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ABSTRACT. Cubical simplicial volume is a variation on simplicial vol-
ume, based on cubes instead of simplices. Both invariants are homotopy
invariants of oriented closed connected manifolds. In this note, we prove
that cubical simplicial volume of oriented closed connected surfaces is
proportional to ordinary simplicial volume. More precisely, the cubical
simplicial volume of an oriented closed connected surface of genus g > 0
is equal to 2 · g− 2.

1. INTRODUCTION

Simplicial volume is a homotopy invariant of manifolds measuring the
minimal complexity of singular fundamental cycles with R-coefficients [3,
9, 6]. Similarly, cubical singular chains lead to cubical simplicial volume
(see Section 2 for the definitions).

In this note, we prove that cubical simplicial volume of oriented closed
connected surfaces is proportional to ordinary simplicial volume:

Theorem 1.1. Let S be an oriented closed connected surface of genus g > 0. Then

‖S‖� = 2 · g− 2 =
1
2
· ‖S‖4.

As in the case of simplicial volume [3, 1] the estimate ‖S‖� ≤ 2 · g− 2 can
be obtained from a corresponding estimate for integral cubical simplicial
volume and passage to finite coverings (Section 4).

Theorem 1.2. Let S be an oriented closed connected surface of genus g > 0. Then

‖S‖�Z ≤ 2 · g− 1 =
1
2
· ‖S‖4Z .

Conversely, subdividing singular squares into two singular simplices
shows that ‖S‖� ≥ 1/2 · ‖S‖4 = 1/2 · (4 · g− 4) (Section 3). Putting both
estimates together proves Theorem 1.1.

Using the classification of 3-manifolds, one can show that also in dimen-
sion 3 simplicial volume and cubical simplicial volme are proportional [7].
In higher dimensions, the question whether cubical and ordinary simplicial
volume are proportional is an open problem [4, 5.40].
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2. CUBICAL SIMPLICIAL VOLUME

We briefly review the definition of simplicial volume and cubical simpli-
cial volume and introduce some notation.

2.1. Simplicial volume. We denote the singular chain complex and the
singular homology groups by C4∗ and H4∗ , respectively. For R ∈ {Z, R}
we write | · |41,R for the `1-“norm” on C4∗ ( · ; R) associated with the R-ba-
sis S∗( · ) of singular simplices; notice that in the case R = Z we only have
homogeneity with respect to positive integers. Moreover, if X is a topolog-
ical space, we write

‖ · ‖41,R : H4∗ (X; R) −→ R≥0

α 7−→ inf
{
|c|41,R

∣∣ c ∈ C4∗ (X; R) is a cycle representing α
}

for the induced semi-“norm”; in the case R = Z, this semi-norm in general
will not be homogeneous. If M is an oriented closed connected manifold
and if R is a ring with unit, we denote the corresponding fundamental class
by [M]4R ∈ H4∗ (M; R).

Definition 2.1. Let M be an oriented closed connected manifold. Then the
simplicial volume and integral simplicial volume of M are defined by

‖M‖4 :=
∥∥[M]4R ‖

4
1,R

‖M‖4Z :=
∥∥[M]4Z‖

4
1,Z.

Example 2.2. The existence of self-maps of non-zero degree implies that
‖Sn‖4 = 0 for all n ∈N>0 and that ‖S1 × S1‖4 = 0 [3][6, Corollary 2.2].

Moreover, ‖S2‖4Z = 2: Because ∆2 has an odd number of faces, no singu-
lar 2-cycle can consist of a single singular simplex; on the other hand, one
can easily construct fundamental cycles of S2 that consist of two singular
simplices (with opposite signs).

It is easy to see that simplicial volume and integral simplicial volume
are homotopy invariants of oriented closed connected manifolds. On the
other hand, in the presence of negative curvature, simplicial volume is re-
lated to the Riemannian volume, which leads to geometric applications of
simplicial volume [3, 11, 6].

2.2. Cubical simplicial volume. We quickly recall the definition of cubi-
cal singular homology [8, 2]: Replacing standard simplices with standard
cubes leads to cubical singular homology: For n ∈ N let �n := [0, 1]n

denote the standard n-cube. If X is a topological space, then continuous
maps of type �n −→ X are called singular n-cubes of X. The geomet-
ric/combinatorial boundary of �n consists of 2 · n cubical faces. If R is a
ring with unit, then a suitable alternating sum of these faces allows to de-
fine a chain complex Q∗(X; R) of cubical singular chains with R-coefficients
(Figure 1). A singular cube is called degenerate if it factors over one of the
coordinate projections. Dividing out the subcomplex D∗(X; R) generated
by degenerate singular cubes leads to the cubical chain complex

C�∗ (X; R) := Q∗(X; R)/D∗(X; R)
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FIGURE 1. The boundary of the 2-cube consists of four 1-
cubes (with the indicated parametrisations and signs)

and hence to cubical singular homology H�∗ (X; R) (which admits a natural
extension to a functor). Notice that dividing out degenerate singular cubes
is necessary in order for cubical singular homology of a point to be concen-
trated in degree 0.

For R ∈ {Z, R}we write | · |�1,R for the `1-“norm” on Q∗( · ; R) associated
with the R-basis of cubical singular simplices. If X is a topological space,
we define the cubical `1-semi-norm

‖ · ‖�1,R : H�∗ (X; R) −→ R≥0

α 7−→ inf
{
|c|�1,R

∣∣ c ∈ Q∗(X; R) is a cycle

with [pX,R(c)] = α ∈ H�∗ (X; R)
}

,

where pX,R : Q∗(X; R) −→ C�∗ (X; R) is the canonical projection. I.e., we
only look at strict cubical cycles that represent the given class.

On the other hand, we can also consider the `1-“norm” | · |�1,R on C�∗ (X; R)
associated with the R-basis of non-degenerate cubical singular simplices. If
X is a topological space, we then write

‖ · ‖�1,R : H�∗ (X; R) −→ R≥0

α 7−→ inf
{
|c|�1,R

∣∣ c ∈ C�∗ (X; R) is a cycle representing α
}

for the induced semi-“norm”.

Proposition 2.3 (strict vs. degenerate cubical `1-semi-norm). Let X be a topo-
logical space and let α ∈ H�∗ (X; R). Then

‖α‖�1,R = ‖α‖�1,R.

Proof. By definition, ‖ · ‖�1,R ≤ ‖ · ‖�1,R. For the converse estimate we look at
the following symmetrisation: For n ∈ N let Σ�n be the isometry group of
the Euclidean n-cube �n and let

ΣX,n : Qn(X; R) −→ Qn(X; R)

map(�n, X) 3 c 7−→ 1
|Σ�n |

· ∑
π∈Σ�n

(−1)sgn π · c ◦ π;
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here, sgn encodes the orientation behaviour, i.e.,

sgn : Σ�n −→ {0, 1}

π 7−→
{

0 if π is orientation preserving
1 if π is orientation reversing.

A straightforward calculation shows that ΣX : Q∗(X; R) −→ Q∗(X; R) is
a chain map. By construction, ‖ΣX‖ ≤ 1 with respect to | · |�1,R. Further-
more, a reflection argument shows that ΣX maps degenerate singular cubes
to 0. Hence, ΣX factors over C�∗ (X; R) and composition with the projec-
tion pX : Q∗(X; R) −→ C�(X; R) yields a chain map

ΣX : C�∗ (X; R) −→ Q∗(X; R) −→ C�∗ (X; R).

Clearly, ‖ΣX‖ ≤ 1 with respect to | · |�1,R. Moreover, it is not hard to see that
H∗(ΣX) = idH�∗ (X;R). Therefore, ‖ · ‖�1,R ≤ ‖ · ‖�1,R. �

It is well known that there is a canonical natural (both in spaces and
coefficients) isomorphism H�∗ −→ H4∗ [2, Theorem V]. However, in gen-
eral this isomorphism is not isometric with respect to the corresponding
`1-semi-norms.

If M is an oriented closed connected manifold and if R is a ring with
unit, we denote the corresponding fundamental class in cubical singular
homology by [M]�R ∈ H�∗ (M; R).

Definition 2.4. Let M be an oriented closed connected manifold. Then the
cubical simplicial volume and integral cubical simplicial volume of M are de-
fined by

‖M‖� :=
∥∥[M]�R‖�1,R

‖M‖�Z :=
∥∥[M]�Z‖�1,Z.

In view of Proposition 2.3 we have ‖M‖� = ‖[M]�R‖�1,R for all oriented
closed connected manifolds M. It is not clear whether the same also holds
with integral coefficients.

Example 2.5. Again, self-maps show that ‖Sn‖� = 0 for all n ∈ N>0 and
that ‖S1 × S1‖� = 0.

Wrapping a square around S2 and mapping the whole boundary of �2

to a single point shows that ‖S2‖�Z = 1.

3. ESTIMATING CUBICAL SIMPLICIAL VOLUME OF SURFACES FROM BELOW

We will now provide the estimate for cubical simplicial volume of sur-
faces from below in terms of ordinary simplicial volume. To this end, we
subdivide singular squares into two singular simplices:
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FIGURE 2. Subdividing a square into two triangles

Lemma 3.1 (subdivision of squares).

(1) Let X be a topological space and let R be a ring with unit. Then the natural
map

ϕX,R : Q2(X; R) −→ C42 (X; R)

map(�2, X) 3 κ 7−→ κ ◦ i1 − κ ◦ i2

induces a well-defined natural map

ΦX,R : H2
(
Q∗(X; R)

)
−→ H42 (X; R)

[c] 7−→
[
ϕX(c)

]
.

Here, i1 · ∆2 −→ �2 and i2 · ∆2 −→ �2 denote the affine inclusion of the
“lower” and “upper” triangle into the square as indicated in Figure 2.

(2) In particular, we obtain a well-defined natural map

ΦX,R := ΦX,R ◦ H2(ΣX) : H�2 (X; R) −→ H42 (X; R)

(3) If S is an oriented closed connected surface, then ΦS,R maps fundamental
classes to fundamental classes, i.e., ΦS,R([S]�R) = ±[S]

4
R .

Proof. A straightforward calculation shows that ϕX,R maps strict cubical
cycles to ordinary singular cycles. Moreover, a suitable subdivision and
orientation of cubes into two prisms and hence six tetrahedra witnesses
that ϕX,R maps boundaries to boundaries. This shows the first part.

The second part follows directly fromt the first part.
The third part follows by considering the local case of (R2, R2 \ {0}), for

which the corresponding statement is easily seen to be true. �

Proposition 3.2 (estimate from below). Let S be an oriented closed connected
surface of genus g > 0. Then

‖S‖� ≥ 1
2
· ‖S‖4 = 2 · g− 2.

Proof. Clearly, we have ‖ϕS,R(c)‖41,R ≤ 2 · ‖c‖�1,R for all chains c in Q2(S; R).
Therefore, Proposition 2.3, Lemma 3.1, and ‖ΣS‖ ≤ 1 imply

‖S‖� =
∥∥[S]�R∥∥�1,R ≥

1
2
· ‖S‖4.

Moreover, it is well known that ‖S‖4 = 4 · g− 4 holds [3, 1]. �
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FIGURE 3. A representation of the oriented closed con-
nected surface of genus g, and a cubical fundamental cycle

4. ESTIMATING CUBICAL SIMPLICIAL VOLUME OF SURFACES FROM ABOVE

4.1. Integral cubical simplicial volume of surfaces. The core of the proof
of Theorem 1.2 is constructing explicit integral cubical fundamental cycles
of surfaces:

Proof of Theorem 1.2. By the classification of surfaces, we can view an ori-
ented closed connected surface S of genus g > 0 as a quotient of the regular
4 · g-gon Xg, where the edges a1, b1, α1, β1, . . . , ag, bg, αg, βg are oriented as
in Figure 3 and each latin edge is glued to the corresponding greek edge.
Moreover, we enumerate the vertices of Xg as indicated in Figure 3 from 1
to 4 · g. We introduce the following diagonals: For j ∈ {1, . . . , g} let cj be
the diagonal from vertex 4 · j to vertex 1; for j ∈ {2, . . . , g} let dj be the
diagonal from vertex 1 to vertex 4 · j− 2. Notice that cg = a1.

For a label a of directed edges/diagonals in Xg as above, we define the
singular 1-cube�a : �1 −→ Xg as the linear parametrisation of the directed
segment corresponding to a. For labels a, b, c, d of directed edges/diagonals
in Xg that form a quadrilateral in Xg oriented as in Figure 4, we define the
singular 2-cube

�a,b,c,d : �2 −→ Xg

as a parametrisation of the convex quadrilateral given by a, b, c, d that in-
duces on the boundary the linear parametrisation on the faces a, b, c, d, i.e.,
such that

∂�(�a,b,c,d) = �a +�b −�c −�d

holds.
We then consider the cubical 2-chain

�c1,b1,α1,β1 +
g

∑
j=2

(�aj,bj,dj,cj−1 +�cj,dj,αj,β j) ∈ Q2(Xg; Z)

and the corresponding induced cubical 2-chain sg on S. A straightforward
calculation shows that sg indeed is a cycle in Q∗(S; Z) (the singular 1-cubes
on the quotient S induced from a latin letter and the corresponding greek
letter coincide because of the gluing).
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FIGURE 4. A convex quadrilateral with labels and directed edges

Looking at the induced class in H2(S, S \ {x}; Z) for some point x ∈ S
that does not lie on any face of a cube in sg shows that [pS,Z(sg)] = ±[S]�Z ∈
H�2 (S; Z). Hence,

‖S‖�Z ≤ |sg|�1,Z = 2 · g− 1.

It remains to show that ‖S‖4Z = 4 · g − 2: By a similar construction as
above, it is well known that ‖S‖4Z ≤ 4 · g − 2 holds [3, 1]. However, no
fundamental cycle on S can realise the optimal value ‖S‖4 = 4 · g − 4
because no straight singular simplex on H2 has maximal volume [5]; hence,
‖S‖4Z > 4 · g − 4. Counting the number of faces in a singular chain with
Z-coefficients shows (because ∆2 has an odd number of faces) that ∑k

j=0 aj

is even for any Z-cycle ∑k
j=0 aj · σj ∈ C2(S; Z). Hence, also ∑k

j=0 |aj| is even,

and so ‖S‖4Z ≥ 4 · g− 2. �

4.2. Passage to finite coverings. We will now combine Theorem 1.2 with
multiplicativity of cubical simplicial volume under finite coverings to prove
the estimate from above (Proposition 4.2).

Proposition 4.1 (multiplicativity under finite coverings). Let N −→ M be
a finite covering of oriented closed connected manifolds, and let d ∈ N be the
number of sheets. Then

‖M‖� =
1
d
· ‖N‖�.

Proof. This can be shown literally in the same way as the corresponding
multiplicativity for ordinary simplicial volume [10, Corollary 1.19]: The
estimate “≤” follows because d-sheeted covering maps have mapping de-
gree ±d; the converse estimate “≥” follows via transfer of cubical singular
cycles. �

Proposition 4.2 (estimate from above). Let S be an oriented closed connected
surface of genus g > 0. Then

‖S‖� ≤ 2 · g− 2.
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Proof. For every d ∈ N>0 there is a d-sheeted covering S(d) −→ S of S
by an oriented closed connected surface S(d); such coverings can be con-
structed geometrically or can be obtained from subgroups of π1(S) of in-
dex d. Because the Euler characteristic is multiplicative under finite cover-
ings, we obtain that S(d) has genus

g(d) := d · (g− 1) + 1.

From Proposition 4.1 and Theorem 1.2 we therefore obtain

‖S‖� =
1
d
· ‖S(d)‖� ≤ 1

d
· ‖S(d)‖�Z ≤

1
d
·
(
2 · g(d)− 1

)
= 2 · g− 2 +

1
d

.

Taking the infimum over all d ∈N>0 gives the desired estimate. �
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