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Functorial semi-norms on singular homology measure the “size” of homol-
ogy classes. A geometrically meaningful example is the `1-semi-norm. How-
ever, the `1-semi-norm is not universal in the sense that it does not vanish
on as few classes as possible. We show that universal finite functorial semi-
norms do exist on singular homology on the category of topological spaces
that are homotopy equivalent to finite CW-complexes. Our arguments also
apply to more general settings of functorial semi-norms.

1 Introduction

A functorial semi-norm on a functor F : C → VectK to vector spaces over a normed
field K is a lift of F to a functor C → snVectK to the category of semi-normed vector
spaces over K (Definition 2.3). A functorial semi-norm on F is called universal if it van-
ishes on as few classes as possible among all functorial semi-norms on F (Definition 2.6).

A geometrically meaningful example of a functorial semi-norm is the `1-semi-norm on
singular homology [Gro82], which measures the “size” of homology classes in terms of
singular simplices and has applications to rigidity of manifolds [Gro82, BCG91, LS06,
CW18]. It is known that the `1-semi-norm is not universal in high degrees [FL19] and it
is thus natural to ask whether universal finite functorial semi-norms exist on singular ho-
mology [FL19, Question 4.2]. In the present article, we answer this question affirmatively
on the category of spaces homotopy equivalent to finite CW-complexes (Corollary 1.2).

More generally, using a suitable diagonalisation technique, we prove the following
general existence result (Section 5):

Theorem 1.1. Let C be a category that admits a skeleton with at most countably many
objects. Let K be a normed field and let F : C → VectK be a functor.

1. If K is countable and if F maps to VectωK , then F admits a universal finite func-
torial semi-norm.

2. If F maps to Vectfin
K , then F admits a universal finite functorial semi-norm.
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Here, Vectfin
K and VectωK denote the categories of K-vector spaces of finite or countable

dimension, respectively. If the countability assumption on the skeleton is dropped, then
in general there does not need to exist a universal finite functorial semi-norm (Section 6).

Instantiating Theorem 1.1 to singular homology, we obtain (Section 5.2):

Corollary 1.2. Let d ∈ N and let K be a normed field (e.g., R). Then the singular ho-
mology functor Hd( · ;K) admits a universal finite functorial semi-norm on the category
of all topological spaces that are homotopy equivalent to finite CW-complexes.

In degrees d ∈ {0, 1}, it is easy to determine explicit universal finite functorial semi-
norms on Hd( · ;R) (Example 2.10). However, the following problems remain open:

Question 1.3. What is the geometric meaning of universal finite functorial semi-norms
on singular homology? Are there “nice” examples, at least in degrees 2 and 3?

We reformulate Question 1.3 in more concrete terms in Remark 5.6.

Question 1.4. Let d ∈ N≥2. Does Corollary 1.2 also hold for singular homology on the
category of all topological spaces?

Remark 1.5 (a comment on sets). As underlying set theory, we use NBG-style sets and
classes; this leads to smallness assumptions in some places. Of course, similarly, one
could also work in other types of foundations.

Organisation of this article

We start by recalling the notion of (universal) finite functorial semi-norms as well as
basic examples and constructions in Section 2. In Section 3, we show that universality
is compatible with equivalences of categories. The key construction for universality is
presented in Section 4, which allows us to prove the existence results in Theorem 1.1
and Corollary 1.2 in Section 5. Moreover, Section 6 contains an example of a functor
that does not admit a universal finite functorial semi-norm.

2 Finite functorial semi-norms

We recall basic notions and examples for finite functorial semi-norms, with a focus on
the case of singular homology.

We use the following terminology: Let K be a normed field (e.g., Q or R with the
standard norm). A semi-norm on a K-vector space V is a function | · | : V → R≥0∪{∞}
that satisfies

• |0| = 0, the

• triangle-inequality, i.e., for all x, y ∈ V we have |x+ y| ≤ |x|+ |y|, and

• homogeneity, i.e., for all a ∈ K \ {0} and all x ∈ V we have |a · x| = |a| · |x|
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(with the usual conventions regarding ∞). A semi-norm is finite if ∞ is not attained.
We denote the category of K-vector spaces by VectK and the category of semi-normed
K-vector spaces with norm non-increasing K-homomorphisms by snVectK .

Setup 2.1. Let C be a category, let K be a normed field, and let F : C → VectK be a
functor.

2.1 Functorial semi-norms

Definition 2.2 (F -element). In the situation of Setup 2.1, an F -element is a pair (X,α)
where X ∈ Ob(C) and α ∈ F (X). We often suppress X in the notation and simply say
that α is an F -element.

Definition 2.3 ((finite) functorial semi-norm). We consider the situation of Setup 2.1. A
functorial semi-norm on F is a lift of F to a functor σ : C → snVectK . Explicitly, the
latter consists of a semi-norm | · |σ on F (X) for all objects X of C, such that for all
morphisms f : X → Y of C and all α ∈ F (X) we have∣∣F (f)(α)

∣∣
σ
≤ |α|σ.

A functorial semi-norm on F is finite if | · |σ is finite on F (X) for all X.

Example 2.4 (trivial functorial semi-norm). Every functor in Setup 2.1 admits the trivial
functorial semi-norm, i.e., the semi-norm that vanishes on every input.

Definition 2.5 (carries). In the situation of Setup 2.1, let σ and τ be functorial semi-
norms on F . Then σ carries τ if for all F -elements α, we have

|α|σ = 0 =⇒ |α|τ = 0.

Definition 2.6 (universal finite functorial semi-norm). In the situation of Setup 2.1, a
universal finite functorial semi-norm on F is a finite functorial semi-norm on F that
carries all other finite functorial semi-norms on F .

Remark 2.7. Definition 2.6 is not interesting for the non-finite case, because the functo-
rial semi-norm that is ∞ everywhere, except at 0, is always universal.

Example 2.8 (`1-semi-norm). Let d ∈ N. For a topological space X, we set

∣∣∣ N∑
j=1

aj · σj
∣∣∣
1

:=

N∑
j=1

|aj |

for all reduced singular chains
∑N

j=1 aj · σj in Cd(X;R). The norm | · |1 on Cd(X;R)
induces a finite semi-norm ‖ · ‖1 on singular homology Hd(X;R) via

‖α‖1 := inf
{
|c|1

∣∣ c ∈ Cd(X;R) is a cycle representing α
}
,



4 2 Finite functorial semi-norms

which is easily seen to be functorial in the sense of Definition 2.3. Hence, we obtain the
`1-semi-norm ‖ · ‖1 on Hd( · ;R).

An invariant defined in terms of the `1-semi-norm is the simplicial volume, introduced
by Gromov [Gro82]: For an oriented closed connected d-dimensional manifold M , the
simplicial volume ‖M‖ of M is the `1-semi-norm ‖M‖ := ‖[M ]R‖1 of the (real) funda-
mental class [M ]R ∈ Hd(M ;R) of M .

The `1-semi-norm on path-connected spaces also admits other geometric descriptions:
It is equivalent (in the sense of semi-norms) to the volume entropy semi-norm [BS19]
and to the semi-norm generated by URC-manifolds (Example 2.15).

Example 2.9 (non-universality of the `1-semi-norm). For each d ∈ {3}∪N≥5 there exists a
finite functorial semi-norm on Hd( · ;R) that is not carried by the `1-semi-norm [FL19,
Theorem 1.2]. However, all finite functorial semi-norms that are multiplicative under
finite coverings are carried by the `1-semi-norm [CL15, Proposition 7.11].

Example 2.10 (singular homology in degrees 0 and 1). A direct computation shows that
for every topological space X and every α ∈ H0(X;R) with α 6= 0, we have ‖α‖1 6= 0.
In particular, ‖ · ‖1 is a universal finite functorial semi-norm on H0( · ;R).

In contrast, every finite functorial semi-norm |·| on H1( · ;R) vanishes: We first consider
the circle. Because S1 admits a self-map f : S1 → S1 of degree 2, functoriality gives the
estimate 2 ·

∣∣[S1]R
∣∣ =

∣∣H1(f ;R)[S1]R
∣∣ ≤ ∣∣[S1]R

∣∣ and thus∣∣[S1]R
∣∣ = 0.

For the general case, we observe that the Hurewicz theorem and the universal coeffi-
cient theorem show that for every topological space X and every α ∈ H1(X;R), there
exists N ∈ N, continuous maps f1, . . . , fN ∈ map(S1, X), and b1, . . . , bN ∈ R with

α =
N∑
j=1

bj ·H1(fj ;R)([S1]R).

Therefore, functoriality and the triangle inequality lead to |α| ≤
∑N

j=1 |bj | ·
∣∣[S1]R

∣∣ = 0,

as claimed. In particular, the `1-semi-norm is also universal on H1( · ;R). The principle
of representing homology classes by special classes will be discussed in more detail in
Section 2.2.

Example 2.11 (representable and countably additive functors). In the situation of Setup 2.1,
if K ∈ {Q,R} and if the functor F is representable or countably additive, then the trivial
functorial semi-norm on F is universal [Löh16, Corollaries 4.1 and 4.5].

2.2 Generating functorial semi-norms

Functorial semi-norms on singular homology lead to estimates for mapping degrees;
conversely, properties of mapping degrees can be used to generate functorial semi-norms
on singular homology [CL15, Section 4]. This way of “generating functorial semi-norms
via special spaces” generalises as follows:
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Definition 2.12 (generated semi-norm). In the situation of Setup 2.1, let S be a class of
F -elements and let v : S → R≥0 ∪ {∞}.

• An S-representation of an F -element (X,α) is a representation of the form

α =

N∑
j=1

bj · F (fj)(αj)

with N ∈ N, coefficients b1, . . . , bN ∈ K, F -elements (X1, α1), . . . , (XN , αN ) ∈ S,
and morphisms f1 : X1 → X, . . . , fN : XN → X in C.

• The semi-norm | · |v on F generated by v is defined by: For all F -elements α, we
set

|α|v := inf
{ N∑
j=1

|bj | · v(αj)
∣∣∣ N∑
j=1

bj · F (fj)(αj) is an S-representation of α
}
,

with inf ∅ :=∞.

Proposition 2.13 (generating functorial semi-norms via functions). In the situation of Def-
inition 2.12, we have:

1. The semi-norm | · |v generated by v is a functorial semi-norm on F .

2. For all F -elements α in S, we have |α|v ≤ v(α).

3. If v′ : S → R≥0 ∪ {∞} is a function with v′ ≥ v (pointwise), then |α|v′ ≥ |α|v for
all F -elements α. In particular, | · |v′ carries | · |v.

4. If S contains all F -elements given by a skeleton of C and v does not attain ∞,
then | · |v is finite.

5. Let σ be a functorial semi-norm on F and let v ≥ | · |σ on S. Then, for all F -ele-
ments α, we have |α|v ≥ |α|σ.

Proof. Using functoriality of F , it is easy to see that | · |v is a functorial semi-norm.
Also (3) follows immediately from the definition. For an F -element (X,α), the identity
morphism X → X shows (2). Property (4) is a direct consequence of (2) and the fact
that a functorial semi-norm is uniquely determined by its restriction to a skeleton. We
now prove (5): Let

∑N
j=1 bj · F (fj)(αj) = α be an S-representation of α. Then

|α|σ ≤
N∑
j=1

|bj | ·
∣∣F (fj)(αj)

∣∣
σ
≤

N∑
j=1

|bj | · |αj |σ ≤
N∑
j=1

|bj | · v(αj)

by the triangle inequality, functoriality of σ, and the assumption on v. Taking the infi-
mum over all S-representations of α, we obtain |α|v ≥ |α|σ.
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Remark 2.14 (finiteness of generated semi-norms). Proposition 2.13 (4) only provides a
sufficient criterion for | · |v to be finite. For example, let d ∈ N and let us consider the case
F = Hd( · ;R) : Top→ VectR. Then, | · |v is finite whenever S contains and v is finite on
enough fundamental classes of manifolds, because rational homology classes can (up to
multiplicity) be realised as the push-forward of fundamental classes by a classical result
by Thom [Tho54][CL15, Corollary 3.2]. Notably, it is already enough to take the finite
coverings of a single URC-manifold in dimension d (Example 2.15).

Example 2.15 (semi-norms generated by URC-manifolds). Let d ∈ N. An oriented closed
connected d-manifold M is a URC-manifold (universal realisation of cycles) [Gai13a,
p. 1747] if for every topological space X and every α ∈ Hd(X;Z), there exists a finite-
sheeted covering M of M , a map f ∈ map(M,X), and b ∈ Z \ {0} with

Hd(f ;Z)
(
[M ]Z

)
= b · α.

For example, the point is a URC-manifold in dimension 0, the circle is a URC-manifold
in dimension 1, and oriented closed connected surfaces of genus at least 2 are URC-
manifolds in dimension 2. Gaifullin showed that (aspherical) URC-manifolds exist in
every dimension [Gai13a, Theorem 1.3].

If M is a URC-manifold in dimension d and S is the class of fundamental classes of all
connected finite-sheeted covering manifolds of M , then every homology class in Hd( · ;R)
admits an S-representation. Thus, each function v : S → R≥0 generates a finite functorial
semi-norm on Hd( · ;R) [CL15, Example 7.10].

If v is given by the covering degree, then | · |v is equivalent to the `1-semi-norm
on Hd( · ;R) [Gai13b, Theorem 6.1].

3 Universality under equivalence of categories

Universal finite functorial semi-norms are compatible with equivalences of categories
(Corollary 3.3). Indeed, a stronger result holds: In Proposition 3.2, we show that universal
functorial semi-norms can be transferred along “weak retractions” of categories.

Setup 3.1. Let C and D be categories, let K be a normed field and let F : C → VectK
and G : D → VectK be functors. Let A : C → D be a functor such that G◦A is naturally
isomorphic to F .

C D

VectK

A

F G

B

Proposition 3.2. In the situation of Setup 3.1, let B : D → C be a right-inverse of A,
i.e., we assume that A ◦ B is naturally isomorphic to the identity on D. Then, if F
admits a universal functorial semi-norm, so does G.

As an immediate consequence, we obtain:
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Corollary 3.3. In the situation of Setup 3.1, assume that A : C → D is an equivalence of
categories. Then F admits a universal finite functorial semi-norm if and only if G does.

Before we give the proof of Proposition 3.2, we make a few remarks about the interplay
between functorial semi-norms and natural isomorphisms:

Remark 3.4 (non-strict functorial semi-norms). In the situation of Setup 3.1 and given a
functorial semi-norm τ on G, one would like to precompose τ with A to get a functorial
semi-norm on F . However, as G ◦ A is not necessarily equal to F , also τ ◦ A will not
necessarily be a strict lift of F , but only up to natural isomorphism. In other words: if
U : snVectK → VectK denotes the forgetful functor, the right triangle in the diagram

C D

VectK

snVectK

A

F

τ◦A

G

τ

U

commutes on the nose while the other two only commute up to natural isomorphism.
One possible way to proceed would be to relax the definition of functorial semi-norm:

Instead of U ◦ τ = G we only require U ◦ τ ∼= G, and then the functorial semi-norm
consists of τ together with such a natural isomorphism.

This sounds like the correct setting to pursue the categorical view on functorial semi-
norms (or formalisation in a proof assistant [Löh22, Chapter 4.1.2]). On the other hand,
this setting does not actually increase the pool of functorial semi-norms: Indeed, if
η : G ⇒ U ◦ τ is a natural isomorphism, the technique from Remark 3.5 shows how
to construct a (strict) functorial semi-norm on G “with the same semi-norms”.

Remark 3.5 (pull-back along natural transformation). Let C be a category, let K be a
normed field, let η : F ⇒ F ′ be a natural transformation of functors C → VectK , and let
σ be a functorial semi-norm on F ′. Then, by naturality of η,

C → snVectK ,

{
X 7→

(
F (X), (ηX)∗| · |σ

)
on objects

f 7→ F (f) on morphisms

defines a functorial semi-norm η∗σ on F .

Proof of Proposition 3.2. First, we first fix some notation: Let λ : IdD ⇒ A ◦ B and
ψ : F ⇒ G ◦ A be a natural isomorphisms. Then ϕ := ψ−1 ◦ G(λ) is a natural isomor-
phism G ⇒ F ◦ B. We consider the induced functorial semi-norm σ̃ := ϕ∗(σ ◦ B) on G
(Remark 3.5).

We show that σ̃ is universal for G: Let τ be a finite functorial semi-norm on G. The
idea is straightforward: We go to the side of F , compare the result with the universal σ
on F , and then derive universality of σ̃ on G. However, this involves a round-trip from D
over C back to D, and thus we have to take λ into account. More precisely, we proceed
as follows:
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1. Identifying the goal: Let (Y, β̃) be a G-element with |β̃|σ̃ = 0. We need to show
that we also have |β̃|τ = 0.

2. Twisting τ to prepare for the round-trip: We factor in λ by considering the finite
functorial semi-norm τλ := G(λ)∗(τ ◦A ◦B) on G.

3. Going to C: We then use the finite functorial semi-norm τ̃ := ψ∗(τλ ◦A) on F .

Let β := ϕY (β̃) ∈ F (B(Y )) be the element corresponding to β̃. By construction,
we have

|β|σ =
∣∣ϕY (β̃)

∣∣
σ

=
∣∣ϕY (β̃)

∣∣
σ◦B = |β̃|ϕ∗(σ◦B) = |β̃|σ̃ = 0;

in the second step, we reinterpreted ϕY (β̃) as element of F ◦B(Y ), so that instead
of σ on B(Y ) we can equivalently apply σ ◦B on Y .

From universality of σ, we hence obtain |β|τ̃ = 0.

4. Translating the result back to D: To keep the notation light, we will not explicitly
annotate the objects to which the natural transformations are applied. We compute

0 = |β|τ̃ = |β|ψ∗(τλ◦A) =
∣∣ψ(β)

∣∣
τλ◦A

=
∣∣ψ(β)

∣∣
τλ

=
∣∣ψ(β)

∣∣
G(λ)∗(τ◦A◦B)

=
∣∣G(λ)(ψ(β))

∣∣
τ◦A◦B =

∣∣G(λ)(ψ(β))
∣∣
τ
.

For every object Z of D, the map G(λZ) is an isometry with respect to | · |τ because
λZ is an isomorphism in D and τ is a functorial semi-norm on G. Therefore, we
can continue with∣∣G(λ)(ψ(β))

∣∣
τ

=
∣∣ψ(β)

∣∣
τ

=
∣∣ψ(ϕ(β̃))

∣∣
τ

=
∣∣ψ ◦ ψ−1 ◦G(λ)(β̃)

∣∣
τ

=
∣∣G(λ)(β̃)

∣∣
τ

= |β̃|τ .

We conclude that |β̃|τ = 0, as claimed.

4 Vanishing loci

In this section, we reformulate the “carries” relation (Definition 2.5) in terms of vanishing
loci (Definition 4.2, Remark 4.3).

The vanishing loci provide a convenient language to reason about families of functorial
semi-norms and their relations: In Section 4.2, we use a diagonalisation construction on
the associated functions to construct a functorial semi-norm that carries countably many
given functorial semi-norms (Proposition 4.4 and Corollary 4.5).

Setup 4.1. Let C be a category, let K be a normed field, let F : C → VectK be a functor,
and let S be a class of F -elements.
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4.1 A reformulation of carrying

Definition 4.2 (vanishing locus). We assume Setup 4.1; let X ∈ Ob(C).

• For a functorial semi-norm σ on F , we define the vanishing locus of σ on X by

Nσ(X) :=
{
α ∈ F (X)

∣∣ |α|σ = 0
}
.

• If C is small, we write Fsn(F ) for the class of all finite functorial semi-norms on F
and set

N(X) :=
⋂

σ∈Fsn(F )

Nσ(X).

• For a function v : S → R≥0, we write Nv(X) for N|·|v(X), where |·|v is the functorial
semi-norm generated by v (Proposition 2.13).

In the situation of the definition, Nσ(X) and N(X) are K-subspaces of F (X) and
N(X) ⊂ Nσ(X). Furthermore, if we regard Fsn(F ) as the preorder category with respect
to the “carries” relation, an initial object of this category is precisely a universal finite
functorial semi-norm on F , while the trivial functorial semi-norm is always a terminal
one.

Remark 4.3. In the situation of Setup 4.1, let σ, τ be functorial semi-norms on F .

1. Then σ carries τ if and only if

∀X∈Ob(C) Nσ(X) ⊂ Nτ (X).

2. If C is small, σ is universal on F if and only if it is finite and fulfills

∀X∈Ob(C) Nσ(X) ⊂ N(X).

3. By Proposition 2.13 (5), the functorial semi-norm generated by S → R≥0, α 7→ |α|σ
carries σ, i.e.,

∀X∈Ob(C) Nα 7→|α|σ(X) ⊂ Nσ(X).

4.2 Carrying a sequence of semi-norms

The main ingredient for the proof of Theorem 1.1 is that we can carry sequences of finite
functorial semi-norms generated on a countable class of elements:

Proposition 4.4. In the situation of Setup 4.1, let S be countable and let (vn)n∈N be a
sequence of functions S → R≥0. Then there exists a function v : S → R≥0 such that | · |v
carries all (| · |vn)n∈N, i.e., with

∀X∈Ob(C) Nv(X) ⊂
⋂
n∈N

Nvn(X).
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In particular: If C is small, if every F -element admits an S-representation, and if

∀X∈Ob(C)

⋂
n∈N

Nvn(X) ⊂ N(X),

then | · |v is universal for F .

Proof. The second part follows from the first part and the characterisation of universality
from Remark 4.3 (2).

We now prove the first part. As indicated by Proposition 2.13 (3), we would like to set
“v := supn vn”, but of course this might not produce a finite valued function. So instead,
we choose

v : S → R≥0, αn 7→ max
{
vj(αn)

∣∣ j ∈ {−1, . . . ,m}
}
,

where we fix and implicitly use an enumeration (Xn, αn)n∈N of S and where v−1 := 1.
In order to show that v has the claimed property, we let m ∈ N and show that | · |v

carries | · |vm : We introduce the following constants: Let q−1 := 1, let

qk :=

{
v(αk) · |αk|−1

vm if |αk|vm > 0,

1 if |αk|vm = 0

for all k ∈ {0, . . . ,m}, and let

Q := min
{
qk
∣∣ k ∈ {−1, . . . ,m}

}
.

By construction, we have that Q ∈ (0, 1]. For every F -element α and every S-represen-
tation α =

∑N
j=1 bj · F (fj)(αkj ), we can estimate

N∑
j=1

|bj | · v(αkj ) ≥
∑

j∈{1,...,N}
kj<m

|bj | · qkj · |αkj |vm +
∑

j∈{1,...,N}
kj≥m

|bj | · vm(αkj ) (definition of qkj and v)

≥ Q ·
∑

j∈{1,...,N}
kj<m

|bj | · |αkj |vm +
∑

j∈{1,...,N}
kj≥m

|bj | · |αkj |vm (def. of Q and P. 2.13 (2))

≥ Q ·
N∑
j=1

|bj | · |αkj |vm (because Q ≤ 1)

≥ Q · |α|vm ,

where the last step follows from applying | · |vm to the given S-representation of α. By
taking the infimum over all such S-representations, we obtain |α|v ≥ Q · |α|vm . As Q > 0,
we see that | · |v carries | · |vm as desired.

Corollary 4.5. In the situation of Setup 4.1, let C be small, let S be countable, and let
T ⊂ Fsn(F ) be countable. Then there exists a functorial semi-norm σ on F such that σ
carries all of T , i.e., with

∀X∈Ob(C) Nσ(X) ⊂
⋂
τ∈T

Nτ (X).
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In particular: If every F -element admits an S-representation and if

∀X∈Ob(C)

⋂
τ∈T

Nτ (X) ⊂ N(X),

then σ is universal for F .

Proof. Again, the second part follows from the first one and Remark 4.3 (2).
We prove the first part of the claim: By Remark 4.3 (3), for each τ ∈ T , we find a

function vτ : S → R≥0 with

∀X∈Ob(C) Nvτ (X) ⊂ Nτ (X).

We then choose an enumeration of {vτ | τ ∈ T} and apply Proposition 4.4.

5 Existence of universal finite functorial semi-norms

In this section, we prove Theorem 1.1 and Corollary 1.2 on singular homology. We
first treat the case of countable fields where a direct enumeration argument applies
(Section 5.1). In Section 5.2, we consider functors with range in finite dimensional vector
spaces over general normed fields.

In both cases, we use the following observation:

Remark 5.1. By definition, the inclusion functor of a skeleton into the ambient category
is an equivalence. Invoking Corollary 3.3, we may equivalently assume that the category
itself has only countably many objects.

5.1 The countable case

Proof of Theorem 1.1 (1). We may assume that C itself has only countably many objects
(Remark 5.1). Furthermore, by assumption, K and dimK F (X) are countable for all
objects X of C. Together, we obtain that the class S of all F -elements is a countable
set. Trivially, all F -elements admit an S-representation.

Let S′ := {(X,α) ∈ S | α /∈ N(X)} and for each (X,α) ∈ S′ let σα be a finite
functorial semi-norm on F with α /∈ Nσα(X).

By construction, for every object Y of C, we have

F (Y ) \N(Y ) ⊂
⋃

(X,α)∈S′
F (Y ) \Nσα(Y ).

Hence, by De Morgan’s laws and Corollary 4.5, there exists a universal functorial semi-
norm on F .

Remark 5.2. In general, it would not be enough to have a countable set S with the
property that every F -element admits an S-representation. Without the countability
assumption on Ob(C), it might not be possible to control the vanishing locus on all
objects by only countably many functorial semi-norms, and thus, the second part of
Corollary 4.5 does not apply. A concrete example is given in Section 6.
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5.2 The case of finite dimensional range

We prove the second part of Theorem 1.1 and derive Corollary 1.2. As a preparation,
we show that we can achieve universality on a single object:

Lemma 5.3. Let C be a small category, let K be a normed field, and let F : C → VectK
be a functor. Let X ∈ Ob(C) with dimK F (X) <∞. Then there exists a finite functorial
semi-norm σ on F with

Nσ(X) = N(X).

Proof. We proceed inductively, using the following observation:

If σ ∈ Fsn(F ) with Nσ(X) 6= N(X), then there exists a σ′ ∈ Fsn(F ) with

dimK Nσ′(X) < dimK Nσ(X).

Indeed, if Nσ(X) 6= N(X), there exists an α ∈ Nσ(X) \ N(X). Hence, there is a finite
functorial semi-norm τ on F with |α|τ 6= 0. Then also σ′ := σ + τ ∈ Fsn(F ) and α
witnesses that

Nσ′(X) ⊂ Nσ(X) ∩Nτ (X) ( Nσ(X).

Because of dimK Nσ(X) ≤ dimK F (X) <∞, we obtain dimK Nσ′(X) < dimK Nσ(X).
For the actual induction, we start with the trivial functorial semi-norm σ := 0 on F ,

which satisfies Nσ(X) = F (X). We then iteratedly apply the observation above. Because
dimK F (X) is finite, this will terminate and lead to a finite functorial semi-norm σ on F
with Nσ(X) = N(X).

Proof of Theorem 1.1 (2). By Remark 5.1, we may assume without loss of generality,
that Ob(C) is countable. For each X ∈ Ob(C), let (αi)i∈IX be a finite generating set of
the finite-dimensional K-vector space F (X). Then S := {(X,αi) | X ∈ Ob(C), i ∈ IX}
is countable and every F -element admits an S-representation.

By Lemma 5.3, for each X ∈ Ob(C), we find a functorial semi-norm σX on F with
NσX (X) = N(X). Therefore, for all Y ∈ Ob(C), we have⋂

X∈Ob(C)

NσX (Y ) ⊂ N(Y ).

Applying Corollary 4.5 to the countable set {σX | X ∈ Ob(C)} thus shows that there
exists a universal functorial semi-norm on F .

Proof of Corollary 1.2. Let T be the category of all topological spaces that are homotopy
equivalent to a finite CW-complex; as morphisms in T , we take all continuous maps.

Every functorial semi-norm on Hd( · ;K) is homotopy invariant in the sense that homo-
topy equivalences induce isometric isomorphisms on Hd( · ;K). Thus, it suffices to show
that the functor F : Th → VectK on the homotopy category Th of T induced by Hd( · ;K)
admits a universal finite functorial semi-norm.
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As there are only countably many homotopy types of finite CW-complexes (Re-
mark 5.4), the category Th has a skeleton with countably many objects. Moreover,
dimK Hd(X;K) <∞ for all finite CW-complexes X.

Therefore, the second part of Theorem 1.1 applies and we obtain that F admits a
universal finite functorial semi-norm.

Remark 5.4 (counting CW-complexes). A simple counting argument shows that there
are only countably many homeomorphism types of finite simplicial complexes. As ev-
ery finite CW-complex is homotopy equivalent to a finite simplicial complex [Hat02,
Theorem 2C.5], it follows that there are only countably many homotopy types of finite
CW-complexes.

In contrast, there are uncountably many homotopy types of countable CW-complexes.
Looking at the fundamental group and presentation complexes shows that there are even
uncountably many homotopy types of countable 2-dimensional CW-complexes whose
1-skeleton is S1 ∨ S1 (because there are uncountably many isomorphism types of 2-gen-
erated groups).

From a constructive point of view, an interesting category of topological spaces with a
skeleton that has only countably many objects is the category of recursively enumerable
simplicial complexes.

Remark 5.5 (base change). In general, it does not seem to be clear how universal functo-
rial semi-norms behave under base change. For example, if σ is a universal finite functorial
semi-norm on a functor F to Vectfin

Q , then it is not clear whether R ⊗Q σ, defined by
the object-wise tensor product with the standard norm on R, is universal for R ⊗Q F .
Indeed, it is a priori not clear how the vanishing loci transform under such base changes.

Remark 5.6 (universal finite functorial semi-norms generated by URC-manifolds). Let d ∈ N,
let M be a URC-manifold, and let S be the class of fundamental classes of all connected
finite-sheeted covering manifolds of M (Example 2.15). If d ≥ 2, then for each (X, [X]R)
all covering maps X → M have the same number of sheets (this can be derived using
simplicial volume); we denote this number by k(X). For every k ∈ N, there are only
finitely many homeomorphism types Sk of (X, [X]R) ∈ S with k(X) = k, as can be seen
from the classification of coverings and the fact that the finitely generated group π1(M)
contains only a finite number of subgroups of index k.

Let v : S → R≥0. We can thus define the modified function

v : S → R≥0,

(X,α) 7→ max
(X′,[X′]R)∈Sk(X)

∣∣[X ′]R∣∣v.
By construction v ≥ v and so | · |v is carried by | · |v (Proposition 2.13 (3)).

Hence, Question 1.3 can be reformulated as follows: How fast does v have to grow in the
covering degree to ensure that | · |v is a universal finite functorial semi-norm on Hd( · ;R)
on the category of topological spaces homotopy equivalent to finite CW-complexes? In
view of Example 2.9 and Example 2.15, we know that for d ∈ {3} ∪N≥5, the growth for
universal examples must be faster than linear.



14 6 Situations without universal finite functorial semi-norms

6 Situations without universal finite functorial semi-norms

We give an example of a functor to Vectfin
Q that does not admit a universal finite functorial

semi-norm (Proposition 6.5). In accordance with Theorem 1.1, the domain category will
not admit a skeleton with countably many objects.

Definition 6.1 (the category C). We define a category C by:

• We set M := (R≥1)N and Ob(C) := N tM.

• The only non-identity morphisms in C are the morphisms fm,v : m→ v with m ∈ N
and v ∈M .

Definition 6.2 (the functor F ). We define a functor F : C → Vectfin
Q as follows:

• For all objects X ∈ Ob(C), we set F (X) := Q.

• For m ∈ N and v ∈M , we set

F (fm,v) := dm,v · idQ,

where dm,v := dv(m)e.

We will show that F : C → Vectfin
Q does not admit a universal finite functorial semi-

norm. To this end we use the following class to generate functorial semi-norms in the
sense of Proposition 2.13:

Definition 6.3 (the class S). For clarity, we denote by 1X the element 1 ∈ Q = F (X) for
every object X ∈ Ob(C). We define

S :=
{

(m, 1m) | m ∈ N
}

and for a function v : N → R≥0, we write | · |v := | · |(m,1m)7→v(m) for the generated
functorial semi-norm on F .

First we show, that we understand S-representations well enough to compute the
generated semi-norms on F :

Lemma 6.4. In the situation of Definition 6.3, for all v : N → R≥0 and w : N → R≥1,
we have

|1w|v = inf
m∈N

1

dm,w
· v(m).

Proof. The S-representations 1w = 1
dm,w

· F (fm,w)(1m) for m ∈ N show that “≤” holds.

Conversely, every S-representation of 1w is of the form
∑N

j=1 bj · F (fmj ,w)(1mj ) with
certain bj ∈ Q and mj ∈ N. In particular,

1 = |1w|Q =
∣∣∣ N∑
j=1

bj · dmj ,w
∣∣∣
Q
≤

N∑
j=1

|bj |Q · dmj ,w
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and so

N∑
j=1

|bj |Q · v(mj) ≥
N∑
j=1

|bj |Q · dmj ,w · inf
m∈N

1

dm,w
· v(m)

≥ 1 · inf
m∈N

1

dm,w
· v(m).

Taking the infimum over all S-representations of 1w finishes the proof.

Proposition 6.5. Let F : C → Vectfin
Q be the functor constructed in Definition 6.2 on the

category from Definition 6.1. Then, there is no universal finite functorial semi-norm
on F .

Proof. Assume for a contradiction that F admits a universal finite functorial semi-
norm | · |. Let S be the class from Definition 6.3 and let

v : N→ R≥0

m 7→ |1m|.

Then, v generates a functorial semi-norm | · |v on F via S (Proposition 2.13, Defini-
tion 6.3).

We now consider the function

w : N→ R≥1

m 7→ m · v(m) + 1

and its generated finite functorial semi-norm | · |w on F .
We show that | · |w is not carried by | · |: Let α := 1w. On the one hand, by Lemma 6.4,

we obtain

|α|w = inf
m∈N

1

dm,w
· w(m) = inf

m∈N

w(m)

dw(m)e
≥ 1

2
.

On the other hand, we have (Proposition 2.13 (5) and Lemma 6.4)

|α| ≤ |α|v = inf
m∈N

1

dm,w
· v(m) = inf

m∈N

v(m)

dm · v(m) + 1e
≤ inf

m∈N>0

1

m
= 0.

Hence, α witnesses that | · |w is not carried by | · |.

It does not seem clear whether this phenomenon could be replicated for the singular
homology functor on the category of topological spaces.
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on page: 6

[Gro82] Michael Gromov. Volume and bounded cohomology. Inst. Hautes Études Sci. Publ.
Math., (56):5–99, 1982. Cited on page: 1, 4

[Hat02] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002. Cited on page: 13
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