6, 7, 12].

Proof. We abbreviate n1 := dim M1, n2 := dim M2 and n := dim M1 ×
M2 = n1 + n2. Let N be an oriented closed connected n-manifold. We need
to show that D(N, M1 ×M2) is finite.

As first step, we will prove that the sets

F1 :=
{

Hn1( f1; Q)
∣∣ f1 ∈ map(N, M1)

}
⊂ HomQ

(
Hn1(N; Q), Hn1(M1; Q)

)
F2 :=

{
Hn2( f2; Q)

∣∣ f2 ∈ map(N, M2)
}
⊂ HomQ

(
Hn2(N; Q), Hn2(M2; Q)

)
are finite.

Because N is a closed manifold we know that Hn1(N; Q) is finite dimen-
sional. Let B1 ⊂ Hn1(N; Q) be a Q-basis. Let β ∈ B1. In view of Thom’s
representation of homology classes by manifolds [13] there exists an ori-
ented closed connected n1-manifold Nβ, a continuous map gβ : Nβ −→ N
and a kβ ∈ Q \ {0} with

Hn1(gβ; Q)[Nβ]Q = kβ · β ∈ Hn1(N; Q).

Because M1 is strongly inflexible, the set D(Nβ, M1) is finite. Composition
with gβ shows therefore that also the set{

d ∈ Z
∣∣ ∃ f1∈map(N,M1) Hn1( f1; Q)(β) = d · [M1]Q

}
is finite. Because B1 is a finite Q-basis of Hn1(N; Q) we hence obtain that
the set F1 is finite. For the same reason also F2 is finite.

As second step, we will now combine the finiteness of F1 and F2 with the
cohomological cross-product to derive finiteness of D(N, M1 ×M2).

To this end let f ∈ map(N, M1 ×M2). We write

f1 := p1 ◦ f ∈ map(N, M1) and f2 := p2 ◦ f ∈ map(N, M2),
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where p1 : M1 ×M2 −→ M1 and p2 : M1 ×M2 −→ M2 are the projections
onto the factors. We then obtain for the cohomological fundamental classes
with Q-coefficients that

deg f · [M1 ×M2]
∗
Q = Hn( f ; Q)[M1 ×M2]

∗
Q

= ε · Hn( f ; Q)
(
[M1]

∗
Q × [M2]

∗
Q

)
= ε · Hn( f ; Q)

(
Hn1(p1; Q)[M1]

∗
Q ∪ Hn2(p2; Q)[M2]

∗
Q

)
= ε · Hn1( f1; Q)[M1]

∗
Q ∪ Hn2( f2; Q)[M2]

∗
Q,

where ε := (−1)n1·n2 . In particular, the degree deg f is uniquely determined
by Hn1( f1; Q) and Hn2( f2; Q), which in turn (by the universal coefficient
theorem) are uniquely determined by Hn1( f1; Q) ∈ F1 and Hn2( f2; Q) ∈ F2.
Because the sets F1 and F2 are finite by the first step, we obtain that also
D(N, M1 ×M2) is finite. �

3.3. Strongly inflexible manifolds with trivial simplicial volume. We will
now give examples of stronlgy inflexible aspherical manifolds whose sim-
plicial volume is zero. We start with the case of dimension 3 and then use
inheritance of strong inflexibility under products to deal with the general
case.

Example 3.3 (dimension 3). Let M be the total space of an orientable non-
trivial S1-bundle over an oriented closed connected surface of genus at
least 2. Then M is strongly inflexible (see Corollary 3.9 below) and aspher-
ical. On the other hand, it is known that ‖M‖ = 0 [4, 5].

In combination with Proposition 3.2 we can now prove Theorem 1.3:

Proof of Theorem 1.3. Let M1 be an oriented closed connected aspherical 3-
manifold that is strongly inflexible and satisfies ‖M1‖ = 0; such manifolds
exist by Example 3.3.

If d ≥ 5, we take an oriented closed connected hyperbolic manifold M2
of dimension d− 3. Then M2 is aspherical and M2 is strongly inflexible.

In view of Proposition 3.2 also the product M1 ×M2 is strongly inflexi-
ble. Moreover, by construction, M1 × M2 is an oriented closed connected
aspherical d-manifold and we have [4]

‖M1 ×M2‖ ≤
(

d
3

)
· ‖M1‖ · ‖M2‖ = 0,

as desired. �

Remark 3.4. Using fundamental properties of `1-homology, one can see that
the examples of strongly inflexible manifolds M constructed in the proof
of Theorem 1.3 do not only have trivial simplicial volume but also are
`1-invisible, i.e., the image [M]`

1 ∈ H`1

∗ (M; R) of [M]R in `1-homology is
the zero class [8, Example 6.7]. In other words, `1-invisibility of manifolds
does not imply weak flexiblity. Notice that it is an open problem whether
all manifolds with trivial simplicial volume are `1-invisible.

We conclude this section with some open problems on strong inflexibil-
ity. Generalising Example 3.3, one could ask:
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Question 3.5. Let B be an oriented closed connected hyperbolic manifold and let
M −→ B be a non-trivial circle bundle over B. Under which conditions will M be
strongly inflexible?

In general, the fundamental class of B cannot be lifted to M and hence
does not provide a useful obstruction on M. However, one could try to
use a lift in `1-homology. More concretely: Let p : M −→ B be a circle
bundle. Then the induced map H`1

∗ (p; R) : H`1

∗ (M; R) −→ H`1

∗ (B; R) is an
isometric isomorphism [8]. In particular, if M and B are oriented closed
connected manifolds of dimension n and n− 1 respectively, we obtain the
codimension 1 class

α := H`1

n−1(p; R)−1([B]`
1
) ∈ H`1

n−1(M; R)

in `1-homology of M. For example, in the case that B is a hyperbolic surface
and p is a non-trivial bundle, this class was considered by Derbez in the
study of local rigidity of aspherical 3-manifolds [2]. More generally, if B is
an oriented closed connected hyperbolic manifold, the class α will be non-
trivial – it will even have non-zero `1-semi-norm. Can this class be used as
an obstruction to prove strong inflexibility of M ?

At the other extreme, it also remains an open problem to determine
whether there exist simply connected strongly inflexible manifolds (of non-
zero dimension).

3.4. Secondary simplicial volume. Secondary simplicial volume is a re-
finement of simplicial volume that allows to give refined information about
vanishing of simplicial volume.

Definition 3.6 (secondary simplicial volume). Let M be an oriented closed
connected manifold of dimension n ∈ N. The secondary simplicial volume
of M is defined to be the integral sequence

Σ(M) :=
(∥∥k · [M]Z

∥∥
1,Z

)
k∈N

,

where ‖ · ‖1,Z is the semi-norm on Hn( · ; Z) induced by the Z-valued
`1-norm on Cn( · ; Z).

Remark 3.7. For all oriented closed connected manifolds M the following
holds [10, Remark 5.4]:

||M|| = inf
k∈N>0

1
k
·
∥∥k · [M]Z

∥∥
1,Z.

In particular, vanishing of the simplicial volume of M can be expressed in
terms of the growth behaviour of the sequence Σ(M).

The strongest vanishing of simplicial volume occurs if the secondary
simplicial volume contains a bounded subsequence. We recall the complete
geometric characterisation of such manifolds in Propositions 3.8 and 3.11 in
terms of flexibility.

Proposition 3.8 ([10, Corollary 5.5]). Let M be an oriented closed connected
manifold of dimension n ∈N. Then the following are equivalent:

(1) The manifold M is weakly flexible.
(2) The secondary simplicial volume Σ(M) contains a bounded subsequence.
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(3) All finite functorial semi-norms on Hn( · ; R) vanish on [M]R.

We will now focus on the 3-dimensional case. The classification of weakly
flexible 3-manifolds by Derbez, Sun, and Wang [3] translates into the fol-
lowing result:

Corollary 3.9. Let M be an oriented closed connected 3-manifold. Then the fol-
lowing are equivalent:

(1) The secondary simplicial volume Σ(M) contains a bounded subsequence.
(2) Each prime summand of M is covered by a torus bundle over S1, by a

trivial S1-bundle or by S3.

In particular, the 3-manifolds from Example 3.3 are strongly inflexible.

Remark 3.10. In the previous section we observed that the 3-manifolds from
Example 3.3 even give examples for `1-invisible manifolds with non-trivial
secondary simplicial volume. In contrast, we asked whether all manifolds
with trivial secondary simplicial volume are `1-invisible. In dimension 3,
this easily follows from the characterization above and the following two
facts [8, Example 6.7]:

– Total spaces of fibrations of oriented closed connected manifolds
with fibre an oriented closed connected manifold that has amenable
fundamental group are `1-invisible.

– The connected sum of two `1-invisible 3-manifolds is `1-invisible.

Proposition 3.11 ([11, Theorem 3.2]). Let M be an oriented closed connected
manifold of dimension n ∈N>0. Then the following are equivalent:

(1) The secondary simplicial volume Σ(M) contains a bounded subsequence
with bound 1.

(2) The manifold M is dominated by Sn (i.e., there exists a map Sn −→ M of
non-zero degree) and n is odd.

Corollary 3.12. Let M be an oriented closed connected 3-manifold. Then the
following are equivalent:

(1) The secondary simplicial volume Σ(M) contains a bounded subsequence
with bound 1.

(2) The manifold M is spherical, i.e., finitely covered by S3.

Proof. If f : N −→ M is a map of non-trivial degree between oriented closed
connected manifolds of the same dimension, then the image of π1( f ) is a
finite index subgroup in π1(M). Therefore, it follows by the Elliptization
Theorem, that domination by S3 and being finitely covered by S3 is equiv-
alent for oriented closed connected 3-manifolds. �

4. EXOTIC FINITE FUNCTORIAL SEMI-NORMS

We will first recall how strongly inflexible manifolds generate interest-
ing functorial semi-norms (Section 4.1). Combining this construction with
Theorem 1.3 will then complete the proof of Theorem 1.2 (Section 4.2).
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4.1. Generating functorial semi-norms via manifolds. We will apply the
following principle to generate exotic functorial semi-norms:

Proposition 4.1 (domination semi-norm associated with a manifold [1, Sec-
tion 7.1]). Let d ∈N and let M be an oriented closed connected d-manifold. Then
there exists a functorial semi-norm | · |M on Hd( · ; R) satisfying∣∣[N]R

∣∣
M = sup

{
|D|

∣∣ D ∈ D(N, M)
}
∈ R≥0 ∪ {∞}

for all oriented closed connected d-manifolds N. The functorial semi-norm | · |M is
finite if and only if M is strongly inflexible.

For instance, in this way, functorial semi-norms on H64( · ; R) have
been constructed that are non-trivial on certain classes of simply connected
spaces [1, Theorem 1.2]. However, it is not known whether these are exam-
ples of finite functorial semi-norms.

4.2. Construction of exotic finite functorial semi-norms. We finally com-
plete the proof of Theorem 1.2.

Proof of Theorem 1.2. Let d ∈ {3} ∪N≥5. By Theorem 1.3 there exists a
strongly inflexible oriented closed connected d-manifold M with ‖M‖ = 0.
Let | · |M be the associated domination semi-norm on Hd( · ; R); because
M is strongly inflexible, this functorial semi-norm is indeed finite. By con-
struction, we have∣∣[M]R

∣∣
M = sup

{
|D|

∣∣ D ∈ D(M, M)
}
= 1,

but
∥∥[M]R

∥∥
1 = ‖M‖ = 0. In particular, | · |M is not carried by the `1-semi-

norm in the sense of Definition 1.1 (this holds even on fundamental classes
of aspherical manifolds). �

Question 4.2. Does there exist a finite functorial semi-norm on Hd( · ; R) that
carries all other finite functorial semi-norms on Hd( · ; R) ?
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