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Introduction

Applied algebraic topology studies real-world problems using the language,
objects, and techniques from algebraic topology.

Algebraic Topology

The basic idea of algebraic topology is to translate topological problems into
algebraic problems; topological spaces are translated into algebraic objects
(e.g., vector spaces) and continuous maps are translated into homomorphisms
(e.g., linear maps).

Topology  Algebra
topological spaces e.g., vector spaces
continuous maps linear maps

flexible rigid

Algebraic topology then is concerned with the classification of topological
spaces and continuous maps up to “continuous deformation”, i.e., up to so-
called homotopy. To this end, one constructs and studies homotopy invariant
functors. The main design problem consists of finding functors that

• are fine enough to recover interesting features of topological spaces, but
that also

• are coarse enough to be computable in many cases.

A classical example of a homotopy invariant functor is ordinary homology,
which is algorithmically computable in the context of simplicial complexes. A
first, intuitive, description is that homology measures “which and how many
holes” topological spaces have.
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Applied Algebraic Topology

Applied mathematics relies on the following principle: A real-world problem is
modelled in mathematical terms. Then, mathematical arguments are used to
come to a mathematical conclusion or solution. Sometimes (but not always)
it is possible to translate the mathematical results back into a solution in the
real world.

real-world problem mathematical model
modelling

mathematical arguments

back-translation?

?
mathematical conclusionsreal-world solution

The model is merely an abstract and simplified approximation of the real
world. In most cases, one cannot prove that such a model is “correct” because
usually there is no formal and provably correct formalisation of the real-world
problem. In particular, the conclusions for the original real-world problem
cannot be stronger than the mathematical model. Moreover, one should be
aware that this setup is suited better to disprove claims on the real world
rather than to confirm them.

There are two types of applications: On the one hand, we can formulate
and (dis)prove claims using mathematical language and theory. On the other
hand, we can perform actual computations on real-world data.

In applied algebraic topology, we model real-world problems in the lan-
guage of algebraic topology. A particularly well-suited subfield of algebraic
topology in this context is simplicial topology.

Graphs are combinatorial structures that can model connectivity of various
kinds, e.g., connections between people in social networks, genetic proximity
in biology, or dependencies between software components. Simplicial com-
plexes are a higher-dimensional generalisation of graphs and thus allow for
more fine-grained models. The most common uses of simplicial complexes are
of the following types:

• to discretely approximate general topological spaces (so-called triangu-
lations);

• to model point clouds in metric spaces (e.g., multi-dimensional big
data);

• to model relations between entities (e.g., dependencies/decentralised
computations between agents in distributed systems)
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The combinatorial flavour of simplicial complexes makes them algorithmi-
cally accessible. For example, the homology of (finite) simplicial complexes
is algorithmically computable.

In addition to simplicial algebraic topology, also the abstract language of
homotopy theory itself has found a different type of applications, namely in
the foundations of mathematics and computer science: There are many shades
of “equality” and the question of how “equality” persists through various
constructions is delicate. In mathematics such questions arise in the guise
of “identifications” or “canonical isomorphisms”; in computer science, they
appear in the design and implementation of programming languages when
different levels of “equality” of entities need to be considered. Homotopy
theory provides a setup that makes it possible to describe coherent notions
of “equality” in various settings.

Typical areas of applied algebraic topology include:

• configuration spaces for robotics;

• existence of Nash equilibria in game theory;

• impossibility results in social choice;

• lower complexity bounds for distributed algorithms;

• higher statistics and big data;

• de-centralised computations in sensor networks;

• (combinatorial) distribution/colouring problems;

• foundations of computing/homotopy type theory;

• . . .

Overview of this Course

The field of applied algebraic topology is rather broad and rapidly growing.
Therefore, this course will only consist of a selection of topics.

We will learn the basics of simplicial complexes, simplicial homology, and
homotopy invariance. We will explore modelling and real-world applications
of these notions and invariants. Whenever feasible, we will also look at im-
plementation matters.

We will develop the topological language far enough to be able to un-
derstand and use results from algebraic topology; because the focus will be
on the applications, we might not prove all of the underlying results from
algebraic topology. Such results are marked as Black box and may be used
without proof (unless explicitly stated otherwise).
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We will start with a brief introduction to the central notion of homotopy
and the concept of homotopy invariance (Chapter 1). As a warm-up applica-
tion, we will consider

• a motion planning problem.

We will then introduce the language of simplicial complexes and how to
use them in modelling (Chapter 2). As our main homotopy invariant tool, we
will use simplicial homology (Chapter 3). This basic setup already leads to a
variety of applications:

• the existence of Nash equilibria in game theory/economics;

• the analysis of (im)possibility results on consensus in distributed sys-
tems;

• a proof of Arrow’s theorem on social choice;

• sensor network coverage problems.

Topological analysis of big data often is based on persistent homology of
filtered simplicial complexes. We introduce the abstract concept of persistent
homology along with the corresponding major structure and stability theo-
rems (Chapter 4). We then outline applications of persistent homology to the
analysis of multi-dimensional big data:

• analysis of evolution in biology;

• analysis of progression through diseases;

A refined version of simplicial homology is the cup-product structure on
simplicial cohomology (Chapter ??). Using this cup-product, we can tackle

• combinatorial distribution problems;

• refined motion planning problems.

Finally, in Chapter ??, we will see how the language of modern homotopy
theory can be applied to deal with

• coherent notions and implementations of equality in computer science.

Study note. These lecture notes document the topics covered in the course
(as well as some additional optional material). However, these lectures notes
are not meant to replace attending the lectures or the exercise classes.

Furthermore, this course will only treat a small fraction of applied algebraic
topology. It is therefore recommended to consult other sources (books!) for
further information on this field.

Literature exercise. Where in the math library (including electronic re-
sources) can you find books on algebraic topology and related fields?

Convention. The set N of natural numbers contains 0. All rings are unital
and associative. Usually, we assume manifolds to be non-empty (but we might
not always mention this explicitly).
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Homotopy

Algebraic topology is concerned with topological spaces “up to continuous
deformation” and translates topology up to such deformations into the more
rigid world of algebra.

There are several interpretations of “up to continuous deformation”. The
most rigid one is to consider spaces up to homeomorphism. One of the key
insights in algebraic topology is that the weaker notion of homotopy/homo-
topy equivalence provides additional flexibility and captures a wide range of
phenomena. Moreover, homotopy interacts well with algberaic methods.

We briefly introduce the language of homotopies, homotopy equivalences,
and the concept of homotopy invariance. As a first application we will see
how homotopy equivalences naturally arise in the context of motion planning
problems.

In case you are not comfortable with working with general topological
spaces, for most of this course, it is sufficient to think of metric spaces and
the associated notion of continuity. Basics on topological spaces and cate-
gories/functors are collected in Appendix A.1 and Appendix A.2.

Overview of this chapter.

1.1 Homotopy and homotopy equivalence 6
1.2 Application: Basic motion planning 11
1.3 Homotopy invariance 16

Running example. subsets of Euclidean space, spheres, path spaces
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1.1 Homotopy and homotopy equivalence

The notion of homotopy equivalence encodes the basic shape of spaces (Fig-
ure 1.1). Two maps are homotopic if there is a continuous deformation be-
tween them (Figure 1.2). Spaces are homotopy equivalent if they are related
by continuous maps that are inverse to each other up to homotopy.

Figure 1.1.: These spaces are not homeomorphic (check!), but they all share
the same “principal shape”, namely a “circle” with a “hole”.

Definition 1.1.1 (homotopy, homotopic, homotopy equivalence, null-homotopic,
contractible). Let X and Y be topological spaces.

• Let f, g : X −→ Y be continuous maps. Then f is homotopic to g, if
f can be deformed continuously into g, i.e., if there exists a homotopy
from f to g (Figure 1.2).

A homotopy from f to g is a continuous map h : X × [0, 1] −→ Y with

h( · , 0) = f and h( · , 1) = g.

In this case, we write f ' g.

• Maps that are homotopic to constant maps are called null-homotopic.

• The topological spaces X and Y are homotopy equivalent, if there exist
continuous maps f : X −→ Y and g : Y −→ X satisfying

g ◦ f ' idX and f ◦ g ' idY ;

such maps are called homotopy equivalences. We then write X ' Y .

• Topological spaces that are homotopy equivalent to one-point spaces
are called contractible.
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X
0

1

t

X × [0, 1]

h

g

f

h( · , t)

Y

Figure 1.2.: Homotopies are “movies” between continuous maps.

Example 1.1.2 (star-shaped sets). Let n ∈ N. A subset X ⊂ Rn is star-shaped
if there exists a point x0 ∈ X such that for every x ∈ X, the segment

{
t · x+ (1− t) · x0

∣∣ t ∈ [0, 1]
}

from x0 to x is also contained in X (Figure 1.3).
For example, every non-empty convex subset in Rn is star-shaped (the

converse does not hold in general; check!). The n-ball

Dn :=
{
x ∈ Rn

∣∣ ‖x‖2 ≤ 1
}

is star-shaped (for instance, with respect to 0).
Every star-shaped set X ∈ Rn is contractible (with respect to the subspace

topology): Indeed, let x0 ∈ X be a star-point for X. We consider the maps

f : X −→ {x0}
x 7−→ x0

g : {x0} −→ X

x0 7−→ x0.

Then f and g are continuous and f ◦ g = id{x0}. Moreover, the homotopy

X × [0, 1] −→ X

(x, t) 7−→ t · x+ (1− t) · x0

shows that g ◦ f ' idX (check!). Hence, X ' {x0}.

Black box 1.1.3 (spheres are not contractible). For every n ∈ N, the n-sphere

Sn :=
{
x ∈ Rn+1

∣∣ ‖x‖2 = 1
}

is not contractible. (We will see a proof of this fact in Theorem 3.4.8.)
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x

x0 x0

Figure 1.3.: A star-shaped set and a contracting homotopy for a star-shaped
set. The illustration of the homotopy does not indicate a defor-
mations of the space but of maps.

Example 1.1.4 (thick spheres). Let n ∈ N. Then Sn ' Rn+1\{0} (Figure 1.4):
We consider the maps

f : Sn −→ Rn+1 \ {0}
x 7−→ x

g : Rn+1 \ {0} −→ Sn

x 7−→ 1

‖x‖2
· x.

Then g ◦ f = idSn , whence g ◦ f ' idSn . Moreover, the (well-defined!) homo-
topy

(
Rn+1 \ {0}

)
× [0, 1] −→ Rn+1 \ {0}

(x, t) 7−→ t · ‖x‖2 + (1− t)
‖x‖2

· x

shows that f ◦ g ' idRn+1\{0} (check!). Hence, Sn ' Rn+1 \ {0} and we may
view the punctured space Rn+1 \ {0} as a “thick sphere”.

Caveat 1.1.5. Every homeomorphism is a homotopy equivalence. The con-
verse does not hold in general. For example, by Example 1.1.2, D1 ' {0}, but
D1 and {0} do not even have the same cardinality. This example also shows
that homotopy equivalences, in general, are neither injective nor surjective.

Remark 1.1.6 (deformation of maps vs. paths of maps). For sufficiently nice
topological spaces, the exponential law for mapping spaces shows that homo-
topies between maps are the same as continuous paths between these maps
in mapping spaces.

More precisely: For topological spaces X and Y , we write map(X,Y ) for
the set of all continuous maps X −→ Y . The set map(X,Y ) carries the
compact-open topology, i.e., the topology on map(X,Y ) that is generated by
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Figure 1.4.: The homotopy equivalence of Example 1.1.4.

all sets of the form

MK,U :=
{
f ∈ map(X,Y )

∣∣ f(K) ⊂ U
}
,

where K ⊂ X is compact and U ⊂ Y is open. If Y is a metric space and X is
compact, then this is the same as the topology of uniform convergence (i.e.,
the topology induced by the sup-metric; Exercise).

Let X be a locally compact topological space, i.e., for every x ∈ X and
every open neighbourhood U of x there exists a compact neighbourhood K
of x with K ⊂ U . Then, for every topological space Y the currying map

map
(
X × [0, 1], Y

)
7−→ map

(
[0, 1],map(X,Y )

)

h 7−→
(
t 7→ h( · , t)

)

is well-defined and bijective [1, Proposition 1.3.1][60, Corollary 3.4]. On the
right-hand side, map(X,Y ) carries the compact-open topology.

Proposition 1.1.7 (elementary properties of homotopy).

1. Let X and Y be topological spaces. Then “'” is an equivalence relation
on map(X,Y ).

2. Let X, Y , Z be topological spaces and let f, f ′ : X −→ Y , g, g′ : Y −→ Z
be continuous maps with f ' f ′ and g ' g′. Then

g ◦ f ' g′ ◦ f ′.

3. If X is a contractible topological space and Y is a topological space, then
all continuous maps X −→ Y and Y −→ X are null-homotopic.

Proof. Ad 1. Reflexivity. Let f ∈ map(X,Y ). Then f ' f follows from the
constant movie, i.e., via the homotopy:
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X
0

1

1/2
f

g

e

h( · , 2 · t)

k( · , 2 · t− 1)

Y

Figure 1.5.: Transitivity of being homotopic, schematically

X × [0, 1] −→ Y

(x, t) 7−→ f(x)

Symmetry. Let f, g ∈ map(X,Y ) with f ' g and let h : X × [0, 1] −→ Y
be such a homotopy. Then g ' f follows from the inverse movie, i.e., via the
homotopy

X × [0, 1] −→ Y

(x, t) 7−→ h(x, 1− t).

Transitivity. Let e, f, g ∈ map(X,Y ) with e ' f and f ' g; let h, k : X ×
[0, 1] −→ Y be such homotopies. Then e ' g follows from the concatenated
(and reparametrised) movie (Figure 1.5), i.e., via the homotopy

X × [0, 1] −→ Y

(x, t) 7−→
{
h(x, 2 · t) if t ∈ [0, 1/2]

k(x, 2 · t− 1) if t ∈ [1/2, 1];

it should be noted that this map is indeed well-defined and continuous (Propo-
sition A.1.17).

Ad 2. Let h : X×[0, 1] −→ Y and k : Y ×[0, 1] −→ Z be homotopies from f
to f ′ and from g to g′, respectively. Then

X × [0, 1] −→ Z

(x, t) 7−→ k
(
h(x, t), t

)

is a homotopy showing that g ◦ f ' g′ ◦ f ′ (check!).

Ad 3. Let X be contractible. Then idX ' c, where c : X −→ X is a
constant map (check!). If f : X −→ Y is continuous, then the second part
shows that

f = f ◦ idX ' f ◦ c.
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Moreover, because c is constant, also f ◦ c is constant. Hence, f is null-
homotopic. Analogously, one can handle the case of maps to X, as well as
the pointed case.

Example 1.1.8 (boring paths). If X is path-connected space, then all contin-
uous maps [0, 1] −→ X are homotopic to each other: By the third part of
Proposition 1.1.7, all continuous maps [0, 1] −→ X are null-homotopic (be-
cause [0, 1] is star-shaped, whence contractible; Example 1.1.2). Moreover,
all constant maps to X are homotopic to each other, because X is path-
connected.

Corollary 1.1.9 (a characterisation of contractibility). Let X be a non-empty
topological space. Then X is contractible if and only if idX is null-homotopic.

Proof. Let X be contractible. Then the map idX : X −→ X is null-homotopic
by Proposition 1.1.7.3.

Conversely, let idX : X −→ X be null-homotopic. I.e., there exists an x0 ∈
X and a homotopy h : X × [0, 1] −→ X from idX to the constant map with
value x0. Let c : X −→ {x0} be the constant map. Then c ◦ idX = id{x0} and
h shows that idX ' idX ◦c. Hence, X is contractible.

Outlook 1.1.10 (homotopy in other fields). More generally, in order to define
a notion of homotopy and homotopy equivalences we merely need suitable
products and a suitable model of the unit interval. For example, translating
this concept into homological algebra leads to the notion of chain homotopy
and chain homotopy equivalence for chain complexes (Appendix A.3.3). In
geometric group theory, the notion of “having finite distance” can be in-
terpreted as a notion of homotopy between maps. In A1-homotopy theory (a
branch of algebraic geometry inspired by homotopy theory), the affine line A1

plays a role similar to the unit interval [0, 1] in classical homotopy theory.

1.2 Application: Basic motion planning

We consider a basic motion planning problem and explain how homotopy
appears in the solution.

Real-world problem 1.2.1 (motion planning). For a factory floor X, given
any two positions x, y in X, provide a path s(x, y) subject to the following
constraints:

• For all x, y in X, the path s(x, y) is an actual path from x to y within X;

• Stability: For all x, x′, y, y′ in X, whenever x′ is close enough to x and
y′ is close enough to y, then also s(x′, y′) is close to s(x, y).
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More generally, one may consider all kinds of state sets of systems (e.g.,
configuration spaces of robot arms) and ask for motion planning to move
between given states.

This situation can be modelled as follows [31]:

Model 1.2.2 (motion planning). We model Problem 1.2.1 by:

• State set: A topological space X.

Explanation. We could start with a plain set. However, to model paths
as continuous paths (see below), we need a topology.

• Paths in the state set: Continuous maps [0, 1] −→ X.

We write PX for the set map([0, 1], X), equipped with the compact-
open topology (Remark 1.1.6).

Explanation. Depending on the abilities of the moving entities (e.g.,
robots on wheels), it is natural to require that the paths need to be
continuous. The compact-open topology on PX captures closeness of
paths.

• Motion planning: A motion planning is a map s : X ×X −→ PX with

∀x,y∈X s(x, y)(0) = x and s(x, y)(1) = y.

I.e., a motion planning is a section of the endpoints map

π : PX −→ X ×X
γ 7−→

(
γ(0), γ(1)

)
.

Explanation. This constraint reflects that paths have the given ini-
tial/terminal points.

• Stability: Continuity of motion planning maps.

Explanation. In the above setup, stability translates into continuity of
the motion planning map.

Thus, Problem 1.2.1 translates into the following problem:

Question 1.2.3. Given a topological space X, find a continuous motion plan-
ning X ×X −→ PX on X. More fundamentally: Which topological spaces
admit a continuous motion planning at all?

The answer involves the notion of homotopy:

Theorem 1.2.4 ([31]). Let X be a non-empty path-connected topological space.
Then X admits a continuous motion planning if and only if X is contractible.
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Proof. Let s : X × X −→ PX be a continuous motion planning for X. As
X 6= ∅, there exists an x0 ∈ X. Then

h : X × [0, 1] −→ X

(x, t) 7−→ s(x0, x)(t)

is continuous (Lemma 1.2.5 and composition of continuous maps) and

h( · , 0) = s(x0, · )(0) = x0 and ∀x∈X h(x, 1) = s(x0, x)(0) = x.

Hence, the constant map x0 is homotopic to idX and so X is contractible
(Corollary 1.1.9).

Conversely, let X be contractible. Hence, there exists an x0 ∈ X and a
homotopy h : X × [0, 1] −→ X from idX to the constant map at x0 (Corol-
lary 1.1.9). Then the map

s : X ×X −→ PX

(x, y) 7−→ h(x, · ) ∗ h(y, · )

is continuous (Lemma 1.2.5 and composition of continuous maps). Here, ·
denotes the reversal of paths and “∗” denotes the concatenation of paths:
For γ, η ∈ PX with γ(1) = η(0), we set (which is well-defined and continuous;
check!)

γ ∗ η : [0, 1] −→ X

t 7−→
{
γ(2 · t) if t ∈ [0, 1/2]

η(2 · t− 1) if t ∈ [1/2, 1].

By construction, for all x, y ∈ X, we have

s(x, y)(0) = h(x, 0) = x and s(x, y)(1) = h(y, 1) = h(y, 0) = y.

Therefore, s is a continuous motion planning for X.

Lemma 1.2.5 (some properties of the compact-open topology on path spaces).
Let X be a topological space.

1. The evaluation map is continuous:

e : PX × [0, 1] −→ X

(γ, t) 7−→ γ(t)

2. The reversion and concatenation of paths is continuous (where we
write Y :=

{
(γ, η) ∈ PX × PX

∣∣ γ(1) = η(0)
}

) for the space of
concatenable paths, with respect to the subspace topology of the product
topology):
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r : PX −→ PX

γ 7−→ γ

c : Y −→ PX

(γ, η) 7−→ γ ∗ η

Proof. Ad 1. Let U ⊂ X be open and let (γ, t) ∈ e−1(U). We show that
e−1(U) contains a neighbourhood of (γ, t):

Because γ is continuous, there is an open neighbourhood V ⊂ [0, 1] of t
in [0, 1] with γ(V ) ⊂ U . As [0, 1] is locally compact, there exists a compact
neighbourhood K ⊂ V of t. Then MK,U ×K is a neighbourhood of (γ, t) in
the product space PX × [0, 1] and

e(MK,U ×K) ⊂ U.

Ad 2. In both cases, it suffices to consider open sets of the form MK,U

in PX, where U ⊂ X is open and K ⊂ [0, 1] is compact.
Concerning the reversion of paths: Let L := {1− t | t ∈ K} ⊂ [0, 1], which

is compact. Then
r−1(MK,U ) = ML,U .

Because ML,U is open in PX, we see that r is continuous.
Concerning concatenation: Let K1 := K ∩ [0, 1/2] and K2 := K ∩ [1/2, 1].

Then K1 and K2 are compact and MK,U = MK1,U ∩MK2,U . Similarly, to the
proof for the reversion of paths, we may consider the compact sets

L1 := {2 · t | t ∈ K1} and L2 := {2 · t− 1 | t ∈ K2}

in [0, 1] and obtain

c−1(MK,U ) = c−1(MK1,U ∩MK2,U )

= c−1(MK1,U ) ∩ c−1(MK2,U )

=
(
Y ∩ (ML1,U × PX)

)
∩
(
Y ∩ (PX ×ML2,U )

)
,

which is open in Y .

Remark 1.2.6. Let X be a topological space. Then X is path-connected if
and only if there exists a (not necessarily continuous!) section X×X −→ PX
of the endpoints map (check!).

We apply Theorem 1.2.4 to concrete situations:

Example 1.2.7 (convex state spaces). Let n ∈ N and let X ⊂ Rn be non-
empty and convex. Then X admits a continuous motion planning because
X is contractible (Example 1.1.2). More concretely, one can easily specify a
concrete motion planning in this case (Exercise).
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Figure 1.6.: A factory floor

Example 1.2.8 (a circular factory floor). The factory floor depicted in Fig-
ure 1.6 does not admit a continuous motion planning: The factory floor can
be modelled by the subspace X :=

{
x ∈ [−2, 2]2

∣∣ |x| ≥ 1
}

of R2, which
is homotopy equivalent to S1 (check!). Hence, X is not contractible (Black
box 1.1.3 and transitivity of homotopy equivalence) and therefore X does not
admit a continuous motion planning.

Example 1.2.9 (motion planning on Earth). There is no continuous motion
planning for the surface of planet Earth: This surface should be modelled
by S2, which is not contractible (Black box 1.1.3).

If we are more liberal and also allow routes that go through the interior
of the planet, then there does exist a continuous motion planning: The solid
planet should be modelled by D3, which is contractible (Example 1.1.2).

Remark 1.2.10 (undecidability of contractibility). In general, even for “nice”
spaces (e.g., spaces that are given by a finite triangulation), it is not algo-
rithmically decidable whether they are contractible or not (Outlook 2.8.5).
Thus, even in the presence of Theorem 1.2.4 it might be difficult to assess
whether a continuous motion planning exists in the given situation or not.

Outlook 1.2.11 (topological complexity [31]). Topological complexity quanti-
fies the failure of existence of a continuous motion planning: The topological
complexity is the minimal number of continuous patches of motion plan-
ning that are required to cover the whole state space. More precisely: Let X
be a topological space. The topological complexity TC(X) of X is the min-
imal n ∈ N such that there exist open subsets U1, . . . , Un ⊂ X × X such
that

X ×X = U1 ∪ · · · ∪ Un
and such that for each j ∈ {1, . . . , n}, there exists a continuous section Uj −→
PX of the endpoints map. If no such n exists, we set TC(X) :=∞.

By definition, TC(X) = 1 if and only if X admits a continuous motion
planning. It can be shown that [31] (Example ??):

• TC(S1) = 2 and, more generally, that

• TC
(
(S1)×n

)
= 2 · n for all n ∈ N>0.
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Figure 1.7.: A robot arm

We have already seen a real-world situation that leads to S1 (Exam-
ple 1.2.8). It might not be so clear how state spaces like (S1)×n occur. A
typical situation that leads to high-dimensional models is when systems with
many degrees of freedom are considered – for instance, robot arms with many
joints:

Let n ∈ N. We consider a robot arm that is composed as a sequence of
n + 1 linear bars and that is fixed at the beginning of the first bar; every
two subsequent bars are connected by a joint that allows for full rotations in
a plane; moreover, we assume that all these planes are parallel (Figure 1.7).
The configurations of such a robot arm correspond one-to-one to the n angles
at the n joints. Thus, we may model this configuration space as (S1)×n.

1.3 Homotopy invariance

One of the main goals of algebraic topology is to study the homotopy equiv-
alence problem

Classify topological spaces up to homotopy equivalence!

As in the case of the homeomorphism problem, also this problem is not
solvable in full generality (Outlook 2.8.5). However, the problem can be solved
for many concrete examples, using suitable functors as invariants.

We will model the translation of topological problems into algebraic prob-
lems via the language of categories and functors. More precisely, mathemat-
ical theories will be modelled as categories, translations as functors, and the
comparison between different translations by natural transformations. Basic
terminology from category is reviewed in Appendix A.2.

Homotopy invariant functors are functors that map homotopic maps to
the same morphisms. Equivalently, this can be formulated in terms of the
homotopy category.
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Definition 1.3.1 (homotopy invariant functor). Let T be a category with a
notion of homotopy (e.g., Top) and let C be a category. A functor F : T −→ C
is homotopy invariant if the following holds: For all X,Y ∈ Ob(T ) and all
f, g ∈ MorT (X,Y ) with f ' g, we have

F (f) = F (g).

Proposition 1.3.2 (homotopy invariant functors yield homotopy invariants). Let
T be a category with a notion of homotopy (e.g., Top), let C be a category,
and let F : T −→ C be a homotopy invariant functor. Let X, Y ∈ Ob(T ).
Then the following hold:

1. If X ' Y , then F (X) ∼=C F (Y ).

2. If F (X) 6∼=C F (Y ), then X 6' Y .

Proof. It suffices to prove the first part. Let f : X −→ Y and g : Y −→
X be mutually homotopy inverse homotopy equivalences. Then the induced
morphisms F (f) : F (X) −→ F (Y ) and F (g) : F (Y ) −→ F (X) are inverse
isomorphisms in C, because

F (g) ◦ F (f) = F (g ◦ f) (F is a functor)

= F (idX) (g ◦ f ' idX and F is homotopy invariant)

= idF (X) (F is a functor)

and similarly F (f) ◦ F (g) = idF (Y ).

Caveat 1.3.3. In general, in the situation of Proposition 1.3.2, from F (X) ∼=C

F (Y ) we cannot conclude that X ' Y !

The homotopy category of a category such as Top is the category obtained
by identifying maps in Top that are homotopic. Proposition 1.1.7 shows that
the corresponding homotopy category indeed is well-defined (check!).

Definition 1.3.4 (homotopy category of topological spaces). The homotopy
category of topological spaces is the category Toph consisting of:

• objects: Let Ob(Toph) := Ob(Top).

• morphisms: For all topological spaces X, Y , we set

[X,Y ] := MorToph
(X,Y ) := map(X,Y ) /'.

Homotopy classes of maps will be denoted by “[ · ]”.

• compositions: The compositions of morphisms are defined by ordinary
composition of representatives.

Similarly, one can define homotopy categories for all categories with a
notion of homotopy that satisfies the analogue of Proposition 1.1.7.
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Remark 1.3.5 (homotopy invariance via the homotopy category). Topological
spaces are homotopy equivalent if and only if they are isomorphic in the cate-
gory Toph (check!). Moreover, if C is a category, then a functor F : Top −→ C
is homotopy invariant if and only if it factors over the homotopy classes func-
tor Top −→ Toph, which is the identity on objects and maps each continuous
map to its homotopy class (check!). The advantage of this reformulation is
that we can now apply the usual results on categories and functors.

Example 1.3.6 (trivial homotopy invariant functors). There are two trivial ex-
amples of homotopy invariant functors:

• Constant functors. Let C be a category. Then every constant func-
tor F : Top −→ C (mapping all topological spaces to the same object
and all continuous maps to the identity morphism of this object) is
homotopy invariant. By construction, we have

∀X,Y ∈Ob(Top) F (X) ∼=C F (Y ).

This functor is easy to compute, but does not contain any information
on homotopy theory.

• Homotopy classes functor. The homotopy classes functor H : Top −→
Toph is homotopy invariant. By construction, we have

∀X,Y ∈Ob(Top) H(X) ∼=Toph
H(Y )⇐⇒ X ' Y,

i.e., H contains perfect information on the classification of topological
spaces up to homotopy equivalence. However, H is not easy to compute
(in fact, it is not computable in any reasonable sense; Outlook 2.8.5).

The major design problem of algebraic topology is to find homotopy in-
variant functors that strike a balance between computability and preservation
of homotopy-theoretic information. In Chapter 3, we will construct one such
example: simplicial homology.

Literature exercise. Read about the origin of the notion of homotopy and
homotopy invariance [24, p. 43].
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Simplicial complexes

Graphs are combinatorial structures that can be used to model connectivity
of various kinds, e.g., connections between people in social networks, genetic
proximity in biology, or dependencies between software components. Simpli-
cial complexes are a higher-dimensional generalisation of graphs and thus
allow for more fine-grained models, e.g., for discrete approximations of geo-
metric shapes, connectivity of high-dimensional data, decentralised compu-
tations in sensor networks, configuration spaces for robots, or dependencies
between agents in distributed systems.

We start with basic terminology from graph theory and then introduce the
language of simplicial complexes. The connection to actual topology is given
by the geometric realisation of simplicial complexes.

In addition, we illustrate these concepts in the three typical modelling sit-
uations: Consistency relations between entities, point clouds, approximation
of topological spaces.

Overview of this chapter.

2.1 Graphs 20
2.2 Application: The seven bridges of Königsberg 22
2.3 Simplicial complexes and simplicial maps 26
2.4 Modelling: Consistency relations 36
2.5 Modelling: Complexes from point clouds 38
2.6 Geometric realisation 43
2.7 Modelling: Approximation 58
2.8 Implementation: Simplicial complexes 63

Running example. simplicial complexes from relations, nerves of open covers
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2.1 Graphs

Graphs are combinatorial structures that model connections (“edges”) be-
tween entities (“vertices”). We review basic terminology and examples from
graph theory [23, 35]. In the following, we will focus on undirected, unlabeled,
unweighted, simple graphs without loops.

Definition 2.1.1 (graph). A graph is a pair X = (V,E), consisting of a set V
and a subset

E ⊂ V [2] :=
{
{v, w}

∣∣ v, w ∈ V, v 6= w
}

with V ∩ E = ∅. The elements of V are called vertices of X, the elements
of E are called edges of X. A graph X is finite if V (whence E) is finite.

A subgraph of a graph (V,E) is a graph (V ′, E′) with V ′ ⊂ V and E′ ⊂ E.

Definition 2.1.2 (adjacent, neighbour, degree, incident). Let X = (V,E) be a
graph and let v ∈ V .

• A vertex w is a neighbour of v in X (or adjacent to v in X) if {v, w} ∈ E.

• The number of neighbours in X of v is the degree degX v of v.

• An edge in X is incident to v in X if it contains v.

0 1 2 3

4

0 1
2

3

4

Figure 2.1.: The graph from Example 2.1.3, schematically; both illustrations
represent the same graph.

Example 2.1.3 (a small graph). Let

V := {0, . . . , 4},
E :=

{
{1, 2}, {2, 3}, {2, 4}, {3, 4}

}
.

Then (V,E) is a graph. We can illustrate this graph (V,E) as in Figure 2.1.
Both illustrations represent the same graph: Graphs are combinatorial struc-
tures and it only matters which vertices exist and which vertices are con-
nected; it is not relevant how these vertices/connections are drawn.
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Figure 2.2.: The complete graphs K3, K4, K5, schematically

Example 2.1.4 (complete graph). A graph X = (V,E) is complete if E = V [2].
For n ∈ N, we write

Kn :=
(
{0, . . . , n}, {{j, k} | j, k ∈ {0, . . . , n}, j 6= k}

)

for the complete graph on {0, . . . , n} (Figure 2.2).

Example 2.1.5 (Cayley graphs). Let G be a group and let S ⊂ G be a gener-
ating set. The Cayley graph of G with respect to S is defined by

Cay(G,S) :=
(
G, {{g, g · s} | g ∈ G, s ∈ S ∪ S−1 \ {e}}

)
.

Cayley graphs with respect to finite generating sets are one of the central
objects of study in geometric group theory [48]. All Cayley graphs are reg-
ular, i.e., every vertex has the same degree. Indeed, Cayley graphs lead to
interesting examples of constructions of regular graphs.

Proposition 2.1.6 (handshake lemma). Let X = (V,E) be a finite graph. Then

∑

v∈V
degX v = 2 ·#E.

Proof. Because every edge connects exactly two vertices, on the left-hand
side we count each edge exactly twice.

Example 2.1.7 (social graphs). Let V be a set of people. The following edge
sets define graphs with vertex set V :

E1 :=
{
{x, y}

∣∣ x, y ∈ V, x 6= y,

and x and y have shaken hands
}
,

E1 :=
{
{x, y}

∣∣ x, y ∈ V, x 6= y,

and x and y are connected on your-favourite-social-network
}
,

E2 :=
{
{x, y}

∣∣ x, y ∈ V, x 6= y,

and x and y have an increased risked of transmitting

your-favourite-disease between each other
}
.
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From the handshake lemma (Proposition 2.1.6) we can conclude for instance:
The number of people that are connected to an odd number of people on your-
favourite-social-network is even, because the overall sum of these numbers is
even. This probably does not count as the most useful consequence of graph
theory.

Definition 2.1.8 (path, cycle, connected). Let X = (V,E) be a graph and let
n ∈ N.

• A path in X of length n is a sequence v0, . . . , vn of vertices v0, . . . , vn ∈
V with the property that {vj , vj+1} ∈ E for all j ∈ {0, . . . , n− 1}. We
say that this path connects v0 and vn. A path is reduced if the vertices
in the sequence are all different.

• A cycle in X of length n is a path v0, . . . , vn with v0 = vn. Such a cycle
is reduced if the vertices v0, . . . , vn−1 are all different.

• The graph X is connected if every pair of its vertices can be connected
by a path in X.

Example 2.1.9 (connected graphs).

• All complete graphs are connected.

• All Cayley graphs are connected (check!).

• The graph from Example 2.1.3 is not connected.

• The goal of social distancing measures is to keep graphs of increased
risk of transmission as disconnected as possible.

• The goal of network architecture is to keep network graphs as connected
as possible even if “few” edges are removed.

For the sake of completeness, we introduce the following (ad hoc) notion of
graph isomorphism; a more conceptual discussion of morphisms and isomor-
phisms will be given in the context of simplicial complexes (Chapter 2.3.3).

Definition 2.1.10 (graph isomorphism). Let X = (V,E) and X ′ = (V ′, E′) be
graphs. The graphs X and X ′ are isomorphic if there is a graph isomorphism
between X and X ′, i.e., a bijection f : V −→ V ′ such that

∀v,w∈V {v, w} ∈ E ⇐⇒
{
f(v), f(w)

}
∈ E′.

2.2 Application: The seven bridges of Königsberg

As a sample application, we consider Euler’s problem on the seven bridges of
Königsberg [30].
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Figure 2.3.: The seven bridges of Königsberg: Euler’s map [30]; a correspond-
ing multigraph; a corresponding graph

Real-world problem 2.2.1 (the seven bridges of Königsberg). Is it possible to
take a round-trip walk through the city of Königsberg (of ∼1735; see the map
in Figure 2.3) that crosses each of the seven bridges exactly once?

Of course, swimming, teleporting, walking around the source of Pregel,
etc. are not allowed.

This situation can be modelled as follows:

Model 2.2.2 (the seven bridges of Königsberg). We model Problem 2.2.1 by
the following graph:

• Vertices: The two river banks of Pregel and the two Pregel islands are
vertices of the graph. Moreover, we add vertices for each of the seven
bridges.

• Edges: We connect the vertex corresponding to a bank/island by an
edge to the vertex corresponding to a bridge if and only if one end of
the bridge is on this bank/island. This leads to the graph in Figure 2.3.

Explanation. We model the situation by a graph as the only information that
is relevant to this problem is which parts of the city are connected by which
bridges; exact locations, distances, etc. are not relevant to this problem. We
included vertices for the bridges in order to obtain a simple graph and not a
multigraph.

• A valid round-trip walk is now a cycle in this graph that contains every
edge exactly once.

Explanation. The edges correspond to (half)bridges.

Definition 2.2.3 (Eulerian cycle/path). Let X = (V,E) be a graph.

• A partial Eulerian path in X is a path in X all of whose edges are
different. A partial Eulerian path in X is an Eulerian path in X if it
contains all edges of X (whence exactly once).

• A partial Eulerian cycle in X is a cycle in X all of whose edges are
different. A partial Eulerian cycle in X is an Eulerian cycle in X if it
contains all edges of X (whence exactly once).
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Thus, Problem 2.2.1 translates into the following problem:

Question 2.2.4. Does the graph from Model 2.2.2 admit an Eulerian cycle?
Given a finite graph X, (how) can we decide whether X admits an Eulerian
cycle or not?

The answer is quite simple in modern terminology. Indeed, Euler’s analysis
of this bridge problem is the origin of graph theory.

Theorem 2.2.5 (characterisation of existence of Eulerian cycles [30]). Let X =
(V,E) be a finite connected non-empty graph. Then X admits an Eulerian
cycle if and only if for each vertex v ∈ V the degree degX v is even.

The key observation behind the proof are the following two parity prop-
erties:

Lemma 2.2.6 (partial Euler cycles have even degrees). Let X be a connected
graph, let c = v0, . . . , vk be a partial Eulerian cycle in X, and let

X[c] :=
(
{v0, . . . , vk}, {{v0, v1}, . . . , {vk−1, vk}, {vk, v0}}

)

be the subgraph of X generated by c. Then all vertex degrees in X[c] are even.

Proof. Whenever c passes through a vertex v, it needs to enter the vertex v
through an edge and leave this vertex v through an edge. As c is a partial
Eulerian cycle, all these edges are different. Therefore, c contains an even
number of edges incident to v. In other words, degX[c] v is even.

Lemma 2.2.7 (even degrees lead to partial Euler cycles). Let X = (V,E) be a
finite graph all of whose vertices have even degree. Let v ∈ V with degX v > 0.
Then there exists a partial Eulerian cycle starting at v of non-zero length.

Proof. We inductively construct a partial Eulerian cycle c starting at v. Let
v0 := v. Because degX v0 = degX v > 0, there exists an edge {v0, v1} in X.
The path v0, v1 is a partial Eulerian path.

Inductively, we assume that we have already constructed a partial Eulerian
path v0, . . . , vk in X with k ≥ 1. We distinguish two cases:

À If vk = v0, then k 6= 0 and v0, . . . , vk−1 is a partial Eulerian cycle in X
of non-zero length.

Á If vk 6= v0, then the number of edges incident to vk that appears
in v0, . . . , vk is odd (by the same entering-leaving argument as in
the proof of Lemma 2.2.6). As degX vk is even, there must be an
edge {vk, vk+1} incident to vk that does not appear in v0, . . . , vk. There-
fore, v0, . . . , vk+1 is a partial Eulerian path.

As X is finite, we will reach case À in a finite number of steps and thus obtain
the desired partial Eulerian cycle of non-zero length.
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Moreover, we record the following consequence of connectedness:

Lemma 2.2.8 (subgraphs and connectedness). Let X be a finite connected
graph. Let X ′ = (V ′, E′) be a subgraph of X with

∀v∈V ′ degX′ v = degX v.

Then V ′ = ∅ or X ′ = X.

Proof. This statement admits a straightforward proof by contradiction (Ex-
ercise).

Proof of Theorem 2.2.5. If X admits an Eulerian cycle, then all vertices of X
have even degree by Lemma 2.2.6.

Conversely, let all vertex degrees of X be even. We show that X admits
an Eulerian cycle: Let c be a partial Eulerian cycle in X of maximal length
(possibly 0) and let X[c] be the subgraph of X generated by c.

Assume for a contradiction that there exists a vertex v of c with degX[c] v <
degX v. Let X ′ be the subgraph of X with vertex set V that contains all
edges of X that are not in X[c]. Then all vertices in X ′ have even degree (as
differences of the even degrees in X and X[c]; Lemma 2.2.6).

By construction, degX′ v > 0. Hence, X ′ contains a partial Eulerian cy-
cle c′ of non-zero length that starts at v (Lemma 2.2.7). Splicing c′ into c
produces a partial Eulerian cycle in X that is longer than c. This contradicts
the maximality of c.

Hence, this case cannot occur and degX[c] v = degX v holds for all vertices v
of the subgraph X[c] of X generated by c. Because X is connected and X[c]
is non-empty (c contains at least one vertex), we obtain that X[c] = X
(Lemma 2.2.8). In other words, c is an Eulerian cycle.

Example 2.2.9 (the seven bridges of Königsberg). The graph corresponding
to the original problem of the seven bridges of Königsberg (Model 2.2.2)
contains vertices of odd degree (in fact, there are four vertices of odd degree).
Therefore, Theorem 2.2.5 shows that this graph admits no Eulerian cycle.
Hence, there is no round-trip walk through the city of Königsberg that crosses
each of the seven bridges exactly once.

Caveat 2.2.10 (the travelling salesman problem and Hamiltonian cycles). The
“dual” problem of

Decide whether a given finite graph admits a cycle that visits every
vertex exactly once (a so-called Hamiltonian cycle) or not!

does not seem to have a similarly simple and algorithmically efficient solution;
indeed, this problem, which for obvious reasons is also known as the travelling
salesman problem, is an NP-complete problem [19].
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Outlook 2.2.11 (DNA reconstruction). A typical problem in bioinformatics is
to reconstruct DNA strings from partial sequential reads of DNA strings. This
problem has various different aspects, including the necessity of error correc-
tion. One of the aspects is the assembly of partial reads along common suf-
fixes/prefixes. This problem is usally encoded as a graph-theoretic problem.
One approach uses so-called de Bruijn graphs and makes the reconstruction
problem an instance of the problem of finding Eulerian paths [62, 51].

2.3 Simplicial complexes and simplicial maps

We turn to the higher-dimensional setting and introduce simplicial complexes,
simplicial maps, and basic constructions on them. Simplicial complexes are
purely combinatorial and thus easily formalised in proof assistants [49].

2.3.1 Geometric idea

Graphs consist of vertices and edges between vertices, where the edges are
modelled as two-element sets of vertices. Simplicial complexes are a higher-
dimensional version of graphs (Figure 2.4):

Figure 2.4.: A simplicial complex, schematically

A simplicial complex is a set of simplices, where the simplices are com-
binatorial versions of vertices, edges, triangles, tetrahedra, . . . , i.e., of the
geometric standard simplices

∆n := {t ∈ Rn+1
≥0 | t0 + · · ·+ tn = 1}.

As in the case of graphs, the combinatorics of such a simplicial complex is
captured by the information of which vertices span a common simplex. We
will thus model simplices by finite sets (“the sets of vertices that span a
simplex”). As faces of goemetric simplices are simplices, we require simplicial
complexes to be closed under taking subsets.
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2.3.2 Simplicial complexes

We give the formal definition of simplicial complexes and some related notions
such as finiteness and the dimension. Moreover, we consider basic examples.
Application-oriented examples will follow in subsequent sections.

Definition 2.3.1 (simplicial complex). A simplicial complex is a set X of finite
sets that is closed under taking subsets:

∀σ∈X ∀τ⊂σ τ ∈ X.

The elements of X are called simplices of X. The elements of

V (X) :=
⋃
X =

{
x
∣∣ ∃σ∈X x ∈ σ

}

are called vertices of X.
A subcomplex of a simplicial complex X is a simplicial complex X ′

with X ′ ⊂ X.

Example 2.3.2 (a small simplicial complex). The simplicial complex in Fig-
ure 2.4 could be formalised as (check!)

{
∅,
{0}, . . . , {8},
{0, 1}, {0, 2}, {0, 4}, {1, 2}, {2, 3}, {2, 4}, {2, 5}, {3, 4},
{5, 6}, {5, 7}, {5, 8}, {6, 7}, {6, 8}, {7, 8},
{0, 2, 4}, {2, 3, 4}, {5, 6, 7}, {5, 6, 8}, {5, 7, 8}, {6, 7, 8}
{5, 6, 7, 8}

}
.

Definition 2.3.3 (dimension). Let X be a simplicial complex.

• Let σ ∈ X. Then the dimension of σ is defined as (where #σ denotes
the cardinality of σ)

dimσ := #σ − 1 ∈ N ∪ {−1}.

If dimσ = n, then we also say that σ is an n-simplex of X.

• For n ∈ N, we denote the set of n-simplices of X by

X(n) := {σ ∈ X | dimσ = n}.

• The dimension of X is defined as (with sup ∅ := −1)

dimX := sup{dimσ | σ ∈ X} ∈ N ∪ {−1,∞}.
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∆(2)

0

1 2
{1, 2}

{0, 2}{0, 1}

{0, 1, 2} S(1)

0

1 2
{1, 2}

{0, 2}{0, 1}

Figure 2.5.: The simplicial standard 2-simplex and the simplicial 1-sphere,
respectively

Remark 2.3.4 (vertices and 0-simplices). Let X be a simplicial complex. Then
(check!)

V (X) =
{
x
∣∣ {x} ∈ X(0)

}
.

Example 2.3.5 (empty). The empty set is a simplicial complex, which has
dimension −1.

Example 2.3.6 (standard simplex). If V is a finite set, then the power set P (V )
is a simplicial complex, the simplex spanned by V . We have dimP (V ) =
#V − 1.

For n ∈ N, we call ∆(n) := P ({0, . . . , n}) the (simplicial) standard n-
simplex (Figure 2.5). By construction, dim ∆(n) = n. This simplicial com-
plex ∆(n) can be viewed as a combinatorial model of the affine standard
n-simplex ∆n = {t ∈ Rn+1

≥0 | t0 + · · ·+ tn = 1}.
Example 2.3.7 (simplicial sphere). Let V be a finite set with #V ≥ 2. Then
S(V ) := P (V ) \ {V } is a simplicial complex (check!) of dimension #V − 2
(check!).

For n ∈ N, we call S(n) := S({0, . . . , n + 1}) the simplicial n-sphere
(Figure 2.5). In particular, dimS(n) = n.

Example 2.3.8 (the real line). The set

{
{k, k + 1}

∣∣ k ∈ Z
}
∪
{
{k}

∣∣ k ∈ Z
}
∪ {∅}

is a simplicial complex (check!) of dimension 1 (check!). It can be viewed as
a combinatorial model of the real line. Similarly, for n ∈ N, we can consider
the simplicial complex (check!)

[0, n]∆ :=
{
{k, k + 1}

∣∣ k ∈ {0, . . . , n− 1}
}
∪
{
{k}

∣∣ k ∈ {0, . . . , n}
}
∪ {∅},

which is a combinatorial model of the interval [0, n].

Example 2.3.9 (graphs as one-dimensional simplicial complexes). If (V,E) is a
graph, then

E ∪ V ∪ {∅}
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is a simplicial complex of dimension at most 1 (check!), which represents the
same connectivity information on V . Conversely, if X is a simplicial complex
with dimX ≤ 1, then (

V (X), X(1)
)

is a graph (check!), which represents the same connectivity information as X
on V (X).

Proposition and Definition 2.3.10 (finiteness of simplicial complexes). Let X
be a simplicial complex. Then the following are equivalent:

1. The set V (X) is finite.

2. The set X is finite.

In this case, we call X a finite simplicial complex.

Proof. Let V (X) be finite. Then also Pfin(V (X)) is finite. Moreover, by def-
inition, X ⊂ Pfin(V (X)). Therefore, also X is finite.

Conversely, let X be a finite set. Then V (X) =
⋃
X is also finite.

Remark 2.3.11 (finiteness and finite-dimensionality). Every finite simplicial
complex is finite-dimensional. However, there exist simplicial complexes that
are finite-dimensional even though they are not finite (Example 2.3.8).

In this course, we will mainly be concerned with finite simplicial complexes.
We can also describe simplicial complexes by specifying a set of finite sets

and then taking the set of all subsets of these sets:

Definition 2.3.12 (generated simplicial complex). Let S be a set of finite sets.
We then write

〈S〉∆ :=
{
τ
∣∣ ∃σ∈S τ ⊂ σ

}

for the simplicial complex generated by S.

If S is a set of finite sets, then 〈S〉 indeed is a simplicial complex (check!).
Moreover, if S is finite, then 〈S〉 is a finite simplicial complex (check!).

Example 2.3.13 (a small simplicial complex, again). The simplicial complex
from Example 2.3.2 could alternatively and more efficiently be described as
(check!) 〈

{0, 1}, {1, 2}, {2, 5}{0, 2, 4}, {2, 3, 4}, {5, 6, 7, 8}
〉

∆
.

2.3.3 Simplicial maps

Simplicial maps are structure-preserving maps between simplicial complexes.
More precisely, simplicial maps are maps between the sets of vertices that
map simplices to simplices (possibly of different dimension).
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Definition 2.3.14 (simplicial map). Let X and Y be simplicial complexes. A
simplicial map X −→ Y is a map f : V (X) −→ V (Y ) with

∀σ∈X f(σ) ∈ Y.

Here, “f(σ)” denotes the image {f(x) | x ∈ σ} of σ under f .

Proposition 2.3.15 (monotonicity of dimension). Let X and Y be simplicial
complexes, let f : X −→ Y be a simplicial map, and let σ ∈ X. Then

dim f(σ) ≤ dim(σ).

Proof. By definition, we have

dim f(σ) = #f(σ)− 1≤#σ − 1 = dimσ.

Example 2.3.16 (identity map). Let X be a simplicial complex. Then

V (X) −→ V (X)

x 7−→ x

is a simplicial map, which we will denote by idX . More generally, if X ′ is a
subcomplex of X, then the inclusion V (X ′) ↪→ V (X) is a simplicial map.

Example 2.3.17 (constant maps). Let X and Y be simplicial complexes and
let y ∈ V (Y ). Then the constant map

V (X) −→ V (Y )

x 7−→ y

is a simplicial map (Exercise).

Example 2.3.18 (a non-simplicial map). The identity map {0, 1} −→ {0, 1} is
not a simplicial map ∆(1) −→ S(0) (the simplex {0, 1} of ∆(1) is not mapped
to a simplex of S(0)). This can be viewed as an instance of a combinatorial
version of the intermediate value theorem.

Proposition 2.3.19 (composition of simplicial maps). Let X, Y , Z be simplicial
complexes and let f : X −→ Y , g : Y −→ Z be simplicial maps. Then the
composition h := g◦f : V (X) −→ V (Z) of the underlying maps f : V (X) −→
V (Y ) and g : V (Y ) −→ V (Z) (by abuse of notation denoted by the same
letters) is a simplicial map X −→ Z. This simplicial map will be denoted
by g ◦ f .

Proof. Let σ ∈ X. Then

h(σ) = (g ◦ f)(σ) = g
(
f(σ)

)
.

Because f is simplicial and σ is a simplex of X, we know that f(σ) ∈ Y .
Because g simplicial, we hence obtain h(σ) = g(f(σ)) ∈ Z.
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Hence, we can organise simplicial complexes into a category (check!):

Definition 2.3.20 (the category of simplicial complexes). The category SC of
simplicial complexes is the category consisting of:

• objects: Let Ob(SC) be the class(!) of all simplicial complexes.

• morphisms: IfX and Y are simplicial complexes, we define MorSC(X,Y )
as the set of all simplicial maps X −→ Y .

We write map∆(X,Y ) := MorSC(X,Y ).

• compositions: The compositions of morphisms are defined as in Propo-
sition 2.3.19.

In particular, we obtain a corresponding notion of isomorphism.

Definition 2.3.21 (simplicial isomorphism). Let X and Y be simplicial com-
plexes. Isomorphisms in the category SC are called simplicial isomorphisms.
More explicitly: A simplicial map f : X −→ Y is a simplicial isomorphism
if there exists a simplicial map g : Y −→ X such that g ◦ f = idX and
f ◦ g = idY .

For simplicial complexes of dimension at most 1, this notion of isomor-
phism is the same as the notion of isomorphism of graphs (under the transi-
tion specified in Example 2.3.9; check!).

Using the combinatorial intervals from Example 2.3.8, we obtain a notion
of paths in simplicial complexes and thus a notion of connectedness:

Definition 2.3.22 (path, connected). Let X be a simplicial complex.

• A path in X is a simplicial map [0, n]∆ −→ X with n ∈ N.

• The simplicial complex X is connected if for all vertices x, y ∈ V (X),
there exists an n ∈ N and a path γ : [0, n]∆ −→ X with γ(0) = x
and γ(n) = y.

Example 2.3.23. The simplicial complex ∆(1) is connected, but S(0) is not.

For simplicial complexes of dimension at most 1, this notion of connect-
edness is the same as the notion of connectedness of graphs (under the tran-
sition specified in Example 2.3.9; check!). However, the notions of paths are
not exactly the same.

2.3.4 Basic constructions

We consider basic constructions of simplicial complexes and their categorical
properties: unions, intersections, and one version of products.
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Definition 2.3.24 (union of simplicial complexes). Let X and Y be simplicial
complexes. Then X ∪ Y is a simplicial complex (check!), called the union of
X and Y .

Definition 2.3.25 (intersection of simplicial complexes). Let X and Y be sim-
plicial complexes. Then X ∩ Y is a simplicial complex (check!), called the
intersection of X and Y .

Remark 2.3.26 (unions/intersections lead to pushouts). Let X and Y be sim-
plicial complexes. Then X ∩Y is a subcomplex of X and Y , respectively, and
both X and Y are subcomplexes of X ∪ Y . The inclusions of subcomplexes
form a pushout diagram in the category SC (Exercise) (and also a pullback):

X ∩ Y

��

// X

��

Y // X ∪ Y

The category of simplicial complexes is complete and cocomplete; inverse
limits and colimits are recalled in Appendix A.2.4. However, because simpli-
cial complexes are very rigid, already in the case of pushouts and products,
the corresponding limiting objects might look different than what one expects
from geometry.

Proposition 2.3.27 (inverse limits and colimits in SC). The category SC con-
tains all small colimits and all small inverse limits. More precisely:

1. Inverse limits. Let F : I −→ SC be a small diagram in SC. Let Y :=
lim←−i∈I V (F (i)) be the inverse limit in Set of the underlying vertex sets,

with corresponding structure maps (pi : Y → V (F (i)))i∈I . Then

X :=
{
σ ∈ Pfin(Y )

∣∣ ∀i∈I pi(σ) ∈ F (i)
}

is a simplicial complex with V (X) = Y . Moreover, X together with
the (pi)i∈I is an inverse limit of F in SC.

2. Colimits. Let F : I −→ SC be a small diagram in SC. Let Y :=
lim−→i∈I V (F (i)) be the colimit in Set of the underlying vertex sets, with

corresponding structure maps (ji : V (F (i))→ Y ). Then

X :=
{
σ ∈ Pfin(Y )

∣∣ ∃i∈I ∃τ∈F (i) ji(τ) = σ
}

is a simplicial complex with V (X) = Y . Moreover, X together with
the (ji)i∈I is a colimit of F in SC.

Proof. We give the proof for the case of inverse limits; the proof for colimits
is similar (check!).
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Because each F (i) is closed under taking subsets, also X is closed un-
der taking subsets and thus a simplicial complex. Morever, by construction,
V (X) = Y (check!).

We show that X together with the (pi)i∈I has the claimed universal prop-
erty: First of all, by construction of X, each pi is a simplicial map X −→ F (i).
Because (Y, (pi)i∈I) is an inverse limit for V ◦ F : I −→ Set, we know that
(X, (pi)i∈I) is a cone over F in SC.

Let (Z, (fi)i∈I) be a cone over F in SC; in particular, (V (Z), (fi)i∈I) is a
cone over V ◦ F in Set. By the universal property of the inverse limit in Set,
we obtain that there is a unique map f : V (Z) −→ Y with

∀i∈I pi ◦ f = fi.

It thus suffices to show that f is a simplicial map Z −→ X. This is clear by
construction: Let σ ∈ Z. Then, we have fi(σ) ∈ F (i) for all i ∈ I, because
each fi is a simplicial map. We hence obtain

∀i∈I pi
(
f(σ)

)
= fi(σ) ∈ F (i).

By definition of X, this means that f(σ) ∈ X.

In particular, the category SC contains all binary products and all pushouts.

Definition 2.3.28 (simplicial product of simplicial complexes). Let X and Y be
simplicial complexes. The simplicial complex (check!)

X � Y :=
{
σ ∈ Pfin(V (X)× V (Y ))

∣∣ p1(σ) ∈ X, p2(σ) ∈ Y
}

is called the simplicial product of X and Y . Here, p1 and p2 denote the
projections from V (X)× V (Y ) to the first and second factor, respectively.

Caveat 2.3.29 (products of simplicial complexes). By the concrete description
of inverse limits in Proposition 2.3.27, the simplicial product of simplicial
complexes (together with the canonical projection maps) is “the” categorical
product of two simplicial complexes in SC.

Geometrically, we would expect the product of ∆(1) with ∆(1) to be a
“square”, but a straightforward computation shows that (Exercise)

∆(1)�∆(1) ∼=SC ∆(3).

Despite of this geometric effect, the simplicial product is a useful construction;
for example, we can use products of the form · �∆(1) to obtain a notion of
homotopy between simplicial maps (Chapter 2.3.5).

Caveat 2.3.30 (pushouts of simplicial complexes). A straightforward calcula-
tion shows that the diagram
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S(0)
incl //

const
��

∆(1)

const
��

〈{0}〉∆
id
// 〈{0}〉∆

is a pushout diagram in SC (check!). However, geometrically, we would expect
the pushout to describe a “circle” instead of a “point”.

Outlook 2.3.31 (simplicial sets). Simplicial sets [32] are a conceptually fur-
ther evolved version of simplicial structures. The category of simplicial sets
and simplicial maps is more flexible and reflects the category of topological
spaces better than the rigid category of simplicial complexes. But for many
applications simplicial complexes are slicker and can be used more directly.

2.3.5 Simplicial homotopy

Following the standard blueprint of defining “homotopic” via products with
intervals and the inclusions at the endpoints of the intervals, we obtain a
notion of homotopy in the category of simplicial complexes.

Definition 2.3.32 (simplicial homotopy). Let X and Y be simplicial complexes
and let f, g : X −→ Y be simplicial maps. Then f is simplicially homotopic
to g if there exists a simplicial homotopy from f to g.

A simplicial homotopy from f to g is a simplicial map h : X �∆(1) −→ Y
with

h ◦ i0 = f and h ◦ i1 = g,

where i0, i1 : X −→ X �∆(1) are the simplicial maps (check!) given by the
inclusion into the 0- and 1-component, respectively.

If f and g are simplicially homotopic, we write f '∆ g.

Example 2.3.33 (simplicial maps on S(1)). The map f : {0, 1, 2} −→ {0, 1, 2}
given by the “projection”

0 7−→ 1, 1 7−→ 1, 2 7−→ 2

is a simplicial map S(1) −→ S(1) (Figure 2.6). The maps f and the constant
simplicial map S(1) −→ S(1) with value 1 are simplicially homotopic: Indeed,

{0, 1, 2} × {0, 1} 7−→ {0, 1, 2}
(x, 0) 7−→ f(x)

(x, 1) 7−→ 1

defines a simplicial homotopy S(1) �∆(1) −→ S(1) from f to the constant
map 1 (check!).
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0

1 2
{1, 2}

{0, 2}{0, 1}
f

Figure 2.6.: The simplicial map from Example 2.3.33

The simplicial maps f : S(1) −→ S(1) and the simplicial map id{0,1,2} are
not simplicially homotopic: Assume for a contradiction that there exists a
simplicial homotopy h : S(1)�∆(1) −→ S(1) from f to id{0,1,2}. In particular,
because of σ := {(0, 2)} × {0, 1} ∈ S(1)�∆(1), we obtain h(σ) ∈ S(1), but

h(σ) = h
(
{0, 2} × {0, 1}}

)
=
{
h(0, 0), h(2, 0), h(0, 1), h(2, 1)

}

=
{
f(0), g(2), id{0,1,2}(0), id{0,1,2}(2)

}

= {1, 2, 0},

which is not a simplex of S(1). Thus, f 6'∆ id{0,1,2}.

In contrast with Top, simplicial homotopy is more rigid: Showing that
simplicial maps are not simplicially homotopic can (on finite simplicial com-
plexes) be done via a (finite) exhaustive search. Classically, being simplicially
homotopic is expressed in the more concrete terms of contiguity:

Proposition 2.3.34 (contiguous vs. simplicially homotopic). Let X and Y be
simplicial complexes and let f, g : X −→ Y be simplicial maps. Then the
following are equivalent:

1. We have f '∆ g.

2. The maps f and g are contiguous, i.e.,

∀σ∈X f(σ) ∪ g(σ) ∈ Y.

Proof. Ad 1 =⇒ 2. Let f '∆ g and let h : X � ∆(1) −→ Y be a simplicial
homotopy from f to g. We show that f and g are contiguous: Let σ ∈ X.
Then σ × {0, 1} is a simplex of X �∆(1) (check!) and

f(σ) ∪ g(σ) = h ◦ i0(σ) ∪ h ◦ i1(σ) (h is a simplicial homotopy from f to g)

= h
(
σ × {0, 1}

)
(calculation)

∈ Y . (h is simplicial)

Hence, f and g are contiguous.
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Ad 2 =⇒ 1. Conversely, let f and g be contiguous. We consider the map

h : V (X)× {0, 1} −→ V (Y )

(x, 0) 7−→ f(x)

(x, 1) 7−→ g(x)

and show that h is a simplicial map X � {0, 1} −→ Y : Let σ ∈ X � {0, 1}; in
particular, p1(σ) ∈ X. Hence, we obtain

h(σ) = f
(
{x ∈ V (X) | (x, 0) ∈ σ}

)
∪ g
(
{x ∈ V (X) | (x, 1) ∈ σ}

)
(by definition of h)

⊂ f
(
p1(σ)

)
∪ g
(
p1(σ)

)
(by definition of the projection p1)

∈ Y . (p1(σ) ∈ X and contiguity)

Therefore, h is a simplicial map. By construction, h ◦ i0 = f and h ◦ i1 = g.
So, h is a simplicial homotopy from f to g.

Caveat 2.3.35 (simplicial homotopy as equivalence relation). Let X and Y be
simplicial complexes. The relation “'∆” on map∆(X,Y ) is reflexive and sym-
metric, but in general it is not transitive (Exercise). Thus, “'∆” in general
does not define equivalence relations on the sets of simplicial maps.

We denote the transitive closure of “'∆” by “'∗∆”. By construction,
this is the smallest transitive relation that contains “'∆”; more concretely,
f, g ∈ map∆(X,Y ) satisfy f '∗∆ g if and only if there exists an n ∈ N and
f0, . . . , fn ∈ map∆(X,Y ) with

∀j∈{0,...,n−1} fj '∆ fj+1

and f = f0 as well as fn = g. Because “'∆” is reflexive and symmetric, the
relation “'∗∆” on map∆(X,Y ) indeed is an equivalence relation.

Moreover, “'∆” (whence “'∗∆”) is compatible with the composition of
simplicial maps: For instance, this is immediate in the description via conti-
guity (check!). Therefore, one can also construct a homotopy category of SC
by dividing the morphism set by “'∗∆”.

2.4 Modelling: Consistency relations

Simplicial complexes can be used to model consistent states of several enti-
ties. We illustrate two versions of this technique. Further examples will arise
in the analysis of consensus problems in distributed computing (Chapter 3.6).
In all these examples it will become apparent how the high-dimensional na-
ture of simplicial complexes captures multilateral consistency conditions more
directly than graphs.
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Real-world problem 2.4.1 (the incompatible food triad problem [36]). Are
there three food ingredients with the following property: Any two of them
taste good together, but all three of them together do not taste good?

This problem can be modelled as follows:

Model 2.4.2 (the incompatible food triad problem). We model Problem 2.4.1
by the following simplicial complex X: Let F be the set of all food items.

• Simplices: A (finite) subset of F is a simplex of X if and only if these
ingredients together taste good (to a fixed observer).

Explanation. The construction of this simplicial complex makes a (possibly
non-trivial?) assumption: If a set of ingredients tastes good together, then
the same also holds for every subset of these ingredients.

Problem 2.4.1 then directly translates into the following problem: Does X
contain a “hollow triangle”, i.e., does X contain three vertices x, y, z such
that

{x, y}, {y, z}, {x, z} ∈ X and {x, y, z} 6∈ X ?

Even though the problem in this form looks like a feasible mathematical
problem, some care is necessary: “taste good together” and “food ingredi-
ent” are not easily put into an objective framework and will depend on the
chosen observer. Therefore, different observers might find different answers/-
solutions. While this model does not help directly with solving the underlying
real-world problem, it shows how such information can be represented as a
simplicial complex.

Similarly, in music theory, one can consider the simplicial complex of con-
sonant pitches (Exercise).

A more rigorous example comes from the (dual) management of prefer-
ences, e.g., used in the analysis of social choice problems (Chapter 3.7):

Real-world problem 2.4.3 (voting preferences). A set S of people wants to
figure out a way to rank a set A of alternatives. To this end, every person
in S can provide his own preferences concerning A (i.e., which alternatives
they consider better than others).

The problem is then to aggregate these preferences into an order of A,
usually under additional compatibility constraints (e.g., unanimity, non-
dictatorship, independence of irrelevant alternatives).

Model 2.4.4 (voting preferences). We model the relation between the voting
preferences in Problem 2.4.3 by the following simplicial complex: Let A be
the set of available alternatives and let S be the set of people.

• Voting preferences: If s ∈ S, then we model the voting preferences of s
as an order on A.

Let P be the set of all orders on A that arise in this way from S.
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(0, 1)

(0, 2)

(1, 2)

(1, 0)

(2, 0)

(2, 1)

Figure 2.7.: Voting preferences for three alternatives

• Simplicial complex: We set

V :=
{

(x, y)
∣∣ x, y ∈ A, x 6= y

}

and
X :=

{
σ ∈ Pfin(V )

∣∣ ∃p∈P ∀(x,y)∈σ x >p y
}
.

Then X indeed is a simplicial complex (check!).

Explanation. We assume that the preference of each person in S is consis-
tent in the sense that it defines an order on A. The simplices of X correspond
to finite sets of binary comparisons that are consistent within P . We will see
in Chapter 3.7 how finding aggregation maps of preferences corresponds to
finding simplicial maps to X from a suitable other simplicial complex and
how the constraints on aggregation maps translate into properties of simpli-
cial maps to X.

Example 2.4.5 (preferences for three alternatives). We spell out the simplicial
complex X from Model 2.4.4 in a simple example: Let A := {0, 1, 2}, i.e.,
we consider three alternatives and let S be diverse enough to lead to P
consisting of all orders on A. Then X is the “ring-shaped” simplicial complex
in Figure 2.7. For instance, a partial order that witnesses the existence of the
2-simplex {(0, 1), (2, 1), (2, 0)} is 2 > 0 > 1.

2.5 Modelling: Complexes from point clouds

Topological data analysis applies topological tools to “big data”. In this con-
text, we convert “big data” into topological objects. Usually, this is a two-step
process:

1. We first convert “big data” into simplicial complexes.
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2. We then (convert these simplicial complexes into topological spaces
and) apply homotopy invariants to these simplicial complexes/spaces.

In this section, we describe the first step in more detail. The second step is
explained in Chapter 2.6 and Chapter 3.

To convert “big data” into simplicial complexes, we first need to agree how
to model “big data”. In applications, such “big data” usually arises as multi-
parameter measurements or observations. It is customary to model such “big
data” as finite subsets of Rn (called point clouds) and to endow Rn with
a suitable metric (e.g., the Euclidean metric d2 or the `1-metric d1 or the
`∞-metric d∞); here, n corresponds to the number of parameters captured
in the measurements/retrieval of the data.

Example 2.5.1 (point clouds from MRI images). MRI images (magnetic reso-
nance imaging) represent activation information for locations in the human
brain. More precisely, the brain area is subdivided into a cubical grid (so-
called voxels) and for each voxel the extent of activation is measured. If the
scanner has a resolution of n voxels, then MRI images can be viewed as points
in Rd. A set of MRI images gives rise to a point cloud in Rn. Such sets arise
as sets of scans of multiple subjects or as sets of scans of a single subject at
multiple times.

We can build simplicial complexes from such point clouds by “connecting
the dots”: Two points that have “small” distance should be connected by
edges; three points that have “small” distance should span a triangle; . . . Such
constructions depend on the exact notion of “small” and “small distance”.
In many cases, there is no good a priori estimate for what “small” should
mean. Therefore, one considers the system of simplicial complexes obtained
by looking at all scales.

The most prominent examples of simplicial complexes from point clouds
are the Čech and Rips complexes. Čech complexes are special cases of nerves
of covers. While the Čech complexes are more accurate in a topological sense
(Chapter 2.6), the Rips complexes are easier to compute.

Definition 2.5.2 (nerve of a cover). Let X be a set and let U := (Ui)i∈I be a
cover of X; i.e., for each i ∈ I, we have Ui ⊂ X and

⋃
i∈I Ui = X. The nerve

of U is the simplicial complex (check!)

N(U) :=
{
σ ∈ Pfin(I)

∣∣∣
⋂

i∈σ
Ui 6= ∅

}
.

Example 2.5.3 (complex of preferences, as nerve). The simplicial complex
modelling voting preferences from Model 2.4.4 can also be understood as
a nerve of the following cover:

Let A be a set and let P be a set of orders on A. For x, y ∈ A, we set

U+
x,y := {p ∈ P | x >p y} and U−x,y := {p ∈ P | x <p y}.
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U N(U) V N(V )

Figure 2.8.: Two covers of S1 and their nerves

Then (U+
x,y)x,y∈A,x6=y is a cover of P (check!) and the nerve of this cover is

the simplicial complex X of consistent voting preferences from Model 2.4.4
(check!).

Example 2.5.4 (nerves of covers of the circle). We consider the covers U and V
depicted in Figure 2.8. Then (check!)

N(U) ∼=SC ∆(1) and N(V ) ∼=SC S(1).

Definition 2.5.5 (Čech complex). Let (Y, d) be a metric space, let X ⊂ Y ,
and let ε ∈ R>0. The Čech complex Čε(X,Y, d) of X in (Y, d) with radius ε is
the nerve of the open cover (Uε(x))x∈X by all open ε-balls centered at points
in X.

Remark 2.5.6 (extremal radii). For finite point clouds in metric spaces, of
course, we always obtain:

• If ε is small enough, then the Čech complex with radius ε is discrete
(consisting of the points of the point cloud);

• if ε is large enough, then the Čech complex with radius ε is a full simplex
(spanned by the point cloud).

Both of these extremal cases do not contain interesting topological informa-
tion on the point cloud. We thus need techniques that allow us to study Čech
complexes at all resolutions simultaneously. For example, one can look at
persistent homology (Chapter 4).

Example 2.5.7 (Čech complexes). Let X := {0, 1} × {0, 1} ⊂ R2, equipped
with the Euclidean metric d2. For ε ∈ R>0, we then obtain (Figure 2.9)

Čε(X,R2, d2) =





〈
{(0, 0)}, {(1, 0)}, {(0, 1)}, {(1, 1)}

〉
∆

if ε ≤ 1/2〈
{(0, 0), (1, 0)}, {(1, 0), (1, 1)}, {(1, 1), (0, 1)}, {(0, 1), (0, 0)}

〉
∆

if ε ∈ (1/2,
√

2/2]〈
{(0, 0), (1, 0), (0, 1), (1, 1)}

〉
∆

if ε >
√

2/2.
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X Čε(X,R2, d2)

for ε ≤ 1/2

Čε(X,R2, d2)

for ε ∈ (1/2,
√

2/2]

Čε(X,R2, d2) ∼=SC ∆(3)

for ε >
√

2/2

Figure 2.9.: Čech complexes for the vertices of a square in the Euclidean
plane, schematically

Computing Čech complexes in general is a complex task. Rips complexes
are a modified version, which are easier to compute: Instead of checking
whether intersections of open balls in the ambient space are inhabited, we
only need to compute diameters of finite sets.

Definition 2.5.8 (Rips complex). Let (X, d) be a metric space and let ε ∈ R>0.
The Rips complex (also called Vietoris–Rips complex ) of (X, d) with radius ε
is the simplicial complex (check!)

Rε(X, d) :=
{
σ ∈ Pfin(X)

∣∣ diamσ < ε
}
.

Here diamσ := sup{d(x, y) | x, y ∈ σ} denotes the diameter of σ in (X, d).

Example 2.5.9 (Rips complexes). In the situation of Example 2.5.7, we obtain
for all ε ∈ R>0 (check!):

Rε(X, d2) =





〈
{(0, 0)}, {(1, 0)}, {(0, 1)}, {(1, 1)}

〉
∆

if ε ≤ 1〈
{(0, 0), (1, 0)}, {(1, 0), (1, 1)}, {(1, 1), (0, 1)}, {(0, 1), (0, 0)}

〉
∆

if ε ∈ (1,
√

2]〈
{(0, 0), (1, 0), (0, 1), (1, 1)}

〉
∆

if ε >
√

2.

Example 2.5.10 (“random” Rips complexes). To illustrate the Rips com-
plex construction, we consider Rips complexes of 30 random (uniformly dis-
tributed) points on the circle and of 30 random (uniformly distributed) points
in the square [−1, 1]2 (Figure 2.10).

Čech and Rips complexes are nested as follows:

Proposition 2.5.11 (Čech and Rips complexes). Let (Y, d) be a metric space,
let X ⊂ Y be non-empty, and let ε, δ ∈ R>0.

1. If δ < ε, then

Čδ(X,Y, d) ⊂ Čε(X,Y, d) and Rδ(X, d) ⊂ Rε(X, d)

2. Moreover, we have

Čε/2(X,Y, d) ⊂ Rε(X, d) ⊂ Čε(X,Y, d).
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Figure 2.10.: Top: Rips complexes of 30 random (uniformly distributed)
points on the unit circle; the radii of the Rips complexes
are 0.3, 0.5, 0.8, 1.1, 1.4, 1.7.
Lower rows: Rips complexes of 30 random (uniformly) dis-
tributed) points in the square [−1, 1]2; the radii of the Rips
complexes are 0.3, 0.5, 0.8, 1.1, 1.4, 1.7

42
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Proof. All of these statements follow from straightforward computations
(check!).

We only give the details for the inclusion Čε/2(X,Y, d) ⊂ Rε(X, d): Let

σ ∈ Čε/2(X,Y, d); without loss of generality, we may assume that σ 6= ∅. We
show that σ ∈ Rε(X, d): Let x0 ∈

⋂
x∈σ Uε/2(x). Then the triangle inequality

shows that
d(x, y) ≤ d(x, x0) + d(x0, y) <

ε

2
+
ε

2
= ε.

Hence, diamσ < ε and so σ ∈ Rε(X, d).

2.6 Geometric realisation

We defined simplicial complexes are combinatorial objects, based on an in-
formal association with the geometry of affine simplices in Euclidean space.
Using the same analogy, we now construct the geometric realisation functor
from simplicial complexes to (polyhedral) topological spaces.

Topological spaces are triangulable if they are homeomorphic to the geo-
metric realisation of some simplicial complex. Such simplicial structures also
reflect the topology of maps: By the simplicial approximation theorem, con-
tinuous maps between triangulable spaces are homotopic to simplicial maps
– provided we refine the domain complex by subdivisions.

We first introduce geometric realisation and the corresponding notions of
coordinates. We then study the barycentric subdivision of simplicial com-
plexes and use it to prove the simplicial approximation theorem.

2.6.1 Geometric realisation

The geometric realisation functor is defined by replacing combinatorial sim-
plices by actual Euclidean affine simplices (Figure 2.4, Figure 2.11). Points
in the goemetric realisation are described in terms of convex coordinates.

Definition 2.6.1 (geometric realisation of simplicial complexes). For a simplicial
complex X, we define the geometric realisation of X as the subset

|X| :=
⋃

σ∈X

{
ξ ∈

⊕

V (X)

R
∣∣∣∣ ∀x∈V (X)\σ ξx = 0, ∀x∈V (X) ξx ∈ [0, 1],

∑

x∈σ
ξx = 1

}

=
⋃

σ∈X
conv{ex | x ∈ σ}

endowed with the following topology: A subset U ⊂ |X| is open if and only
if for every σ ∈ X, the intersection U ∩ |X| ∩ |σ| is open in the subspace
topology of |σ| induced by the Euclidean topology on

⊕
σ R. Here, |σ| denotes
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e00

|∆(0)|
e0

e1

|∆(1)| |∆(2)|

Figure 2.11.: Geometric realisation of simplices

the convex hull
|σ| := conv{ex | x ∈ σ} ⊂ |X|.

Moreover, for ξ ∈ |X|, we write

supp ξ :=
{
x ∈ V (X)

∣∣ ξx 6= 0
}
⊂ V (X).

Simplicial maps induce continuous maps between geometric realisations
through affine extension:

Definition 2.6.2 (geometric realisation of simplicial maps). For a simplicial
map f : X −→ Y , we define the geometric realisation of f as the well-defined
(check!) map

|f | : |X| −→ |Y |
ξ 7−→

∑

x∈V (X)

ξx · ef(x).

Remark 2.6.3 (on the topology of the geometric realisation). By construction,
the topology on the geometric realisation has the following property: If X is
a simplicial complex and Z is a topological space, then a map ϕ : |X| −→ Z
is continuous if and only if for each σ ∈ X the restriction

ϕ||σ| : |σ| −→ Z

is continuous (with respect to the Euclidean topology on |σ|.
If X is a finite simplicial complex, then the topology on the geometric

realisation |X| is the same as the subspace topology induced by the finite-
dimensional Euclidean space

⊕
V (X) R (check!) and |X| is compact (Exer-

cise).
If X is infinite, then the Euclidean topology on |X| is coarser than the

topology from Definition 2.6.1 (check!).

Proposition 2.6.4 (geometric realisation is a functor). Geometric realisation
defines a functor | · | : SC −→ Top. In particular:

1. If f : X −→ Y is a simplicial map, then |f | : |X| −→ |Y | is continuous.
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2. If f : X −→ Y and g : Y −→ Z are simplicial maps, then

|g ◦ f | = |g| ◦ |f |.

3. If X is a simplicial complex, then |idX | = id|X|.

Proof. Ad 1. We use the characterisation of continuity on the geometric re-
alisation of simplices (Remark 2.6.3): Let σ ∈ X. By definition, we have that
the restriction |f |||σ| is given through

|f |
∣∣
|σ| : |σ| −→ |Y |

ξ 7−→
∑

x∈σ
ξx · ef(x).

This is a finite sum of continuous maps (as multiplication on R is continuous)
whose domains are a finite dimensional real vector space; therefore, |f |||σ| is
continuous. In view of Remark 2.6.3, we obtain that f is continuous.

Ad 2. This is a straightforward computation: Let ξ ∈ |X|. By construction,
we have

|g|
(
|f |(ξ)

)
= |g|

( ∑

x∈V (X)

ξx · ef(x)

)
=

∑

x∈V (X)

ξx · eg(f(x)) =
∑

x∈V (X)

ξx · eg◦f(x)

= |g ◦ f |(ξ).

Ad 3. This is immediate from the definition.

Example 2.6.5 (geometric realisations). Let n ∈ N.

• We have |∆(n)| ∼=Top ∆n because the map

∣∣∆(n)
∣∣ −→ ∆n

ξ 7−→
n∑

j=0

ξj · ej

clearly is a homeomorphism.

• We have |S(n)| ∼=Top S
n because: The idea is to use the central projec-

tion map c : Rn+1 \ {0} −→ Sn, x 7−→ x/‖x‖2. There are several ways
of carrying out this idea. One that generalises well to other setups is
the following: We pick n+2 affinely independent points v0, . . . , vn+1 on
the unit sphere Sn ⊂ Rn+1 and then consider

ϕ :
∣∣S(n)

∣∣ −→ Sn

ξ 7−→ c

( ∑

x∈{0,...,n+1}
ξx · vx

)
.
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This map ϕ is well-defined, bijective, and continuous (check!). More-
over, |S(n)| is compact and Sn is Hausdorff. Therefore, we can apply
the compact-Hausdorff trick (Corollary A.1.40) to conclude that ϕ is a
homeomorphism.

• More generally: If P is a convex simplicial polytope in Rn+1 with non-
empty interior, then the geometric realisation of the simplicial complex
associated with the combinatorial structure of the faces of P is home-
omorphic to Sn (check!).

The vertices of a simplicial complex have special open neighbourhoods: the
open stars. While closed stars could also be defined on the combinatorial level,
the concept of open stars is more difficult to describe on the combinatorial
side: open stars in general do not form subcomplexes.

Definition 2.6.6 (open star, closed star). Let X be a simplicial complex and
let x ∈ V (X).

• The closed star of x in X is the subset

starcX x :=
∣∣〈{σ ∈ X | x ∈ σ}〉∆

∣∣ =
⋃

σ∈X,x∈σ
|σ| ⊂ |X|.

• The open star of x in X is the subset

star◦X x :=
⋃

σ∈X,x∈σ

{
ξ ∈ |σ|

∣∣ ∀x∈σ ξx > 0
}
⊂ |X|.

Remark 2.6.7 (open stars are open and stars). Let X be a simplicial ocmplex
and let x ∈ V (X). Then the open star star◦X x is open in |X|; this can be
derived directly from the definition of the topology on |X| (check!). Moreover,
star◦X x is star-shaped with star-point x (check!).

Example 2.6.8 (an open star). We consider the simplicial complex

X :=
〈
{0, 1, 2}, {0, 2, 3}, {0, 4}, {0, 5}, {5, 6}

〉
∆

and the vertex 0. The open star star◦X 0 is depicted in Figure 2.12.

Proposition 2.6.9 (simplices via open stars). Let X be a simplicial complex
and let σ ⊂ V (X) be a finite (non-empty) subset. Then σ is a simplex of X
if and only if ⋂

x∈σ
star◦X x 6= ∅.

Proof. This is straightforward from the definitions (Exercise).
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0

12

3

4 5

6

Figure 2.12.: An open star (yellow) in a simplicial complex (Example 2.6.8)

Example 2.6.10 (nerves of open stars). Let X be a simplicial complex and
let U := {star◦X x | x ∈ V (X)}. Then U is a cover of |X| (check!) and
Proposition 2.6.9 shows that the map

V (X) −→ V (X)

x 7−→ star◦X x

is a simplicial isomorphism X ∼=SC N(U) (check!).
Conversely, in certain situations, topological spaces can be recovered up to

homotopy equivalence from the nerves of suitable open covers (Chapter 2.7).

Topological spaces that admit a combinatorial description in terms of sim-
plicial complexes are called triangulable:

Definition 2.6.11 (triangulation). A topological space is triangulable if it ad-
mits a triangulation. A triangulation of a topological space Z is a pair (X,ϕ),
consisting of

• a simplicial complex X and

• a homeomorphism ϕ : |X| −→ Z.

Example 2.6.12 (triangulation). From Example 2.6.5, we obtain triangula-
tions of the standard affine n-simplex ∆n and of the sphere Sn for all n ∈ N.
In particular, we see that triangulations are far from being unique in general.

Outlook 2.6.13 (triangulable spaces). Every smooth manifold admits a trian-
gulation; every compact smooth manifold admits a finite triangulation [75].

Every triangulation leads to a CW-structure (taking the simplices as cells).
Conversely, every [finite] CW-complex is homotopy equivalent to a [finite]
simplicial complex [37, Theorem 2C.5].

Caveat 2.6.14 (non-triangulability). Not every topological space admits a tri-
angulation! For example, geometric realisations of simplicial complexes al-
ways are Hausdorff (check!); in particular, non-Hausdorff spaces do not admit
triangulations.
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0

1 2

∆(2)

{0}

{1} {2}

{0, 2}
{0, 1, 2}

sd ∆(2)

Figure 2.13.: Barycentric subdivision

A less exotic example is the following: The subspace {1/n | n ∈ N>0}∪{0}
of R is not triangulable (Exercise).

Our next goal is to prove the simplicial approximation theorem. For this,
we will need subdivisions.

2.6.2 Subdivision

The barycentric subdivision refines simplicial complexes by replacing each
simplex by its barycentric subdivision; the barycentric subdivision of a sim-
plex geometrically is obtained by inductively adding barycentres of simplices
and coning of the previous lower-dimensional steps using the barycentre as
cone point (Figure 2.13). On the combinatorial level, this corresponds to re-
placing a simplex by the simplicial complex given by chains of faces of the
original complex; geometrically, in this abstract description, one should view
the simplices in the chains as “barycentres” of the corresponding original
simplices.

Definition 2.6.15 (barycentric subdivision). Let X be a simplicial complex.
The barycentric subdivision of X is the simplicial complex

sdX :=
{
{σ0, . . . , σn}

∣∣ n ∈ N, σ0, . . . , σn ∈ X \ {∅}, σ0 ⊂ σ1 ⊂ · · · ⊂ σn
}

∪ {∅}.

Remark 2.6.16 (functoriality of barycentric subdivision). Let X and Y be sim-
plicial complexes. By construction, V (sdX) = X\{∅} (check!). If f : X −→ Y
is a simplicial map, then

V (sdX) −→ V (sdY )

σ 7−→ f(σ)
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is a well-defined simplicial map (check!), denoted by sd f : sdX −→ sdY .
Moreover, this construction is compatible with identity maps and composi-
tion; thus, we obtain a functor sd: SC −→ SC.

Barycentric subdivision is compatible with geometric realisations:

Proposition 2.6.17 (geometric realisation of the barycentric subdivision). Let
X be a simplicial complex. Then there is a canonical homeomorphism

βX : | sdX| −→ |X|

that is natural with respect to simplicial maps.

Proof. Let βX : | sdX| −→ |X| be the affine linear extension of the map

V (sdX) −→ |X|
σ 7−→ β(σ)

where

β(σ) :=
1

#σ
·
∑

x∈σ
ex ∈ |σ| ⊂ |X|

denotes the barycentre of σ ∈ X. This affine linear extension βX indeed
has image in |X| (check!) and is continuous (by definition of the topology
on geometric realisations). Moreover, βX is clearly natural with respect to
simplicial maps.

We show that βX is a homeomorphism. To this end, we establish the
following:

À If σ ∈ X and σ 6= ∅, then βXσ : | sdXσ| −→ |σ| is a homeomorphism,
where Xσ := P (σ).

Á If σ ∈ X, then βX ||σ| = βXσ .

From À and Á we obtain that βX is a homeomorphism: The compatibility
in Á ensures that the maps of type À glue to give the map βX . By definition
of | sdX| and |X|, therefore claim À shows that the glued map βX is surjective
(check!), injective (check!?!), and its inverse also is continuous (check!).

Claim Á is immediate from the construction. For claim À, we argue as
follows: Because | sdXσ| is compact and |σ| is Hausdorff, it suffices to show
that βXσ is continuous and bijective.

• Continuity follows from the construction as affine linear extension.

• Surjectivity: We proceed by induction on dimσ.

Base case: If dimσ = 0, then σ = {x} for some x ∈ V (X). If ξ ∈ |σ|,
then ζ := ξx · e{x} ∈ | sdXσ| and by construction we have

βXσ (ζ) = ξx · β
(
{x}
)

= ξx · ex = ξ.
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σ

{x0} {x0, . . . , xn−1}
ξ′

ξ

Figure 2.14.: Projection to a lower-dimensional simplex

Induction step: Let n := dimσ > 0 and let us assume that surjectivity
holds for all simplices of dimension < n. Let ξ ∈ |σ|; we write σ =
{x0, . . . , xn} with x0, . . . , xn ∈ V (X) in such an order that

ξx0
≥ ξx1

≥ · · · ≥ ξxn .

In particular, ξxn ≤ 1/(n+ 1) and so t := (n+ 1) · ξxn lies in [0, 1].

We consider the projected point (Figure 2.14)

ξ′ :=

n−1∑

j=0

ξ′xj · exj ,

where

∀j∈{0,...,n−1} ξ′xj :=
1

1− t · (ξxj − ξxn) ∈ [0, 1].

Then ξ′ ∈
∣∣{x0, . . . , xn−1}

∣∣, because

n−1∑

j=0

ξ′xj =
1

1− t ·
n−1∑

j=0

ξxj −
1

1− t · n · ξxn (by definition of ξ′)

=
1− ξxn
1− t −

n · ξxn
1− t (because ξ ∈ |σ|)

=
1− t
1− t = 1. (by definition of t)

By the induction hypothesis (applied to the lower-dimensional sim-
plex σ′ := {x0, . . . , xn−1}), there exists a ζ ′ ∈ | sdXσ′ | ⊂ | sdXσ|
with βXσ′ (ζ

′) = ξ′. Then

ζ := (1− t) · ζ ′ + t · eσ

is a point of | sdXσ| and by construction, we have
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βXσ (ζ) = (1− t) · βXσ (ζ ′) + t · β(σ) = (1− t) · βXσ′ (ζ ′) + t · β(σ)

= (1− t) · ξ′ + t · β(σ)

= (1− t) ·
n−1∑

j=0

ξ′xj · exj +
t

n+ 1
·
n∑

j=0

exj

= (1− t) ·
n−1∑

j=0

1

1− t · (ξxj − ξxn) · exj +
t

n+ 1
·
n−1∑

j=0

exj + ξxn · exn

=

n−1∑

j=0

(
ξxj − ξxn +

t

n+ 1

)
· exj + ξxn · exn

=

n−1∑

j=0

ξxj · exj + ξxn · exn

= ξ.

Therefore, βXσ is surjective, as claimed.

• Injectivity: Let ξ ∈ |σ| and let ζ, ζ ′ ∈ | sdXσ| with βXσ (ζ) = ξ =
βXσ (ζ ′). Let n := dimσ. We may pick an enumeration σ = {x0, . . . , xn}
and a permutation π ∈ S{0,...,n} such that ζ comes from the sim-
plex {{x0}, {x0, x1}, . . . } ∈ sdXσ and such that ζ ′ comes from the
simplex {{xπ(0)}, {xπ(0), xπ(1)}, . . . }. Rearranging the terms leads to

ξ = β(ζ)

=
∑

τ⊂σ
ζτ ·

∑

x∈τ

1

#τ
· ex

=

n∑

j=0

( n∑

k=j

1

k + 1
· ζ{x0,...,xk}

)
· exj .

In particular, we obtain

∀j∈{0,...,n} ξxj =

n∑

k=j

1

k + 1
· ζ{x0,...,xk}.

As the convex coordinates of ζ are all non-negative this shows that

ξx0
≥ · · · ≥ ξxn

and that the indices with strict inequalities encode the set supp ζ. Sim-
ilarly, from ξ = β(ζ ′), we deduce that

∀j∈{0,...,n} ξxπ(j)
=

n∑

k=j

1

k + 1
· ζ ′{xπ(0),...,xπ(k)}
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and (where the strict inequalities encode supp ζ ′)

ξxπ(0)
≥ · · · ≥ ξxπ(n)

.

We combine both chains of inequalities; in particular, supp ζ = supp ζ ′.
Equalities mean that the corresponding additional convex coordinate is
zero; thus, we may swap such indices and retain the same points. There-
fore, we may assume without loss of generality that π is the identity
permutation. Overall, we have

∀j∈{0,...,n}
n∑

k=j

1

k + 1
· ζ{x0,...,xk} = ξej =

n∑

k=j

1

k + 1
· ζ ′{x0,...,xk}.

A downward induction over j then shows that the convex coordinates
of ζ and ζ ′ coincide. Hence, ζ = ζ ′, which proves injectivity of βXσ .

Hence, βX : | sdX| −→ |X| is a homeomorphism.

Iterated barycentric subdivision leads to simplicial complexes with arbi-
trarily small mesh size inside the geometric realisation of the original simpli-
cial complex:

Proposition 2.6.18 (mesh size of barycentric subdivisions). Let X be a sim-
plicial complex and let n ∈ N. We equip | sdX| with the metric induced by
the Euclidean metric on |X| under the homeomorphism βX : | sdX| −→ |X|.
Then, for each n-simplex σ of sdX, we obtain

diam |σ| ≤ n

n+ 1
·
√

2.

More generally, for each N ∈ N every simplex σ of the N -fold iterated
barycentric subdivision sdN X satisfies (with iterated pull-back metric)

diam |σ| ≤
( n

n+ 1

)N
·
√

2.

Proof. This is standard convex/Euclidan geometry [55, Theorem 15.4].

2.6.3 Simplicial approximation

Using barycentric subdivision, we prove the simplicial approximation theo-
rem, which states that up to iterated barycentric subdivisions, continuous
maps between triangulated topological spaces are “close” to simplicial maps.

Definition 2.6.19 (simplicial approximation). Let X and Y be simplicial
complexes and let ϕ : |X| −→ |Y | be a continuous map. A simplicial
map f : X −→ Y is a simplicial approximation of ϕ if

∀x∈V (X) ϕ(star◦X x) ⊂ star◦Y
(
f(x)

)
.
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x

ϕ

f(x)

Figure 2.15.: The star condition for simplicial approximation, schematically

The approximation condition on the stars is illustrated in Figure 2.15.

Example 2.6.20 (simplicial approximation).

• Let X be a simplicial complex. Then the identity idX (Example 2.3.16)
is a simplicial approximation of the identity map id|X| : |X| −→ |X|.
More generally, if f : X −→ Y is a simplicial map, then f is a simplicial
approximation of |f | : |X| −→ |Y | (check!).

• Let X := D(1) and Y := sdX. The inverse β−1
X : |X| −→ |Y | (Propo-

sition 2.6.17) does not admit a simplicial approximation X −→ Y
(check!).

• If X is a simplicial complex, then the barycentric subdivision homeo-
morphism βX : | sdX| −→ |X| (Proposition 2.6.17) admits a simplicial
approximation sdmX : sdX −→ X (Exercise).

Before getting into the simplicial approximation theorem, we show that
simplicial approximations are unique up to homotopy and that the geometric
realisation of a simplicial approximation is homotopic to the approximated
continuous map:

Proposition 2.6.21 (simplicial approximations are simplicially homotopic). Let
X and Y be simplicial complexes, let ϕ : |X| −→ |Y | be a continuous map,
and let f, g : X −→ Y be simplicial approximations of ϕ. Then f '∆ g.

Proof. It suffices to show that f and g are contiguous (Proposition 2.3.34). We
use the characterisation of simplices via open stars from Proposition 2.6.9:
Let σ ∈ X with σ 6= ∅. Then U :=

⋂
x∈σ star◦X x 6= ∅ (Proposition 2.6.9).

Then also the image ϕ(U) is non-empty and thus

⋂

y∈f(σ)∪g(σ)

star◦Y y =
⋂

x∈σ
star◦Y

(
f(x)

)
∩
⋂

x∈σ
star◦Y

(
g(x)

)

⊃
⋂

x∈σ
ϕ(star◦X x) (f and g are simplicial approximations of ϕ)

= ϕ(U)

is non-empty. Hence, f(σ) ∪ g(σ) is a simplex of Y (Proposition 2.6.9).
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Proposition 2.6.22 (geometric homotopies for simplicial approximations). Let
X and Y be simplicial complexes.

1. If ϕ : |X| −→ |Y | is a continuous map and f : X −→ Y is a simplicial
approximation to ϕ, then ϕ ' |f |.

2. If f, g : X −→ Y are simplicially homotopic, then |f | ' |g|.
In particular: If f, g : X −→ Y are simplicial approximations of ϕ : |X| −→
|Y |, then |f | ' |g|.
Proof. Both assertions can be proved using the straight-line homotopy. We
only prove the first part in detail: We consider the map

η : |X| × [0, 1] −→ |Y |
(ξ, t) 7−→ (1− t) · ϕ(ξ) + t · |f |(ξ).

This map is indeed well-defined: Let ξ ∈ |X| and let σ := supp ξ. Then σ is a
simplex of X. We show that ϕ(ξ) and |f |(ξ) both lie in |f(σ)|. As the latter
set is convex in

⊕
V (Y ) R, we then obtain that η maps to |Y | .

On the one hand, by construction, |f |(ξ) ∈ |f(supp ξ)| = |f(σ)|. On the
other hand, because f is a simplicial approximation to ϕ, we obtain that

ϕ(ξ) ∈ ϕ
(⋂

x∈σ
star◦X x

)
⊂
⋂

x∈σ
ϕ(star◦X x)

⊂
⋂

x∈σ
star◦Y f(x) =

⋂

y∈f(σ)

star◦Y y ⊂
∣∣f(σ)

∣∣.

The map η is continuous: The restriction η||σ|×[0,1] of η is continuous for
each σ ∈ X. From this one can conclude that η is continuous (if X is finite,
this is straightforward; in the general case, one needs an additional technical
argument to show that |X|×[0, 1] carries the colimit topology of the |σ|×[0, 1]
with σ ∈ X).

By construction, η( · , 0) = ϕ and η( · , 1) = |f |. Hence, the homotopy η
witnesses that ϕ ' |f |.

As a preparation for the simplicial approximation theorem we show that
continuous maps satisfying the star condition admit a simplicial approxima-
tion. The general case then follows by applying iterated barycentric subdivi-
sions.

Proposition 2.6.23 (simplicial approximation from star condition). Let X and
Y be simplicial complexes and let ϕ : |X| −→ |Y | be a continuous map that
satisfies the star condition, i.e.,

∀x∈V (X) ∃y∈V (Y ) ϕ(star◦X x) ⊂ star◦Y y.

Then ϕ admits a simplicial approximation X −→ Y .
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Proof. By the star condition (and the axiom of choice), there exists a
map f : V (X) −→ V (Y ) with

∀x∈X ϕ(star◦X x) ⊂ star◦Y
(
f(x)

)
.

It suffices to show that f is a simplicial map X −→ Y : Let σ ∈ X; with-
out loss of generality, let σ 6= ∅. We use the characterisation of simplices
in terms of open stars (Proposition 2.6.9): Because of σ ∈ X, we have
that

⋂
x∈σ star◦X x 6= ∅. Therefore, together with the star-condition, we obtain

⋂

y∈f(σ)

star◦Y y =
⋂

x∈σ
star◦Y

(
f(x)

)
⊃
⋂

x∈σ
ϕ(star◦X x) 6= ∅;

in particular,
⋂
y∈f(σ) star◦Y y 6= ∅ and so f(σ) ∈ Y .

Theorem 2.6.24 (simplicial approximation theorem). Let X and Y be simpli-
cial complexes, let X be finite, and let ϕ : |X| −→ |Y | be a continuous map.
Then there exists an N ∈ N such that

ϕ ◦ βNX : | sdN X| −→ |Y |

admits a simplicial approximation.

Proof. We use a subdivision and Lebesgue lemma argument: Let V :=
(star◦Y y)y∈V (Y ) be the open cover of |Y | given by the open stars of all vertices
in Y . Then U := (ϕ−1(star◦Y y))y∈V (Y ) is an open cover of X. As X is finite,
|X| is compact.

We apply the Lebesgue lemma (Lemma 2.6.25) to the open cover U of |X|,
where we equip |X| with the Euclidean metric on the finite-dimensional
space

⊕
V (X) R. Hence, we obtain an ε ∈ R>0 with the following property:

For each x ∈ |X| there exists a y ∈ V (Y ) with

Uε(x) ⊂ ϕ−1(star◦Y y).

Then there exists an N ∈ N such that the mesh size of sdN X is less than ε/2
(Proposition 2.6.18). Hence, the open stars of | sdN X| have diameter less
than ε when viewed as subsets of |X| via the homeomorphism βNX for the
N -fold iterated barycentric subdivision (check!). In particular,

∀x∈V (sdN X) ∃y∈V (Y ) ϕ ◦ βNX (star◦sdN X x) ⊂ ϕ
(
ϕ−1(star◦Y y)

)
⊂ star◦Y y.

Therefore, ϕ◦βNX admits a simplicial approximation (Proposition 2.6.23).

Lemma 2.6.25 (Lebesgue lemma). Let (X, d) be a compact metric space and
let (Ui)i∈I be an open cover of X. Then there exists an ε ∈ R>0 with the
following property: For every x ∈ X there is an i ∈ I such that the open
ball U(x, ε) of radius ε around x is contained in Ui.
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∣∣sdN X � [0, 1]
∣∣

0

N

%N

| sdN X| × [0, 1]

0

1

βNX × id[0,1]

∼=Top

|X| × [0, 1]

η
|Y |

Figure 2.16.: From homotopies to simplicial homotopies, schematically

Any such number ε is called a Lebesgue number of the cover (Ui)i∈I .

Proof. Because (Ui)i∈I is an open cover of X, for every x ∈ X there exists
an ix ∈ I and an rx ∈ R>0 with U(x, rx) ⊂ Uix . In view of compactness,
there is a finite set Y ⊂ X with

⋃
y∈Y U(y, ry/2) = X. Then

ε :=
1

2
·min
y∈Y

ry ∈ R>0

has the desired property: Let x ∈ X. Hence, there is a y ∈ Y with x ∈
U(y, ry/2). Therefore, we obtain U(x, ε) ⊂ U(y, ry) ⊂ Uiy , as desired.

There is also an adapted version of the simplicial approximation theorem
for infinite domain complexes [56, Theorem 16.5].

The same reasoning as in the proof of the simplicial approximation theorem
also leads to the corresponding statement for homotopies:

Theorem 2.6.26 (homotopy and simplicial homotopy). Let X and Y be simpli-
cial complexes, let X be finite, let ϕ,ψ : |X| −→ |Y | be continuous maps, and
let f, g : X −→ Y be simplicial approximations of ϕ and ψ, respectively. Then
ϕ ' ψ if and only if there exists an N ∈ N such that f ◦ sdmN

X '∗∆ g ◦ sdmN
Y .

Here, sdmN
X denotes an iterated simplicial approximation of βNX .

Proof. First, let f ◦ sdmN
X '∗∆ g ◦ sdmN

Y . Because f and sdmN
X are simplicial

approximations of ϕ and βNX , respectively, we see that f ◦sdmN
X is a simplicial

approximation of ϕ ◦ βNX (Exercise). Then Proposition 2.6.22 shows that

ϕ ◦ βNX ' |f ◦ sdmN
X | (f ◦ sdmN

X is a simplicial approximation of ϕ ◦ βNX )

' |g ◦ sdmN
X | (f ◦ sdmN

X '∗∆ g ◦ sdmN
X , which is a finite sequence of “'∆”)

' ψ ◦ βNX . (g ◦ sdmN
X is a simplicial approximation of ψ ◦ βNX )

Pre-composing with the inverse homeomorphism of βNX shows that ϕ ' ψ.
Conversely, let ϕ ' ψ. Let η : |X| × [0, 1] −→ |Y | be a homotopy from ϕ

to ψ. We apply a subdivision and Lebesgue lemma argument to a suitable
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product (Figure 2.16). To this end, for N ∈ N>0, we consider the simplicial
interval [0, N ]∆ (Example 2.3.8) and the continuous map αN : |[0, N ]∆| −→
[0, 1] that uniformly shrinks the “long” interval to [0, 1]. Then αN and the
geometric realisations of the projections from (sdN X) � [0, N ]∆ to the two
factors induce a continuous map

%N :
∣∣(sdN X)� [0, N ]∆

∣∣ −→ | sdN X| ×
∣∣[0, N ]∆

∣∣ −→ | sdN X| × [0, 1].

By construction, the corresponding inclusions are compatible:

%N ◦ |i0| = ι0 and %N ◦ |iN | = ιN .

If N is large enough, then the same kind of argument as in the proof of the
simplicial approximation theorem (Theorem 2.6.24) shows that the compo-
sition η ◦ (βNX × id[0,1]) ◦ %N admits a simplicial approximation h : sdN X �
[0, N ]∆ −→ Y , where we write βNX : | sdN X| −→ |X| for the N -fold iterated
barycentric subdivision homeomorphism (Proposition 2.6.17). Then:

• h ◦ i0 is a simplicial approximation of η ◦ (βNX × id[0,1]) ◦ ι0 = ϕ ◦ βNX ;

• h ◦ i1 is a simplicial approximation of η ◦ (βNX × id[0,1]) ◦ ι1 = ψ ◦ βNX ;

• h induces simplicial homotopies

h ◦ i0 '∆ h ◦ i1, h ◦ i1 '∆ h ◦ i2, . . . h ◦ iN−1 '∆ h ◦ iN .

Because f ◦ sdmN
X is also a simplicial approximation of ϕ ◦ βNX , we obtain

f ◦ sdmN
X '∆ h◦ i0 (Proposition 2.6.21) and analogously g ◦ sdmN

X '∆ h◦ iN .
Combining all these simplicial homotopies, we conclude that f ◦ sdmN

X '∗∆
g ◦ sdmN

X , as claimed.

Corollary 2.6.27 (counting homotopy types).

1. There exist only countably many homotopy types of topological spaces
that admit a finite triangulation.

2. If W and Z are topological spaces that admit finite triangulations,
then there are only countably many homotopy classes of continuous
maps W −→ Z.

Proof. Ad 1. There exist only countably many isomorphism types of finite
simplicial complexes (check!). In particular, there exist only countably many
homotopy types of spaces homeomorphic [even: homotopy equivalent] to finite
simplicial complexes.

Ad 2. Let X and Y be finite triangulations of W and Z, respectively.
From the simplicial approximation theorem (Theorem 2.6.24) and the fact
that the geometric realisation of a simplicial approximation is homotopic to
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the original map (Proposition 2.6.22), we obtain that geometric realisation
induces a surjection

⋃

N∈N
map∆(sdN X,Y ) −→

[
|X|, |Y |

] ∼=Set [W,Z].

The left-hand side is countable (check!). Thus, also [W,Z] is countable.

In particular, Corollary 2.6.27 can be applied in various ways in the context
of compact smooth manifolds (Outlook 2.6.13). Moreover, Theorem 2.6.24
allows to show many basic null-homotopy results (Exercise).

2.7 Modelling: Approximation
by simplicial structures

In many applications, simplicial complexes are used as combinatorial repre-
sentations/approximations of smooth shapes – i.e., one considers triangula-
tions.

Example 2.7.1 (computer graphics). Triangulations allow us to reduce many
geometric problems to linear algebra. For example, the intersection of geo-
metric realisations of finite simplicial complexes can be computed via linear
algebra. In contrast, the computation of intersections of solutions to polyno-
mial equations or equations involving more general smooth functions would
be considerably more difficult.

Intersection problems are ubiquitous in computer graphics, e.g., in ray-
tracing or collision detection in computer games.

Therefore, triangulations (and other polygonal structures) are popular
tools in computer aided design (CAD), 3D printing, computer games, . . .

Example 2.7.2 (finite element method). The finite element method is an ap-
proach to numerically (approximately) solve partial differential equations on
subsets of Euclidean spaces. The key idea is to triangulate the subsets and to
replace the original problem by piecewise (polynomial) problems. Typically,
the triangulation is then called a mesh and each of the piecewise problems
is called a finite element. One first solves the finite elements and then uses a
variational approach to minimise a global error function to obtain reasonable
global approximate solutions.

We now return to the conversion of point clouds into topological spaces
and to the question in which sense the associated Čech complexes are valid
approximations of the underlying “true” space.

As one result in this direction, we have a look at the sampling theorem by
Niyogi, Smale, and Weinberger [59]:
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M

?

?

Figure 2.17.: Towards the condition number: Resolution necessary to locally
and globally distinguish parts of submanifolds

Theorem 2.7.3 (high confidence simplicial approximation through iid sam-
pling [59, (proof of) Theorem 3.1]). Let M be a closed k-dimensional smooth
submanifold of RN with condition number τ . Let ε ∈ (0, τ/2), let δ ∈ (0, 1),
and let

n > β1 ·
(

log β2 + log
1

δ

)
,

where (volM is the volume of M as Riemannian submanifold of RN )

β1 :=
volM

cosk(ϑ1) · vol(Bkε/4)
, β2 :=

volM

cosk(ϑ2) · vol(Bkε/8)

ϑ1 := arcsin
( ε

8 · τ
)
, ϑ2 := arcsin

( ε

16 · τ
)

and where Bkε/4 is a closed ε/4-ball in Rk. Let X1, . . . , Xn be a family of inde-
pendent identically uniformly distributed M -valued random variables. Then

Prob
(∣∣Čε({X1, . . . , Xn},RN , d2)

∣∣ 'M
)
> 1− δ.

The condition number of a submanifold of RN describes the resolution
that is necessary to distinguish parts of the submanifold that do not belong
together – both locally and globally (Figure 2.17).

Definition 2.7.4 (condition number [59, Section 2]). Let M be a closed sub-
manifold of RN .

• The medial axis of M is the closure AM of the set

AM :=
{
a ∈ RN

∣∣ ∃x,y∈M x 6= y∧‖a−x‖2 = d2(a,M) = ‖a−y‖2
}
⊂ RN .

• For x ∈ M , then σM (x) := d2(x,AM ) is the local feature size of M
at x.

• The condition number ofM is infx∈M σM (x). (Sometimes, the condition
number also refers to the inverse of this number.)
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M

(d, 0)

medial axis of M

Figure 2.18.: An example of a medial axis (Example 2.7.5)

Alternatively, the condition number can also be described via the open
normal bundle of M in RN [59, Section 2] or in terms of the second funda-
mental form of the submanifold M of RN [59, Section 6].

Example 2.7.5 (condition number).

• The medial axis of a circle in R2 at the origin of radius r ∈ R>0 is
the singleton containing the origin. The condition number of this circle
in R2 is thus r.

If we embed this circle into R3 via the embedding R2 ↪→ R3 into the
first two coordinates, then the medial axis is {(0, 0)}×R; the condition
number remains r.

• Let d ∈ R>2. The medial axis of M := S1 ∪ (S1 + (d, 0)) in R2 is
depicted in Figure 2.18. The condition number is thus the minimum
of 1 and (d− 2)/2.

Sketch of proof of Theorem 2.7.3. The proof consists of the following steps
(Figure 2.19):

1. The subset

{
(x1, . . . , xn) ∈Mn

∣∣ |Čε({x1, . . . , xn},RN , d2)| 'M
}
⊂Mn

is measurable (with respect to the product σ-algebra; Exercise). In par-
ticular, the probability considered in the statement of the theorem is
well-defined.

2. With probability at least 1 − δ, the sampled points form an ε/2-net
in M , i.e., every point in M is ε/2-close to one of the sampled points [59,
Proposition 3.2].

3. If {x1, . . . , xn} ⊂M is an ε/2-net, then the thickened up space

U :=

n⋃

j=1

Uε(xj)
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the mystery M the sampled points
are an ε/2-net

the union of the ε-balls
deformation retracts onto M

applying the nerve lemma
to the ε-Čech complex

Figure 2.19.: Proof of Theorem 2.7.3, schematically

deformation retracts onto M [59, Proposition 3.1]; here, Uε(xj) denotes
the open ε-ball around xj in RN . In particular, M ' U .

4. We apply the nerve lemma (Theorem 2.7.6) to (Uε(xj))j∈{1,...,n}, as an
open cover of U , to conclude that

M ' U '
∣∣Čε({x1, . . . , xn},RN , d2)

∣∣.

The proof of Theorem 2.7.3 used the nerve lemma. The nerve lemma is a
key tool in homotopy theory and approximation through simplicial structures.

Theorem 2.7.6 (nerve lemma). Let Z be a paracompact space (e.g., a manifold
or a CW-complex) and let U = (Ui)i∈I be an open cover of Z with the follow-
ing property: For all non-empty finite subsets J ⊂ I, the intersection

⋂
i∈J Ui

is empty or contractible. Then

∣∣N(U)
∣∣ ' X.

More concretely: If ϕ = (ϕi)i∈I is a partition of unity on Z that is subordinate
to U , then the nerve map defined by

Z −→
∣∣N(U)

∣∣

ζ 7−→
∑

i∈I
ϕi(ζ) · ei

is a homotopy equivalence. Different partitions of unity on Z subordinate to U
lead to homotopic nerve maps.

Sketch of proof [37, Chapter 4.G]. As Z is paracompact, there exists a parti-
tion of unity ϕ = (ϕi)i∈I subordinate to U . The nerve map ν : Z −→ |N(U)|
induced by ϕ is well-defined and continuous (Exercise) and other choices of
partition of unity lead to homotopic nerve maps (Exercise).

In order to show that ν is a homotopy equivalence, we consider an inter-
mediate stage, namely a homotopy-theoretic thickening of

⋃
i∈I Ui: Let Y be
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the homotopy colimit of the diagram given by all finite non-empty intersec-
tions of members of U and their respective chains of inclusion maps; i.e., the
diagram is based on sdN(U), directed by decreasing dimension of the un-
derlying simplices of N(U). This homotopy colimit is constructed by taking
iterated mapping cylinders of the corresponding chains of inclusion maps (as
a thick replacement of the set-theoretic union).

We obtain the following diagram:

Y
ϕ
//

flatten '
��

∣∣sdN(U)
∣∣

βN(U)
∼=Top

��

Z
ν
//
∣∣N(U)

∣∣

The left vertical map is given by “flattening” the mapping cylinders, which
is a homotopy equivalence. The upper horizontal map ϕ is obtained from the
universal property of the homotopy colimit, applied to the constant maps
from sets of the form

⋂
i∈J Ui to the one-point space. Tracing through the

constructions shows that the diagram is commutative up to homotopy.
The whole point of homotopy colimits is that they are (in contrast with

ordinary colimits in Top) compatible with homotopy equivalences. By the
standard construction of the homotopy colimits, it turns out that |sdN(U)|
can be viewed as the homotopy colimit space of the diagram over sdN(U)
that consists only of one-point spaces. Moreover, by hypothesis on U , when-
ever J ∈ Pfin(I) is non-empty, the intersection

⋂
i∈J Ui is (empty or) con-

tractible; hence, the constant map
⋂
i∈J Ui −→ • is a homotopy equivalence.

Therefore, ϕ : Y −→ | sdN(U)| is a homotopy equivalence.
Therefore, the diagram shows that also ν is a homotopy equivalence.

Remark 2.7.7 (the nerve theorem for convex covers). For the proof of The-
orem 2.7.3, a weaker version of the nerve lemma would be sufficient: We
consider only open covers consisting of Euclidean balls in Euclidean space.
Here, the contractibility of the members of the open cover and of their (non-
empty) intersections is provided by convexity.

In the case of open covers of subsets of RN consisting of convex subsets,
the nerve lemma can be approached in a more concrete way [5]. However, also
in this case, one of the homotopies requires an inductive homotopy-theoretic
construction.

Real-world problem 2.7.8 (shape from data). Let P be a real-world phe-
nomenon and let there be N ∈ N observable real-valued parameters of objects
involved in P . The goal is to describe P as accurately as possible through
a finite number of data points, composed of the N observables, obtained by
taking a finite number of measurements on instances in which P occurs.

Model 2.7.9 (shape from data). We model the situation of Problem 2.7.8 as
follows:
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• We model the observables as a function f : P −→ RN . We then consider
the observable subset

M := f(P ) ⊂ RN .

The best overall outcome is to be able to reconstruct M (as we can
access P only through the N observables).

• Let n ∈ N. We model n measurements as a family of n independent
identically uniformly distributed M -valued random variables.

It is debatable whether this assumption is realistic.

The sampling theorem (Theorem 2.7.3) then allows us to reconstruct the ho-
motopy type of M through the Čech complexes associated with the sampled
points. However, this assumes that

• M indeed is a smooth submanifold of RN (which sometimes might be
realistic and sometimes not),

• that we choose the radii small enough and that we have enough points
to compensate for the (a priori unknown!) condition number of M ,

• that there is no noise or imprecision in the measurements,

• that the measurements are independent and uniformly distributed
over M ,

• that we work with Čech complexes instead of the easier to compute
Rips complexes.

Some of these issues can be resolved [59, 43].

2.8 Implementation: Simplicial complexes

We briefly address the problem of how to implement simplicial structures in
the context of algorithmic computations.

As always in algorithmic contexts:

• There are no uniformly optimal solutions; the setup needs to be adapted
to the problem at hand.

• Algorithms and data structures are symbiotic and need to be considered
simultaneously.

• The algorithms/data structures should fit the used programming lan-
guage/programming paradigm.
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Simplicial complexes, by definition, are sets of finite sets. In most applica-
tions, we only need to handle finite simplicial complexes; thus, the following
discussion will focus on this case.

A priori this set of finite sets is unstructured. In many applications, we will
need to be able to access simplices of a given dimension. Therefore, often, it
is useful to implement simplicial complexes as

• a “finite collection” X

• of “finite sets” X(n), indexed by dimension n,

• which in turn consist of “finite sets” over some base type a.

Thus, “finite collection” should be a datatype that is indexed by natural
numbers and contains “finite sets” of “finite sets”; depending on whether the
dimension of the considered simplicial complexes is known beforehand or not,
one could take an array-like structure or a hash table or, more generally, a
function from natural numbers to “finite sets” of “finite sets”.

The “finite sets” should model mathematical finite sets in the sense that
they satisfy extensionality (in particular, the order of “elements” is not rel-
evant) and that they are traversable. Depending on the size and the base
types, internally such “finite sets” might be represented by binary search
trees (if the base type is ordered) or by hash tables.

In the case of point clouds, the sets X(n) have a strong locality property
and usually are sparse. Depending on the concrete application, it can make
sense to choose a data structure for X(n) that is optimised in that respect.

The vertices will be elements of the chosen base type a. In many appli-
cations, a will be a data type that does not only contain the labels of the
vertices, but also further data.

As a first concrete example let us consider the problem of computing the
connected components of a simplicial complex (i.e., the set of maximal con-
nected subcomplexes). There are various algorithmic solutions. We will use
the union-find framework [19, Chapter 22] to compute the connected compo-
nents [29, Chapter 1]:

Definition 2.8.1 (union-find). Let V be a (finite) set of elements of a datatype a.
A union-find structure over V consists of

• a data structure S, representing a (dynamic) partition of V into subsets
of V ,

• and the operations make-sets, union, find

with the following properties:

• Make-sets. The function make-sets initialises S as the partition of V
consisting of the singletons of the elements of V .
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including path compression

Figure 2.20.: Union-find via rooted forests, schematically

• Find. The function find takes an element x ∈ V as argument and returns
an element (a “representative”) of the subset of V that contains x. Here,
elements of the same partition set result in the same representative.

• Union. The function union takes two elements x, y ∈ V as argument
and updates the partition S by merging the subsets in S that contain
x and y, respectively.

If also the underlying finite set V is dynamic, then in addition to make-sets,
one considers a function make-set that creates the singleton of an element
(provided this element is not yet contained in the union over S).

Remark 2.8.2 (union-find, implementation). A standard way to implement a
union-find structure over a finite set V is to realise the partition S as a rooted
directed forest (Figure 2.20) such that

• the rooted trees of the forest correspond to the sets in the partition,

• in each rooted tree, from each vertex, one can access its parent vertex
(which is the vertex itself if the vertex is a root), and

• the roots are the representatives provided by find.

More concretely, one could realise V as an array and represent the forest
structure of S through corresponding pointers from each vertex to its parent.

• Then make-sets(V ) creates the forest in which every element of V is a
root and has no children.
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• For x ∈ V , one calculates find(x) by following the path of parents until
one reaches a root.

In order to improve the aggregated efficiency, one can use path com-
pression in every call to find: After finding the associated root, every
element lying on the path from the given element to the root, has its
parent changed to the root. This does not only return the desired rep-
resentative but also updates the underlying data structure S!

• For x, y ∈ V , one calculates union(x, y) as follows:

If find(x) 6= find(y), then the structure S is updated as follows:

– If the tree for x is at most as big as the one for y, we reset the
parent of the root obtained by find(x) to be the root obtained
by find(y).

– If the tree for x is larger than the one for y, we reset the root of
the parent obtained by find(y) to be the root obtained by find(x).

To make this efficient, the sizes of subtrees also need to be updated
accordingly in the union step.

If V contains n elements and one uses a total number m of union and find
operations (there are at most n− 1 unions possible on n elements), then the
complexity with path compression lies in O(m · α(m,n)), where α denotes
the “inverse” of the Ackermann function [19, Chapter 22]. As the Ackermann
function grows extremely fast, one may view α in practice as being constant.

Algorithm 2.8.3 (connected components of simplicial complexes). Given a fi-
nite simplicial complex X, do the following:

• Initialise a union-find structure on V (X) via make-sets(V (X)).

• For each σ ∈ X(1):

Let x, y be the two vertices of σ.

If find(x) 6= find(y), then union(x, y).

• Return the resulting union-find structure.

Here, we assume that X is given in a representation as discussed on p. 64.
Strictly speaking, we only have X(0) available instead of V (X). Using Re-
mark 2.3.4, we can easily convert between these two sets and we will freely
use both versions in the algorithms.

Every algorithm needs a termination, correctness, and runtime analysis:

Proposition 2.8.4. The algorithm specified in Algorithm 2.8.3

1. terminates on every input and
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2. computes for a given finite simplicial complex X, the vertex sets of
the connected components of X (in the form of a union-find partition
structure on V (X)).

3. Runtime analysis: If X is a finite simplicial complex, then the algorithm
uses one call to make-set on #V (X) elements and 2·#X(1) calls to find,
and at most #X(1) calls to union. Moreover, a traversal over V (X)
(or X(0)) and over X(1) is performed.

Proof. Let X be a finite simplicial complex with n vertices and m edges.
Ad 1./3. The first part of the algorithm consists of a call to make-sets on

a set of n elements. The second part of the algorithm consists of 2 ·m calls
to find and at most m calls to union.

In particular: As make-sets, find, and union terminate on all inputs, also
Algorithm 2.8.3 terminates on every input.

Ad 2. The algorithm and the connected components depend only on the
1-skeleton of X (i.e., the subcomplex of vertices and 1-simplices of X). Let
σ1, . . . , σm be the 1-simplices of X, ordered as in the traversal in the algo-
rithm.

We show inductively: For each k ∈ {0, . . . ,m}, after handling the 1-
simplices σ1, . . . , σk, the union-find structure consists exactly of the connected
components of the subcomplex Yk := {σ1, . . . , σk} ∪X(0) ∪X(−1).

In the base case k = 0, we have no edges. This means that every vertex
of Y0 constitutes its own connected component. This clearly is also the result
computed by the algorithm (which only consists of the make-sets step).

For the induction step, let k ∈ {1, . . . ,m}, and let us assume that the
claim holds for k − 1. We write σk = {x, y} and distinguish two cases:

• The vertices x and y lie in the same connected component of Yk−1.
Then they also lie in the same connected component of Yk and the
connected components of Yk are the same as those of Yk−1.

On the side of the algorithm: Because x and y lie in the same component
of Yk−1, by induction, we obtain find(x) = find(y). Hence, the algorithm
gives the same partition for Yk as for Yk−1.

Therefore, in this case, the claim holds for k.

• The vertices x and y do not lie in the same connected component
of Yk−1. Then σk witnesses that the connected components of Yk are
the same as the ones of Yk, except for the component in Yk of x and y,
which is the union of the components of x and y in Yk−1.

On the side of the algorithm: Because x and y do not lie in the same
component of Yk−1, by induction, we obtain that find(x) 6= find(y).
Hence, the algorithm merges the sets for x and y via union(x, y) and
leaves the other partition sets untouched.

Therefore, also in this case, the claim holds for k.
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The concrete runtime analysis depends on the complexity of traversals and
the complexity of the implementation of the union-find structure.

Outlook 2.8.5 (the limitation of algorithms). The problem

• Given a finite simplicial complex X,

• decide whether |X| is contractible or not.

is algorithmically undecidable. More precisely, using the undecidability of the
word problem for finitely presented groups [67, Chapter 12], one can prove
that there cannot be an algorithm (in the sense of Turing machines) that
solves this problem and that terminates on every input [50, 8].

In particular, also the problem

• Given finite simplicial complexes X and Y ,

• decide whether |X| ' |Y | or not.

is algorithmically undecidable (otherwise, we could solve the previous prob-
lem by taking one input to be a simplicial complex consisting of a single
vertex).

Similarly, also the problem

• Given finite simplicial complexes X and Y ,

• decide whether |X| ∼=Top |Y | or not.

is algorithmically undecidable [50, 8].
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Simplicial homology

Simplicial homology is an invariant of simplicial complexes. Simplicial ho-
mology is the homology of the simplicial chain complex, which is built from
the simplices (graded by dimension) and their boundaries.

On the one hand simplicial homology can be computed by the usual divide-
and-conquer approach and it can be computed algorithmically.

On the other hand, simplicial homology turns out to be topologically ho-
motopy invariant and thus defines a homotopy invariant on topological spaces
that admit a triangulation.

Using simplicial homology, we can prove several classical “abstract” appli-
cations of algebraic topology: the existence of Nash equilibria and impossi-
bility results on distributed systems and social choice.
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3.1 The construction of simplicial homology

Simplicial homology is an algebraic linearisation of the simplicial structure,
graded by dimension; the different dimensions are linked by taking faces of
simplices.

Geometrically, simplicial homology detects certain types of “holes” in
spaces by engulfing them with linear combinations of simplices.

hole

Figure 3.1.: Simplicial chains

hole hole

Figure 3.2.: Simplicial cycle; the chain on the left cannot surround a “hole”,
the chain on the right does surround a “hole”.

More precisely, we will proceed as follows (Figure 3.1–3.3):

• The simplicial chain complex of a simplicial complex consists of linear
combinations of oriented simplices (of a given dimension). These linear
combinations are called simplicial chains.

• Candidates for chains that detect a “hole” are chains that have “no
boundary”, i.e., where the faces of all involved simplices cancel. Such
chains are called cycles.

• Cycles only detect a “proper hole” if they are not the boundary of a
higher-dimensional chain.
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hole

Figure 3.3.: Simplicial boundary; the cycle on the left is the boundary of a
simplicial chain and hence cannot detect a “hole”; the cycle on
the right is not the boundary of a simplicial chain (because the
“hole” is in the way).

For a simplicial complex X and n ∈ N, we will set

simplicial homology of X in degree n :=
simplicial n-cycles of X

boundaries of simplicial (n+ 1)-chains
.

This idea will be formalised in the language of chain complexes and basic
homological algebra (Appendix A.3). Historically, the terminology in basic
homological algebra geos back to simplicial homology and its variations.

The simplicial chain complex is introduced in Chapter 3.1.1; simplicial
homology is defined in Chapter 3.1.2.

3.1.1 The simplicial chain complex

To define the simplicial chain complex as algebraic linearisation of simplicial
complexes, we need to take orientations of simplices into account. Orienta-
tions of simplices arise from ordering the vertices in a simplex. In non-zero
dimension, there are essentially two ways of picking orders. This can be ex-
pressed in terms of even/odd permutations. Flipping the orientation will in-
troduce a sign on the chain level.

Definition 3.1.1 (oriented simplex). Let X be a simplicial complex and let
n ∈ N. We write

X〈n〉 :=
{

(x0, . . . , xn) ∈ V (X)n+1
∣∣ {x0, . . . , xn} ∈ X(n)

}

for the set of all ordered n-simplices of X. The symmetric group Sn+1 acts
on X〈n〉 through permutation of components. The quotient

X[n] := X〈n〉/An+1

by the alternating group An+1 ⊂ Sn+1 is the set of oriented n-simplices
of X. If (x0, . . . , xn) ∈ X〈n〉, then we write [x0, . . . , xn] for the corresponding
oriented simplex in X[n].
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Remark 3.1.2 (opposite orientation). Let X be a simplicial complex and let
n ∈ N.

• If n > 0, then [Sn+1 : An+1] = 2 and so X[n] contains two oriented sim-
plices for each simplex in X(n). If (x0, . . . , xn) ∈ X〈n〉, then applying
an odd permutation (e.g., a transposition) τ leads to the corresponding
opposite orientation on {x0, . . . , xn}.
If σ := [x0, . . . , xn] ∈ X[n], then we write σ ∈ X[n] for the this oppo-
sitely oriented simplex [xτ(0), . . . , xτ(n)].

• In degre 0, we have A0 = S0 and thus X[0] is canonically (as a set)
isomorphic to X(0) and X〈0〉.

Definition 3.1.3 (simplicial chain). Let X be a simplicial complex and n ∈ N.
We define the simplicial chain group of X in degree n by

Cn(X) := Fn(X)
/
Tn(X),

where

Fn(X) :=
⊕

σ∈X[n]

Z · σ,

Tn(X) :=

{
SpanZ

{
σ + σ

∣∣ σ ∈ X[n]
}

if n > 0

0 if n = 0.

The elements of Cn(X) are called simplicial n-chains of X.

In order to keep the notation lightweight, we usually denote simplicial
chains by representatives:

Example 3.1.4. We consider the simplicial circle S(1) (Example 2.3.7). Then

[0, 1] + 2 · [2, 1] and [0, 1] + [1, 2] + [2, 0] = [0, 1] + [1, 2]− [0, 2]

are simplicial 1-chains of S(1).

Remark 3.1.5 (ordered simplicial complex). Let X be a simplicial complex
and let “<” be a total order on V (X). For n ∈ N, the canonical projec-
tion X〈n〉< −→ X[n] induces an isomorphism (check!)

Cn(X) ∼=Z
⊕

X〈n〉<
Z,

where

X〈n〉< :=
{

(x0, . . . , xn) ∈ X〈n〉
∣∣ x0 < x1 < · · · < xn

}
.

In particular, Cn(X) is a free Z-module and this description lets us check
whether chains are trivial/equal or not.
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The boundary operator of the simplicial chain complex is defined as the
alternating sum of the face maps. The signs are chosen in such a way that a
coherent orientation emerges on each simplex and its faces.

Proposition and Definition 3.1.6 (simplicial chain complex). Let X be a sim-
plicial complex and let n ∈ N. Then

∂n : Cn(X) −→ Cn−1(X)

[x0, . . . , xn] 7−→
n∑

j=0

(−1)j · [x0, . . . , x̂j , . . . , xn]

gives a well-defined Z-linear map; here, the hat indicates that the correspond-
ing element is omitted. For n = 0, we interpret the definition as ∂0 = 0.
Moreover,

∂n ◦ ∂n+1 = 0.

We call the chain complex C(X) := ((Cn(X))n∈N, (∂n)n∈N) the simplicial
chain complex of X.

Proof. Without loss of generality, we may assume n > 0. To show that ∂n is
well-defined, it suffices to show that

∂n([xτ(0), . . . , xτ(n)]) = −∂n([x0, . . . , xn])

holds for all [x0, . . . , xn] ∈ X[n] and for all transpositions τ ∈ Sn+1 (check!).
Let τ = (r s) with r < s and let x := τ · x. Then we obtain

∂n[x0, . . . , xn] =
∑

j∈{0,...,n}\{r,s}
(−1)j · [x0, . . . , x̂j , . . . , xn]

+ (−1)r · [x0, . . . , x̂r, . . . , xn]

+ (−1)s · [x0, . . . , x̂s, . . . , xn]

=
∑

j∈{0,...,n}\{r,s}
(−1)j · (−1) · [x0, . . . , x̂j , . . . , xn](because τ is (r s) on {0, . . . , n} \ {j})

+ (−1)r · [x0, . . . , xr−1, xr+1, . . . , xs−1, xr, xs, . . . , xn] (by definition of τ)

+ (−1)s · [x0, . . . , xr−1, xs, xr+1, . . . , xs−1, xs, . . . , xn] (by definition of τ)

=
∑

j∈{0,...,n}\{r,s}
(−1)j+1 · [x0, . . . , x̂j , . . . , xn]

+ (−1)r · (−1)s−r−1 · [x0, . . . , x̂s, . . . , xn] (we need s− r − 1 flips)

+ (−1)s · (−1)s−r−1 · [x0, . . . , x̂r, . . . , xn] (we need s− r − 1 flips)

= −∂n[x0, . . . , xn].

Moreover, we have ∂n ◦ ∂n+1 = 0: This is the standard computation for
“simplicial” boundary operators. For all [x0, . . . , xn+1] ∈ X[n+ 1], we calcu-
late
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∂n ◦ ∂n+1[x0, . . . , xn+1] = ∂n

(n+1∑

j=0

(−1)j · [x0, . . . , x̂j , . . . , xn+1]

)

=

n∑

k=0

k−1∑

j=0

(−1)k+j · [x0, . . . , x̂j , . . . , x̂k+1, . . . , xn+1]

+

n∑

k=0

n+1∑

j=k+1

(−1)k+j · [x0, . . . , x̂k, . . . , x̂j , . . . , xn+1]

=

n∑

k=0

k−1∑

j=0

(
(−1)k+j + (−1)k+j+1

)

· [x0, . . . , x̂j , . . . , x̂k+1, . . . , xn+1] (re-indexing the second sum)

= 0 (the coefficients cancel)

This completes the proof.

Definition 3.1.7 (cycle, boundary). Let X be a simplicial complex and let
n ∈ N.

• The elements of ker ∂n ⊂ Cn(X) are the (simplicial) n-cycles of X.

• The elements of im ∂n+1 ⊂ Cn(X) are the (simplicial) n-boundaries
of X.

Example 3.1.8. We consider the simplicial circle S(1):

• The 1-chain c := [0, 1] + [1, 2] + [2, 0] is a 1-cycle, because

∂1(c) = [1]− [0] + [2]− [1] + [0]− [2] = 0.

However, c is not a boundary of S(1), because S(1) has no 2-simplices.

• The 1-chain c′ := [0, 1] + 2 · [2, 1] is not a cycle, because

∂1(c) = [1]− [0] + 2 · [1]− 2 · [2] = −[0] + 3 · [1]− 2 · [2].

This chain is non-zero as can be seen from the description through an
ordering on the vertices (Remark 3.1.5).

The chain complex C∗(S(1)) is isomorphic to (check!)

0 1 2

Z3 Z3


−1 0 −1
1 −1 0
0 1 1




oo 0.
0

oo

Here, in degree 0, we chose the basis ([0], [1], [2]); in degree 1, we chose the
basis ([0, 1], [1, 2], [0, 2]).
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[2]

[0] [1][0, 1]

[1, 2][0, 2]

[2]

[0] [1][0, 1]

[1, 2][0, 2]

[0, 1, 2]

Figure 3.4.: Simplicial chains on S(1) and ∆(2), respectively.

In ∆(2), the chain c is a boundary, namely of [0, 1, 2] (Figure 3.4). The
chain complex C∗(∆(2)) is isomorphic to (check!)

0 1 2

Z3 Z3


−1 0 −1
1 −1 0
0 1 1




oo Z.


1
1
−1




oo

Here, in degree 0, we chose the basis ([0], [1], [2]); in degree 1, we chose the
basis ([0, 1], [1, 2], [0, 2]); in degree 2, we chose the basis consisting of the single
element [0, 1, 2].

Proposition 3.1.9 (simplicial chain complex: functoriality). Let X and Y be
simplicial complexes, let f : X −→ Y be a simplicial map, and let n ∈ N.
Then

Cn(f) : Cn(X) −→ Cn(Y )

X[n] 3 [x0, . . . , xn] 7−→
{[
f(x0), . . . , f(xn)

]
if #{f(x0), . . . , f(xn)} = n+ 1

0 otherwise

gives a well-defined Z-linear map. Moreover, C(f) := (Cn(f))n∈N is a chain
map, i.e.,

∀n∈N ∂n+1 ◦ Cn+1(f) = Cn(f) ◦ ∂n+1.

This turns C into a functor SC −→ ZCh.

Proof. It is clear that the definition of ∂n is compatible with the sign of
permutations on {0, . . . , n} (the case distinction is permutation invariant).

Moreover, it is clear that C is functorial (check!). Therefore, it remains to
prove that C(f) is a chain map: Let n ∈ N and let [x0, . . . , xn+1] ∈ X[n+ 1].
If #{f(x0), . . . , f(xn+1)} = n + 2, then it is not difficult to check that the
chain map condition is satisfied (check!).

We consider the case that #{f(x0), . . . , f(xn+1)} ≤ n + 1, say there
are r, s ∈ {0, . . . , n+ 1} with r < s and f(xr) = f(xs). On the one hand, by
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definition,
∂n+1 ◦ Cn+1(f)[x0, . . . , xn+1] = 0.

On the other hand, we compute

Cn(f) ◦ ∂n+1[x0, . . . , xn+1] =
∑

j∈{0,...,n+1}\{r,s}
(−1)j · Cn(f)[x0, . . . , x̂j , . . . , xn+1]

+ (−1)r · Cn(f)[x0, . . . , x̂r, . . . , xn+1]

+ (−1)r · Cn(f)[x0, . . . , x̂s, . . . , xn+1]

= 0 (because f(xr) = f(xs))

+ (−1)r · Cn(f)[x0, . . . , x̂r, . . . , xn+1]

+ (−1)r+s−r−1 · Cn(f)[x0, . . . , x̂r, . . . , xn+1] (f(xr) = f(xs); s− r − 1 flips)

= 0.

Therefore, we have ∂n+1◦Cn+1(f)[x0, . . . , xn+1] = Cn(f)◦∂n+1[x0, . . . , xn+1]
also in this degenerate case.

Notation 3.1.10 (generalised simplices). In view of the phenomenon in Propo-
sition 3.1.9 and since flipping two equal entries in a tuple does not change the
tuple, it is sometimes convenient to introduce the following notation: If X is
a simplicial complex, n ∈ N, and {x0, . . . , xn} ∈ X and #{x0, . . . , xn} ≤ n,
one could write

[x0, . . . , xn] := 0 ∈ Cn(X).

This should be handled with care as it might incur additional proof obliga-
tions!

3.1.2 Simplicial homology of simplicial complexes

We now define the simplicial homology as the homology of the simplicial
chain complex, i.e., as cycles modulo boundaries:

Definition 3.1.11 (simplicial homology). Let n ∈ N. The simplicial homology
functor in degree n is defined as

Hn := Hn ◦ C : SC −→ ZMod,

where the Hn on the right-hand side refers to the algebraic homology func-
tor ZCh −→ ZMod in degree n. More explicitly:

• If X is a simplicial complex, then

Hn(X) = Hn

(
C(X)

)
=

ker ∂n : Cn(X)→ Cn−1(X)

im ∂n+1 : Cn+1(X)→ Cn(X)
.
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• If f : X −→ Y is a simplicial map, then

Hn(f) = Hn

(
C(f)

)
: Hn(X) −→ Hn(Y )

[c] 7−→
[
Cn(f)(c)

]
.

Remark 3.1.12 (simplicial homology, functoriality). Simplicial homology is in-
deed well-defined on simplicial maps: Let f : X −→ Y be a simplicial map
between simplicial complexes and let n ∈ N.

• If c ∈ Cn(X) is a cycle, then Cn(f)(c) indeed is a cycle, because

∂n
(
Cn(f)(c)

)
= Cn−1(f)

(
∂n(c)

)
(Proposition 3.1.9)

= Cn−1(f)(0) (c is a cycle)

= 0.

• If c, c′ ∈ Cn(X) are cycles that represent the same homology class,
then Cn(f)(c) and Cn(f)(c′) represent the same homology class: Let
b ∈ Cn+1(X) with ∂n+1(b) = c − c′. Then Cn+1(f)(b) witnesses that
Cn(f)(c) and Cn(f)(c′) represent the same class, because

∂n+1

(
Cn+1(f)(b)

)
= Cn(f)

(
∂n+1(b)

)
(Proposition 3.1.9)

= Cn(f)(c− c′) (choice of b)

= Cn(f)(c)− Cn(f)(c′).

Example 3.1.13 (simplicial homology of the simplicial circle). Using the de-
scription of the simplicial chain complex of S(1) from Example 3.1.8, we can
compute the simplicial homology of S(1) through linear algebra (over Z):

• Degree 1: Because isomorphisms of chain complexes induce isomor-
phisms on the level of homology (check!), we can compute (check!)

H1

(
S(1)

) ∼=Z ker



−1 0 −1
1 −1 0
0 1 1



/

0 ∼=Z ker



−1 0 −1
1 −1 0
0 1 1




= SpanZ(1, 1,−1)T

∼=Z Z.

Translating the chosen basis of Z3 (in degree 1) back into simplicial
chains shows that the simplicial 1-cycle

[0, 1] + [1, 2] + [2, 0] = [0, 1] + [1, 2]− [0, 2]

represents a generator of H1(S(1)) ∼=Z Z. In particular, this coincides
with our intuition that this cycle detects the “hole” in S(1).
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• Degree 0: Again, using the isomorphism of chain complexes, we compute
(check!)

H0

(
S(1)

) ∼=Z Z3

/
im



−1 0 −1
1 −1 0
0 1 1




∼=Z Z;

the last isomorphism is induced by

Z3 −→ Z
(x, y, z)T 7−→ x+ y + z

Translating the chosen basis of Z3 (in degree 0) back into simplicial
chains shows that the simplicial 0-cycles [0], [1], [2] all represent the
same homology class, which moreover is a generator of H0(S(1)) ∼=Z Z.

• Higher degrees: For all n ∈ N≥2, we have Hn(S(1)) ∼=Z 0, be-
cause Cn(S(1)) ∼=Z 0.

Example 3.1.14 (simplicial homology of the standard 2-simplex). We can ex-
tend the computation of the simplicial homology of the simplicial circle S(1)
from Example 3.1.13 to obtain the computation of the simplicial homology
of ∆(2). Using the description of C(∆(2)) from Example 3.1.8, we obtain:

• Degree 0: Because C0(∆(2)) = C0(S(1)) and C1(∆(2)) = C1(S(1)) as

well as ∂
∆(2)
1 = ∂

S(1)
1 , we have

H0

(
∆(2)

) ∼=Z H0

(
S(1)

) ∼=Z Z.

• Degree 1: Because [0, 1] + [1, 2] + [2, 0] is a 1-boundary in ∆(2), because
the chain complexes of ∆(2) and S(1) coincide in degrees 0 and 1,
and because [0, 1] + [1, 2] + [2, 0] is a cycle representing a generator
of H1(S(1)) ∼=Z Z, we conclude that

H1

(
∆(2)

) ∼=Z 0.

Alternatively, of course, we could also compute H1(∆(2)) via linear
algebra over Z directly from the description of C(∆(2)).

• Degree 2: We compute

H2

(
∆(2)

) ∼=Z ker




1
1
−1



/

0

∼=Z 0.
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• Higher degrees: For all n ∈ N≥3, we have Hn(∆(2)) ∼=Z 0, because
Cn(∆(2)) ∼=Z 0.

Remark 3.1.15 (simplicial homology in degree 0). If X is a simplicial complex,
then H0(X) is isomorphic to

⊕
S Z, where S denotes the set of connected

components of X (Exercise).

Example 3.1.16 (a reflection in simplicial homology of the simplicial circle). We
consider the simplicial map f : S(1) −→ S(1) given by the transposition (0 1)
on the vertices. Then H1(f) : H1(S(1)) −→ H1(S(1)) is − idH1(S(1)). This can
be seen by applying C1(f) to the generating 1-cycle c := [0, 1] + [1, 2] + [2, 0]
of H1(S(1)) ∼=Z Z (Example 3.1.13):

C1(f)(c) =
[
f(0), f(1)

]
+
[
f(1), f(2)

]
+
[
f(2), f(0)

]

= [1, 0] + [0, 2] + [2, 1]

= −[0, 1]− [2, 0]− [1, 2]

= −c.

Hence, the induced map on homology is an “algebraic reflection”.

Remark 3.1.17 (simplicial homology with coefficients). Let R be a commuta-
tive ring with unit and let Z be an R-module. Let n ∈ N. We define the
simplicial chain complex with coefficients in the R-module Z by

C( · ;Z) := Z ⊗Z C( · ) ∈ RCh

and simplicial homology in degree n with coefficients in the R-module Z as
the composition

Hn( · ;Z) := Hn ◦
(
C( · ;Z)

)
: SC −→ RMod .

By construction, there is a canonical natural isomorphism Hn( · ;Z) ∼=Z
Hn( · ) : SC −→ ZMod.

A convenient choice of coefficients is the Z-module Z/2: Then no orienta-
tions/signs need to be considered.

Particularly interesting is the case of Z = R being a field or a principal
ideal domain: The size of homology groups can then be measured in terms of
dimensions/ranks.

Definition 3.1.18 (Betti number). Let X be a finite simplicial complex, let n ∈
N, and let R be a principal ideal domain (or another ring with a “reasonable”
notion of rank). The n-th Betti number of X with coefficients in R is defined
as

bn(X;R) := rkRHn(X;R).

Proposition 3.1.19 (Betti number estimate). Let X be a finite simplicial com-
plex, let n ∈ N, and let R be a principal ideal domain (or another ring with
a “reasonable” notion of rank). Then
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bn(X;R) ≤ #X(n).

Proof. By definition, Hn(X;R) is isomorphic to a quotient of a submod-
ule Zn(X;R) of Cn(X;R).

Because Cn(X) is a free Z-module (Remark 3.1.5) of rank #X(n), the R-
module Cn(X;R) = R ⊗Z Cn(X) is free of rank #X(n). As R is a principal
ideal domain, also Zn(X;R) is free and of rank at most #X(n). Therefore,
also the quotient Hn(X;R) has rank at most #X(n).

Caveat 3.1.20 (the universal coefficient theorem). Let R be a commutative
ring with unit and let Z be an R-module. Let n ∈ N. If Z is flat over R, then
basic homological algebra shows that there is a natural isomorphism

Hn( · ;Z) ∼= Z ⊗Z Hn( · ;R) : SC −→ RMod .

For example, Q and R are flat over Z; finite fields are not flat over Z.

For general coefficients that are not necessarily flat over the base ring,
the relation can be described in terms of the derived functor of the tensor
product. By the universal coefficient theorem [73, Chapter 3.6], we have: If
R is a principal ideal domain, then there is a natural short exact sequence

0 // Z ⊗R Hn(X;R) // Hn(X;Z) // TorR1
(
Z,Hn−1(X;R)

)
// 0

z ⊗ [c]
� // [z ⊗ c]

of R-modules. This short exact sequence splits (but, in general, there is no
natural splitting).

3.2 Computations: Divide and conquer

We give three classical instances of the divide and conquer paradigm to com-
pute homology from smaller pieces: The Mayer–Vietoris sequence, the long
exact sequence of pairs, and simplicial homotopy invariance. To keep notation
simple, we formulate everything in terms of Z-coefficients, but the statements
also hold for general coefficients.

3.2.1 The Mayer–Vietoris sequence

The Mayer–Vietoris is a homological version of the inclusion-exclusion prin-
ciple, relating the homology of a union to the homology of the components
and the intersection.
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Theorem 3.2.1 (Mayer–Vietoris sequence). Let X and Y be simplicial com-
plexes. Then there is a natural long exact sequence

· · · ∆n+1
// Hn(X ∩ Y )

(Hn(iX),−Hn(iY ))
// Hn(X)⊕Hn(Y )

Hn(jX)⊕Hn(jY )
// Hn(X ∪ Y )

∆n // Hn−1(X ∩ Y ) // · · ·

Here, iX , iY , jX , jY denote the corresponding inclusions.

Proof. A straightforward computation shows that the sequence

0 // C(X ∩ Y )
(C(iX),−C(iY ))

// C(X)⊕ C(Y )
C(jX)⊕C(jY )

// C(X ∪ Y ) // 0

in ZCh is (split) exact in every degree (check!). Moreover, this sequence is
natural.

Applying the algebraic long exact sequence (Proposition A.3.20) to this
setting proves the theorem. In particular, this also gives an explicit descrip-
tion of ∆n.

Example 3.2.2 (simplicial figure eight). We compute the simplicial homology
of the complex

〈
{0, 1}, {1, 2}, {0, 2}, {0, 1′}, {1′, 2′}, {0, 2′}

〉
∆

We can write this complex as X ∪ Y , where

X := S(1) and Y :=
〈
{0, 1′}, {1′, 2′}, {0, 2′}

〉
∆
.

Looking at the dimensions of the simplices, we see that we only need to
compute H0(X ∪Y ) and H1(X ∪Y ). Because X ∪Y is connected, we obtain
(Remark 3.1.15) that

H0(X ∪ Y ) ∼=Z Z.

For degree 1, we use the Mayer–Vietoris sequence (Theorem 3.2.1): We thus
obtain the following exact sequence:

H1(X ∩ Y )
(H1(iX),−H1(iY ))

// H1(X)⊕H1(Y )
H1(jX)⊕H1(jY )

// H1(X ∪ Y )
∆1 // H0(X ∩ Y )

H0(ix),−H0(iY )
// H0(X)⊕H0(Y )

On the one hand, because X ∩ Y = {∅, {0}} has no 1-simplices, H1(X ∩
Y ) ∼=Z 0. On the other hand, because X ∩ Y and X, Y are connected, the
homomorphisms H0(iX) and H0(iY ) are injective (check!); hence, exactness
shows that ∆1 = 0. The exact sequence therefore reduces to

0 // H1(X)⊕H1(Y )
H1(jX)⊕H1(jY )

// H1(X ∪ Y )
0 // 0.

Because X and Y are isomorphic to S(1), we obtain with Example 3.1.13
that
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H1(X ∪ Y ) ∼=Z H1(X)⊕H1(Y ) ∼=Z H1

(
S(1)

)
⊕H1

(
S(1)

) ∼=Z Z⊕ Z.

Remark 3.2.3 (Mayer–Vietoris sequence with coefficients). There is also a cor-
responding long exact Mayer–Vietoris sequence for simplicial homology with
coefficients. The proof extends to this general case, because the tensor prod-
uct functor turns split exact sequences into exact sequences.

3.2.2 The long exact sequence of pairs

A common strategy to study the difference between spaces in topology is to
consider pairs of spaces (instead of quotients, which often lead to pathologies).
In our simplicial setting, this amounts to considering pairs, consisting of a
simplicial complex and a subcomplex. The simplicial homology of such pairs
is defined as the homology of the quotient of the corresponding simplicial
chain complexes:

Definition 3.2.4 (relative simplicial chain complex). Let X be a simplicial com-
plex and let Y ⊂ X be a subcomplex. Then the relative simplicial chain
complex of (X,Y ) is defined as the degree-wise quotient

C(X,Y ) := C(X)/C(Y )

(with the boundary operator induced by the boundary operator on C(X)).

This indeed leads to a well-defined chain complex (check!). The construc-
tion of the relative simplicial chain complex is functorial with respect to
simplicial maps that map the domain subcomplex to the target subcomplex
(check!).

Remark 3.2.5. LetX be a simplicial complex (with a total ordering on V (X)),
let Y ⊂ X be a subcomplex, and let n ∈ N. Then Cn(X,Y ) = Cn(X)/Cn(Y )
is a free Z-module, freely generated by all ordered n-simplices of X that are
not completely contained in Y (check!).

Definition 3.2.6 (relative simplicial homology). Let n ∈ N, let X be a simpli-
cial complex, and let Y ⊂ X be a subcomplex. Then the relative simplicial
homology of (X,Y ) in degree n is defined as

Hn(X,Y ) := Hn

(
C(X,Y )

)
∈ ZMod

(where Hn on the right-hand side refers to the algebraic homology of chain
complexes).

If X ′ is a simplicial complex with a subcomplex Y ′ ⊂ X ′ and f : X −→ X ′

is a simplicial map with f(σ) ∈ Y ′ for all σ ∈ Y , then we define

Hn(f) := Hn

(
C(f) : C(X,Y ) −→ C(X ′, Y ′)

)
.
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A straightforward computation shows that relative simplicial homology is
functorial (check!).

The simplicial homology of a pair and the simplicial homologies of the two
involved complexes are related through a long exact sequence:

Theorem 3.2.7 (long exact sequence of pairs). Let X be a simplicial complex
and let Y ⊂ X be a subcomplex. Then there is a natural long exact sequence

· · · ∂n+1
// Hn(Y )

Hn(i)
// Hn(X)

Hn(j)
// Hn(X,Y )

∂n // Hn−1(Y ) // · · ·

Here, i and j denote the corresponding inclusions and ∂n is induced by the
simplicial boundary operator.

Proof. By construction, the sequence

0 // C(Y )
C(i)
// C(X)

C(j)
// C(X,Y ) // 0

in ZCh is exact in every degree (even split exact; check!) and natural.

Applying the algebraic long exact sequence (Proposition A.3.20) to this
setting proves the theorem.

Example 3.2.8 (2-simplex relative to the simplicial circle). We compute the
relative homology Hn(∆(2), S(1)) for all n ∈ N, using the computations from
Example 3.1.13, Example 3.1.14, and the long exact sequence of pairs (The-
orem 3.2.7): Because of dim ∆(2) = 2, we have

∀n∈N≥3
Hn

(
∆(2), S(1)

) ∼=Z 0.

In degree 2, we obtain the pair sequence

0 ∼=Z H2

(
∆(2)

)
// H2

(
∆(2), S(1)

)
// H1

(
S(1)

)
// H1

(
∆(2)

) ∼=Z 0.

In particular, we have H2

(
∆(2), S(1)

) ∼=Z H1

(
S(1)

) ∼=Z Z.
Moreover, tracing through the isomorphisms shows that this homology

group is generated by the relative cycle [0, 1, 2] (check!).

In degree 1, we have the pair sequence

0 ∼=Z H1

(
∆(2)

)
// H1

(
∆(2), S(1)

)
// H0

(
S(1)

) (∗)
// H0

(
∆(2)

)
,

where (∗) is induced by the inclusion S(1) ⊂ ∆(2). Because S(1) and ∆(2)
are connected, the homomorphism (∗) is an isomorphism. Therefore,

H1

(
∆(2), S(1)

) ∼=Z 0.

Similarly, one can show H0(∆(2), S(1)) ∼=Z 0 (check!).
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Remark 3.2.9 (long exact sequence of pairs with coefficients). There is also a
corresponding definition of relative simplicial homology with coefficients and
a long exact sequence of pairs for simplicial homology with coefficients. The
proof extends to shi general case, because the tensor product functor turns
split exact sequences into exact sequences.

3.2.3 Simplicial homotopy invariance

Simplicial homology is invariant under simplicial homotopy. More precisely,
simplicially homotopic maps lead to chain homotopic chain maps and thus
to the same maps on simplicial homology:

Theorem 3.2.10 (simplicial homotopy invariance). Let X and Y be simplicial
complexes and let f, g : X −→ Y be simplicial maps with f '∗∆ g.

1. Then
C(f) 'Z C(g) : C(X) −→ C(Y ),

i.e., there exists a chain homotopy h = (hn : Cn(X) → Cn+1(Y ))n∈N
from C(f) to C(g), which means that for all n ∈ N, we have

∂Yn+1 ◦ hn + hn−1 ◦ ∂Xn = Cn(g)− Cn(f).

2. In particular, Hn(f) = Hn(g) for all n ∈ N.

Proof. The second part is a purely algebraic consequence of the first part
(Proposition A.3.32).

For the first part, by induction, it suffices to consider the case that f '∆ g.
We construct a chain homotopy C(f) 'Z C(g) from a simplicial homo-
topy k : X �∆(1) −→ Y from f to g:

To this end, we first consider the universal case: Let i0, i1 : X −→ X�∆(1)
be the inclusions into the 0- and 1-component, respectively. We choose a total
ordering on V (X). Then

hn : Cn(X) −→ Cn+1

(
X �∆(1)

)

X〈n〉 3 (x0, . . . , xn) 7−→
n∑

j=0

(−1)j ·
[
(x0, 0), . . . , (xj , 0), (xj , 1), . . . (xn, n)

]

defines a chain homotopy C(i0) 'Z C(i1). This follows from a straightfor-
ward calculation (check!); the underlying geometric idea is that this chain
map is based on a suitable triangulation of prisms over the standard simplex
(Figure 3.5).

Then (Cn+1(k) ◦ hn)n∈N is a chain homotopy from

C(k) ◦ C(i0) = C(k ◦ i0) = C(f)
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2 1

0

2 1

0

∆2 × [0, 1]

2 1

0

2 1

0

[
(0, 0), (0, 1), (1, 1), (2, 1)

]

2 1

0

2 1

0

[
(0, 0), (1, 0), (1, 1), (2, 1)

]

2 1

0

2 1

0

[
(0, 0), (1, 0), (2, 0), (2, 1)

]

Figure 3.5.: Triangulating the prism ∆2 × [0, 1]

to
C(k) ◦ C(i1) = C(k ◦ i1) = C(g)

(check!).

Example 3.2.11 (simplicial homology of the simplicial standard simplex). Let
d ∈ N. We show that

Hn

(
∆(d)

) ∼=Z Hn

(
∆(0)

) ∼=Z

{
Z if n = 0

0 otherwise

holds for all n ∈ N: We consider the inclusion map f : ∆(0) −→ ∆(d) and the
constant map g : ∆(d) −→ ∆(0). By construction g ◦ f = id∆(0). Conversely,
because ∆(d) contains all simplices on its vertex set, f ◦ g is contiguous
to id∆(d), whence (Proposition 2.3.34)

f ◦ g '∆ id∆(d) .

Therefore, Hn(f) and Hn(g) are mutually inverse isomorphisms by simpli-
cial homotopy invariance of simplicial homology (Theorem 3.2.10, Proposi-
tion 1.3.2), and so Hn(∆(d)) ∼=Z Hn(∆(0)). Moreover, from the chain com-
plex C(∆(0)), we can immediately calculate that Hn(∆(0)) has the claimed
isomorphism type (check!).

This result on simplicial homology can be used in combination with the
dimension formula to show that (Exercise)

d+1∑

k=1

(−1)k−1 ·
(
d+ 1

k

)
= 1.
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Example 3.2.12 (homology of simplicial spheres). Let d ∈ N>0. Using a di-
rect computation of H∗(∆(d + 1), S(d)), the computation of H∗(∆(d + 1))
(Example 3.2.11), and the long exact sequence of the pair (∆(d + 1), S(d))
(Theorem 3.2.7), one can show that

Hn

(
S(d)

) ∼=Z

{
Z if n ∈ {0, d}
0 otherwise

holds for all n ∈ N (Exercise).

Remark 3.2.13 (simplicial homotopy invariance with coefficients). Simplicial
homotopy invariance of simplicial homology extends to simplicial homology
with coefficients: The tensor product functors turn chain homotopies into
chain homotopies and thus chain homotopic chain maps into chain homotopic
chain maps.

We will see in Chapter 3.4 that simplicial homotopy is not only invariant
under simplicial homotopies, but also under topological homotopies(!). This
will have far-reaching consequences.

3.3 Implementation: Simplicial homology

The computation of simplicial homology of finite simplicial complexes reduces
to finite-dimensional linear algebra and can be carried out algorithmically
over base rings such as Q, Z, or finite fields. There are different levels of
detail that we might want to compute over such rings R:

• The Betti numbers with R-coefficients;

• the isomorphism types of the homology modules with R-coefficients;

• the isomorphism types and suitable generating cycles of the homology
modules with R-coefficients.

In the following, we briefly outline some simple-minded approaches to these
problems. For large-scale applications more refined and more efficient algo-
rithms are necessary.

Our (meta) algorithms are based on the following building blocks:

• An algorithm rank( · , R) that computes the rank of the given matrix
over R (e.g., by suitable row- and column operations).

• An algorithm SNF( · , R) that computes the Smith normal form of the
given matrix over R.
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• An algorithm extSNF( · , R) that computes the Smith normal form A′

of the given matrix A over R as well as invertible R-linear transforma-
tions S and T with

S ·A · T = A′.

Remark 3.3.1 (Smith normal form). We briefly recall the Smith normal form:
Let R be a field or a principal ideal domain and let m,n ∈ N. A matrix
in Mm×n(R) is in Smith normal form if it is of the “diagonal” form



a1 0 . . .
0 a2 0 . . .
...

. . .




with a1|a2, a2|a3, . . . .
For every A ∈Mm×n(R), there exist invertible matrices S ∈ GLm(R) and

T ∈ GLn(R) such that S ·A · T is in Smith normal form. The corresponding
diagonal entries are unique up to units and called the elementary divisors
of A [45, Chapter 2.5.2]. If R is Euclidean (or a field), then there exist elimi-
nation algorithms to compute “the” Smith normal form via row and column
operations [45, Chapter 2.5.2].

We assume that all computations are carried out in exact arithmetic; this
is available in many programming languages for integers, rational numbers,
and finite fields. Exact arithmetic is usually less efficient than floating point
arithmetic, but has the advantage that the results will be exact (provided
the implementation is correct) and not only numerical approximations. While
the issue of numerical stability need not be considered in this exact setting,
similar problems should be analysed, e.g., such as the growth of the numbers
involved in the computations (as this can lead to performance problem – both
in time and space).

Moreover, in practice, the matrices of simplicial complexes appearing in
applications tend to be large, but very sparse. For efficient implementations,
this should be exploited.

For simplicity, we will not consider any of these problems or optimisations
Further details on improved versions can be found in the literature [27, 54].

Setup 3.3.2 (marked free chain complex). Let R be a field or a principal
ideal domain. Let C = ((Cn)n∈N, (∂n)n∈N) be a chain complex over R that
consists of finitely generated free R-modules. Moreover, we assume that Bn
for each n ∈ N is an R-basis of Cn. We write

dn := rkR Cn = #Bn.

Let An ∈ Mdn×dn+1
(R) be the matrix representing ∂n with respect to the

bases Bn+1 and Bn.
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dn

R×

. . .

R×

a1

. . .

amn+1

rn+1

B′n ←

B′′n ←

Figure 3.6.: Computing homology and a generating set, schematically; all un-
marked entries are zero

Remark 3.3.3 (homology of a marked free chain complex). In the situation of
Setup 3.3.2, we collect the following facts from linear algebra: We abbreviate

rn := rkR(im ∂n) = rkRAn ∈ N.

Then the dimension formula (over R or its quotient field) shows that

rkRHn(C) = rkR ker ∂n/ im ∂n+1

=
(
rkR Cn − rkR(im ∂n)

)
− rkR(im ∂n+1)

= dn − rn − rn+1.

Let a1, . . . , amn+1
be the non-unit and non-zero elementary divisors of An+1

(Figure 3.6). Then

Hn(C) = ker ∂n/ im ∂n+1

∼=R R
dn−rn−rn+1 ⊕

mn+1⊕

j=1

R/aj .

Let S, T be invertible matrices such that S · An+1 · T is in Smith normal
form. The columns of S define a basis of Cn, viewed as coefficients for vectors
in terms of Bn. The first rn+1 columns all lie in ker ∂n because they form a
basis of im ∂n+1 ⊂ ker ∂n. Let
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• B′n be the family in Cn corresponding to the columns rn+1 −mn+1 +
1, . . . , rn+1 of S, and

• B′′n be the family in Cn corresponding to the columns rn+1 + 1, . . . , dn.

If B′′′n is a basis of ker ∂n ∩ SpanRB
′′
n = ker ∂n|SpanR B

′′′
n

, then B′n ∪ B′′′n
represents a generating set of Hn(C), which is moreover minimal with respect
to inclusion. The torsion type of the elements in Hn(C) represented by B′n
are given by the corresponding elementary divisors; the elements represented
by B′′′n are a basis of a free summand of full rank.

We can rephrase these observations in algorithmic terms:

Algorithm 3.3.4 (computation of Betti numbers). Given the situation in
Setup 3.3.2 and n ∈ N, do the following:

• compute rn via rank(An, R);

• compute rn+1 via rank(An+1, R);

• return dn − rn − rn+1.

Algorithm 3.3.5 (computation of the isomorphism type of homology). Given
the situation in Setup 3.3.2 and n ∈ N, do the following:

• compute rn via rank(An, R);

• compute rn+1 via rank(An+1, R);

• compute the Smith normal form A′ of An+1 via SNF(An+1, R);

• extract the non-unit and non-zero elementary divisors a1, . . . , amn+1

of An+1 from the “diagonal” elements of A′;

• return (a suitable representation of) Rdn−rn−rn+1 ⊕⊕mn+1

j=1 R/aj .

Algorithm 3.3.6 (computation of the isomorphism type of homology and gener-
ating cycles). Given the situation in Setup 3.3.2 and n ∈ N, do the following:

• compute rn via rank(An, R);

• compute rn+1 via rank(An+1, R);

• compute the Smith normal form A′ = S · An+1 · T of An+1 and corre-
sponding transformations S, T via extSNF(An+1, R);

• extract the non-unit and non-zero elementary divisors a1, . . . , amn+1

of An+1 from the “diagonal” elements of A′;

• let B′n be the vectors given by the columns rn+1−mm+1 + 1, . . . ,mn+1

of S; let B′′n be the columns mn+1 + 1, . . . , dn of S.
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• compute the matrix A′n representing ∂n|SpanR B
′′
n

: SpanRB
′′
n −→ Cn−1.

• compute a basis B′′′n of the kernel of A′n via extSNF(A′n, R).

• return (a suitable representation of) Rdn−rn−rn+1 ⊕⊕mn+1

j=1 R/aj and
the family B′n ∪B′′′n . The torsion type of the elements in Hn(C) repre-
sented by B′n are given by the corresponding elementary divisors; the
elements represented by B′′′n are a basis of a free summand of full rank.

Proposition 3.3.7. In the situation of Setup 3.3.2, we have:

1. The algorithm specified in Algorithm 3.3.4 terminates on every input
and computes for a given n ∈ N the Betti number rkRHn(C).

2. The algorithm specified in Algorithm 3.3.5 terminates on every input
and computes for a given n ∈ N the isomorphism type of Hn(C) as
R-module.

3. The algorithm specified in Algorithm 3.3.6 terminates on every input
and computes for a given n ∈ N the isomorphism type of Hn(C) as
R-module and a (minimal with respect to inclusion) family of cycles
that represent a generating set of Hn(C), including their torsion types
in Hn(C).

Proof. Correctness follows from Hn(C) ∼=R ker ∂n/ im ∂n+1 and basic consid-
erations in linear algebra (Remark 3.3.3).

Over Q, Z, and finite fields, with the standard type of row/column al-
gorithms, the time complexity is polynomial in the number of arithmetic
operations.

Straightforward modifications of these algorithms also allow us to compute
whether a given cycle represents the trivial class in homology, etc..

Example 3.3.8 (computation of simplicial homology). Given a field or a prin-
cipal ideal domain R, a finite simplicial complex X (with ordered vertices),
and n ∈ N, we can use Algorithm 3.3.4, Algorithm 3.3.5, Algorithm 3.3.6 to
compute

• the Betti number bn(X;R),

• the isomorphism type of Hn(X;R),

• and a family of simplicial n-cycles that represent a generating set
of Hn(X;R) (including the torsion types), which is minimal with re-
spect to inclusion,

respectively. Indeed, we apply these algorithms to the chain complex C(X;R),
with an R-basis obtained as in Remark 3.1.5.
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Example 3.3.9 (computing homology with the Python library simplicial). The
Python library simplicial [25] provides an interface to construct and ma-
nipulate finite simplicial complexes and to compute their Betti numbers
with F2-coefficients. The underlying computation of the Smith normal form
over F2 follows the algorithm described by Edelsbrunner and Harer [29, Chap-
ter IV.2].

We give some simple examples on how to use this library, starting with
the simplicial circle:

from typing import *

from simplicial import *

# the simplicial circle

circle = SimplicialComplex ()

circle.addSimplexWithBasis(bs = [0,1])

circle.addSimplexWithBasis(bs = [1,2])

circle.addSimplexWithBasis(bs = [0,2])

In an interactive Python shell, we can perform queries and computations:

>>> circle.numberOfSimplicesOfOrder()

[3, 3]

>>> circle.simplices()

[0, 1, 2, ’1d0’, ’1d1’, ’1d2’]

>>> circle.bettiNumbers()

{0: 1, 1: 1}

Similarly, we can model ∆(2) and the simplicial spheres:

# the simplicial disk

disk = SimplicialComplex ()

disk.addSimplexWithBasis(bs = [0,1,2])

# the simplicial sphere S(2)

sphere = SimplicialComplex ()

sphere_simplices = [[0,1,2], [0,1,3], [0,2,3], [1,2,3]]

for sigma in sphere_simplices :

sphere.addSimplexWithBasis(bs = sigma)

# simplicial sphere of a given dimension

def sphereOfDim (n: int) -> SimplicialComplex:

c = SimplicialComplex ()

vertices = list(range(0,n+2))

c.addSimplexWithBasis(bs = vertices , id = ’max_simplex ’)

c.deleteSimplex(’max_simplex ’)

return c

We obtain the expected results for the F2-Betti numbers:

>>> disk.bettiNumbers()

{0: 1, 1: 0, 2: 0}

>>> sphere.bettiNumbers()
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{0: 1, 1: 0, 2: 1}

>>> sphereOfDim(3).bettiNumbers()

{0: 1, 1: 0, 2: 0, 3: 1}

Continuing these examples, we define a more convenient generation func-
tion and compute the F2-Betti numbers of triangulations of the 2-torus, of the
Klein bottle, and of the real projective plane. To this end, we first construct
suitable simplicial complexes [49, Chapter 3.5]:

# generating a simplicial complex from a list of simplices (with the given "bases")

def genSimplicialComplex(simplices: List[Any]) -> SimplicialComplex:

c = SimplicialComplex ()

for sigma in simplices :

c.addSimplexWithBasis(bs = sigma)

return c

# torus

torus_simplices = [[0, 1, 4], [0, 3, 4], [1, 2, 5], [1, 4, 5], [2, 0, 3], [2, 5, 3],

[3, 4, 7], [3, 6, 7], [4, 5, 8], [4, 7, 8], [5, 3, 6], [5, 8, 6],

[6, 7, 1], [6, 0, 1], [7, 8, 2], [7, 1, 2], [8, 6, 0], [8, 2, 0]]

torus = genSimplicialComplex(torus_simplices)

# Klein bottle

kbottle_simplices = [[0, 1, 4], [0, 3, 4], [1, 2, 5], [1, 4, 5], [2, 0, 6], [2, 5, 6],

[3, 4, 7], [3, 6, 7], [4, 5, 8], [4, 7, 8], [5, 3, 6], [5, 8, 3],

[6, 7, 1], [6, 0, 1], [7, 8, 2], [7, 1, 2], [8, 3, 0], [8, 2, 0]]

kbottle = genSimplicialComplex(kbottle_simplices)

# projective plane

rp2_simplices = [[0, 1, 5], [0, 4, 5], [1, 2, 6], [1, 5, 6], [2, 3, 6], [3, 6, 7],

[4, 5, 8], [4, 7, 8], [5, 6, 9], [5, 8, 9], [6, 7, 4], [6, 4, 9],

[7, 8, 2], [7, 3, 2], [8, 9, 1], [8, 2, 1], [9, 4, 0], [9, 1, 0]]

rp2 = genSimplicialComplex(rp2_simplices)

We can then compute their F2-Betti numbers:

>>> torus.bettiNumbers()

{0: 1, 1: 2, 2: 1}

>>> kbottle.bettiNumbers()

{0: 1, 1: 2, 2: 1}

>>> rp2.bettiNumbers()

{0: 1, 1: 1, 2: 1}

However, further experiments show that this library does not scale too
well and that handling large simplicial complexes does not seem to be very
efficient.

Remark 3.3.10 (incremental computation). Alternatively to the algorithms
discussed above, it is sometimes convenient to compute the homology incre-
mentally, adding one simplex at a time [20]. This approach is particularly
useful in situations where simplicial complexes are gradually extended. This
is a higher-dimensional version of the incremental computation of the con-
nected components of simplicial complexes (Chapter 2.8).
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3.4 Homotopy invariance

Our next goal is to prove that simplicial homology is invariant under topo-
logical homotopies. To this end, we first show that simplicial homology is
compatible with barycentric subdivisions. We can then use the simplicial ap-
proximation of topological homotopies and simplicial homotopy invariance.

3.4.1 Simplicial homology and barycentric subdivision

We have the following chain-level version of the inverse of the barycentric
subdivision homeomorphism (Proposition 2.6.17).

Proposition 3.4.1 (barycentric subdivision on simplicial chains). Let X be a
simplicial complex. Then the sequence (BX,n)n∈N with

BX,n : Cn(X) −→ Cn(sdX)

[x0, . . . , xn] 7−→
∑

π∈Sn+1

sgn(π) ·
[
{xπ(0)}, {xπ(0), xπ(1)}, . . . , {xπ(0), . . . , xπ(n)}

]

defines a natural chain map BX : C(X) −→ C(sdX). The chain map BX is
a chain homotopy equivalence; if s : sdX −→ X is a simplicial approxima-
tion of the homeomorphism βX : | sdX| −→ |X|, then s is a chain homotopy
inverse of BX .

Proof. That BX is a well-defined and natural chain map follows from a
lengthy but straightforward computation (check!).

As all simplicial approximations of βX : | sdX| −→ |X| lead to the same
chain homotopy class of chain maps (Proposition 2.6.21, Theorem 3.2.10),
it suffices to prove the claim for a specific such simplicial approximation
(check!). We choose a total ordering of V (X); then

s : V (sdX) −→ V (X)

X \ {∅} 3 σ 7→ maxσ

defines such a simplicial approximation s : sdX −→ X (Exercise). By con-
struction, we have (check!)

C(s) ◦BX = idC(X) .

It remains to show that BX ◦ C(s) 'Z idC(sdX). We prove this claim by
inductively constructing a chain homotopy HX : We set
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HX,0 : C0(sdX) −→ C1(sdX)

(sdX)[0] 3 [σ] 7−→
{

0 if dimσ = 0

[{maxσ}, σ] if dimσ > 0

If n ∈ N>0 and HX,n−1 is already constructed, we define (inspired by the
chain homotopy formula and the corresponding proof in singular homology)

HX,n : Cn(sdX) −→ Cn+1(sdX)

(sdX)[n] 3 σ 7−→ (
⋃
σ) ∗

(
BX,n(C(s)(σ))− σ −HX,n−1(∂sdX

n σ)
)

Here, “
⋃
σ” should be viewed as an algebraic version of the barycentre

and “∗” denotes the linear extension of following “coning” operation: If
τ = [τ0, . . . , τn] ∈ (sdX)[n] and % ∈ X with

⋃
τ ⊂ %, then

σ ∗ τ :=

{
0 if % occurs in τ

[σ, τ0, . . . , τn] if % does not occur in τ .

A straightforward computation then shows that HX is a chain homotopy
between BX ◦ C(s) and idC(sdX):

Indeed, the case of n = 0 is easy to check (check!). For the induction step,
in the previous notation, we have ∂(% ∗ τ) = τ − % ∗ ∂τ (check!). Using the
induction hypothesis, we obtain for all n ∈ N>0 and all σ ∈ (sdX)[n] that
HX,n(σ) is well-defined (check!) and that

∂HX,n(σ) = BX,n
(
C(s)(σ)

)
− σ −HX,n−1(∂σ)

− (
⋃
σ) ∗

(
∂ ◦BX,n ◦ C(s)(σ)− ∂σ − ∂ ◦HX,n−1(∂σ)

)

The second part is zero because

∂ ◦BX,n ◦ C(s)(σ)− ∂σ − ∂ ◦HX,n−1(∂σ)

= BX,n−1 ◦ C(s)(∂σ)− ∂σ − ∂ ◦HX,n−1(∂σ) (BX and C(s) are chain maps)

= BX,n−1 ◦ C(s)(∂σ)− ∂σ −
(
BX,n−1 ◦ C(s)(∂σ)− ∂σ −HX,n−2(∂ ◦ ∂(σ))

)
(by induction)

= 0− 0 +HX,n−2(0)

= 0.

This completes the induction step.

Corollary 3.4.2 (barycentric subdivision on simplicial homology). Let X be a
simplicial complex and let n ∈ N. Then

Hn(BX) : Hn(X) −→ Hn(sdX)

is an isomorphism. Moreover, if s : sdX −→ X is a simplicial approximation
of βX : | sdX| −→ |X|, then Hn(s) is the inverse isomorphism of Hn(BX).
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Proof. This follows from applying the algebraic homology functor to the cor-
responding statement on the chain level (Proposition 3.4.1).

3.4.2 Simplicial homology and simplicial approximation

Using the barycentric subdivision homology isomorphism and simplicial ap-
proximation, we extend the simplicial homology functor to continuous maps
on geometric realisations. As we proved the simplicial approximation theorem
only for finite simplicial complexes, we restrict to this case.

More precisely, if X and Y are simplicial complexes and ϕ : |X| −→ |Y | is
a continuous map, then the idea is to define for n ∈ N the induced map

Hn(ϕ) := Hn(f) ◦Hn(BNX ) : Hn(X) −→ Hn(Y ),

where BNX denotes the N -fold iteration of the construction from Proposi-

tion 3.4.1 and f is a simplicial approximation of ϕ ◦ βNX : | sdN X| −→ |Y |:

Hn(X)
Hn(ϕ)

//

Hn(BNX ) ∼=Z

��

Hn(Y )

Hn(sdN X)
Hn(f)

// Hn(Y )

If X is finite, then such a simplicial approximation indeed exists by the sim-
plicial approximation theorem (Theorem 2.6.24). We now show that this con-
struction is independent of the chosen simplicial approximation and that this
construction is functorial:

Proposition and Definition 3.4.3 (simplicial homology and continuous maps).
Let X and Y be simplicial complexes, let ϕ : |X| −→ |Y | be a continuous
map, let N,M ∈ N, let f : sdN X −→ Y be a simplicial approximation of ϕ ◦
βNX : | sdN X| −→ |Y |, and let g : sdM X −→ Y be a simplicial approximation

of ϕ ◦ βMX : | sdM X| −→ |Y |. Then

Hn(f) ◦Hn(BNX ) = Hn(g) ◦Hn(BMX ).

This common map is denoted by Hn(ϕ) : Hn(X) −→ Hn(Y ).

Proof. Without loss of generality, we may assume that M ≥ N .

Let s : sdM X −→ sdN X be a simplicial approximation of βM−N
sdN X

. Then

the composition f ◦s : sdM X −→ Y is also a simplicial approximation of ϕ◦
βNX ◦ βM−NsdN X

= ϕ ◦ βMX : | sdM X| −→ |Y |; in particular,

Hn(f ◦ s) = Hn(g),
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by Proposition 2.6.21 and Theorem 3.2.10. Moreover, the induced homo-
morphism Hn(s) is inverse to Hn(BM−N

sdN X
) (Corollary 3.4.2). Therefore, the

diagram

Hn(sdN X)
Hn(f)

//

Hn(BM−N
sdN X

) ∼=Z

��

Hn(Y )

Hn(sdM X)
Hn(g)

// Hn(Y )

commutes and we obtain

Hn(g) ◦Hn(BMX ) = Hn(g) ◦Hn(BM−N
sdN X

) ◦Hn(BNX )

= Hn(f ◦ s) ◦Hn(BM−N
sdN X

) ◦Hn(BNX )

= Hn(f) ◦Hn(s) ◦Hn(BM−N
sdN X

) ◦Hn(BNX )

= Hn(f) ◦Hn(BNX ),

as claimed.

Proposition 3.4.4 (simplicial homology, functoriality for continuous maps). Let
X, Y , Z be simplicial complexes [where X and Y are finite] and let ϕ : |X| −→
|Y | and ψ : |Y | −→ |Z| be continuous maps. Then, for all n ∈ N, we have

Hn(ψ ◦ ϕ) = Hn(ψ) ◦Hn(ϕ).

Proof. Let N ∈ N be large enough such that there exists a simplicial ap-
proximation f : sdN X −→ Y of ϕ ◦ βNX : | sdN X| −→ |Y |. Let M ∈ N
be such that there exists a simplicial approximation g : sdM Y −→ Z
of ψ ◦ βMY : | sdM Y | −→ |Z|. Then

g ◦ sdM f : sdN+M X −→ Z

is a simplicial approximation of ψ◦ϕ◦βN+M
X : | sdN+M X| −→ |Z|. Therefore,

we obtain

Hn(ψ ◦ ϕ) = Hn(g ◦ sdM f) ◦Hn(BN+M
X )

= Hn(g) ◦Hn(sdM f) ◦Hn(BMsdN X) ◦Hn(BNX ) (functoriality of Hn for simplicial maps)

= Hn(g) ◦Hn(BMY ) ◦Hn(f) ◦Hn(BNX ) (naturality of B)

= Hn(ψ) ◦Hn(ϕ),

which proves functoriality.

Remark 3.4.5. The construction of induced maps for continuous maps be-
tween [finite] simplicial complexes also works for general coefficients. The
reason is that the the barycentric subdivision chain homotopy equivalence



3.4. Homotopy invariance 97

from Proposition 3.4.1 passes through the tensor product to the simplicial
chain complex with coefficients.

3.4.3 Topological homotopy invariance

We finally collected all the ingredients that simplicial homology (which a
priori is a “rigid” construction) is flexible enough to be invariant under topo-
logical homotopy:

Theorem 3.4.6 (topological homotopy invariance). Let X and Y be simplicial
complexes [where X is finite] and let ϕ,ψ : |X| −→ |Y | be continuous maps
with ϕ ' ψ. Then, for all n ∈ N, we have

Hn(ϕ) = Hn(ψ) : Hn(X) −→ Hn(Y ).

Proof. By the simplicial approximation theorem (Theorem 2.6.24), there ex-
ists an N ∈ N such that there exist simplicial approximations

f : sdN X −→ Y,

g : sdN X −→ Y

of ϕ ◦ βNX and ψ ◦ βNX , respectively (by passing to the maximum, we may
assume that the same number of iterations can be used).

By the simplicial approximation theorem for homotopies (Theorem 2.6.26),
there exists an M ∈ N such that

f ◦ sdmM
sdN X '∗∆ g ◦ sdmM

sdN X ,

where sdmM
sdN X is an iterated simplicial approximation of βM

sdN X
.

Using simplicial homotopy invariance of simplicial homology and the
barycentric subdivision isomorphism, we therefore obtain

Hn(ϕ) = Hn(f) ◦Hn(BNX )

= Hn(f) ◦Hn(sdmM
sdN X) ◦Hn(BMsdN X) ◦Hn(BNX ) (Corollary 3.4.2)

= Hn(f ◦ sdmM
sdN X) ◦Hn(BMsdN X) ◦Hn(BNX ) (functoriality)

= Hn(g ◦ sdmM
sdN X) ◦Hn(BMsdN X) ◦Hn(BNX ) (Theorem 3.2.10)

= Hn(g) ◦Hn(sdmM
sdN X) ◦Hn(BMsdN X) ◦Hn(BNX ) (functoriality)

= Hn(g) ◦Hn(BNX ) (Corollary 3.4.2)

= Hn(ψ),

as desired.
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Corollary 3.4.7 (simplicial homology and homotopy equivalences). Let X and
Y be [finite] simplicial complexes with |X| ' |Y |. Then, for all n ∈ N, we
have

Hn(X) ∼=Z Hn(Y ).

Proof. This is immediate from Theorem 3.4.6 and the general homotopy in-
variance principle (Proposition 1.3.2).

In particular, we now have tools at hand to resolve Black box 1.1.3:

Theorem 3.4.8. Let n ∈ N. Then the n-sphere Sn is not contractible.

Proof. It suffices to prove that |S(n)| is not contractible (Example 2.6.5). As-
sume for a contradiction that |S(n)| were contractible. Then Corollary 3.4.7
shows that

Hn

(
S(n)

) ∼=Z Hn

(
∆(0)

) ∼=Z

{
Z if n = 0

0 otherwise.

However, this contradicts the computation ofHn(S(n)) (Example 3.2.12).

Remark 3.4.9 (topological homotopy invariance with coefficients). Topological
homotopy invariance of simplicial homology also holds with general coeffi-
cients, because the ingredients work in the same way also with coefficients.

3.4.4 Simplicial homology of triangulable spaces

Using the topological invariance of simplicial homology, we could use sim-
plicial homology to define a homology theory on all topological spaces that
admit a [finite] triangulation.

This can be done by choosing for every [finitely] triangulable topological
space a reference [finite] triangulation or by a universal construction encom-
passing all [finite] triangulations. Then the considerations from Chapter 3.4.2
and Theorem 3.4.6 can be used to show that this results in a well-defined se-
quence of homotopy invariant functors [55].

On [finitely] triangulable spaces, these functors coincide with ordinary ho-
mology with Z-coefficients, whence with singular and cellular homology. This
can be proved by an inductive Mayer–Vietoris argument – adding simplex by
simplex and comparing the resulting Mayer–Vietoris sequences.

While simplicial homology is straightforward to construct and compute on
simplicial chain complexes, topological and homotopy invariance are some-
what more cumbersome to establish.

Conversely, the construction of singular homology is based on much larger
chain complexes, which makes topological and homotopy invariance easy to
prove. However, in the case of singular homology, the proof of the Mayer–
Vietoris sequence (or equivalently of excision) is technically more involved
than in the case of simplicial homology.
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Moreover, comparing the proofs for simplicial and singular homology, we
see that they rely on the same basic geometric ideas.

3.5 The Brouwer fixed point theorem

As a first application of simplicial homology, we consider the Brouwer fixed
point theorem and related results: The Lefschetz fixed point theorem and
Sperner’s lemma.

3.5.1 The Lefschetz and Brouwer fixed point theorems

We derive the Brouwer fixed point theorem as special case of the Lefschetz
fixed point theorem. The Lefschetz fixed point theorem makes use of the
Lefschetz number – an Euler characteristic invariant for maps:

Definition 3.5.1 (Lefschetz number). Let X be a finite simplicial complex, let
ϕ : |X| −→ |X| be a continuous map, and let K be a field. Then the Lefschetz
number of ϕ over K is defined as

Λ(ϕ;K) :=
∑

n∈N
(−1)n · trHn(ϕ;Q).

Theorem 3.5.2 (Lefschetz fixed point theorem). Let X be a finite simplicial
complex, let ϕ : |X| −→ |X| be a continuous map, and let K be a field. If ϕ
has no fixed point, then

Λ(ϕ;K) = 0.

In particular: If Λ(ϕ;K) 6= 0, then ϕ has a fixed point, i.e., there is a ξ ∈ |X|
with ϕ(ξ) = ξ.

Proof. The idea is to apply simplicial approximation and barycentric subdi-
visions to replace ϕ by a chain map that has trivial Lefschetz number for
obvious reasons. This is a prototypical argument that benefits from the sim-
plicial language and toolbox.

We first refine the complex X such that ϕ properly moves simplices away
from each other: Let ϕ have no fixed point. Because |X| is compact, the
infimum infξ∈|X| d2

(
ξ, ϕ(ξ)

)
is non-zero. Therefore, there exists an N ∈ N

such that mesh size of sdN X is so “small” (measured via βNX in |X|; Propo-
sition 2.6.18) that (check!)

∀x∈V (sdN X) starcsdN
(
(βNX )−1 ◦ ϕ ◦ βNX (starcsdN x)

)
∩ starcsdN x = ∅;

we extended the notation to starc
sdN X

Z :=
⋃{|σ| | σ ∈ sdN X, |σ| ∩ Z 6= ∅}

for every subset Z ⊂ | sdN X|. Then ψ := (βNX )−1 ◦ ϕ ◦ βNX : | sdN X| −→
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| sdN X| has the same number of fixed points as ϕ (check!) and, by the trace
property (check!),

Λ(ψ;K) = Λ(ϕ;K).

Therefore, for the rest of the proof, we may assume without loss of generality
that starcX

(
ϕ(starcX x)

)
∩ starcX x = ∅ holds for all x ∈ V (X).

We now replace ϕ by a simplicial approximation: By the simplicial ap-
proximation theorem (Theorem 2.6.24), there exists an M ∈ N such that
ϕ ◦ βMX : | sdM X| −→ |X| admits a simplicial approximation f : sdM X −→
X. By the above avoidance property of ϕ, we see that f satisfies

∀σ∈sdM X f(σ) ∩ (
⋃ · · ·⋃σ) = ∅.

This already looks good in terms of traces on the simplicial chain complex;
however, we need to fix the issue that f is not a self-map anymore. This fix
will be performed on the chain level: We set

F := (K ⊗Z B
M
X ) ◦ C(f ;K) : C(sdM X;K) −→ C(sdM X;K).

The avoidance property for f and the construction of BMX show: If n ∈ N
and σ ∈ (sdM X)[n], then the coefficient of σ in Fn(σ) is zero. In particular,
this makes it clear that

trFn = “sum of diagonal matrix entries” = 0.

By construction, F : C(sdM X) −→ C(sdM X) is a chain map. Because
the Lefschetz number can be computed on the chain level (Lemma 3.5.3), we
obtain

∑

n∈N
(−1)n · trHn(F ) =

∑

n∈N
(−1)n · trFn = 0.

Therefore, overall, it follows that

Λ(ϕ;K) =
∑

n∈N
(−1)n · trHn(ϕ;K)

=
∑

n∈N
(−1)n · tr

(
Hn(f) ◦Hn(K ⊗Z B

M
X )
)

(definition of Hn(ϕ;K))

=
∑

n∈N
(−1)n · tr

(
Hn(K ⊗Z B

M
X )−1 ◦Hn(F ) ◦Hn(K ⊗Z B

M
X )
)

(definition of F ; Corollary 3.4.2)

=
∑

n∈N
(−1)n · trHn(F ) (trace property)

= 0,

as claimed.
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Lemma 3.5.3 (Lefschetz number of chain maps). Let K be a field and let C be
a chain complex over K that has only finitely many non-zero chain modules
and such that each chain module is finite-dimensional. Let f : C −→ C be a
chain map. Show that

∑

n∈N
(−1)n · trHn(f) =

∑

n∈N
(−1)n · tr fn.

Proof. This can be seen by a suitable choice of bases and careful bookkeeping
of the alternating cancellations (Exercise).

Corollary 3.5.4. Let X be a finite simplicial complex such that |X| is con-
tractible. Then every continuous map |X| −→ |X| has a fixed point.

Proof. Let ϕ : |X| −→ |X| be a continuous map and let d := dimX. Because
|X| is contractible, topological homotopy invariance of simplicial homology
(Corollary 3.4.7) shows that

Hn(X;Q) ∼=Q Hn

(
∆(0);Q

) ∼=Q

{
Q if n = 0

0 if n > 0.

Moreover, H0(ϕ;Q) = idH0(X;Q), by direct computation. Therefore, we obtain

Λ(ϕ;Q) =

d∑

n=0

(−1)n · trHn(ϕ;Q) = trH0(ϕ;Q) +

d∑

n=1

(−1)n · trHn(ϕ;Q)

= 1 +

d∑

n=1

(−1)n · 0 = 1

6= 0.

The Lefschetz fixed point theorem (Theorem 3.5.2) therefore implies that ϕ
has a fixed point.

Corollary 3.5.5 (Brouwer fixed point theorem). Let n ∈ N. Then, every con-
tinuous map f : Dn −→ Dn has a fixed point, i.e., there exists an x ∈ Dn

with
f(x) = x.

The same applies to self-maps of |∆(n)|.

Proof. Because Dn is contractible (Example 1.1.2) and admits a finite trian-
gulation on ∆(n) (check!), this is a direct consequence of Corollary 3.5.4.
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Figure 3.7.: LHS: A Sperner colouring; RHS: not a Sperner colouring

3.5.2 Sperner’s lemma

A combinatorial relative of the Brouwer fixed point theorem is Sperner’s
lemma on colourings. We first derive the classical version for subdivisions of
simplices. Furthermore, we show how a manifold version of Sperner’s lemma
can be obtained from simplicial homology.

Definition 3.5.6 (colouring, rainbow simplex). Let n ∈ N and let X be a
simplicial complex.

• An [n]-colouring of X is a simplicial map X −→ ∆(n).

• Let c : X −→ ∆(n) be an [n]-colouring of X. A simplex σ ∈ X(n) is a
rainbow simplex of c if c(σ) = {0, . . . , n}.

Definition 3.5.7 (sudivision, Sperner colouring). Let n ∈ N.

• A subdivision of ∆(n) is a finite triangulation (X,ϕ) of |∆(n)| with the
following property: For every σ ∈ ∆(n), there is a subcomplex A ⊂ X
with dimA = dimσ and

|σ| = ϕ
(
|A|
)
.

In this situation, we also say that each τ ∈ A lies in σ.

• Let (X,ϕ) be a subdivision of ∆(n). A Sperner colouring of (X,ϕ) is an
[n]-colouring c : X −→ ∆(n) with the following property: If σ ∈ ∆(n)
and τ ∈ X lies in σ, then c(τ) ⊂ σ.

Example 3.5.8 (Sperner colouring). In Figure 3.7, the left hand side depicts
a Sperner colouring (with a rainbow simplex in the lower right corner), but
the right hand side does not.

Theorem 3.5.9 (Sperner’s lemma). Let n ∈ N. Let (X,ϕ) be a subdivision
of ∆(n) and let c : X −→ ∆(n) be a Sperner colouring of (X,ϕ). Then c
contains a rainbow simplex.
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Proof. We apply the Brouwer fixed point theorem to a map |∆(n)| −→ |∆(n)|
obtained from c:

Let s : ∆(n) −→ ∆(n) be the simplicial map induced by the cyclic permu-
tation (0 1 . . . n). We then consider the continuous map

ψ := |s ◦ c| ◦ ϕ−1 : |∆(n)| −→ |∆(n)|.

By the Brouwer fixed point theorem (Corollary 3.5.5), the map ψ has a fixed
point ξ ∈ |∆(n)|. Let σ ∈ X be the support of ϕ−1(ξ). We show that σ is a
rainbow simplex for c:

By construction of c, the simplex σ is a rainbow simplex if and only
if |c|(ϕ−1(ξ)) ∈ |∆(n)| \ |S(n − 1)|. Because s is a simplicial isomorphism,
this is equivalent to ψ(ξ) ∈ |∆(n)| \ |S(n− 1)|.

Assume for a contradiction that ξ = ψ(ξ) ∈ |S(n−1)|. Thus, τ := supp ξ ∈
S(n − 1) and σ lies in τ . As c is a Sperner colouring, we obtain c(σ) ⊂ τ .
Because s shifts the indices, this implies s ◦ c(σ) ⊂ s(τ) 6= τ . Therefore, we
obtain that

τ = supp ξ = suppψ(ξ) = supp |s ◦ c| ◦ ϕ−1(ξ) ⊂ s(τ).

However, this is impossible, because τ and s(τ) 6= τ have the same finite
cardinality. This contradiction shows that σ indeed is a rainbow simplex.

Remark 3.5.10 (from Sperner to Brouwer; and cake). Conversely, one can also
prove the Brouwer fixed point theorem from Sperner’s lemma; indeed, this is
the original context in which Sperner formulated and proved it [70].

A related application of Sperner’s lemma is the Simmons–Su protocol for
envy-free division (Exercise).

Another nice application of Sperner’s lemma and 2-adic numbers is Mon-
sky’s theorem: If a Euclidean square is subdivided into triangles of equal area,
then the number of these triangles must be even [53].

Definition 3.5.11 (pseudomanifold). Let n ∈ N. An n-pseudomanifold with
boundary is a finite simplicial complex M with the following properties:

• Purity. For all τ ∈M , there exists a σ ∈M(n) with τ ⊂ σ.

• Non-singularity. For all τ ∈M(n−1), we have #{σ ∈M(n) | τ ⊂ σ} ∈
{1, 2}.

• Strong connectedness. The dual graph

(
M(n), {{σ, τ} | dim(σ ∩ τ) = n− 1}

)

is connected.

We write ∂M := 〈{τ ∈ M(n − 1) | #{σ ∈ M(n) | τ ⊂ σ} = 1}〉∆ ⊂ M for
the boundary of M .
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Figure 3.8.: Examples of simplicial complexes that fail to be pseudomanifolds
(Example 3.5.12).

Example 3.5.12 (pseudomanifolds).

• Let n ∈ N. Then ∆(n) is an n-pseudomanifold with boundary; more-
over, ∂∆(n) = S(n− 1).

Moreover, S(n) is an n-pseudomanifold with boundary and ∂S(n) = ∅.

• If M is an n-pseudomanifold with boundary, then also sdM is an n-
pseudomanifold with boundary (check!).

• The simplicial complexes in Figure 3.8 are no pseudomanifolds: The
leftmost example violates the purity condition, the middle example vi-
olates the non-singularity condition, and the right example violates the
connectedness condition.

Theorem 3.5.13 (Sperner’s lemma for manifolds). Let n ∈ N>0, let M be an
n-pseudomanifold with boundary, and let c : M −→ ∆(n) be an [n]-colouring
of M . Moreover, let

#
{
τ ∈ ∂M

∣∣ c(τ) = {0, . . . , n− 1}
}

be odd. Then M contains an odd number of rainbow simplices. In particular,
M contains at least one rainbow simplex.

Proof. We use simplicial homology with F2-coefficients. We pick an ordering
on V (M) and let

z :=
∑

σ∈X(n)<

σ ∈ Cn(M ;F2).

By the non-singularity property of M , we have ∂nz ∈ Cn−1(∂M ;F2). Hence, z
represents a class α ∈ Hn(M,∂M ;F2). We first express the rainbow condition
in terms of α: The pseudomanifold M contains an odd number of rainbow
simplices for c if and only if (where we view z as relative chain)

Cn(c;F2)(z) = 1 · [0, . . . , n] ∈ Cn
(
∆(n), S(n− 1);F2).

The latter property is (by direct computation) equivalent to α being the(!)
generator of Hn(∆(n), S(n− 1);F2) ∼=F2 F2 (check!).



3.6. Application: Consensus in distributed systems 105

We now relate this homological property to the boundary, using the long
exact sequence of the pair (M,∂M): Let A ⊂ S(n−1) be the subcomplex gen-
erated by S(n−1)\{{0, . . . , n−1}}. We consider the following commutative
(check!) diagram:

Hn(M,∂M ;F2)

∂n

��

Hn(c;F2)
// Hn(∆(n), S(n− 1);F2)

∂n

�� **

∼=F2 F2

∼=F2

Hn−1(∂M ;F2)
Hn−1(c|∂M ;F2)

// Hn−1(S(n− 1);F2)
Hn−1(j;F2)

// Hn(S(n− 1), A;F2)

Here, the left and middle vertical arrows are the connecting homomorphisms
of the corresponding long exact sequences of pairs (Theorem 3.2.7) and are
thus induced by the simplicial boundary operators. For dimension reasons, c
maps ∂M to S(n− 1); therefore, the left horizontal arrows are well-defined.
The lower right arrow is induced by the inclusion j and the right diagonal
arrow is given by the composition.

Looking at the relative chain complexes shows Hn−1(S(n− 1), A;F2) ∼=F2

F2 and that the right diagonal arrow is an isomorphism (check!).
Because #

{
τ ∈ ∂M

∣∣ c(τ) = {0, . . . , n − 1}
}

is odd, the class α (which
is represented by z) is mapped to the(!) generator of Hn−1(S(n − 1), A;F2)
under the composition Hn−1(j;F2) ◦Hn−1(c|∂M F2) ◦ ∂n. By commutativity
of the diagram, we therefore obtain that α is mapped via Hn(c;F2) to the(!)
generator of Hn(∆(n), S(n− 1);F2). As seen above, this means exactly that
M contains an odd number of rainbow simplices.

Remark 3.5.14 (Sperner’s lemma: from manifolds to the classical case). The
classical case of Sperner’s lemma (Theorem 3.5.9) can be derived from
Sperner’s lemma for manifolds (Theorem 3.5.13) by showing the case of di-
mension 1 directly by hand and then proceeding by induction (Exercise).

Remark 3.5.15 (Sperner’s lemma: from graphs to manifolds). Sperner’s lemma
for manifolds admits an elementary proof (Exercise): One can consider the
dual graph of the given pseudomanifold (plus an “external” vertex) and then
argue via the handshake lemma (Proposition 2.1.6).

In combination this gives a proof of Brouwer’s theorem from graph-theory
and elementary topology (Remark 3.5.10, Remark 3.5.14).

We will apply Sperner’s lemma in the context of distributed systems
(Chapter 3.6).

3.6 Application: Consensus in distributed systems

Computation and coordination in distributed systems faces various chal-
lenges. A recurring problem is that multiple processes need to agree on some-
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thing – while only having minimal guarantees on aliveness, synchronisation,
means of communication, access to shared resources, fault-freeness, and non-
maliciousness of other processes.

In the following, we will focus on the case of the computational model of
asynchronous, wait-free, shared read/write memory, multi-layer immediate
snapshot computations [38, Chapters 8/9].

Real-world problem 3.6.1 (set agreement). Let n ∈ N and k ∈ {0, . . . , n}.
The k-set agreement task is:

• Given a finite set A and given n+1 processes, each with an input value
from A,

• each process j ∈ {0, . . . , n} should output a value aj such that the
following conditions are satisfied:

– For each j ∈ {0, . . . , n}, the value aj is one of the given input
values;

– the set {a0, . . . , an} contains at most k elements.

The 1-set agreement task is also known as the consensus task, because all
processes have to agree on a single value.

The key idea is to model such tasks and corresponding protocols in the lan-
guage of simplicial complexes, simplicial/carrier maps, and colourings. Here,

• the simplices model “consistent states” of inputs, outputs or computa-
tions;

• the colours model the process ids, and

• the carrier maps model the allowed ranges of tasks or protocols from
the given input/state.

We will refrain from introducing the most general setup and only use a
fragment of the theory, sufficient to discuss the set agreement problem.

Definition 3.6.2 (chromatic simplicial complex). Let n ∈ N and let A be a
finite set. An [n]-chromatic simplicial complex with labels in A is a simplicial
complex X with V (X) ⊂ {0, . . . , n} ×A and the following properties:

• The simplicial complex X is pure of dimension n;

• For every simplex σ ∈ X, the first components of σ are all different.

Definition 3.6.3 (chromatic carrier map). Let n ∈ N, let A, B be finite sets,
and let X, Y be [n]-chromatic simplicial complexes with labels in A and B,
respectively. An [n]-chromatic carrier map from X to Y is a map T from X
to the set of subcomplexes of Y with the following properties:

• For all σ ∈ X, the subcomplex T (σ) is pure of dimension dimσ.
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• For all σ, τ ∈ X, we have

σ ⊂ τ =⇒ T (σ) ⊂ T (τ).

• For all σ ∈ X, we have (where π1 denotes the projection onto the first
coordinate)

π1(σ) =
{
π1(y)

∣∣ y ∈ V (T (σ))
}
.

Definition 3.6.4 (task). Let n ∈ N and let A be a finite set. A task for n+ 1
processes on A is a triple (I,O, T ), consisting of:

• The input complex I, an [n]-chromatic simplicial complex with labels
in A; the labels are called input values.

• The output complex O, an [n]-chromatic simplicial complex with labels
in A; the labels are called output values.

• The task map T , a carrier map from I to O.

Definition 3.6.5 (protocol, solving a task, decision map). Let n ∈ N and let
A be a finite set. A protocol for n + 1 processes on A is a triple (I, P,K),
consisting of:

• The input complex, an [n]-chromatic simplicial complex I with labels
in A.

• The protocol complex P , an [n]-chromatic simplicial complex with labels
in some finite set B.

• The protocol map, a chromatic carrier map K from I to P with P =⋃
σ∈I K(σ) that is strict in the sense that:

∀σ,τ∈I K(σ ∩ τ) = K(σ) ∩K(τ).

The protocol (I, P,K) solves the task (I,O, T ) for n+1 processes on A (with
the same input complex) with decision map δ if δ : P −→ O is a simplicial
map with

∀σ∈I δ
(
K(σ)

)
⊂ T (σ).

In particular, the notion of protocol does not make the exact execution
of the protocol explicit, but only summarises the results of all possible runs
(taking into account different speeds or failures of all involved processes) for
each input configuration. In concrete applications, the labels of the vertices
in the protocol complexes usually are views of the corresponding processes,
including memory state etc.. The decision map selects for each “possible run”
of the protocol a corresponding result.
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(0, 0) (0, 1)

(1, 0) (1, 1)

(0, 0) (0, 1)

(1, 0) (1, 1)

Figure 3.9.: Left: The input complex for consensus for two complexes; right:
the 1-simplices in the image of the protocol map (Example 3.6.7).

Model 3.6.6 (set agreement). Let n ∈ N, let k ∈ {0, . . . , n}, and let A be
a finite set. In this setting, the set agreement task (Problem 3.6.1 can be
modelled by the task (I,O, T ), where:

I :=
〈{
{(0, a0), . . . , (n, an)}

∣∣ a0, . . . , an ∈ A
}〉

∆

O := I

T : σ 7−→
{
τ ∈ O

∣∣ π1(τ) ⊂ π1(σ), π2(τ) ⊂ π2(σ), #π2(τ) ≤ k
}

The input states are all combinations of process ids and available values; the
output states are of the same shape. The task map encodes the conditions
in the set agreement task: We are only allowed to use values that occur as
one of the input values, and the set of output values may not exceed the
cardinality k.

The problem then becomes to find a protocol that solves this task.

Example 3.6.7 (consensus for two processes). The input complex for consensus
for two processes on the label set {0, 1} as in Model 3.6.6 is depicted in
Figure 3.9.

In contrast, the only 1-simplices in the image of the protocol map are
depicted in Figure 3.9 on the right. We see that the right-hand side is less
connected than the left-hand side. This already indicates that this approach
to distributed systems is susceptible to topological methods and homotopy
invariants.

In connection with the concrete computation model that we are consider-
ing, we record the following fact:

Black box 3.6.8 ([38, Chapter 9.2]). Every layered immediate snapshot pro-
tocol (I, P,K) is a manifold protocol, i.e.:

• For all σ ∈ I, the subcomplex K(σ) is a pseudomanifold with boundary
(of dimension dimσ).

• For all σ ∈ I, we have

∂
(
K(σ)

)
= K(∂σ).
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Moreover, the following holds: If I is a pseudomanifold with boundary, then
P is a pseudomanifold with boundary and ∂P = K(∂I) [38, Theorem 9.1.7].

Theorem 3.6.9. Let n ∈ N. There is no manifold protocol for n-set agreement
for n+ 1 processes on a label set with at least n+ 1 elements.

Proof. As we are proving an impossibility result, without loss of generality,
we may take A := {0, . . . , n}. Let (I,O, T ) be the n-set agreement task for
n + 1 processes with labels in A, as described in Model 3.6.6. Assume for a
contradiction that (I, P,K) is a manifold protocol for n+ 1 processes solving
this n-set agreement task with the decision map δ : P −→ O.

We consider the special simplex

σ∆ :=
{

(0, 0), . . . , (n, n)
}
∈ I

in which each process takes its own id as input value; let M := K(σ∆). Then
M is an n-pseudomanifold with boundary and the decision map δ induces an
[n]-colouring c : M −→ ∆(n) of M via

V (M) −→ {0, . . . , n}
x 7−→ π2

(
δ(x)

)
.

Then c has the following “Sperner” property: For all σ ∈ ∆(n), the sim-
plex σ := {(j, j) | j ∈ σ} satisfies

c
(
K(σ)

)
⊂ σ.

Indeed, by construction, we have

c
(
K(σ)

)
= π2

(
δ(K(σ))

)
(construction of c)

⊂ π2

(
T (σ)

)
(the protocol solves the task)

⊂ π2(σ) (by definition of the task map T )

= σ. (construction of σ)

Inductively applying Sperner’s lemma for manifolds (Theorem 3.5.13)
shows (similarly to Remark 3.5.14) that M contains an odd number of rain-
bow simplices for c (check!). In particular, M contains at least one rainbow
simplex σ. By definition of protocols, there exists a σ′ ∈ I with σ ∈ K(σ′).
This means that

#π2

(
T (σ′)

)
≥ #π2

(
δ(K(σ′))

)
(because δ(K(σ′)) ⊂ T (σ′))

≥ #π2

(
δ(σ)) (by the choice of σ′)

≥ #c(σ) (by construction of c)

= n+ 1 (σ is a rainbow simplex),
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which contradicts the n-set agreement property of the task map. Therefore,
such a manifold protocol cannot exist.

Corollary 3.6.10. Let n ∈ N. In the layered immediate snapshot model, there
is no protocol for n-set agreement for n + 1 processes on a label set with at
least n+ 1 elements.

Proof. This is immediate from Theorem 3.6.9 and Black box 3.6.8.

In particular, in the layered execution model, there is no protocol for con-
sensus for more than one process. The same technique also applies to a wide
range of other problems in distributed computing [39, 38].

3.7 Application: Social choice

Following up on the management of voting preferences (Problem 2.4.3),
we give a simplicial proof of Arrow’s impossibility theorem [2] in social
choice [16, 3, 28, 74, 65]. Let us recall the general problem in social choice
(Problem 2.4.3): Given a set A of available alternatives and n ∈ N, the goal
is to aggregate each n-tuple of total orders on A (i.e., the preferences of
n voters) into a single total order on A (the “result” of the vote). Ideally,
this aggregation should adhere to coherence and fairness properties. Arrow’s
theorem shows that already unanimity and independence of irrelevant alter-
natives force the existence of a dictator:

Theorem 3.7.1 (Arrow’s impossibility theorem). Let n ∈ N≥2, let A be a finite
set with #A ≥ 3, and let P be the set of all total orders on A. Let f : Pn −→ P
satisfy the following properties:

• Unanimity. If all voters agree on the order between two alternatives,
then this order appears in the result:

∀x,y∈A ∀p∈Pn
(
(∀j∈{0,...,n} x <pj y)⇒ x <f(p) y)

)
.

• Independence of irrelevant alternatives. Adding further alternatives
does not change the resulting aggregated order:

∀x,y∈A ∀p,q∈Pn
(
(∀j∈{0,...,n} x <pj y ⇔ x <qj y)⇒ (x <f(p) y ⇔ x <f(q) y)

)
.

Then there exists a dictator, i.e., there is a j ∈ {1, . . . , n} such that

∀x,y∈A ∀p∈Pn (x <pj y ⇒ x <f(p) y).

The general case can be reduced to the case of n = 2 voters and the
set A = {0, 1, 2} of alternatives through a combinatorial argument [65]. We
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(0, 1)

(0, 2)

(1, 2)

(1, 0)

(2, 0)

(2, 1)

Figure 3.10.: Voting preferences for two voters and three alternatives; a gen-
erating cycle for H1(X) is highlighted in orange.

will therefore only prove the theorem in this special case. In principle, this
case could be brute-forced by enumerating all possible functions and check-
ing that the claim is satisfied. Because this gives no understanding of the
underlying problem, we will use a different strategy.

As in the case of distributed systems, we use simplices to model consistent
choices (Model 2.4.4, Example 2.4.5, Example 2.5.3). More precisely, let

V :=
{

(x, y)
∣∣ x, y ∈ A, x 6= y

}
;

we consider the simplicial complex

X :=
{
σ ∈ Pfin(V )

∣∣ ∃p∈P ∀(x,y)∈σ x >p y
}

of consistent preferences (Figure 3.10).

The key to proving Arrow’s theorem (Theorem 3.7.1) is to define a corre-
sponding complex X ′ for P 2, to realise that an aggregation map P 2 −→ P
as in the theorem leads to a simplicial map X ′ −→ X, and to then to apply
the simplicial homology functor in degree 1.

Example 3.7.2 (pairs of preferences for three alternatives). Let

V ′ :=
{

((x, y), (x′, y′))
∣∣ (x, y), (x′, y′) ∈ V, {x′, y′} = {x, y}

}
⊂ V × V.

We consider the following subcomplex of X �X:

X ′ :=
{
σ ∈ Pfin(V ′)

∣∣ π1(σ) ∈ X, π2(σ) ∈ X
}
.

As in the case of the complex X, also this complex can be described as the
nerve of a straightforward cover of P 2 (check!).

Lemma 3.7.3 (a simplicial aggregation map). In the situation of Theorem 3.7.1,
the map f induces a well-defined simplicial map F : X ′ −→ X via
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V ′ = V (X ′) −→ V (X) = V

(
(x, y), (x′, y′)

)
7−→

{
(x, y) if there exists (p, p′) ∈ P 2 with x >p y, x′ >p′ y′ and x >f(p,p′) y

(y, x) if there exists (p, p′) ∈ P 2 with x >p y, x′ >p′ y′ and y >f(p,p′) x.

Proof. By the independence of irrelevant alternatives, the map F is well-
defined on the vertices. That F is simplicial is a also consequence of the
independence of irrelevant alternatives (Exercise).

In the following, we will abbreviate elements (x, y) of V (X) by the string xy
and elements ((x, y), (x′y′)) of V (X ′) by the string xyx′y′.

Lemma 3.7.4 (a troublemaker cycle). The simplicial cycle

c := [01, 12] + [12, 20] + [20, 01] ∈ C1(X)

represents a generator of H1(X) ∼=Z Z.

Proof. This follows from a direct computation or by using homotopy in-
varance of H1 and the computation of H1(S(1)) (check!).

In addition to the simplicial aggregation map F : X ′ −→ X, we consider
the diagonal map ∆: X −→ X ′ (which is simplicial; check!) and the two
inclusions i1, i2 : X −→ X ′, defined as follows: Let q := (0 > 1 > 2) ∈ P . We
then define i1 and i2 on xy ∈ V (X) by

i1(xy) :=

{
(xy, xy) if x >q y

(xy, yx) if y >q x

i2(xy) :=

{
(xy, xy) if x >q y

(yx, xy) if y >q x.

Also, i1 and i2 are indeed simplicial (check!).

Lemma 3.7.5 (homology of maps to the paired preference complex). We have

H1(∆) = H1(i1) +H1(i2) : H1(X) −→ H1(X ′).

Proof. This is an instance of a general phenomenon for the homology of
products. For the sake of simplicity, we prove this by an explicit computation:
In view of Lemma 3.7.4, it suffices to show that

H1(∆)([c]) = H1(i1)([c]) +H1(i2)([c]).

Let

b := [1212, 2002, 0101] + [1212, 0220, 0101]− [1212, 2020, 0101] ∈ C2(X ′).

Then ∂2b = C1(∆)(c)−C1(i1)(c)−C1(i2)(c) (check!), proving the claim.
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Lemma 3.7.6 (simplicial maps on the preference complex). Let g : X −→ X be
a simplicial map.

1. Then H1(g) = d · idH1(X) with d ∈ {−1, 0, 1}. We write deg g := d.

2. If deg g = 1 and g(01) = (01), then g = idX .

Proof. Ad 1. Because of H1(X) ∼=Z Z (Lemma 3.7.4), the degree deg g of g
is well-defined. The rigidity of the simplicial structure of X forces deg g ∈
{−1, 0, 1} (Exercise).

Ad 2. We first investigate what happens to c under g. Because of deg g = 1
and because [c] 6= 0 in H1(X), the cycle C1(g)(c) represents a non-zero class
in H1(X) and thus cannot consist of fewer than three 1-simplices (check!).
Therefore, {g(01), g(12)}, {g(12), g(20)}, and {g(20), g(01)} are 1-simplices.

Using that g(01) = 01, there are only four options for g(12), namely the
neighbours of 01 in X. Because of

[
C1(g)(c)

]
= H1(g)([c]) = deg g · [c] = 2 · [c] = [c],

we obtain that C1(g)(c) must not be the boundary of a 2-simplex of X.
Therefore, only the following two options remain:

• If g(12) = 12 and g(20) = 20, then also the values on all other vertices
are uniquely determined (because of the 2-simplices) and we obtain g =
idX .

• If g(12) = 20 and g(20) = 12, then

[c] = deg g · [c] = H1(g)([c]) =
[
[01, 20] + [12, 12] + [12, 01]

]
= −[c],

which is impossible. Hence, this case cannot occur.

This shows that g = idX .

Proof of Theorem 3.7.1. By the unanimity property, the simplicial aggrega-
tion map F (Lemma 3.7.3, which uses the independence of irrelevant alter-
natives) satisfies F ◦∆ = idX . Applying the functor H1, we therefore obtain

idH1(X) = H1(F ◦∆) = H1(F ) ◦H1(∆) (functoriality of H1)

= H1(F ) ◦
(
H1(i1) +H1(i2)

)
(Lemma 3.7.5)

= H1(F ◦ i1) +H1(F ◦ i2). (functoriality)

Hence, deg(F ◦ i1) + deg(F◦2) = 1. Because these degrees lie in {−1, 0, 1}
(Lemma 3.7.6), the only possiblity is that there is a k ∈ {1, 2} with deg(F ◦
ik) = 1.

Unanimity also shows that F ◦ ik(01) = 01 (check!). Therefore, we ob-
tain F ◦ ik = idX (Lemma 3.7.6). However, this just means that entity k is a
dictator.
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Alternatively, one can also formulate this proof in the same language as
the consensus problems in distributed systems [65] or use other techniques
from homotopy theory.

3.8 Application: Nash equilibria

In game theory, there are various notions of equilibria. The study of such
equilibria is not only relevant for actual games, but is also part of economic
and social theories. Nash introduced a suitable notion of equilibrium in non-
cooperative multi-person games and showed that such equilibria always ex-
ist [57, 58]. His first approach was based on the Kakutani fixed point theorem;
he then improved his argument, using the Brouwer fixed point theorem in-
stead. We will follow this second version.

Real-world problem 3.8.1 (games and strategies). A number of players (peo-
ple, companies, states, . . . ) interacts with each other (without cooperation).
Each player has a finite list of alternative strategies for this interaction; dif-
ferent players can have different such lists. Moreover, each player receives a
payoff (money, energy, reputation, survival, . . . ), depending on the chosen
strategies of all entities.

The problem is to determine how rational players should behave in such
a situation if they aim at maximising their payoffs. There are several in-
terpretations of this problem. In general, globally maximising the payoff for
each player will not be achievable. One interpretation therefore asks for find-
ing “equilibria”, i.e., combinations of strategies of all players that make it
unattractive for each player to choose a different strategy.

One way to model such problems is via Nash’s notion of games, strategies,
and equilibria:

Definition 3.8.2 (game, pure/mixed strategy). Let n ∈ N. An (n + 1)-person
game is a tuple (S0, . . . , Sn, p0, . . . , pn), consisting of finite sets S0, . . . , Sn
and payoff functions (or utility functions) p0, . . . , pn :

∏n
j=0 Sj −→ R.

For j ∈ {0, . . . , n}, the elements of Sj are called the pure strategies of
player j. The elements of

∣∣∆(Sj)
∣∣ are called the mixed strategies of player j.

The mixed strategies of a player are just convex combinations of pure
strategies and thus can be viewed as probability measures on the set of pure
strategies, i.e., as randomised strategies.

A Nash equilibrium is a tuple of mixed strategies so that no player can
single-handedly improve his payoff by changing his own strategy. In general,
this does not mean that the payoff is globally maximised for each player.

Definition 3.8.3 (extended payoff function, Nash equilibrium). Let n ∈ N and
let G := (S0, . . . , Sn, p0, . . . , pn) be an (n+ 1)-person game.



3.8. Application: Nash equilibria 115

• We write S(G) :=
∏n
j=0 |∆(Sj)|. For j ∈ {0, . . . , n}, we extend the

payoff function pj :
∏n
j=0 Sj −→ R to S(G) −→ R in the unique (n +

1)-affine-linear way. For simplicity, also the extended function will be
denoted by pj .

• If ξ ∈ S(G), j ∈ {0, . . . , n}, and α ∈ |∆(Sj)|, then we write

ξ[j : α] := (ξ0, . . . , ξj−1, α, ξj+1, . . . , ξn) ∈ S(G).

• A point ξ ∈ S(G) is a Nash equilibrium of G if

∀j∈{0,...,n} pj(ξ) = max
α∈|∆(Sj)|

pj
(
ξ[j : α]

)
.

Example 3.8.4 (rock-paper-scissors). We model the game rock-paper-scissors
in the terminology of Definition 3.8.3. This game is a two-player game. Each
player has three pure strategies: rock, paper, and scissors. The payoff func-
tions on the pure strategies are given by Figure 3.11, where the notation is
to be interpreted as in the following scheme:

À

Á
s

t
p1(s, t)

p
2
(s,t)

A case-by-case analysis shows that this game has no Nash equilibrium that
consists only of pure strategies. For instance, (S,P) is not a Nash equilibrium,
because

p1

(
(S,P)[2 : R]

)
= p2(S,R) = 1 > −1 = p2(S,P).

One can show that (r, r) with r := 1/3 · R + 1/3 · S + 1/3 · P is a Nash
equilibrium; this corresponds to both players randomly picking rock, paper,
or scissors (with equal probabilities).

Theorem 3.8.5 (existence of Nash equilibria). Every game (in the sense of
Definition 3.8.3) has a Nash equilibrium.

Proof. We apply the Brouwer fixed point theorem (Corollary 3.5.5) to the
normalised “gain functions”. Let n ∈ N and let G := (S0, . . . , Sn, p0, . . . , pn)
be an (n+ 1)-person game. For j ∈ {0, . . . , n} and α ∈ |∆(Sj)|, we consider
the gain function

gj,α : S(G) −→ R
ξ 7−→ max

(
0, pj(ξ[j : α])− pj(ξ)

)
,

which describes the gain of player j by switching his strategy to α. We then
set
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À

Á
R P S

R

P

S

0

0

1

−1

−1

1

−1

1

0

0

1

−1

1

−1

−1

1

0

0

Figure 3.11.: The game rock-paper-scissors; R stands for rock, P for paper,
and S for scissors.

ϕ : S(G) −→ S(G)

ξ 7−→
(ξj +

∑
α∈Sj gj,α(ξ) · eα

1 +
∑
α∈Sj gj,α(ξ)

)
j∈{0,...,n}

.

We may view S(G) as subset of a Euclidean space; then S(G) is convex and
non-empty, thus contractible. Moreover, ϕ : S(G) −→ S(G) is well-defined
(check!) and continuous (check!). Because S(G) admits a finite triangulation
(check!), the (generalised) Brouwer fixed point theorem (Corollary 3.5.4) im-
plies that ϕ has a fixed point ξ ∈ S(G).

We show that ξ is a Nash equilibrium of G: It suffices to show for all j ∈
{0, . . . , n} and all pure strategies α ∈ Sj that pj(ξ) ≥ pj(ξ[j : α]) (Exercise),
or, equivalently, that gj,α(ξ) = 0.

Let j ∈ {0, . . . , n} and α ∈ Sj . Let β ∈ Sj be a least profitable pure
strategy for player j at ξ, i.e., pj(ξ[j : β]) = minγ∈Sj pj(ξ[j : γ]). By convexity,
then pj(ξ[j : β]) ≤ pj(ξ) (check!), whence gj,β(ξ) = 0. Because ξ is a fixed
point of ϕ, the β-contribution of ξj is not decreased by ϕ. As gj,β(ξ) = 0,
this implies that

1 +
∑

α∈Sj
gj,α(ξ) = 1.

Hence, gj,α(ξ) = 0 for all α ∈ Sj , as desired.

Literature exercise. Read about the life of John Forbes Nash Jr., including
his work (and awards) in economic theory and his work (and awards) in
theoretical mathematics.
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3.9 Application: Sensor network coverage

If multiple sensors are used in surveillance tasks, one is interested in having a
guarantee that the full region of interest is covered by the sensors. For sensors
with fixed positions or with known absolute positions, this coverage problem
can be solved by means of (computational) geometry.

In situations, where absolute positions are not known or cannot be ob-
tained with reasonable effort (e.g., certain indoor setups do not allow for
use of GPS), other methods are needed. Simplicial homology can be used to
organise local information into a sufficient coverage criterion [21]:

Real-world problem 3.9.1 (sensor network coverage). We consider a region
in the plane that is fenced off by a “cycle” of sensors. Within this region,
we consider finitely many sensors. All sensors have unique ids. Each sensor
can survey a circular region around it. Moreover, each sensor broadcasts its
unique id to all sensors that are close enough; in addition, the sensors can also
communicate other data (such as information that they gathered on other
sensors) to sensors that are close enough. For simplicity, we assume that the
surveillance and communication radii all agree (Figure 3.12).

The problem is to find sufficient conditions that guarantee that the sensor
network covers the whole fenced off region; these sufficient conditions should
be checkable by the fence sensors of the network.

Figure 3.12.: Sensor network coverage; the fence is orange

Model 3.9.2 (sensor network coverage). We model the situation of Prob-
lem 3.9.1 as follows:
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• Every sensor is modelled as a point in R2; let S ⊂ R2 be the finite set
of sensors. All sensors are assumed to have the same communication
and sensing radius ε ∈ R>0 with respect to the Euclidean metric d2.

The region under surveillance by the sensors is thus
⋃
s∈S Bε(x, d2).

• Let X := Rε(S, d2) be the associated Rips complex. The shadow map
is the map ϕ : |X| −→ R2 induced by the inclusion S ↪→ R2 and affine
linear extension.

In particular, ϕ(|X|) ⊂ R2 is a subset of the region
⋃
s∈S Bε(x, d2)

covered by the sensors.

• The fence is modelled as a one-dimensional subcomplex C ⊂ X with
the following properties:

1. The restriction ϕ||C| to |C| is a homeomorphism onto its image

2. and this image is homeomorphic to S1.

These two conditions imply that the 1-simplices of C form a cycle
in C1(C;F2) ⊂ C1(X;F2) (check!).

By the Jordan curve theorem [47, Chapter 4.4.2], ϕ(|C|) separates R2

into two connected components, exactly one of which is bounded. This
bounded component is the fenced region D and ∂D = ϕ(|C|) ∼=Top S

1.
By the Jordan–Schönflies theorem [52], we furthermore have D ∼=Top

D2. the Jordan–Schönflies theorem, we could also add these properties
as conditions.)

We call (S,C) a sensor network in R2 with radius ε.
The class represented by the “cycle” C in H1(C;F2) will be denoted by [C].

The class represented by C in H1(X;F2) will be denoted by αC .
We will see in Theorem 3.9.3 a sufficient condition in terms of αC that

guarantees that ϕ(|X|) (and whence
⋃
s∈S Bε(x, d2)) contains D.

Theorem 3.9.3 (a sufficient condition for sensor network coverage [21]). Let
(S,C) be a sensor network in R2 with radius ε ∈ R>0 and let X := Rε(S, d2)
be the associated Rips complex. If the fence class αC ∈ H1(X;F2) is trivial,
then the sensor network covers the whole fenced region D.

Proof. Let αC = 0 in H1(X;F2). The long exact sequence of the pair (X,C)
shows that αC = 0 ∈ H1(X;F2) is equivalent to the existence of a relative
class β ∈ H2(X,C;F2) with ∂2(β) = [C] (check!).

Assume for a contradiction that there exists a point x ∈ D that is not
covered by the sensor network. Then the shadow map ϕ : |X| −→ R2 factors
over R2 \ {x}, i.e., we have

ϕ = i ◦ ϕ′,
where i : R2 \ {x} ↪→ R2 is the inclusion and ϕ′ : |X| −→ R2 \ {x}. Applying
homology leads to the following commutative diagram:
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H2(X,C;F2)
∂2 //

H2(ϕ;F2)

��

H2(ϕ′;F2)

tt

H1(C;F2)

H1(ϕ||C|;F2)

��

H2(R2 \ {x}, ∂D;F2)

H2(i;F2) **

H2(R2, ∂D;F2)
∂2

// H1(∂D;F2)

The maps ∂2 denote the connecting homomorphisms from the corresponding
long exact sequences of pairs.

We slightly abused notation. In fact, we defined homology only for (finitely)
triangulable spaces; in particular, for the homology of R2 and R2 \ {x} we
would need to make replacements by suitable finitely triangulable spaces.
This is not difficult to achieve (check!), but in order to keep the notation
lightweight, we omit this step. Moreover, a straightforward computation (e.g.,
using the long exact homology sequence for the pair, homotopy invariance,
and the homotopy equivalence ∂D ↪→ R2 \ {x}; check!) shows that

H2(R2 \ {x}, ∂D;F2) ∼=F2
0.

By construction, [C] ∈ H1(C;F2) ∼=F2
F2 is non-zero (check!). By assump-

tion, ϕ||C| : |C| −→ ∂D is a homeomorphism. Hence, the right vertical arrow
is an isomorphism (Theorem 3.4.6). Therefore, we obtain

0 6= H1(ϕ||C|;F2)([C])

= H1(ϕ||C|;F2)
(
∂2(β)

)
(by the choice of β)

= ∂2 ◦H2(i;F2) ◦H2(ϕ′;F2)(β) (commutativity of the diagram)

= ∂2 ◦H2(i;F2)(0) (because H2(R2 \ {x}, ∂D;F2) ∼=F2
0)

= 0.

This contradiction shows that the whole region D is covered.

Remark 3.9.4 (reduced networks). In the situation of Theorem 3.9.3, let αC =
0 in H1(X;F2). In the proof, we used a relative class β ∈ H2(X,C;F2)
with ∂2(β) = αC . We can then also find a chain z ∈ C2(X;F2) with ∂2(z) =
C. Such explicit chains z can be used to select a smaller network that also
covers the whole region, thus allowing for a reduced use of energy etc..

Remark 3.9.5 (computability by the network and implementation). In the sit-
uation of Theorem 3.9.3, the local information present in the sensors can
be aggregated by the fence sensors into a computation that decides whether
αC = 0 in H1(X;F2) or not. Several algorithms are available. Particularly
efficient algorithms are based on spanning trees [69].

Outlook 3.9.6 (sensing vs. communicating). For simplicity, we considered the
case that the sensing radius and the communication radius of the sensors
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agree. If these radii are different, a slightly more refined analysis is avail-
able [22], which is related to a simple case of persistent homology (Chap-
ter 4).



4

Persistent homology

Topological data analysis constructs simplicial complexes from “big data”,
depending on threshold/mesh parameters (Chapter 2.5). Typically, in such
applications, there is only limited a priori knowledge on which ranges of
parameters are appropriate. Therefore, one considers a sequence of such sim-
plicial complexes, where each member represents a choice of parameters.

The usual Betti numbers of such sequences do not directly provide mean-
ingful information as they are not stable under small perturbations. Instead,
one considers so-called persistent Betti numbers. The structure theorem for
persistent homology allows to represent this information in terms of their
associated barcodes. These barcodes encode “how long homology classes per-
sist” in the sequence of complexes and turn out to satisfy stability under
suitable perturbations. Persistent homology and barcodes (over fields) can
be computed efficiently.

In addition to the theory, we will explain the persistent homology workflow
in practice and consider applications from biology and medicine.

Overview of this chapter.

4.1 Persistent homology 122
4.2 The structure theorem for persistent homology 127
4.3 Implementation: Computing barcodes 136
4.4 The stability theorem for persistent homology 153
4.5 Application: Horizontal evolution 162
4.6 Application: Exploring multi-dimensional data 167

Running example. persistent homology of Rips filtrations of point clouds
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4.1 Persistent homology

We introduce the basic terminology for persistent homology, i.e., for the per-
sistence of homology classes/Betti numbers under sequences of chain maps.

4.1.1 Filtrations

Simplicial complexes from point clouds (Chapter 2.5) depend on thresh-
old/mesh parameters. This leads to filtrations:

Definition 4.1.1 (filtration). Let K be a simplicial complex. A filtration of K
is a sequence (Kn)n∈N of subcomplexes of K that are nested via

K0 ⊂ K1 ⊂ · · · ⊂ K

and that satisfy K =
⋃
n∈NK

n. A filtration is of finite type if the sequence
stabilises after finitely many steps and if each simplicial complex is finite.

Example 4.1.2 (Rips filtration). Let d be a metric on RN , let X ⊂ RN be
a finite set, and let (εn)n∈N ⊂ R>0 be a monotonically increasing sequence
with limn→∞ εn = ∞. Then (Rεn(X, d))n∈N is a filtration of ∆(X) of finite
type (check!).

Example 4.1.3 (from filtrations to sequences of chain complexes and persistent
homology). If R is a commutative ring with unit and (Kn)n∈N is a filtration
of a simplicial complex K, then applying the simplicial chain complex functor
to the inclusion maps (in : Kn → Kn+1)n∈N leads to a sequence

C(K0;R)
C(i0;R)

// C(K1;R)
C(i1;R)

// C(K2;R) // · · · ⊂ C(K;R)

in the category RCh of R-chain complexes. We can now apply the homology
functor to obtain in each degree k ∈ N a corresponding sequence

Hk(K0;R)
Hk(i0;R)

// Hk(K1;R)
Hk(i1;R)

// Hk(K2;R) // · · · ⊂ Hk(K;R)

of R-modules. The idea behind persistent homology is to ask

• at which stages in this sequence “new” classes are “born” and

• at which stages in this sequence classes “die”.

The lifespan of a homology class is its persistence. Classes with large per-
sistence should then correspond to genuine topological features and not to
irrelevant noise.
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4.1.2 Persistence objects

Before proceeding with the ideas from Example 4.1.3, we first introduce a
more general abstract framework to handle such filtrations [77]. Persistence
chain complexes are persistence objects in the category of chain complexes;
persistence modules are persistence objects in the category of modules. More
explicitly:

Definition 4.1.4 (persistence chain complex, persistence module). Let R be a
ring.

• A persistence R-chain complex is a sequence

C0 f0

// C1 f1

// C2 // · · ·

in RCh (i.e., each Cn is an R-chain complex and each fn is an R-chain
map).

• A persistence R-chain complex (C∗, f∗) is of finite type if the following
hold: Each Cn is a finite R-chain complex (i.e., finitely generated in all
degrees as well as non-trivial only in finitely many degrees) and there
exists an N ∈ N such that for all n ∈ N≥N , the chain map fn is an
R-chain isomorphism.

• A persistence R-module is a sequence

M0 f0

// M1 f1

// M2 // · · ·

in RMod (i.e., each Mn is an R-module and each fn is an R-linear
map).

• A persistence R-module (M∗, f∗) is of finite type if each Mn is finitely
generated and there exists an N ∈ N such that for all n ∈ N≥N , the
map fn is an R-isomorphism.

Example 4.1.5 (persistence chain complexes lead to persistence modules). Let
(C∗, f∗) be a persistence R-chain complex over some ring R and let k ∈ N.
Applying the homology functor Hk in degree k give the persistence R-module

Hk(C0)
Hk(f0)

// Hk(C1)
Hk(f1)

// Hk(C2) // · · ·

Example 4.1.6 (filtrations lead to persistence modules). In Example 4.1.3, the
simplicial chain complexes of a filtration of a simplicial complex define a
persistence chain complex; for each degree k ∈ N, simplicial homology leads
to a persistence module.
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Remark 4.1.7 (spectral sequences). Spectral sequences apply to homological
questions for sequences of chain complexes. However, the focus is different:
For example, the spectral sequence of a filtration gives a strategy to com-
pute the homology of the filtered simplicial complex (or topological space)
from the homology groups of the filtration stages. In our situation, the ho-
mology of the filtered simplicial complex often will be trivial (because the
filtered simplicial complex is a simplex). Instead, we are interested in a more
quantitative evolution of homology classes through the filtration stages [29,
Chapter VII.4].

4.1.3 Persistent homology and persistent Betti numbers

Persistent homology of a persistence chain complex keeps track of which
homology classes survive to which stages:

Definition 4.1.8 (persistent homology). Let R be a ring and let (C∗, f∗) be a
persistence R-chain complex. Let i, j ∈ N with j ≥ i and let k ∈ N. Then the
(i, j)-persistent homology of (C∗, f∗) in degree k is defined as

Hi,j
k (C∗, f∗) :=

f j−1 ◦ · · · ◦ f i(ker ∂ik)

im ∂jk+1 ∩ f j−1 ◦ · · · ◦ f i(ker ∂ik)

= Hk(f j−1 ◦ · · · ◦ f i)
(
Hk(Ci)

)
⊂ Hk(Cj).

Example 4.1.9 (persistent homology of persistence 0). Let R be a ring and let
(C∗, f∗) be a persistence R-chain complex. Let i ∈ N and k ∈ N. Then, by
definition,

Hi,i
k (C∗, f∗) = Hk(Ci).

Persistent homology is functorial with respect to morphisms of persistence
chain complexes; a morphism of persistence objects is nothing but a natural
transformation between the corresponding diagrams, i.e., a sequence of stage-
preserving morphisms such that the resulting ladder is commutative.

Definition 4.1.10 (persistent Betti number). Let R be a principal ideal domain
(or another ring with a “reasonable” notion of rank) and let (C∗, f∗) be a
persistent R-chain complex of finite type. Let i, j ∈ N with j ≥ i and let
k ∈ N. Then the (i, j)-persistent Betti number of (C∗, f∗) in degree k is
defined as

bi,jk (C∗, f∗) := rkRH
i,j
k (C∗, f∗) ∈ N.

Example 4.1.11 (persistent homology/Betti numbers of point clouds). Let X ⊂
RN be a finite set, let d be a metric on RN , and let (εn)n∈N be an increasing
sequence with limn→∞ εn =∞. If R is a principal ideal domain and i, j ∈ N
with i < j and k ∈ N, then

Hi,j
k (X, d, ε∗;R) := Hi,j

k

(
C(Rε∗(X, d);R), C(inclusions;R)

)
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1 4

Figure 4.1.: A point cloud in the Euclidean plane

is the (i, j)-persistent homology of X (with respect to d and (εn)n∈N) with
R-coefficients in degree k and

bi,jk (X, d, ε∗;R) := bi,jk
(
C(Rε∗(X, d);R), C(inclusions;R)

)

is the (i, j)-persistent Betti number of X (with respect to d and (εn)n∈N)
over R in degree k.

Definition 4.1.12 (persistence of a homology class). Let R be a commutative
ring and let (C∗, f∗) be a persistent R-chain complex. Let i, j ∈ N with i < j
and let k ∈ N.

• A homology class α ∈ Hi,i
k (C∗, f∗) is born at stage i if α 6∈ Hi−1,i

k (C∗, f∗).

• A homology class α ∈ Hi,i
k (C∗, f∗) born at stage i dies at stage j

if Hk(f j−1 ◦ · · · ◦ f i)(α) ∈ Hi−1,j
k (C∗, f∗) but Hk(f j−2 ◦ · · · ◦ f i)(α) 6∈

Hi−1,j−1
k (C∗, f∗) (this is the elder rule).

• If α is born at stage i and dies at stage j, we call j − i the (index)
persistence of α.

Example 4.1.13 (persistence of classes in point clouds). We consider the
finite subset X of R2 depicted in Figure 4.1 and the sequence ε∗ :=
(0.1, 1.1, 2.1, 3.1, 4.1, 100, 101, . . . ) in R>0. A straightforward computation
shows that (Figure 4.2; check!)

b1,11 (X, d2, ε∗;Q) = 1 + 1 = 2 (classes are born in both “squares”)

b1,21 (X, d2, ε∗;Q) = 1 (the “right cycle” dies)

b1,31 (X, d2, ε∗;Q) = 0 (weird intermediate stage in the left “square”)

b1,41 (X, d2), ε∗;Q) = 0 (the left hand side dies; the emerging middle class does not come from stage 1)

b1,100
1 (X, d2, ε∗;Q) = 0. (all classes are dead)

The persistence of the “left cycle” is 2, while the one of the “right cycle” is 1.

Remark 4.1.14 (weighted persistence). In the situation of Example 4.1.11 it
is usually better to consider the weighted persistence, which is measured in
terms of the underlying radius parameter instead of the sampling indices. We
will return to this aspect in Chapter 4.4.3.
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radius 1.1

radius 2.1

radius 3.1

radius 4.1

radius 100

Figure 4.2.: The (R2-shadows of the) Rips complexes in Example 4.1.13
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4.2 The structure theorem
for persistent homology

We reorganise the information contained in the persistent Betti numbers in
terms of barcodes. One could do this directly by hand. We use an approach
based on graded commutative algebra – this more abstract approach has the
benefit that it is conceptually transparent and that it is closer to generalisa-
tions to other settings, such as zigzag persistence.

The idea is to view persistence modules as graded modules over the graded
polynomial ring of the coefficient ring. If the coefficient ring is a field, this
polynomial ring is a principal ideal domain. A graded version of the structure
theorem for finitely generated modules over principal ideal domains then
gives the structure theorem for persistence modules. This structure can be
reinterpreted in terms of “barcodes”.

4.2.1 Persistence modules and polynomial rings

We introduce some notions on graded rings and modules and explain the
fundamental example of persistence modules as graded modules.

Definition 4.2.1 (graded ring). A graded ring is a triple (R, (Rn)n∈N, ϕ),
where R is a ring, the Rn are Abelian groups, and ϕ :

⊕
n∈NRn −→ (R,+)

is an isomorphism of Abelian groups with the property that

∀n,m∈N ϕ(Rn) · ϕ(Rm) ⊂ ϕ(Rn+m).

For n ∈ N, the elements in ϕ(Rn) are called homogeneous of degree n. An
element of R is homogenous if there exists an n ∈ N such that the element
is homogeneous of degree n. Usually, one leaves ϕ implicit and omits it from
the notation.

Example 4.2.2 (polynomial rings). Let K be a ring. Then the usual degree
on monomials in the polynomial ring K[T ] turns K[T ] into a graded ring
via K[T ] ∼=Ab

⊕
n∈NK · Tn (check!). We will always consider this graded

structure on polynomial rings.

Definition 4.2.3 (graded module). Let R be a graded ring. A graded module
over R is a triple (M, (Mn)n∈N, ϕ), consisting of an R-module M , Abelian
groups Mn, and an isomorphism ϕ :

⊕
n∈NMn −→ (M,+) of Abelian groups

with
∀n,m∈N Rn · ϕ(Mm) ⊂ ϕ(Mn+m).
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Elements of ϕ(Mm) are called homogeneous of degree m. Again, usually, one
leaves ϕ implicit and omits it from the notation.

Example 4.2.4 (shifted graded modules). Let R be a graded ring, let M be
a graded module over R, and let n ∈ N. Then ΣnM denotes the graded R-
module (check!) given by the shifted decomposition 0⊕· · ·⊕0⊕⊕j∈N≥nMj−n.

Example 4.2.5 (from persistence modules to graded modules). Let K be a
domain and let (M∗, f∗) be a persistence K-module. Then M :=

⊕
n∈NM

n

carries a K[T ]-module structure, given by

∀x∈Mn T · x := fn(x) ∈Mn+1.

If we view K[T ] as a graded ring (Example 4.2.2), then this K[T ]-module
structure and this direct sum decomposition of M turn M into a graded
K[T ]-module (check!).

Remark 4.2.6 (the category of graded modules). Let R be a graded ring.
Homomorphisms between graded R-modules are R-linear maps that preserve
the grading. Graded R-modules and homomorphisms of R-modules form the
category RMod∗ of graded R-modules.

4.2.2 The structure theorem

We now consider the graded version of the structure theorem for graded mod-
ules over graded principal ideal domains (similarly to the one of Zomorodian
and Carlsson [77, Theorem 2.1]) and apply it to the case of persistence mod-
ules.

Theorem 4.2.7 (structure theorem for modules over graded PIDs). Let R be
a graded ring that is a principal ideal domain (as ungraded ring) with R 6=
R0. Let M be a graded R-module that is finitely generated as (ungraded) R-
module. Then there exist N ∈ N, homogeneous elements f1, . . . , fN ∈ R, and
n1, . . . , nN ∈ N such that

M ∼=RMod∗

N⊕

j=1

Σnj
(
R/(fj)

)

and fj | fj+1 for all j ∈ {1, . . . , N − 1}. Here, the right-hand side carries the
canonical grading.

This decomposition is unique in the sense that the multiset consisting of
all pairs (nj , R

× · fj) with j ∈ {1, . . . , N} is uniquely determined by M . The
elements f1, . . . , fN are called elementary divisors of M .

As in the ungraded case: The free part of the decompositions corresponds
to the elementary divisors that are 0.
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The statement of the theorem provides a convenient perspective on the
structure of persistence modules. However, one should be aware that it is a
red herring:

In fact, the theory of graded rings that are principal ideal domains (as
ungraded rings) encompasses only two classes of examples (Proposition 4.2.8):

• Principal ideal domains with the 0-grading. For these rings, there is a
prime power version of the graded structure theorem, but in general no
graded elementary divisor version (Example 4.2.9).

• Polynomial rings over fields with a multiple of the canonical grading
from Example 4.2.2; for these rings, we will complement the ungraded
structure theorem with an ad-hoc argument.

Proposition 4.2.8 (graded PIDs). Let R be a graded ring that is a principal
ideal domain (as ungraded ring). Then R is of one of the following types:

• We have R = R0, i.e., R is an ordinary principal ideal domain with the
0-grading.

• The subring R0 is a field and R is isomorphic to the graded ring R0[T ],
where the grading on R0[T ] is a multiple of the canonical grading from
Example 4.2.2.

Proof. Let R 6= R0 and let n ∈ N>0 be the minimal degree with Rn 6= 0.
Then

R≥n :=
⊕

j∈N≥n
Rj

is a homogeneous ideal in R (check!); as R is a principal ideal domain, there
exists a t ∈ R with R≥n = (t). We show that t is homogeneous of degree n:
Let x ∈ Rn \{0}. Then t divides x and thus also t is homogeneous (Exercise).
The grading implies that t has degree n.

We show that the canonical R0-algebra homomorphism ϕ : R0[T ] −→ R
given by ϕ(T ) := t is an isomorphism.

• We first show that ϕ is injective: Because R is graded and t is homo-
geneous, it suffices to show that a · tk 6= 0 for all a ∈ R0 \ {0} and
all k ∈ N. However, this is guaranteed by the hypothesis that R is a
domain.

• Regarding surjectivity, let y ∈ R. It suffices to consider the case that y
is homogeneous of degree m ≥ n. Because (t) = R≥n, we know that t
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divides y, say y = t · y′. Then y′ is homogeneous and we can iterate the
argument for y′. Proceeding inductively, we obtain that m is a multiple
of n and that there exists an a ∈ R0 with y = a · tm/n. Hence, ϕ is
surjective.

This establishes that R is isomorphic as a graded ring to R0[T ], where
R0[T ] carries the grading of Example 4.2.2 scaled by n.

It remains to show that R0 is a field. By hypothesis, R ∼=Ring R0[T ] is a
principal ideal domain. Therefore, R0 is a field: The ideal (T ) is non-zero and
prime (because R is a domain); as R is a principal ideal domain, the ideal (T )
is maximal. Therefore, R0

∼=Ring R[T ]/(T ) is a field.

Example 4.2.9 (decompositions over trivially graded PIDs). We consider the
principal ideal domain Z with the 0-grading and the graded (check!) Z-
module M := M0⊕M1 given by M0 := Z/(2) and M1 := Z/(3). This graded
module does not admit a graded elementary divisor decomposition: Indeed,
if there were a graded elementary divisor decomposition of M , then the cor-
responding elementary divisors would have to coincide with the ungraded
elementary divisors. The only ungraded elementary divisor of M is 6. How-
ever, M does not contain a homogeneous element with annihilator ideal (6).
Therefore, M does not admit a graded elementary divisor decomposition.

Thus, Theorem 4.2.7 really is only about graded modules over polynomial
rings over fields. We restate and prove the theorem in this form:

Theorem 4.2.10 (structure theorem for graded modules over polynomial rings).
Let K be a field and let M be a graded K[T ]-module that is finitely generated
as (ungraded) K[T ]-module. Then there exist N ∈ N, k1, . . . , kN ∈ N>0∪{∞},
and n1, . . . , nN ∈ N such that

M ∼=K[T ]Mod∗

N⊕

j=1

Σnj
(
K[T ]/(T kj )

)

Here, T∞ := 0 and the right-hand side carries the canonical grading.

This decomposition is unique in the sense that the multiset consisting of
all pairs (nj , kj) with j ∈ {1, . . . , N} is uniquely determined by M .

Proof. As K is a field, the polynomial ring R := K[T ] is a principal ideal
domain (as ungraded ring).

Uniqueness. We take the given graded decomposition of M via a graded
R-isomorphism ϕ :

⊕N
j=1 ΣnjK[T ]/(fj) −→M with fj = T kj and show how

the multiset of all (nj , kj) is uniquely determined by M . We proceed by
induction, using the following decomposition: Let
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N ′ :=
⊕

j∈{1,...,N},nj=0

ΣnjR/(fj),

N ′′ :=
⊕

j∈{1,...,N},nj>0

ΣnjR/(fj).

First, we consider the graded submodule M ′ := SpanRM0 ⊂ M . We
claim that M ′ = ϕ(N ′). Indeed, as ϕ is graded, we have ϕ(N ′) ⊂ M ′ and
ϕ(N ′′) ∩M00. Therefore,

M0 = ϕ(N ′ ⊕N ′′) ∩M0 (ϕ is surjective)

=
(
ϕ(N ′) ∩M0

)
+
(
ϕ(N ′′) ∩M0

)
(ϕ is graded)

= ϕ(N ′) ∩M0. (because ϕ(N ′′) ∩M0 = 0)

In particular, M ′ = SpanRM0 = ϕ(N ′). Moroever, M ′ is finitely generated
over R (as R is a principal ideal domain and M is finitely gernerated).

Therefore, the uniqueness statement of the ungraded structure theorem
for M ′ uniquely determines the multiset of all kj with nj = 0.

For the induction, we pass to the R-module M ′′ := M/M ′. As M ′ is
a graded submodule of M , also M ′′ is a graded R-module. Because M is
finitely generated, M ′′ is finitely generated as well. Moreover, the discussion
above shows that M ′′ is isomorphic to ϕ(N ′′) as a graded R-module. By
construction M ′′0 = 0. Shifting the degrees on M ′′ by −1, we can apply the
first case and iterate.

Because M is finitely generated, this procedure terminates after finitely
many steps (check!) and gives the desired uniqueness.

Existence. In view of Lemma 4.2.11 below, all torsion in M comes from the
prime T and its powers. Therefore, the ungraded structure theorem provides
us with an ungraded decomposition

M ∼=K[T ]

N⊕

j=1

K[T ]/(T kj )

for some N ∈ N and k1, . . . , kN ∈ N ∪ {∞}. All of the remaining work
goes into showing that we have a graded direct sum decomposition of this
type. We give an ad-hoc argument (more generally, one could look at quiver
representations over K [61]): Let

L := max
{
kj
∣∣ j ∈ {1, . . . , N}, kj 6=∞

}
∈ N.

We first reduce to the torsion case: Let N ⊂M be the torsion submodule.
Then N is a graded submodule of M (because all torsion is T -power torsion)
and thus F := M/N is a graded R-module without torsion. By Lemma 4.2.12
below, R is a free R-module that has a homogeneous R-basis; because F is
finitely generated, this basis is finite. We thus find a graded split F −→ M



132 4. Persistent homology

of the canonical projection M −→M/N = F . This shows that there exists a
graded decomposition (check!)

M ∼=RMod∗ N ⊕ F.

Moreover, N is finitely generated. Therefore, we may assume without loss of
generality that M is a torsion R-module.

Let L ∈ N be the maximal T -power that is non-trivial on M . We construct
a decomposition by a nested induction. The idea is to proceed by increas-
ing module degree and decreasing power/length of torsion. This corresponds
to the “elder rule” in persistent homology and is (of course) similar to the
computation of Jordan normal form bases. The construction will produce K-
subspaces Mn,L+1, . . . ,Mn,0 of Mn and graded R-submodules A−1, . . . , AL
of M .

We start with A−1 := 0. For the induction step, we let n ∈ N and as-
sume that (Mm,L+1, . . . ,Mm,0 with m ∈ {0, . . . , n} as well as) A−1, . . . , An
are already constructed. Let Mn+1,L+1 := 0. For k ∈ {−1, . . . , L − 1}, let
Mn+1,L+1, . . . ,Mn+1,L−k be already constructed. We then set

Mn+1,L−(k+1) := SpanK{x1, . . . , xr},

where (TL−(k+1) ·x1, . . . , T
L−(k+1) ·xr) is a K-basis of a

⊕
K-complement of

TL−k · (Mn+1,L + · · ·+Mn+1,L−k) +A0 + · · ·+An ∩ . . .

in TL−(k+1) ·(Mn+1∩kerTL−k). By construction, the annihilators of elements
of the level j-part Mn+1,j is (T j+1) and SpanRMn+1,L−(k+1) is the internal
direct sum of R ·x1, . . . , R ·xr (in the notation above). Hence, as a graded R-
module, SpanRMn+1,L−(k+1) is isomorphic to a direct sum of cyclic modules.
Finally, we set

An+1 := SpanR(Mn+1,L + · · ·+Mn+1,0) ⊂
⊕

j∈N≥n
Mj .

From the order of the construction, one can inductively prove (check!)
that M is (as a graded R-module) the internal direct sum of A0, . . . , AD,
where D ∈ N is maximal with MD 6∼= 0 (such an index exists because M is
finitely generated and torsion); moreover, each An is the internal direct sum
of SpanRMn,L, . . . ,SpanRMn,0 (check!). This is a straightforward but rather
lengthy calculation (check!). Combining all parts, we obtain a graded direct
sum decomposition of M of the claimed shape. We will see an alternative
(algorithmic) proof in Chapter 4.3.1.

Lemma 4.2.11 (torsion in graded modules over graded PIDs). Let K be a field
and let M be a finitely generated graded K[T ]-module and let M ′ ⊂M be the
torsion submodule of M . Then there exists a k ∈ N with T k ·M ′ = 0.
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M0 M1
TL

Figure 4.3.: Existence of a graded decomposition

Proof. With the help of the ungraded structure theorem over K[T ] and induc-
tion, we see that it suffices to show (check!) that M contains a (homogeneous)
T -power torsion element.

Let x ∈M \{0} be a torsion element and let f ∈ K[T ]\{0} with f ·x = 0.
We may write x = x′ + x′′ and f = f ′ + f ′′, where x′ and f ′ are the lowest
degree non-trivial homogeneous parts of x and f , respectively, and x′′ :=
x− x′, f ′′ := f − f ′. Then

0 = f · x = f ′ · x′ + f ′ · x′′ + f ′′ · x′ + f ′′ · x′′.

The grading shows that that f ′ · x′ = 0. Therefore, M contains non-trivial
f ′-torsion. Because f ′ ∈ K[T ] is homogeneous and the only homogeneous
elements of K[T ] are monomials, we obtain that x′ is T -power torsion.

The proof of Lemma 4.2.11 would also work for finitely generated graded
modules over “general” graded PIDs to show that all torsion is homogeneous.

Lemma 4.2.12 (graded free modules [72]). Let K be a field and let M be a
graded module over K[T ] that has no torsion. Then M has a homogeneous
R-basis.

Proof. We write M−1 := 0. For n ∈ N, we choose a splitting

Mn
∼=K T ·Mn−1 ⊕Nn
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of K-vector spaces. Let Bn be a K-basis of Nn; in particular, Bn consists
of homogeneous elements. Then B :=

⋃
n∈NBn is a homogeneous K[T ]-basis

of M (check!).

Corollary 4.2.13 (structure of persistence modules over fields). Let K be a field
and let (M∗, f∗) be a persistence K-module of finite type. Then the associated
graded K[T ]-module M (Example 4.2.5) has a graded decomposition

M ∼=K[T ]Mod∗

N⊕

j=1

Σnj
(
K[T ]/(T kj )

)

for certain N ∈ N, k1, . . . , kN ∈ N>0∪{∞}, and n1, . . . , nN ∈ N. The multiset
consisting of all pairs (nj , kj) with j ∈ {1, . . . , N} is uniquely determined
by (M∗, f∗).

Proof. Because the persistence K-module (M∗, f∗) is of finite type, the
graded K[T ]-module M is finitely generated over K[T ] (check!). Hence, we
can apply the structure theorem (Theorem 4.2.10) to M .

Caveat 4.2.14. In Theorem 4.2.10, if the base ring K were not a field, the
situation is less clear, because the graded polynomial ring K[T ] will have a
more involved structure theory.

4.2.3 Barcodes

Barcodes of persistence modules over fields can now be defined in terms of the
degree shifts and the torsion lengths appearing in the graded decomposition
from Corollary 4.2.13; in view of the uniqueness part, this is indeed well-
defined.

Definition 4.2.15 (barcode).

• A barcode is a finite multiset of pairs (n, k) with n ∈ N and k ∈ N∪{∞}.

• Let K be a field and let (M∗, f∗) be a persistence K-module of
finite type. The barcode of (M∗, f∗) is the multiset consisting of
all (nj , kj − 1) with j ∈ {1, . . . , N} coming from a graded K[T ]-

decomposition
⊕N

j=1 Σnj
(
K[T ]/(T kj )

)
of the graded K[T ]-module as-

sociated with the persistence module (M∗, f∗).

In particular, the persistent homology (in a given degree) over fields of
filtrations of finite simplicial complexes or of persistence chain complexes of
finite type has an associated barcode.

Remark 4.2.16 (persistence of classes). Let K be a field. If a direct sum-
mand ΣnK[T ]/(T k) appears in the graded decomposition of persistent ho-
mology over K, then the corresponding cyclic generator in degree n is born
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0 1 2 3 4

Figure 4.4.: The barcode in degree 1 for Example 4.1.13

at stage n and dies at stage n+ k − 1. In this sense, the bars in the barcode
correspond to the lifetimes of classes in persistent homology.

Remark 4.2.17 (persistent Betti numbers from barcode). Let K be a field. It
is not difficult to extract the persistent Betti numbers of a persistent K-
chain complex of finite type from the barcodes of its persistent homology
(Exercise).

Example 4.2.18. The persistent homology in degree 1 of the point cloud X
from Example 4.1.13 with coefficients in Q and the sequence ε∗ from Exam-
ple 4.1.13 has the barcode (check!)

(1, 1), (1, 0), (4, 0)

We visualise these abstract barcodes by actual barcodes as in Figure 4.4.

Example 4.2.19. We consider the subset X of R2 depicted in Figure 4.5. Let
ε∗ := (0.1, 1.1, 2.1, 3.1, 4.1, 100, 101, 102, . . . ). Then the persistent homology
in degree 1 of X with coefficients in Q and the sequence ε∗ has the barcode
(check!)

(1, 1), (1, 1), (2, 0), (2, 0), (2, 0)

which is depicted in Figure 4.6.

1 2

Figure 4.5.: The point cloud in Example 4.2.19.

Further instructive examples can be found in the literature [64, p. 140].

Caveat 4.2.20. In applications, barcodes can give indications of interesting
structure in data [64]. However, one should be aware that without additional
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0 1 2 3 4

Figure 4.6.: The barcode in degree 1 for Example 4.2.19

a priori information, there is no objective measure for when a bar is long
enough to correspond to an “essential” feature.

4.3 Implementation: Computing barcodes

Persistent homology with field coefficients can be algorithmically computed
through a matrix reduction algorithm[29, 77, 6].

4.3.1 A homogeneous matrix reduction algorithm

As a preparation for the matrix reduction algorithm for persistent homology,
we first discuss a homogeneous matrix reduction algorithm for certain ma-
trices over polynomial rings over fields. This algorithm will also give another
proof of the existence part in the structure theorem of graded modules over
graded polynomial rings (Theorem 4.2.10).

Definition 4.3.1 (graded matrix). Let K be a field, let r, s ∈ N, and let
n1, . . . , nr,m1, . . . ,ms ∈ N be monotonically increasing. A matrix A ∈
Mr×s(K[T ]) is (n∗,m∗)-graded if the following holds: For all j ∈ {1, . . . , r}, k ∈
{1, . . . , s}, we have that the entry Ajk ∈ K[T ] is a homogeneous polynomial
and

• Ajk = 0 or

• mk = nj + degAjk.

In a graded matrix, the degrees of matrix entries monotonically increase
from the left to the right and from the bottom to the top.

Definition 4.3.2 (reduced matrix). Let K be a field, let r, s ∈ N, and
let n1, . . . , nr,m1, . . . ,ms ∈ N be monotonically increasing, and let A ∈
Mr×s(K[T ]) be an (n∗,m∗)-graded matrix.

• For k ∈ {1, . . . , s}, we define

lowA(k) := max
{
j ∈ {1, . . . , r}

∣∣ Ajk 6= 0
}
∈ N
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(with max ∅ := 0). I.e., lowA(k) is the index of the “lowest” matrix
entry in column k that is non-zero.

• The matrix A is reduced if all columns have different lowest indices:
For all k, k′ ∈ N with k 6= k′, lowA(k) 6= 0, and lowA(k′) 6= 0, we
have lowA(k) 6= lowA(k′).

Example 4.3.3 (graded matrices). We consider matrices over Q[T ] and use
the grading given by the indices of the rows/columns. Then the left and
middle matrices are graded, but the right matrix is not. The left matrix is
not reduced, the middle matrix is reduced.




1 3 · T T 2 −T 3

0 5 T T 2

0 0 2 0


 ,




1 0 T 2 −T 3

0 0 T T 2

0 0 2 0


 ,




1 3 · T T 2 −T 3

T 5 T T 2

0 0 2 0




Graded matrices can be transformed into reduced matrices via elementary
column operations; these reduced matrices then lead to module decomposi-
tions:

Algorithm 4.3.4 (homogeneous matrix reduction [29]). Given a field K, num-
bers r, s ∈ N, monotonically increasing sequences n1, . . . , nr,m1, . . . ,ms ∈ N,
and an (n∗,m∗)-graded matrix A ∈Mr×s(K[t]), do the following:

• For each k from 1 up to s (in ascending order):

Let ` := lowA(k).

If ` 6= 0, then:

– For each j from ` down to 1 (in descending order):

If Ajk 6= 0 and there exists k′ ∈ {1, . . . , k − 1} with lowA(k′) =
j, then: Update the matrix A by subtracting Ajk/Ajk′ -times the
column k′ from column k.

[Loop invariant observation: Because A is graded, Ajk/Ajk′ indeed
is a homogeneous polynomial over K (check!) and the resulting
matrix is (n∗,m∗)-graded (check!). This eliminates the entry Ajk′ .]

• Return the resulting matrix A.

Proposition 4.3.5 (homogeneous matrix reduction, properties). Let K be a
field, let r, s ∈ N, and let n1, . . . , nr,m1, . . . ,ms ∈ N be monotonically in-
creasing, and let A ∈Mr×s be an (n∗,m∗)-graded matrix. Then:

1. The homogeneous matrix reduction algorithm (Algorithm 4.3.4) is well-
defined and terminates on this input after finitely many steps (relative
to arithmetic in K).

2. The resulting matrix A′ is reduced and there is a graded s× s-matrix B
over K[T ] that admits a graded inverse and satisfies A′ = A ·B.
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3. The low-entries of the resulting matrix A′ are the elementary divisors
of A over K[T ].

4. We have

F/ imA ∼=K[T ]Mod∗
⊕

j∈I
ΣnjK[T ]/(Tmk(j)−nj )⊕

⊕

j∈I′
ΣnjK[T ],

with F :=
⊕r

j=1 ΣnjK[T ] and I := {lowA′(k) | k ∈ {1, . . . , s}} \ {0}
as well as I ′ := {1, . . . , r} \ I. For j ∈ I, let k(j) ∈ {1, . . . , s} be the
unique (!) index with lowA′(k(j)) = j.

Proof. Ad 1. Well-definedness follows from the observation mentioned in the
algorithm: As every homogeneous polynomial in K[T ] is of the form λ · T d
with λ ∈ K and d ∈ N and as the matrix is graded, the corresponding division
can be performed in K[T ] and the gradedness of the matrix is preserved by
the elimination operation.

Termination is clear from the algorithm.
Ad 2. As we traverse the columns from left to right, a straightforward

induction shows that no two columns can remain that have the same non-
zero value of “low”. The product decomposition comes from the fact that we
only applied elementary homogeneous column operations without swaps.

Ad 3. Because the resulting matrix A′ is obtained through elementary
column operations from A, the elementary divisors of A′ and A coincide.
Applying Lemma 4.3.6 to A′ proves the claim.

Ad 4. In view of the second part, we have that F/ imA ∼=K[T ]Mod∗ F/ imA′.
Therefore, the claim is a direct consequence of Lemma 4.3.6.

Lemma 4.3.6. Let K be a field, let r, s ∈ N, let n1, . . . , nr,m1, . . . ,ms ∈ N
be monotonically increasing, and let A ∈ Mr×s(K[T ]) be an (n∗,m∗)-graded
matrix that is reduced.

1. The low-entries of A are the elementary divisors of A over K[T ].

2. Let F :=
⊕r

j=1 ΣnjK[T ] and I := {lowA(k) | k ∈ {1, . . . , s}} \ {0} as
well as I ′ := {1, . . . , r} \ I. Then

F/ imA ∼=K[T ]Mod∗
⊕

j∈I
ΣnjK[T ]/(Tmk(j)−nj )⊕

⊕

j∈I′
ΣnjK[T ].

Proof. Ad 1. Let k ∈ {1, . . . , s} with ` := lowA(k) 6= 0. Then we can clear
out all the entries of A in column k above ` by elementary row operations
(again, the gradedness of A ensures that this is possible; check!). Swapping
zero rows and columns appropriately thus results in a matrix in rectangle
“diagonal” form; moreover, as all the “diagonal” entries are monomials, we
can swap rows and columns to obtain a matrix A′ in Smith normal form that
both
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• has the same elementary divisors as A and

• whose elementary divisors are precisely the low-entries of A.

In particular, these elementary divisors must coincide.
Ad 2. The claim is clear if A is already in Smith normal form (check!). By

construction, there are square matrices B and C that are invertible over K[T ]
and represent graded K[T ]-isomorphisms with

A′ = C ·A ·B.

In particular, F/ imA ∼=K[T ]Mod∗ (C · F )/ imA′. By construction, the values
of lowA′ and the degrees of A′ differ from the ones of A only by compatible
index permutations, the claim follows.

Remark 4.3.7 (rows vs. columns). Symmetrically, one could also perform ma-
trix reduction using only row operations instead of column operations. As we
intend to apply the reduction algorithm to matrices coming from boundary
operators of simplicial complexes, columns are more convenient: Each column
will have only very few non-zero entries. Both for the column and the row
version, the worst-case runtime is roughly cubic (with respect to arithmetic
operations in the base field) in the number of columns and rows of the input
matrix (check!).

Example 4.3.8 (homogeneous matrix reduction). We consider the following
graded Q[T ]-matrix, where the column grading is given by 1, 2, 3, 3, 4 and the
row grading is given by 1, 2, 2, 2:

A :=




1 T 2 · T 2 0 T 3

0 0 T 0 T 2

0 1 T T 0
0 0 0 T T 2


 .

Applying homogeneous matrix reduction to A (Algorithm 4.3.4) yields the
following matrices:

• After processing column 1:




1 T 2 · T 2 0 T 3

0 0 T 0 T 2

0 1 T T 0
0 0 0 T T 2


 .

• After processing column 2:




1 0 2 · T 2 0 T 3

0 0 T 0 T 2

0 1 T T 0
0 0 0 T T 2


 .
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• After processing column 3:




1 0 0 0 T 3

0 0 T 0 T 2

0 1 0 T 0
0 0 0 T T 2


 .

• After processing column 4:




1 0 0 0 T 3

0 0 T 0 T 2

0 1 0 0 0
0 0 0 T T 2


 .

• After processing column 5 (which is the final column):




1 0 0 0 0
0 0 T 0 0
0 1 0 0 0
0 0 0 T 0


 .

Thus, the result is this final matrix.

Homogeneous matrix reduction also provides a convenient proof of the
existence part of the structure theorem for finitely generated graded modules
over polynommial rings over fields:

Alternative proof of the existence part of Theorem 4.2.10. We first show that
M has a graded finite presentation and then apply homogeneous matrix re-
duction to this presentation.

Because M is a finitely generated graded K[T ]-module, there exists a finite
homogeneous generating set for M (check!). This defines a surjective graded
K[T ]-homomorphism

ϕ : F :=

r⊕

j=1

ΣnjK[T ] −→M

for suitable r ∈ N and monotonically increasing n1, . . . , nr ∈ N. As ϕ is a
graded homomorphism, kerϕ ⊂ F is a graded K[T ]-submodule and we obtain
an isomorphism

M ∼=K[T ]Mod∗ F/ im kerϕ

of graded K[T ]-modules.
Because K[T ] is a principal ideal domain, the graded submodule kerϕ ⊂ F

is a finitely generated (it is even free as ungraded module and thus there also
exists a homogeneous K[T ]-basis for kerϕ (Lemma 4.2.12)). Therefore, kerϕ
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has a finite homogeneous generating set; in particular, there exist s ∈ N,
monotonically increasing m1, . . . ,ms ∈ N and a graded K[T ]-homomorphism

ψ : E :=

s⊕

k=1

ΣmkK[T ] −→ F

with imψ = kerϕ. Because ψ is graded and n∗, m∗ are monotonically in-
creasing, the r× s-matrix A over K[T ] that represents ψ with respect to the
canonical graded bases is (n∗,m∗)-graded in the sense of Definition 4.3.1.

Applying the homogeneous matrix reduction algorithm to A shows that

M ∼=K[T ]Mod∗ F/ imA

has the desired decomposition (Proposition 4.3.5).

4.3.2 Persistent homology via matrix reduction

A straightforward modification of homogeneous matrix reduction allows us
to compute persistent homology over fields.

The most direct attempt would be to first compute all persistent homol-
ogy groups using an algorithm for the computation of marked free chain
complexes (Chapter 3.3), then to derive the persistence module structure on
these homology groups, and finally to apply homogeneous matrix reduction
and the methods from Chapter 4.3.1 to compute the barcodes. However, there
is a substantial simplification [77, 29]: We can apply the homogeneous ma-
trix reduction directly to all the boundary operators at once to compute the
barcodes without first explicitly computing the persistent homology groups.

Again, we formulate this (slightly modified) version of the standard matrix
reduction algorithm for persistent homology [29, Chapter VII] in the graded
language. We first give the algorithm for a graded matrices that satisfy the
boundary operator condition and then specialise to the case of matrices com-
ing from simplicial fitrations.

Setup 4.3.9 (graded matrices that satisfy the boundary operator condition). Let
K be a field, let r0, r1, r2 ∈ N, and let n0∗, n1∗, n2∗ be monotonically increas-
ing sequences in N of length, r0, r1, r2, respectively. Let A2 ∈ Mr1×r2(K[T ])
be an (n1∗, n2∗)-graded matrix and let A1 ∈Mr0×r1(K[T ]) be an (n0∗, n1∗)-
graded matrix with A1 ·A2 = 0.

Algorithm 4.3.10 (barcode of homology of graded matrices). Given the situa-
tion of Setup 4.3.9, do the following:

• Let A′2 be the result of applying the homogeneous matrix reduction
algorithm (Algorithm 4.3.4) to A2.

• Let
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I2 :=
{

lowA′2(k)
∣∣ k ∈ {1, . . . , r2}

}
\ {0}

I ′2 := {1, . . . , r1} \ I2.

• Let A′1 be the result of applying the homogeneous matrix reduction
algorithm (Algorithm 4.3.4) to A1.

• Let
I1 :=

{
k ∈ {1, . . . , r1}

∣∣ lowA′1(k) 6= 0
}
.

• Let B be the multiset consisting of all pairs (n1j , n2,k(j) − n1j − 1)
with j ∈ I2 and n2,k(j) − n1j 6= 0 (where k(j) computed with respect

to A′2) and all pairs (n1j ,∞) with j ∈ I ′2 \ I1.

• Return B.

Remark 4.3.11. In Algorithm 4.3.10, the two matrix reductions could be
combined into a single matrix reduction (on a bigger block matrix). For the
sake of transparency, we performed them separately.

Proposition 4.3.12 (barcode of homology of graded matrices, properties). In
the situation of Setup 4.3.9, the Algorithm 4.3.10 terminates (relative to
arithmetic in K) and computes the graded decomposition of the graded K[T ]-
module kerA1/ imA2; i.e., if B is the multiset computed by the algorithm,
then

kerA1/ imA2
∼=K[T ]Mod∗

⊕

(n,p)∈B
ΣnK[T ]/(T p+1).

Proof. We use our knowledge on homogeneous matrix reduction and the
structure theorem (Theorem 4.2.10). For ` ∈ {0, 1, 2}, we write F` :=⊕

j∈{1,...,r`}Σn`,jK[T ]; moreover, we use the notation from Algorithm 4.3.10.

On the one hand, we already know that (Proposition 4.3.5)

F1/ imA2
∼=K[T ]Mod∗

⊕

j∈I2
Σn1jK[T ]/(Tn2,k(j)−n1,j )⊕

⊕

j∈I′2

Σn1jK[T ]

∼=K[T ]Mod∗
⊕

j∈I2,n2,k(j)−n1,j 6=0

Σn1jK[T ]/(Tn2,k(j)−n1,j )⊕
⊕

j∈I′2

Σn1jK[T ].

On the other hand, the column basis associated with the reduced matrixA′1
shows that there exists a finitely generated free graded K[T ]-submodule E1 ⊂
F1 with

F1
∼=K[T ]Mod∗ kerA′1 ⊕ E1

∼=K[T ]Mod∗ kerA1 ⊕ E1;

more precisely, the matrix A′1 shows that E1
∼=K[T ]Mod∗

⊕
j∈I1 Σn1jK[T ].

Moreover, the hypothesis A1 ·A2 = 0 implies that imA2 ⊂ kerA1 and so

F1/ kerA1
∼=K[T ]Mod∗ (kerA1/ imA2)⊕ E1.
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Therefore, the combination (direct sum/disjoint union of multisets) of a
graded decomposition of kerA1/ imA2 and of E1, respectively, gives a graded
decomposition for F1/ kerA1. Thus, uniqueness of graded decompositions
for F1/ kerA1 shows that we obtain a graded decomposition for kerA1/ imA2

by removing the decomposition data for E1 from the one for F1/ kerA1. This
is exactly what is reflected in the algorithm.

Setup 4.3.13 (filtered marked free chain complexes). Let K be a field and
N ∈ N. A filtered marked free chain complex over K of length N consists of
a nested sequence

C0 ⊂ C1 ⊂ · · · ⊂ CN = CN+1 = . . .

of marked free chain complexes over K and bases (Xn[k])n∈{0,...,N},k∈N with
the following properties:

∀n∈{0,...,N} ∀k∈N Cnk =
⊕

Xn[k]

K

∀n∈{0,...,N−1} ∀k∈N Xn[k] ⊂ Xn+1[k]

∀n∈{0,...,N−1} ∀k∈N ∂n+1
k |Cnk = ∂nk .

Moreover, we assume that the bases are sufficiently disjoint:

∀k,k′∈N XN [k] ∩XN [k′] = ∅.

For convenience, we set Xn[−1] := ∅ and X
n
[k] := Xn[k] \ Xn−1[k] for

all n ∈ {1, . . . , N}, k ∈ N, and we write fn : Cn −→ Cn+1 for the canonical
inclusions.

Algorithm 4.3.14 (persistent homology). Given the situation in Setup 4.3.13
and k ∈ N, do the following:

• Let

r2 := #XN [k + 1]

r1 := #XN [k]

r0 := #XN [−1].

• Let n2∗ be the sequence 0, . . . , 0︸ ︷︷ ︸
#X

0
[k+1]

, . . . , N, . . . , N︸ ︷︷ ︸
#X

N
[k+1]

.

Let n1∗ be the sequence 0, . . . , 0︸ ︷︷ ︸
#X

0
[k]

, . . . , N, . . . , N︸ ︷︷ ︸
#X

N
[k]

.

Let n0∗ be the sequence 0, . . . , 0︸ ︷︷ ︸
#X

0
[k−1]

, . . . , N, . . . , N︸ ︷︷ ︸
#X

N
[k−1]

.
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• For ` ∈ {0, 1, 2}, let

F` :=

r⊕̀

j=1

Σn`jK[T ].

• Let A2 be the matrix representing ∂k+1 viewed as graded homomor-
phism F2 −→ F1 with respect to the canonical graded K[T ]-bases.

More specifically, in columns corresponding to an element of X
n
[k+1],

we list the (graded) coefficients of ∂nk+1 on this basis element, expressed
in terms of Xn[k].

• Let A1 be the matrix representing ∂k viewed as graded homomor-
phism F1 −→ F0 with respect to the canonical graded K[T ]-bases.

• Let B be the barcode obtained by applying the graded homology algo-
rithm (Algorithm 4.3.10) to the graded (!) matrices A1 and A2.

• Return B.

Proposition 4.3.15 (persistent homology algorithm, properties). Given the sit-
uation in Setup 4.3.13 and k ∈ N, the persistent homology algorithm (Algo-
rithm 4.3.14) terminates (relative to arithmetic of K) and computes the bar-
code of the persistent homology of the persistence K-chain complex (C∗, f∗)
in degree k.

Proof. The application of Algorithm 4.3.10 is possible because the ma-
trices A1 and A2 satisfy the corresponding grading conditions and be-
cause ∂k ◦ ∂k+1 ensures that A1 · A2 = 0. Therefore, correctness of Algo-
rithm 4.3.10 (Proposition 4.3.12) allows us to conclude.

Remark 4.3.16. One can also simultaneously compute the persistent homol-
ogy in all degrees (up to the maximal dimension) by doing a single matrix
reduction on a large combined matrix [29, Chapter 7].

Example 4.3.17 (persistent homology of filtrations). Let X be a finite sim-
plicial complex and let (Xn)n∈N be a filtration of X. Moreover, let N ∈ N
be large enough such that XN = X. Let K be a field. Then the simplicial
chain complexes of X1, . . . , XN of the filtration complexes with coefficients
in K form a filtered marked free chain complex as in Setup 4.3.13, taking the
oriented simplices as bases (check!).

We can thus apply the matrix reduction algorithm (Algorithm 4.3.14)
to compute the barcode for the persistent homology of this filtration. For
instance, this can be applied to filtrations coming from point clouds.

In particular, this allows to also compute the persistent Betti numbers of
such filtrations (Remark 4.2.17).
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Figure 4.7.: The filtration from Example 4.3.18

Example 4.3.18. We consider the simplicial complex

X :=
{
∅, {0}, {1}, {2}, {3}, {0, 1}, {0, 3}

}

with the filtration over {0, 1, 2, 3} depicted in Figure 4.7.
We compute the barcode for the persistence homology in degree 0 with

Q-coefficients via Algorithm 4.3.14: For convenience, we order the vertices
according to their labels. As bases of the correspdoning chain modules, we
obtain:

n 0 1 2 3

Xn[1] {01} {01} {01, 03}
Xn[0] {0, 1} {0, 1, 2} {0, 1, 2, 3} {0, 1, 2, 3}

By construction of the simplicial boundary operator, for all n ∈ N, we
have ∂n0 = 0 (thus nothing needs to be done for the kernel part) and ∂n1 is
represented by the following graded matrix (where the first lines/columns
indicate the degrees and basis elements):

0 1 2 3

01 03

0

1

2

3

0

1

2

3

−T
T

0

0

−T 3

0

0

T

Homogeneous matrix reduction does not change this matrix (check!).
Therefore, we can read off the graded decomposition

Σ0K[T ]/(T )⊕ Σ2K[T ]/(T )⊕ Σ0K[T ]⊕ Σ1K[T ]

of the persistent homology of this filtration in degree 0 with Q-coefficients,
which translates into the barcode (0, 0), (2, 0), (0,∞), (1,∞).
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Remark 4.3.19 (persistent homology in degree 0). Persistent homology in de-
gree 0 of filtrations of finite simplicial complexes describes the evolution of
connected components. From an algorithmic point of view, it is usually more
efficient to compute these structure via a suitable version of the union-find
algorithm for the computation of connected components (Algorithm 2.8.3).

4.3.3 A sparse implementation

For a practical implementation of the persistent homology algorithm (Algo-
rithm 4.3.14), we carry out several simplifications and optimisations in the
underlying homogeneous matrix reduction algorithm:

• The columns in the boundary matrix tend to contain many zeroes (Re-
mark 4.3.7). Therefore, we use a sparse matrix setup.

• We reduce the polynomial coefficients of the graded matrices to field
entries – as the degree information is redundant.

• We swap the columns into a convenient order.

This basically leads to the standard matrix reduction algorithm for the com-
putation of persistent homology [29, Chapter VII.2]:

We briefly recall the sparse matrix representation of matrices. The under-
lying idea is to only record the non-zero entries by filling them column-wise
into lists. For matrices with “many” zeroes, this can be significantly more
space and time efficient than the standard double array representation. We
first recall the differences between arrays and lists:

Remark 4.3.20 (arrays vs. lists). Let a be a datatype. There are two basic
linear data structures with entries from a: Arrays and list over a.

• Arrays. An array of length n over a provides n slots for values of type a,
indexed over {0, . . . , n − 1} or {1, . . . , n}. The length n needs to be
known at initialisation, the space requirement is linear in this length,
and access to/update of the value at a given index is provided in con-
stant time.

Arrays are usually implemented as contiguous areas in (virtual) mem-
ory.

• Lists. Lists over a are constructed inductively:

– The empty list ∅ has no members; in particular, it has no head
member.

– Given a list x′ over a and an element x of type a, we can construct
a new list (x : x′), starting with x, followed by the (members of
the) list x′. In this case, x is the head of the new list.
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Figure 4.8.: Sparse matrix representation with columns ordered by descend-
ing row index

Lists have variable length and they need space proportional to the num-
ber of their actual members. Access to/update of the head of the list is
provided in constant time; access to/update of other values in the list
is in the worst-case linear in the length of the list.

Lists are usually implemented by linked structures in which each mem-
ber points to the next (sometimes also the previous) member in the
list.

Remark 4.3.21 (sparse matrices, by columns). In the sparse matrix represen-
tation (by columns), an r × s-matrix A over a ring R is represented as

• an array A over the index set {1, . . . , s},

• whose entries are lists, containing pairs (j, λ) with j ∈ {1, . . . , r}
and λ ∈ R

with the following properties (Figure 4.8):

• For each k ∈ {1, . . . , s}, the list A[k] contains for each j ∈ {1, . . . , r} at
most one member with first component j, namely (j, Ajk).

• If (j, Ajk) is an entry in A[k], then Ajk 6= 0.

• If Ajk 6= 0, then (j, Ajk) is a member of A[k].

• All lists in A are sorted in ascending or descending row index order.

Sometimes, it is convenient to additionally store further labelling information
in the array, together with the column lists.

Setup 4.3.22. Let K be a field, let r, s ∈ N, let n1, . . . , nr and m1, . . . ,ms be
monotonically increasing sequences in N, and let A be a sparse r × s-matrix
with columns indexed over {1, . . . , s} (each sorted in descending row index
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order) that represents the field coefficients of a graded (n∗,m∗)-graded matrix
over K[T ]. For k ∈ {1, . . . , s}, the entry A[k] is a pair (A[k]. list, A[k].deg)
consisting of

• a list A[k]. list over {1, . . . , r} ×K (describing the k-column);

• the natural number A[k].deg = mk.

Algorithm 4.3.23 (homogeneous matrix reduction, sparse version). Given the
situation in Setup 4.3.22, do the following:

• Let A′ be a sparse r × r-matrix with row and column degrees n∗ that
represents the zero matrix.

• For each k from 1 up to s (in ascending order):

Let L be A[k]. list.

Eliminate along L with index k in A′ (see below).

• LetB be the multiset consisting of all pairs (nj , pj−1) with j ∈ {1, . . . r}
and pj 6= 0, where

pj :=

{
A′[j].deg−nj if A′[j]. list 6= ∅
∞ if A′[j]. list = ∅.

• Return B.

Elimination along a list L with index k in the sparse matrix A′:

• If L 6= ∅, then:

– Let (i, λ) be the head of L

– If A′[i]. list = ∅, then:

∗ Update A′ by updating A′[i]. list with L

∗ Update A′ by updating A′[i].deg with A[k].deg

– else:

∗ Update L by “subtracting”

λ

second component of the head of A′[i]

“times” A′[i]. list from L[i].

∗ Eliminate along L with index k in A′.

In the context of Algorithm 4.3.23 “subtracting” and “times” refers to
versions of column operations adapted to sparse matrices.
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Proposition 4.3.24 (sparse homogeneous matrix reduction, properties). Given
the situation in Setup 4.3.22, Algorithm 4.3.23 terminates. Let B be the bar-
code computed by applying Algorithm 4.3.23 to the input matrix A. Then, we
have

F/ imA ∼=(n,p)∈B ΣnK[T ]/(T p+1),

where F :=
⊕r

j=1 ΣnjK[T ] and where imA denotes the image of the graded
K[T ]-homomorphism represented by the sparse matrix A.

Proof. Let A′ be the final state of the helper matrix in the course of the
algorithm. Inductively one sees that A′[k]. list is empty or it is a column
whose low-entry is in row k (check!). Thus A′ represents a reduced matrix
(but not necessarily graded in our strict sense – because of the order of the
column degrees); in this aspect, the algorithm only marginally differs from
Algorithm 4.3.4 (Exercise). Moreover, the column operations involved show
that imA = imA′. We can now argue similarly to the proof of Proposi-
tion 4.3.5 (check!).

Therefore, we can adapt Algorithm 4.3.14 by replacing homogeneous ma-
trix reduction with its sparse version (Algorithm 4.3.23) and modifying the
barcode computation accordingly (check!). In the literature, descriptions of
these algorithms for persistent homology usually treat all (homological) de-
grees at once in a single matrix.

Remark 4.3.25 (complexity). The worst-case runtime of Algorithm 4.3.23 is
cubic in the number of columns/rows relative to the arithmetic of the coef-
ficient field (check!). In practice the algorithm usually performs much better
than cubic. However, one should be aware that for the computation of persis-
tent homology of filtrations of simplicial complexes, the number of columns
corresponds to the number of simplices in the dimensions under considera-
tion. The total number of simplices is (in the worst case) exponential in the
number of vertices. Therefore, in practice, for the analysis of big data, one
usually only

• computes persistent homology in low homological degrees (mostly 0
and 1)

• and tries to find filtrations with “few” simplices (e.g., via alpha com-
plexes or landmark complexes [29, Chapter III][64, Chapter 2.7]).

Moreover, several optimised versions of the standard reduction algorithms for
persistent homology of Rips filtrations are available [4, 6].

Remark 4.3.26 (the benefit of F2-coefficients). A particularly efficient ap-
proach to persistent homology is to use F2-coefficients. Arithmetic over the
field F2 has a straightforward exact and efficient implementation, there are
no size/stability issues for coefficients, and elimination steps consist only of
additions of columns.
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We give a simple-minded unsophisticated implementation of sparse homo-
geneous matrix reduction (Algorithm 4.3.23) in Haskell. We begin with basic
preparations on the sparse matrix representation and column operations:

-- (sparse) homogeneous matrix reduction

module HomogMatrixReduction where

import qualified Data.Vector as V

import Data.List

import Data.Maybe

-----------------------------------------------------------

-- sparse matrix representations

-----------------------------------------------------------

-- representation: by columns ,

-- sorted by descending row index

-- SparseMatrix in addition includes the sequence of row degrees

type Column a = [(Int ,a)]

type Matrix a = V.Vector (Column a, Int)

type SparseMatrix a = ([Int], Matrix a)

matrix :: SparseMatrix a -> Matrix a

matrix = snd

rowDegs :: SparseMatrix a -> [Int]

rowDegs = fst

-- a zero matrix with the given row degrees

mkZeroMatrixFromDegs :: [Int] -> Matrix a

mkZeroMatrixFromDegs ns = V.fromList [ ([],n) | n <- ns ]

-- generic column operations on columns in sparse matrices:

-- we assume that the lists are ordered by _decreasing_ index component;

-- we assume f 0 0 == 0 and f 0 neq0 /= 0 and f neq0 0 /= 0;

-- we discard zero entries to keep the sparseness condition

zipWithIndex :: (Num a, Eq a) => (a -> a -> a) -> Column a -> Column a -> Column a

zipWithIndex f [] ws = map (\(j,w) -> (j,f 0 w)) ws

zipWithIndex f vs [] = map (\(j,v) -> (j,f v 0)) vs

zipWithIndex f ((i,v):vs) ((j,w):ws)

= case compare i j of

EQ -> let z = f v w

in if z == 0

then zipWithIndex f vs ws -- discard zero entries

else (i, z):(zipWithIndex f vs ws)

GT -> (i, f v 0):(zipWithIndex f vs ((j,w):ws))

LT -> (j, f 0 w):(zipWithIndex f ((i,v):vs) ws)

We can now translate the sparse homogeneous matrix reduction into this
setting:

-----------------------------------------------------------

-- homogeneous matrix reduction

-----------------------------------------------------------
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reduce :: (Fractional a, Eq a) => SparseMatrix a -> Matrix a

reduce sa = let a = matrix sa

a’ = mkZeroMatrixFromDegs (rowDegs sa)

in V.foldl handleColumn a’ a

where -- trigger elimination of the given column

-- by columns in the given matrix;

-- update the matrix accordingly with a new pivot column

handleColumn :: (Fractional a, Eq a) => Matrix a -> (Column a, Int) -> Matrix a

handleColumn a’ (xs , m)

= let xs’ = eliminate (xs , m) a’

in case xs’ of

[] -> a’

((j, _):_) -> a’ V.// [(j, (xs ’, m))]

-- inductive elimination along a column

eliminate :: (Fractional a, Eq a) => (Column a, Int) -> Matrix a -> Column a

eliminate (xs , m) a’

= case xs of

[] -> []

((j,ajk):_) -> case a’ V.! j of

([],_) -> xs

(ys ,_) -> let xs’ = subtractColumn ajk xs ys

in eliminate (xs ’,m) a’

-- subtract ajk times column ys from column xs

subtractColumn :: (Fractional a, Eq a) => a -> Column a -> Column a -> Column a

subtractColumn _ xs [] = xs

subtractColumn ajk xs ys@(y:_) = zipWithIndex (\ v w -> v - ajk/(snd y) * w) xs ys

Building on this matrix reduction, we can compute persistent homology
and its barcodes. On the one hand, this allows to check computations by
hand for correctness. On the other hand, we can perform experiments and
actual calculations.

Example 4.3.27 (persistent homology of random points on circles). We con-
sider several constellations of random points on circles and their persistent
homology in degree 1 with Q-coefficients (Figure 4.9). In “most” (but not all
. . . ) cases, we obtain the expected barcodes.

Remark 4.3.28 (libraries for persistent homology). Open source libraries/pack-
ages to compute persistent homology are available in many programming lan-
guages, including highly optimised versions for actual applications [76]. Such
packages do not only exist for mainstream languages:

• Julia: https://github.com/Eetion/Eirene.jl

• Haskell: https://hackage.haskell.org/package/Persistence-1.0

• Coq: https://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ProofExamples#wp3ex6

https://github.com/Eetion/Eirene.jl
https://hackage.haskell.org/package/Persistence-1.0
https://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ProofExamples#wp3ex6
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4.4 The stability theorem for persistent homology

Before using persistent homology in actual applications, we need to consider
the question of stability:

Do small changes in the input lead only to small changes in the output?

For instance, we need to know that persistent homology of Rips filtrations of
point clouds satisfy stability with respect to small perturbations of the point
cloud.

We first run a basic experiment and then introduce terminology for the
stability theorem. Finally, we give a rough sketch of the proof of the stability
theorem.

4.4.1 A basic experiment

Example 4.4.1 (persistent homology of random points on circles). We consider
several constellations of random points on circles and their persistent homol-
ogy in degree 1 with Q-coefficients (Figure 4.10). In “most” (but not all . . . )
cases, we obtain the expected barcodes.

This example indicates that barcodes of point clouds seem to be robust
under small perturbations of the point clouds. In the following sections, we
will introduce notions that allow for a rigorous treatment of this observation.

4.4.2 Comparing point clouds:
Gromov–Hausdorff distance

As first step, we introduce a metric on the class of finite metric spaces (whence
point clouds), the Gromov–Hausdorff distance [34, 12].

The geometric idea of the Gromov–Hausdorff distance is to measure the
distance between metric spaces by embedding them into another space and
then to compare the images via the Hausdorff distance; the Hausdorff distance
measures the distance between (finite) subsets of a metric space.

Definition 4.4.2 (Hausdorff distance). Let (Z, d) be a metric space and let
X,Y ⊂ Z be finite subsets. The Hausdorff distance between X and Y is
defined as

d
(Z,d)
H (X,Y ) := inf

{
r ∈ R>0

∣∣ X ⊂ Ur(Y ) and Y ⊂ Ur(X)
}
∈ R≥0.
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Remark 4.4.3 (Hausdorff distance, properties). Let (Z, d) be a metric space.

Thend
(Z,d)
H defines a metric on the set of all finite subsets of Z (check!).

Remark 4.4.4 (the category of finite metric spaces). Let FMet denote the cate-
gory of all finite metric spaces (i.e., metric spaces on finite sets) and isometric
embeddings. An isometric embedding is a map f : (X, d) −→ (X ′, d′) between
metric spaces that is distance preserving:

∀x,y∈X d′
(
f(x), f(y)

)
= d(x, y).

The category FMet has a small skeleton (check!). In particular, the po-
tential set-theoretic issues in the definition of Gromov–Hausdorff distance
(Definition 4.4.5) can easily be resolved.

Definition 4.4.5 (Gromov–Hausdorff distance). Let (X, dX) and (Y, dY ) be
finite metric spaces. The Gromov–Hausdorff distance between (X, dX) and
(Y, dY ) is defined as

dGH

(
(X, dX), (Y, dY )

)
:= inf

{
d

(Z,d)
H (f(X), g(Y ))

∣∣ (Z, d) ∈ Ob(FMet),

f ∈ MorFMet((X, dX), (Z, d)),

g ∈ MorFMet((Y, dY ), (Z, d))
}
∈ R≥0.

Example 4.4.6 (Gromov–Hausdorff distance).

• Isometric finite metric spaces have Gromov–Hausdorff distance equal
to 0 (check!).

The converse also holds (less obviously so; Exercise).

• We consider the subsets

X := {(0, 0), (1, 0)},
Y := {(2023, 2023)},
Z := {(0, 0), (2, 0)},
W := {(1, 0), (2, 0), (2.1, 0)}

of R2. Then (check!)

dGH((X, d2), (Y, d2)) = 0.5,

dGH((X, d2), (Z, d2)) = 0.5,

dGH((Y, d2), (Z, d2)) = 1,

dGH((X, d2), (W,d2)) = 0.05.

Remark 4.4.7 (noisy point clouds and Gromov–Hausdorff distance). In the con-
text of topological data analysis, one assumes that noise in the input data
leads to point clouds that are “close” with respect to the Gromov–Hausdorff
distance.
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Proposition 4.4.8 (Gromov–Hausdorff distance, properties). The Gromov–
Hausdorff distance defines a metric on the set (!) of all isometry classes of
finite metric spaces: Let (X, dX), (Y, dY ), and (Z, dZ) be finite metric spaces.
Then:

1. Non-degeneracy. We have dGH((X, dX), (Y, dY )) = 0 if and only if
(X, dX) and (Y, dY ) are isometric.

2. Symmetry. We have dGH((X, dX), (Y, dY )) = dGH((Y, dY ), (X, dX)).

3. Triangle inequality. We have

dGH

(
(X, dX), (Z, dZ)

)
≤ dGH

(
(X, dX), (Y, dY )

)
+dGH

(
(Y, dY ), (Z, dZ)

)
.

Proof. Non-degeneracy is mentioned in Example 4.4.6. Symmetry is a di-
rect consequence of the definitions (check!). The triangle inequality can
be shown by combining metric spaces/isometric embeddings in a suitable
way (Exercise) or via the characterisation in terms of correspondences (Re-
mark 4.4.9).

Remark 4.4.9 (Gromov–Hausdorff distance via correspondences). The defini-
tion of Gromov–Hausdorff distance clearly reflects the underlying geometric
idea. However, often it is more convenient to use the description of Gromov–
Hausdorff distance in terms of correspondences [12, Theorem 7.3.25]:

Let X and Y be sets. A correspondence between X and Y is a subset C ⊂
X × Y such that

π1(C) = X and π2(C) = Y,

where π1 : X × Y −→ X and π1 : X × Y −→ Y denote the canonical pro-
jections to the first and second factor, respectively. One can view correspon-
dences as “multi-valued maps” that admit a “multi-valued map” as “inverse”.

Let C be a correspondence between finite metric spaces (X, dX) and
(Y, dY ). The distortion of C is defined as

dis(C) := sup
{∣∣dX(x, x′)− dY (y, y′)

∣∣ ∣∣ (x, y), (x′, y′) ∈ C
}
∈ R≥0.

Then one has [12, Theorem 7.3.25]:

dGH

(
(X, dx), (Y, dY )

)
=

1

2
· inf

{
dis(C)

∣∣ C is a correspondence

between X and Y
}
.

Outlook 4.4.10 (generalisations and theoretical applications). The notion of
Gromov–Hausdorff distance also works for a larger class of metric spaces
than only finite metric spaces. For simplicity, we restricted to the finite case
because this is the only case relevant for our discussion. The general notion
is relevant in geometric group theory [34] and in geometric analysis [12] to
study limits of spaces.
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4.4.3 Comparing weighted barcodes: bottleneck distance

As second step, we introduce a pseudo-metric on the set of barcodes, the bot-
tleneck distance [18]. Before giving the definition, we make two adjustments
to our current treatment to simplify working with barcodes and to simplify
the formulation of stability properties:

• We formalise the notion of multiset.

• We switch from index persistence/barcodes to weighted persistence/bar-
codes.

Remark 4.4.11 (multiset). Let X be a set.

• A multiset over X is a map X −→ N. Multisets over X are equal if and
only if they are equal as maps.

• If M : X −→ N is a multiset and x ∈ X, then we say that x is an
element of M if f(x) > 0. In that case, f(x) is the multiplicity of x
in M .

• A multiset M over X is a subset of a multiset N over X if

∀x∈M M(x) ≤ N(x).

• If M is a multiset over X, we write

M :=
⋃

x∈X
{x} × {1, . . . ,M(x)}.

for the associated indexed set. A multiset M is finite if M is a finite
set.

• A map from a multiset M : X −→ N over X to a multiset N : Y −→ N
over a set Y is a map f : M −→ N . The image of f is defined as the
multiset

f(M) : Y −→ N
y 7−→ #

(
f(M) ∩ ({y} × {1, . . . , N(y)}

)
.

Unions, intersections, and complements of multisets are defined in a
straightforward manner (check!).

Example 4.4.12 (barcodes). Index barcodes are multisets over N×(N∪{∞}).
More generally, one can consider real-valued barcodes (Remark 4.4.13).

We write BC for the set of all finite multisets over R>0 × [0,∞].



158 4. Persistent homology

Remark 4.4.13 (weighted barcodes of point clouds). Let (X, d) be a (non-
empty) finite metric space. Then we obtain the family (Rε(X, d))ε∈R>0

of
associated Rips complexes. This family contains only finitely many different
stages, because the family is monotonically increasing in the radius and all
complexes are subcomplexes of the finite simplicial complex ∆(X). Hence,
there exists a unique decomposition

(0, ε0], (ε0, ε1], . . . (εN−1, εN ], (εN ,∞)

with N ∈ N and ε0 < · · · < εN ∈ R>0 of (0,∞) that has the following
properties (with ε−1 := 0):

• For all j ∈ {−1, . . . , N − 1} we have Rεj (X, d) 6= Rεj+1
(X, d) and for

all ε ∈ (εj , εj+1], we have Rε(X, d) = Rεj+1(X, d).

• For all ε ∈ R>εN , we have Rε(X, d) = ∆(X).

Let B be the barcode associated with the finite filtration Rε0(X, d), . . . ,
RεN (X, d), RεN+1(X, d), . . . of ∆(X) over the field K in the degree k ∈ N.

The weighted barcode BCk(X, d;K) of (X, d) over K in degree k is the
multiset consisting of all (εn, εn+p − εn) with (n, p) ∈ B.

Example 4.4.14 (weighted barcode). We return to our good friend from Ex-
ample 4.1.13. The corresponding sequence of radius thresholds is of the form

(0, 1], (1,
√

2], (
√

2,
√

5], . . . , (2, . . . ], . . . , (3, . . . ], . . . , (4, . . . ], . . . , (
√

73,∞).

Not all of these increments in the Rips complexes lead to changes in the
homology. For the weighted barcode B1(X, d2;Q), we obtain the multiset
consisting of the weighted bars (check!)

(1,
√

2− 1), (1, 3− 1), (4,
√

17− 4).

The bottleneck distance between weighted barcodes measures the minimal
discrepancy that occurs when matching the barcodes. This notion is defined
in such a way that bars of small length can be added or removed for free
(Figure 4.11).

Definition 4.4.15 (bottleneck distance). Let X,Y ∈ BC.

• For (a, b), (a′, b′) ∈ R≥0 × [0,∞], we set

d∞
(
(a, b), (a′, b′)

)
:= max

(
|a− a′|, |a+ b− (a′ + b′)|

)
∈ R≥0 ∪ {∞}.

• Let ε ∈ R>0. An ε-matching between X and Y is a bijection f : X ′ −→
Y ′ between sub-multisets X ′ of X and Y ′ of Y with the following three
properties:
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1 2 3 4 5

2 · ε

1 2 3 4 5

Figure 4.11.: These two weighted barcodes have a bottleneck distance at
most ε, as indicated by the dashed matching. Short bars do
not need to be matched.

∀x∈X′ d∞(x, f(x)) ≤ ε
∀(a,b)∈X\X′ |b| ≤ 2 · ε
∀(a,b)∈Y \Y ′ |b| ≤ 2 · ε.

• The bottleneck distance between X and Y is defined as

dB(X,Y ) := inf
{
ε ∈ R>0

∣∣ there exists an ε-matching

between X and Y
}
∈ R≥0 ∪ {∞}.

Example 4.4.16 (bottleneck distance). The bottleneck distance between the
weighted barcode (0, 1), (0, 0) and the weighted barcode (0, 1) is 0 (check!).

Proposition 4.4.17 (bottleneck distance, properties). The bottleneck distance dB

is a pseudo-metric on BC: Let X,Y, Z ∈ BC. Then:

1. We have dB(X,X) = 0.

2. Symmetry. We have dB(X,Y ) = dB(Y,X).

3. Triangle inequality. We have dB(X,Z) ≤ dB(X,Y ) + dB(Y, Z).

Proof. This is a straightforward computation (Exercise).

Remark 4.4.18 (persistence diagram). The structure of persistence mod-
ules/persistent homology encoded in barcodes can equivalently be described
in terms of persistence diagrams. A persistence diagram is a finite multi-
set on R≥0 × [0,∞]. The correspondence between barcodes and persistence
diagrams is as follows (Figure 4.12):

To a bar (n, p) corresponds the point (n, n + p) in the associated persis-
tence diagram, and vice versa. Thus, persistence diagrams can be depicted
as multisets in the upper triangle of the first quadrant. This also leads to a
nice visualisation of the bottleneck distance [29, Chapter VIII.2].
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1 2 3 0 1

Figure 4.12.: Barcodes and persistence diagrams; “long” bars correspond to
points “far away” from the diagonal.

Outlook 4.4.19 (other metrics for barcodes). Other popular pseudo-metrics
on the space BC of weighted barcodes include metrics motivated by optimal
transport, such as the Wasserstein distance [29, 18].

4.4.4 The stability theorem

Persistent homology is stable under perturbations in the sense that the bot-
tleneck distance between barcodes of persistent homology is controlled by the
Gromov–Hausdorff distance of the underlying point clouds or other distance
notions on filtrations [18, 14, 10, 11]. For the sake of simplicity, we restrict
to Rips filtrations of point clouds.

Theorem 4.4.20 (stability theorem for persistent homology). Let (X, dX) and
(Y, dY ) be finite metric spaces, let K be a field, and let k ∈ N. Then

dB

(
BCk(X, dX ;K),BCk(Y, dY ;K)

)
≤ 2 · dGH

(
(X, dX), (Y, dY )

)
.

Sketch of proof [14, 15]. Let δ ∈ R with δ > dGH((X, dX), (Y, dY )). The
proof consists of two steps:

À One shows that the persistent homology of the corresponding Rips fil-
trations (with K-coefficients in degree k) is δ-interleaved.

Á One shows that such δ-interleaved persistence modules lead to barcodes
whose bottleneck distance is at most 2 · δ.

As a preparation, we introduce some notation: For ε ∈ R≥0, let Mε :=
Hk(Rε(X, dX);K). For ε′ ∈ R≥ε, the inclusion of the Rips complexes induces

a K-linear map fε,ε
′
: Mε −→ Mε′ . This defines a functor (M∗, f∗,∗) from

the partial order category (R≥0,≤) to the category of finite-dimensional K-
vector spaces, a so-called R≥0-graded persistence module.
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Similarly, we obtain a corresponding R≥0-persistence module (N∗, g∗,∗)
from the homology of the Rips complexes of (Y, dY ).

Ad À. Because of δ > dGH((X, dX), (Y, dY )), we may assume without
loss of generality that (X, dX) and (Y, dY ) are isometric subspaces of a met-

ric space (Z, d) with d
(Z,d)
H (X,Y ) < δ. Using this ambient space, we find

maps F : X −→ Y and G : Y −→ X with

∀x∈X d
(
x, F (x)

)
< δ and ∀y∈Y d

(
y,G(y)

)
< δ.

In particular, these maps induce for each ε ∈ R≥0 simplicial maps (check!)

F ε : Rε(X, dX) −→ Rε+2·δ(Y, dY ),

Gε : Rε(Y, dY ) −→ Rε+2·δ(X, dX)

and the compositions Gε+2·δ ◦F ε and F ε+2·δ ◦Gε are contiguous to the inclu-
sions (check!). Therefore, applying Hk( · ;K) to these compositions coincides
with fε,ε+4·δ and gε,ε+4·δ, respectively (Proposition 2.3.34, Theorem 3.2.10).
In the language of persistence modules, this means that (M∗, f∗,∗) and
(N∗, g∗,∗) are 2 · δ-interleaved.

Using correspondences, this argument can be improved to a δ-inter-
leaving [14]:

Mε fε,ε+δ
//

Hk(F ε;K)

##

Mε+δf
ε+δ,ε+2·δ

//

$$

Mε+2·δ

Nε

gε,ε+δ
//

;;

Nε+δ

gε+δ,ε+2·δ
//

Hk(Gε+δ;K)

::

Nε+2·δ

Ad Á. Interleavings lead to matchings for the corresponding barcodes.
This can be seen by a direct calculation [15, Chapter 5]: One first compares
the basic building blocks in graded decompositions and then combines these
estimates for direct sums. For instance, if gε,ε

′
= 0, then the δ-interleaving

shows that fε−δ,ε
′+δ = 0.

In combination with the first step, we therefore obtain

dB

(
BCk(X, dX ;K),BCk(Y, dY ;K)

)
≤ 2 · δ.

Taking the infimum over all δ > dGH((X, dX), (Y, dY )) proves the claim.

Caveat 4.4.21 (Betti numbers). The ordinary Betti numbers of Rips com-
plexes associated with point clouds are not stable under small changes with
respect to the Gromov–Hausdorff distance (Exercise).

Outlook 4.4.22 (sublevel filtrations). There is a large variety of stability the-
orems for persistent homology, covering different metrics on barcodes and
different types/metrics on filtrations. The first stability theorem was formu-
lated for filtrations coming from sublevel sets of maps [18]:
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Let X be a finite simplicial complex and let f : X −→ R≥0 be a map with
the following monotonicity property: For all σ, τ ∈ X with σ ⊂ τ , we have

f(σ) ≤ f(τ).

Then the sublevel sets (f−1((−∞, ε]))ε∈R≥0
form an R≥0-filtration of X

(check!). Applying simplicial homology to this filtration gives rise to an R≥0-
persistence module. One can then control the bottleneck distance for the
resulting barcodes (or persistence diagrams) in terms of supremum norms of
differences of functions X −→ R≥0. Also more general types of spaces and
functions can be considered in this setup [18, 29].

4.5 Application: Horizontal evolution

A central question in biology is to understand the evolution and interaction
of species.

Real-world problem 4.5.1 (evolution). How can species be classified and how
can the evolution of species be described?

In the following, we outline an application of persistent homology to the
detection and analysis of horizontal evolution. More detailed information can
be found in the excellent book by Rabadán and Blumberg [64], on which this
section is based.

We first need to clarify the question in Problem 4.5.1. Organisms have a
genotype (as given by the information stored in the genome) and a phenotype
(observable characteristics of an individual, e.g., fur colour). The phenotype
arises from a combination of the genotype and environmental factors.

Classically, answers have been sought and formulated in terms of the phe-
notype (e.g., by Linné or Darwin). With the discovery and better under-
standing of the genotype, the question is also to be interpreted in terms of
the genotype instead of the phenotype. In addition, this leads to the question
of how genotypes and phenotypes are related:

Real-world problem 4.5.2 (from genotype to phenotype). How do the geno-
type and environmental factors translate into the phenotype?

In the following, we will focus on the second part of Problem 4.5.1, i.e.,
the description of evolutionary processes.

The first attempts of descriptions of classification and evolution are based
on tree structures. In the presence of genome sequencing, one can attempt to
reconstruct the “evolutionary tree” of genotypes as follows:

Model 4.5.3 (phylogenetic trees from genome sequencing). Genomes (or signif-
icant segments of genomes) are modelled as finite sequences of the letters G,
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CATT

AATT CAGT

CGGT CAGA

Figure 4.13.: A simple Hamming distance tree (Example 4.5.4)

A, T, C. For simplicity, we will assume that we consider sequences of the
same length. Let S be a set of such finite sequences, coming from the set of
species under consideration.

The similarity between gene sequences is measured in terms of the Ham-
ming distance: Let x∗, y∗ ∈ S. Then the Hamming distance between x∗ and
y∗ is given by

dHam(x∗, y∗) := #positions in which x∗ and y∗ differ.

The Hamming distance defines a metric on S (check!).
The underlying assumption is that the Hamming distance relates to the

proximity in evolution. I.e., species that are related through “few steps” of
evolution should have genomes with a “small” difference in the Hamming
metric.

Assuming that all current species are leaves (or nodes) of the genotype
evolution tree (the so-called phylogenetic tree), Problem 4.5.1 then translates
into the following problem: Find a finite (weighted) tree such that the induced
metric on the nodes/leaves corresponds to the Hamming distances on S.

Of course, this is a crudely simplified version of the problem, neglecting
many biology intermediate steps; in particular, usually only specific blocks of
the genome are considered – namely those blocks that are roughly constant
across a species and not as much affected by individual differences.

Example 4.5.4 (a simple tree). We consider the following sequences:

AATT, CGGT, CAGA.

We have

dHam(AATT,CGCT) = 3,

dHam(AATT,CAGA) = 3,

dHam(CGCT,CAGA) = 2.
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The tree in Figure 4.13 is a solution to the tree-finding problem: all three
sequences could be viewed as an ancestor of CATT (or of CAGT).

However, it turns out that evolution is substantially more complicated
than a tree structure. Several discoveries point to that:

• It is observed that different parts of the genome can lead to incompat-
ible phylogenetic trees.

• There exist small-scale mutation patterns that are not compatible with
a tree structure.

We illustrate the second observation in a simple example:

Example 4.5.5 (the four gamete test). The infinite-site hypothesis postulates
that it is extremely unlikely that during the evolution of a single species
several mutations occur at the same site. This is considered valid in situations
with long genomes and a low mutation rate (e.g., in mammals, but not in
bacteria).

This means that, for example, the simultaneous co-existence of all four
combinations of

AA, AG, GA, GG.

(at the same two sites) in four species is under the infinite-site hypothesis
not compatible with a tree-shaped evolution: This can be established by a
case-by-case analysis (check!) or by studying the Hamming metric directly.

Detecting non-tree shaped evolution in this way is the basis of the four
gamete test, applied to haploid chromosomes.

Therefore, the tree model of evolution is extended to a model that includes
horizontal interaction; one distinguishes between clonal events and reticulate
evolutionary events.

clonal evolutionary events reticulate evolutionary events
vertical interaction horizontal interaction

  

phylogenetic tree reticulate network

How can such reticulate events be detected? The four gamete test (Exam-
ple 4.5.5) can sometimes expose reticulate events; however, this only works
in very special situations. As the non-tree property in graphs is witnessed by
non-trivial cycles, it is natural to consider (persistent) homology.

Definition 4.5.6 (tree-like metric space). A finite metric space is tree-like if it
is isometric to the leave space of a weighted finite tree.

Theorem 4.5.7 (persistent homology of tree-like metric spaces [13]). Let (X, d)
be a tree-like metric space, let K be a field, and let k ∈ N≥1. Then
BCk(X, d;K) is empty.
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Sketch of proof. One shows by induction over the number of points of X
that all Rips complexes associated with (X, d) are disjoint unions of simpli-
cial complexes whose simplicial homology coincides with that of ∆(0). The
induction step makes use of the Mayer–Vietoris sequence (Theorem 3.2.1)
and a combinatorial/metric argument.

Corollary 4.5.8. If (X, d) is a finite metric space with B1(X, d;F2) 6= ∅, then
(X, d) is not tree-like.

Proof. This is a special case of the contraposition of Theorem 4.5.7.

Moreover, in the situation of Corollary 4.5.8, refined algorithmic compu-
tations of the persistent homology barcode can give concrete information on
how the tree property is violated.

In practice, we need to take one further aspect into account: Even if evo-
lution is tree-shaped, then we cannot expect experimental data to lead to an
exact tree structure. However, we can expect that it leads to a metric space
that is “close” to a tree-like space with respect to the Gromov–Hausdorff
distance. In view of the stability theorem (Theorem 4.4.20), the persistent
homology strategy remains valid: “Long” bars in barcodes in degree 1 with
coefficient in F2 point to reticulate evolutionary events.

Example 4.5.9 (reassortment in influenza A [13][64, Chapter 5]). There are
several types of the influenza A virus, adapted to pigs, birds, or humans;
moreover, all these types continue to evolve and cross-infections can occur.

The genome of the influenza virus consists of eight distinguished RNA seg-
ments. A careful analysis of the persistent homology of the RNA of influenza
has been perforemd:

• Persistent homology in degree 0 recovers the standard hemagglutinin
classification (H1–H16) of the main influenza A types.

• Persistent homology in degree 1, separately on each of the eight seg-
ments: No significant reticulate evolutionary events are detected.

• Persistent homology in degree 1, on the whole RNA sequence: In some
strains, a significant amount of “long bars”, whence reticulate evolu-
tionary events, is detected.

In combination, this is compatible with a horizontal evolution by so-called
reassortment of segments: I.e., whole blocks are swapped between strains.

Strains with such reticulate evolutionary events correlate with influenza
pandemics (e.g., H1N1 in 1918). In order to sequence the influenza virus of
the 1918 pandemic, genetic material from permafrost graves in Alaska has
been used.

This data analysis on the evolution of influenza is compatible with the
following biological explanation of when/how reassortment can occur: If a
host is infected with different influenza strains (e.g., a human is infected
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with one adapted to pigs and one adapted to humans) and if during such
an infection, single cells are simultaneously infected by the two strains, then
inside of such cells, reassortment can occur. Depending on the circumstances
and overall fitness of the newly combined virus, this virus can spread – first
within this host and, if it has retained the ability to be transmitted host-to-
host, also to others.

In particular, this influenza example displays the risks emerging from cross-
infection of humans with a zoonotic virus and vice versa.

Example 4.5.10 (SARS-CoV-2 [7]). Similar investigations are also carried out
on the Sars-Cov-2 virus, in particular, on the Spike protein [7].

Literature exercise. Read about the similarities and dissimilarities between
the 1918 influenza pandemic and the SARS-CoV-2 pandemic. For instance,
the following is an excerpt of a letter of an army physician from Camp De-
vens [33]:

“Camp Devens is near Boston, and has about 50 000 men, or did have
before this epidemic broke loose. It also has the Base Hospital for the
Div. of the N. East. This epidemic started about four weeks ago, and
has developed so rapidly that the camp is demoralized and all ordinary
work is held up till it has passed.

[. . . ]

“These men start with what appears to be an ordinary attack of La-
Grippe or Influenza, and when brought to the Hosp. they very rapidly
develop the most viscious type of Pneumonia that has ever been seen.
Two hours after admission they have the Mahogony spots over the
cheek bones, and a few hours later you can begin to see the Cyanosis
extending from their ears and spreading all over the face, until it is hard
to distinguish the colored men from the white. It is only a matter of
a few hours then until death comes, and it is simply a struggle for air
until they suffocate. It is horrible. One can stand it to see one, two or
twenty men die, but to see these poor devils dropping out like flies sort
of gets on your nerves. We have been averaging about 100 deaths per
day, and still keeping it up. There is no doubt in my mind that there
is a new mixed infection here, but what I don’t know.

[. . . ]

“We have lost an outrageous number of Nurses and Drs., and the little
town of Ayer is a sight. It takes Special trains to carry away the dead.
For several days there were no coffins and the bodies piled up something
fierce, we used to go down to the morgue (which is just back of imy
ward) and look at the boys laid out in long rows. It beats any sight
they ever had in France after a battle. An extra long barracks has been
vacated for the use of the Morgue, and it would make any man sit up
and take notice to walk down the long lines of dead soldiers all dressed
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and laid out in double rows. We have no relief here, you get up in the
miorninig at 5.30 and work steady till about 9.30 P.M., sleep, then go
at it again. Some of the men of course have been here all the time, and
they are TIRED.

[. . . ]

“The men here are all good fellows, but I get so damned sick of Pneu-
monia that when I go to eat I want to find some fellow who will not
‘Talk Shop’ but there aint none nohow. We eat it live it, sleep it, and
dream it, to say nothing of breathing it 16 hours a day.

[. . . ]

“Each man here gets a ward with about 150 beds, (Mine has 168) and
has an Asst. Chief to boss him, and you can imagine what the paper
work alone is—fierce—and the Govt. demands that all paper work be
kept up in good shape.”

4.6 Application: Exploring multi-dimensional data

In data analysis, it is also common practice to “explore” data. This means
that in contrast to classical experiments and investigations, one does not test
a hypothesis formulated before the experiment.

The standard persistent homology pipeline for data exploration is:

• Measure/acquire data;

• Clean up the data (e.g., by removing outliers and normalising the data);

• Reduce the complexity by projecting the data to low-dimensional Eu-
clidean space or clustering (this step usually involves statistical meth-
ods; there is a wide range of parameters and choices in this stage);

• Compute suitable filtrations of simplicial complexes (e.g., Rips filtra-
tions);

• Compute weighted barcodes and possibly also cycles that correspond
to “long” bars;

• Analyse/interpret the results.

Caveat 4.6.1. This method is not very robust in the sense that the reduc-
tion and normalisation steps involve choices of parameters; in many situa-
tions, there are no good a priori estimates for these parameters. Moreover,
at some stage in the exploration one has to consider whether an actual effect
is measured or whether the computed shape is an artefact, resulting of some
systematic bias (in the data or in the reduction steps).

Such an analysis can lead to a hypothesis that can then be tested in the
classical sense through an appropriate experiment or study.
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A.2 A. Appendix

A.1 Point-set topology

We collect basic notions and facts from point-set topology, as taught in intro-
ductory courses. Detailed explanations, proofs, and examples can be found
in all books on point-set topology [41, 42, 56, 71].

A.1.1 Topological spaces

The category of topological spaces consists of topological spaces and contin-
uous maps between them. The main idea of topological spaces is to express
“being close” not by distances but by a system of subsets, the so-called open
subsets.

Definition A.1.1 (topological space, topology, open, closed). A topological
space is a pair (X,T ) consisting of a set X and a topology T on X, i.e.,
T is a subset of the power set P (X) of X with the following properties:

• We have ∅ ∈ T and X ∈ T .

• If U ⊂ T , then
⋃
U ∈ T (i.e., T is closed with respect to taking unions).

• If U ⊂ T is finite, then
⋂
U ∈ T (i.e., T is closed with respect to taking

finite intersections).

The elements of T are called open sets (with respect to T ); if A ⊂ X and
X \A ∈ T , then A is closed (with respect to T ).

Convention A.1.2. In algebraic topology, whenever the topology T on a set X
is clear from the context, we will abuse notation and also speak of the “topo-
logical space X” instead of the “topological space (X,T )”. This slight impre-
cision will save us from a lot of notational clutter.

That the axioms for open sets do make sense can be easily seen in the case
of topologies induced by a metric:

Proposition A.1.3 (topology induced by a metric). Let (X, d) be a metric
space. Then

T :=
{
U ⊂ X

∣∣ ∀x∈U ∃ε∈R>0
U(x, ε) ⊂ U

}

is a topology on X, the metric topology induced by d. Here, for x ∈ X
and ε ∈ R>0, we write

U(x, ε) :=
{
y ∈ X

∣∣ d(y, x) < ε
}

for the open ε-ball around x in (X, d).



A.1. Point-set topology A.3

Remark A.1.4.

• For Rn, the notion of open sets with respect to the topology induced by
the Euclidean metric, coincides with the standard notion of open sets
(as considered in the Analysis courses). We will call this topology the
standard topology on Rn.

• Moreover: If (X, d) is a metric space and A ⊂ X, then A is closed (with
respect to the metric topology) if and only if it is sequentially closed.

Caveat A.1.5. Not every topological space is metrisable! (Corollary A.1.31).

Example A.1.6 (extremal topologies). Let X be a set. Then there are two
extremal topologies on X:

• The set P (X) is a topology on X, the discrete topology.

• The set {∅, X} is a topology on X, the trivial topology (or indiscrete
topology).

Remark A.1.7 (exotic topological spaces). In algebraic topology, we will usu-
ally only work with “nice” topological spaces (that are built from balls,
spheres, simplices, etc.) and only consider situations where the point-set
topology is tame. In contrast, topological spaces that arise naturally in alge-
braic geometry usually are more exotic (e.g., the Zariski topology on SpecZ).

Moreover, we will use the following generalisations of the corresponding
notions for metric spaces:

Definition A.1.8 ((open) neighbourhood). Let (X,T ) be a topological space
and let x ∈ X.

• A subset U ⊂ X is an open neighbourhood of x, if U is open and x ∈ U .

• A subset U ⊂ X is a neighbourhood of x if there exists an open neigh-
bourhood V ⊂ X of x with V ⊂ U .

Definition A.1.9 (closure, interior, boundary). Let (X,T ) be a topological
space and let Y ⊂ X.

• The interior of Y is

Y ◦ :=
⋃
{U | U ∈ T and U ⊂ Y },

i.e., Y ◦ is the largest (with respect to inclusion) open subset of X that
is contained in Y .

• The closure of Y is

Y :=
⋂
{A | X \A ∈ T and Y ⊂ A},

i.e., Y is the smallest (with respect to inclusion) closed subset of X that
contains Y .
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XU ∩ Y
Y
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XUX x

Y
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y X × YU

Figure A.1.: The subspace topology/product topology, schematically

• The boundary of Y is

∂Y := Y ∩ (X \ Y ).

Caveat A.1.10 (∂). The symbol ∂ is heavily overloaded in algebraic topology.
Most uses relate to some underlying geometric notion of boundary, but one
should always make sure to understand what the actual meaning of ∂ is in
the given context.

Two elementary constructions of topological spaces are subspaces and
products; these constructions are illustrated in Figure A.1:

Remark A.1.11 (subspace topology). Let (X,T ) be a topological space and
let Y ⊂ X be a subset. Then

{U ∩ Y | U ∈ T}

is a topology on Y , the subspace topology on Y . If T on X is induced by a
metric d, then the subspace topology on Y is the topology induced by the
restriction of the metric d to Y .

Remark A.1.12 (product topology). Let (X,TX) and (Y, TY ) be topological
spaces. Then

{U ⊂ X × Y | ∀(x,y)∈U ∃UX∈TX ∃UY ∈TY (x, y) ∈ UX × UY ⊂ U}

is a topology on X×Y , the product topology. The standard topology on R2 =
R × R coincides with the product topology of the standard topology on R
(on both factors). Moreover, the product topology satisfies (together with the
canonical projections onto the factors) the universal property of the product
in the category of topological spaces (Remark ??).

Remark A.1.13 (general products). Let (Xi, Ti)i∈I be a family of topological
spaces and let X :=

∏
i∈I Xi. Then the product topology on X is the coarsest
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topology that makes the canonical projections (X −→ Xi)i∈I continuous.
More explicitly: A subset U ⊂ X is open if and only if for every x ∈ U there
exists a finite set J ⊂ I and open subsets Uj ⊂ Xj for every j ∈ J with

x ∈
∏

j∈J
Uj ×

∏

i∈I\J
Xi ⊂ U.

This product topology satisfies (together with the canonical projections onto
the factors) the universal property of the product in the category of topolog-
ical spaces.

A.1.2 Continuous maps

Continuous maps are structure preserving maps in the world of topological
spaces.

Definition A.1.14 (continuous). Let (X,TX) and (Y, TY ) be topological spaces.
A map f : X −→ Y is continuous (with respect to TX and TY ), if

∀U∈TY f−1(U) ∈ TX ,

i.e., if preimages of open sets are open.

Remark A.1.15.

• For metric spaces, continuity with respect to the topology induced by
the metric coincides with the ε-δ-notion of continuity.

• If X is a set and T , T ′ are topologies on X, then the identity
map idX : X −→ X is continuous as a map from (X,T ) to (X,T ′)
if and only if T ′ ⊂ T (i.e., if T ′ is coarser than T ).

• The maps +, ·,− : R2 −→ R and / : R× (R \ {0}) −→ R are continuous
with respect to the standard topology.

• If (X,T ) is a topological space and Y ⊂ X, then the inclusion Y ↪→ X
is continuous with respect to the subspace topology on Y .

• Constant maps are continuous.

Proposition A.1.16 (inheritance properties of continuous maps). Let (X,TX),
(Y, TY ), and (Z, TZ) be topological spaces and let f : X −→ Y , g : Y −→ Z
be maps.

1. If f and g are continuous, then also g ◦ f : X −→ Z is continuous.

2. If f is continuous and A ⊂ X, then the restriction f |A : A −→ Y is
continuous (with respect to the subspace topology on A).
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3. The map f : X −→ Y is continuous if and only if f : X −→ f(X) is
continuous (with respect to the subspace topology on f(X)).

Proposition A.1.17 (glueing principle for continuous maps). Let (X,TX) and
(Y, TY ) be topological spaces, let A,B ⊂ X be closed subsets with A∪B = X,
and let f : A −→ Y and g : B −→ Y be continuous maps (with respect to the
subspace topology on A and B) with f |A∩B = g|A∩B. Then the map

f ∪A∩B g : X −→ Y

x 7−→
{
f(x) if x ∈ A,
g(x) if x ∈ B

is well-defined and continuous.

Isomorphisms in the category of topological spaces are called homeomor-
phisms:

Definition A.1.18 (homeomorphism). Let (X,TX) and (T, TY ) be topological
spaces. A continuous map f : X −→ Y is a homeomorphism if there exists a
continuous map g : Y −→ X such that

g ◦ f = idX and f ◦ g = idY .

If there exists a homeomorphism X −→ Y , then X and Y are homeomorphic,
in symbols: X ∼=Top Y .

Caveat A.1.19. In general, not every bijective continuous map is a homeo-
morphism!

Intuitively, topological spaces are homeomorphic if and only if they can
be deformed into each other without “tearing” or “glueing”.

A.1.3 (Path-)Connectedness

An important property of continuous functions [0, 1] −→ R is the intermedi-
ate value theorem. More generally, in the context of topological spaces, this
phenomenon can be described in terms of path-connectedness and connect-
edness.

Definition A.1.20 (path, path-connected). Let (X,T ) be a topological space.

• A path in X is a continuous map γ : [0, 1] −→ X (with respect to the
standard topology on [0, 1] ⊂ R). Then γ(0) is the start point and γ(1)
is the end point of γ. The path γ is closed if γ(0) = γ(1).

• The space X is path-connected, if for all x, y ∈ X there exists a
path γ : [0, 1] −→ X with γ(0) = x and γ(1) = y.
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Remark A.1.21.

• The unit interval [0, 1] is path-connected.

• For every n ∈ N, the space Rn is path-connected (with respect to the
standard topology).

• If X is a set with |X| ≥ 2, then X is not path-connected with respect
to the discrete topology.

Proposition A.1.22 (continuity preserves path-connectedness). Let (X,TX)
and (Y, TY ) be topological spaces.

1. Let f : X −→ Y be a continuous map. If X is path-connected, then also
f(X) is path-connected (with respect to the subspace topology inherited
from Y ).

2. In particular, path-connectedness is a homeomorphism invariant: If X
and Y are homeomorphic, then X is path-connected if and only if Y is
path-connected.

Example A.1.23. Let n ∈ N. We can use Proposition A.1.22 (and a little trick,
involving the removal of a single point) to show that R is homeomorphic to Rn
if and only if n = 1.

A meaningful weaker version of path-connectedness is connectedness. A
topological space is connected, if the only way to partition X into open sets
is the trivial way.

Definition A.1.24 (connected). A topological space (X,TX) is connected, if
for all U, V ∈ TX with U ∪ V = X and U ∩ V = ∅ we have U = ∅ or V = ∅.
Remark A.1.25. The unit interval [0, 1] is connected. If n ∈ N and U ⊂ Rn
is open, then U is path-connected if and only if U is connected.

Proposition A.1.26 (path-connectedness implies connectedness). Every path-
connected topological space is connected.

Caveat A.1.27. There exist topological spaces that are connected but not
path-connected: The standard example is the wild sinus

{
(x, sin 1/x)

∣∣ x ∈ (0, 1]
}
∪ {0} × [−1, 1] ⊂ R2

(with the subspace topology of R2).

The generalisation of the intermediate value theorem then reads as follows:

Proposition A.1.28 (continuity preserves connectedness). Let (X,TX) and
(Y, TY ) be topological spaces.

1. Let f : X −→ Y be a continuous map. If X is connected, then also f(X)
is connected (with respect to the subspace topology inherited from Y ).
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2. In particular, connectedness is a homeomorphism invariant: If X and
Y are homeomorphic, then X is connected if and only if Y is connected.

In algebraic topology, one also studies higher connectedness properties (in
the context of higher homotopy groups).

A.1.4 Hausdorff spaces

It is easy to construct weird and unintuitive topological spaces; it is much
harder to ensure with simple properties that topological spaces are reasonably
well-behaved. A key example is the folllowing separation property:

Definition A.1.29 (Hausdorff). A topological space (X,TX) is Hausdorff, if
every two points can be separated by open sets, i.e., if for all x, y ∈ X
with x 6= y, there exist open subsets U, V ⊂ X such that

x ∈ U, y ∈ V and U ∩ V = ∅.

Proposition A.1.30 (metric spaces are Hausdorff). Let (X, d) be a metric
space. Then the metric topology on X is Hausdorff.

Corollary A.1.31. If X is a set with |X| ≥ 2, then the trivial topology on X
is not induced by a metric on X.

Proposition A.1.32. Being Hausdorff is a homeomorphism invariant: If two
topological spaces are homeomorphic, then one of them is Hausdorff if and
only if they are both Hausdorff.

There is a zoo of further separation properties of topological spaces [71].
Whenever possible, we will avoid these pitfalls.

A.1.5 Compactness

Roughly speaking, compactness is a finiteness property of topological spaces,
defined in terms of open covers.

Definition A.1.33 (compact). A topological space (X,T ) is compact, if every
open cover of X contains a finite subcover. More precisely: The topological
space (X,T ) is compact, if for every family (Ui)i∈I of open subsets of X
with X =

⋃
i∈I Ui there exists a finite subset J ⊂ I with X =

⋃
i∈J Ui.

Caveat A.1.34 (cover/Überdeckung). Sometimes, also the term “covering”
is used instead of “cover”. We will always use “cover” (German: Überdeck-
ung; family of subsets of a spaces whose union is the given space) in order
to distinguish it from the “covering” notion in covering theory (German:
Überlagerung; a map with special properties).
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Remark A.1.35. Let X be a set.

• Then X is compact with respect to the trivial topology.

• Moreover, X is compact with respect to the discrete topology if and
only if X is finite.

The unit interval [0, 1] is compact with respect to the standard topology;
this implies that every continuous map [0, 1] −→ R has a minimum and a
maximum. More generally, we have:

Proposition A.1.36 (generalised maximum principle). Let (X,TX) and (Y, TY )
be topological spaces.

1. Let f : X −→ Y be a continuous map. If X is compact, then f(X) is
compact (with respect to the subspace topology of Y ).

2. In particular, compactness is a homeomorphism invariant: If X and Y
are homeomorphic, then X is compact if and only if Y is compact.

In Euclidean spaces, we have a simple characterisation of compact sets:

Theorem A.1.37 (Heine-Borel). Let n ∈ N and let A ⊂ Rn (endowed with
the subspace topology of the standard topology on Rn). Then the following are
equivalent:

1. The space A is compact.

2. The set A is closed and bounded with respect to the Euclidean metric
on Rn.

3. The set A is sequentially compact with respect to the Euclidean metric
on Rn (i.e., every sequence in A has a subsequence that converges to a
limit in A).

Caveat A.1.38. In fact, every compact subspace of a metric space is closed
and bounded. However, in general, the converse is not true in general metric
spaces! For example, infinite sets are closed and bounded with respect to the
discrete metric, but not compact.

More generally, we have the following relationship between closedness and
compactness (which leads to a highly useful sufficient homeomorphism crite-
rion).

Proposition A.1.39 (closed vs. compact). Let (X,T ) be a topological space
and let Y ⊂ X.

1. If X is compact and Y is closed in X, then Y is also compact (with
respect to the subspace topology).

2. If X is Hausdorff and Y is compact (with respect to the subspace topol-
ogy), then Y is closed in X.
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Corollary A.1.40 (compact-Hausdorff trick). Let (X,TX) be a compact topo-
logical space, let (Y, TY ) be a Hausdorff topological space, and let f : X −→ Y
be continuous and bijective. Then f is a homeomorphism(!).

Proof. Because f is bijective, it admits a set-theoretic inverse g : Y −→ X.
It suffices to show that g is continuous (i.e., that g-preimages of open/closed
sets are open/closed). Equivalently, it suffices to show that f -images of closed
subsets of X are closed in Y .

Let A ⊂ X be a closed subset. Because X is compact, also A is compact
(Proposition A.1.39). Hence, f(A) is compact by the generalised maximum
principle (Proposition A.1.36). As Y is Hausdorff, this implies that f(A) is
closed in Y (Proposition A.1.39), as desired.

Finally, we briefly discuss the preservation of compactness under taking
products:

Proposition A.1.41 (product of two compact spaces). Let (X,TX) and (Y, TY )
be compact topological spaces. Then the product X×Y is compact with respect
to the product topology.

Caveat A.1.42 (the Tychonoff Theorem). The Tychonoff Theorem

Every product (including infinite products!) of compact spaces is com-
pact.

is equivalent to the Axiom of Choice(!) (whence also to Zorn’s Lemma and
the Well-Ordering Theorem) [40, Chapter 4.8].
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A.2 Categories and functors

We quickly review basic terminology from elementary category theory: cate-
gories, functors, and natural transformations.

A.2.1 Categories

Mathematical theories consist of objects (e.g., groups, topological spaces,
. . . ) and structure preserving maps (e.g., group homomorphisms, continuous
maps, . . . ). This can be abstracted to the notion of a category [44, 9, 63, 66].

Definition A.2.1 (category). A category C consists of the following data:

• A class Ob(C); the elements of Ob(C) are called objects of C.

• For all objects X,Y ∈ Ob(C) a set MorC(X,Y ); the elements of the
set MorC(X,Y ) are called morphisms from X to Y in C. (Implicitly, we
will assume that the morphism sets between different pairs of objects
are disjoint and that we can recover the source and target object from
a morphism.)

• For all objects X,Y, Z ∈ Ob(C) a composition of morphisms:

◦ : MorC(Y,Z)×MorC(X,Y ) −→ MorC(X,Z)

(g, f) 7−→ g ◦ f

This data is required to satisfy the following conditions:

• For each object X in C there exists a morphism idX ∈ MorC(X,X)
such that: For all Y ∈ Ob(C) and all morphisms f ∈ MorC(X,Y )
and g ∈ MorC(Y,X), we have

f ◦ idX = f and idX ◦g = g.

(The morphism idX is uniquely determined by this property (check!);
it is the identity morphism of X in C.)

• The composition of morphisms is associative: For all objects W , X,
Y , Z in C and all morphisms f ∈ MorC(W,X), g ∈ MorC(X,Y ), and
h ∈ MorC(Y, Z) we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f.
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Remark A.2.2 (classes). Classes are a tool to escape the set-theoretic para-
doxon of the “set of all sets” [68]. In case you are not familiar with
von Neumann–Bernays–Gödel set theory, you can use the slogan that classes
are “potentially large”, “generalised” sets.

All concepts and facts in mathematical theories that can be expressed in
terms of objects, identity morphisms, and (the composition of) morphisms
also admit a category theoretic version. For instance, in this way, we obtain
a general notion of isomorphism:

Definition A.2.3 (isomorphism). Let C be a category. Objects X,Y ∈ Ob(C)
are isomorphic in C, if there exist morphisms f ∈ MorC(X,Y ) and g ∈
MorC(Y,X) with

g ◦ f = idX and f ◦ g = idY .

In this case, f and g are isomorphisms in C and we write X ∼=C Y . If the
category is clear from the context, we might also write X ∼= Y .

Proposition A.2.4 (elementary properties of isomorphisms). Let C be a cate-
gory and let X,Y, Z ∈ Ob(C).

1. Then the identity morphism idX is an isomorphism in C (from X
to X).

2. If f ∈ MorC(X,Y ) is an isomorphism in C, then there is a unique
morphism g ∈ MorC(Y,X) that satisfies g ◦ f = idX and f ◦ g = idY .

3. Compositions of (composable) isomorphisms are isomorphisms.

4. If X ∼=C Y , then Y ∼=C X.

5. If X ∼=C Y and Y ∼=C Z, then X ∼=C Z.

Proof. All claims follow easily follow from the definitions (check!).

Moreover, the setup of categories can be used to give a general definition
of commutative diagrams [46, Chapter 1.1.4].

We collect some basic examples of categories and introduce some categories
that are relevant in algebraic topology.

Example A.2.5 (set theory). The category Set of sets consists of:

• objects: Let Ob(Set) be the class(!) of all sets.

• morphisms: If X and Y are sets, then we define MorSet(X,Y ) as the
set of all set-theoretic maps X −→ Y .

• compositions: If X, Y , and Z are sets, then the composition map
MorSet(Y,Z)×MorSet(X,Y ) −→ MorSet(X,Z) is ordinary composition
of maps.
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Clearly, this composition is associative. If X is a set, then the usual identity
map

X −→ X

x 7−→ x

is the identity morphism idX of X in Set. Objects in Set are isomorphic if
and only if there exists a bijection between them, i.e., if they have the same
cardinality.

Caveat A.2.6. The concept of morphisms and compositions in the definition
of categories is modelled on the example of maps between sets and ordinary
composition of maps. In general categories, morphisms are not necessarily
maps between sets and the composition of morphisms is not necessarily or-
dinary composition of maps!

Example A.2.7 (algebra). Let K be a field. The category VectK of K-vector
spaces consists of:

• objects: Let Ob(VectK) be the class(!) of all K-vector spaces.

• morphisms: If X, Y are K-vector spaces, then we define MorVectK (X,Y )
as the set of all K-linear maps X −→ Y . In this case, we also
write HomK(X,Y ) for the set of morphisms.

• compositions: As composition we take the ordinary composition of
maps.

Objects in VectK are isomorphic if and only if they are isomorphic in the
classical sense from linear algebra.

Analogously, we can define the category Group of groups, the category Ab
of Abelian groups, the category RMod of left-modules over a ring R, the
category ModR of right-modules over a ring R, . . .

Example A.2.8 (topology). The category Top of topological spaces consists
of:

• objects: Let Ob(Top) be the class(!) of all topological spaces.

• morphisms: If X and Y are topological spaces, then we define

map(X,Y ) := MorTop(X,Y )

to be the set of all continuous maps X −→ Y .

• compositions: As composition we take the ordinary composition of
maps.

Objects in Top are isomorphic if and only if they are homeomorphic.
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Often, we are only interested in the difference between a topological space
and a certain subspace. For example, we can model this situation through
quotient spaces. However, in general, the quotient topology tends to have bad
properties. Alternatively, we can use the following trick to handle differences
between spaces and subspaces:

Example A.2.9 (relative topology, pairs of spaces). The category Top2 of pairs
of spaces consists of:

• objects: Let

Ob(Top2) :=
{

(X,A)
∣∣ X ∈ Ob(Top), A ⊂ X

}
.

• morphisms: If (X,A) and (Y,B) are pairs of spaces, then we define

map
(
(X,A), (Y,B)

)
:= MorTop2

(
(X,A), (Y,B)

)

:=
{
f ∈ map(X,Y )

∣∣ f(A) ⊂ B
}
.

• compositions: As composition we take the ordinary composition of maps
(this is well-defined!).

The absolute case corresponds to pairs of spaces with empty subspace. A
particularly important special case is the case where the subspace consists of
a single point. This leads to the category Top* of pointed spaces (which is
used in homotopy theory; Definition ??).

Finally, let us introduce a category that (at least implicitly) plays a key
role in simplicial topology and the definition of various homology theories:

Definition A.2.10 (the simplex category). The simplex category ∆ consists of:

• objects: Let Ob(∆) :=
{

∆(n)
∣∣ n ∈ N

}
. Here, for n ∈ N, we write

∆(n) := {0, . . . , n}.

• morphisms: If n,m ∈ N, then Mor∆

(
∆(n),∆(m)

)
is defined to be the

set of all maps {0, . . . , n} −→ {0, . . . ,m} that are monotonically in-
creasing.

• compositions: As compositions we take the ordinary composition of
maps (this is well-defined!).

In ∆, objects are isomorphic if and only if they are equal.

A.2.2 Functors

As next step, we formalise translations between mathematical theories, us-
ing functors. Roughly speaking, functors are “structure preserving maps be-
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F

 

C D

object X

object Y

object Z

morphism f

morphism g

F (X) object

F (Y ) object

F (Z) object

F (f) morphism

F (g) morphism

Figure A.2.: Functor, schematically

tween categories” (Figure A.2). In particular, functors preserve isomorphisms
(Proposition A.2.18).

Definition A.2.11 (functor). Let C and D be categories. A (covariant) func-
tor F : C −→ D consists of the following data:

• A map F : Ob(C) −→ Ob(D).

• For all objects X,Y ∈ Ob(C) a map

F : MorC(X,Y ) −→ MorD
(
F (X), F (Y )

)
.

This data is required to satisfy the following conditions:

• For all X ∈ Ob(C), we have F (idX) = idF (X).

• For all X,Y, Z ∈ Ob(C) and all f ∈ MorC(X,Y ), g ∈ MorC(Y,Z), we
have

F (g ◦ f) = F (g) ◦ F (f).

A contravariant functor F : C −→ D consists of the following data:

• A map F : Ob(C) −→ Ob(D).

• For all objects X,Y ∈ Ob(C) a map

F : MorC(X,Y ) −→ MorD
(
F (Y ), F (X)

)
.

This data is required to satisfy the following conditions:

• For all X ∈ Ob(C), we have F (idX) = idF (X).
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• For all X,Y, Z ∈ Ob(C) and all f ∈ MorC(X,Y ), g ∈ MorC(Y,Z), we
have

F (g ◦ f) = F (f) ◦ F (g).

In other words, contravariant functors reverse the direction of arrows. More
concisely, contravariant functors C −→ D are the same as covariant func-
tors C −→ Dop, where Dop denotes the dual category of D.

Example A.2.12 (identity functor). Let C be a category. Then the identity
functor IdC : C −→ C is defined as follows:

• on objects: We consider the map

Ob(C) −→ Ob(C)

X 7−→ X.

• on morphisms: For objects X, Y ∈ Ob(C), we consider the map

MorC(X,Y ) −→ MorC(X,Y )

f 7−→ f.

Clearly, this defines a functor C −→ C.

Example A.2.13 (composition of functors). Let C, D, E be categories and let
F : C −→ D, G : D −→ E be functors. Then the functor G ◦ F : C −→ E is
defined as follows:

• on objects: Let

G ◦ F : C −→ E

X 7−→ G
(
F (X)

)
.

• on morphisms: For all X, Y ∈ Ob(C), we set

G ◦ F : MorC(X,Y ) −→ MorE
(
G(F (X)), G(F (Y ))

)

f 7−→ G(F (f)).

Clearly, this defines a functor C −→ E. Moreover, composition of functors is
associative.

Caveat A.2.14 (the category of categories). In view of the previous examples,
it is tempting to introduce the “category of all catgories” (whose objects
would be categories and whose morphisms would be functors). However, con-
structions of this type require set-theoretic precautions [17]. In the following,
we will only use basic category theory and hence we will avoid these issues.
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Three important, general, sources for functors are forgetful functors (by
forgetting structure), free generation functors (by freely generating objects),
and represented/representable functors (by viewing a category through the
eyes of a given object).

Example A.2.15 (forgetful functor). The forgetful functor Top −→ Set is de-
fined as follows:

• on objects: We take the map Ob(Top) −→ Ob(Set) that maps a topo-
logical space to its underlying set.

• on morphisms: For all topological spaces X and Y , we consider the map

MorVectR(X,Y ) = HomR(X,Y ) −→ MorSet(X,Y )

f 7−→ f.

Hence, this functor “forgets” the topological structure and only retains the
underlying set-theoretic information. Analogously, we can define forgetful
functors VectR −→ Set, VectR −→ Ab, . . .

Example A.2.16 (free generation functor). We can translate set theory to
linear algebra via the following functor F : Set −→ VectR:

• on objects: We define

F : Ob(Set) −→ Ob(VectR)

X 7−→
⊕

X

R.

• on morphisms: If X and Y are sets and if f : X −→ Y is a map,
we define F (f) :

⊕
X R −→ ⊕

Y R as the unique R-linear map that
extends f from the basis X to all of

⊕
X R.

Example A.2.17 (represented functor). Let C be a category and let X ∈
Ob(C). Then the functor MorC(X, · ) : C −→ Set represented by X is defined
as follows:

• on objects: Let

MorC(X, · ) : Ob(C) −→ Ob(Set)

Y 7−→ MorC(X,Y ).

• on morphisms: Let

MorC(X, · ) : MorC(Y,Z) −→ MorSet

(
MorC(X,Y ),MorC(X,Z)

)

g 7−→ (f 7→ g ◦ f).
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Additional structure on the object X allows us to refine the represented
functor MorC(X, · ) to a functor from C to categories with more structure
than Set.

Analogously, one can define the contravariant functor MorC( · , X) repre-
sented by X.

Fundamental examples of algebraic functors are tensor product functors
(Bemerkung IV.1.5.7).

The key property of functors is that they preserve isomorphisms. In par-
ticular, functors provide a good notion of invariants.

Proposition A.2.18 (functors preserve isomorphism). Let C and D be cate-
gories, let F : C −→ D be a functor, and let X, Y ∈ Ob(C).

1. If f ∈ MorC(X,Y ) is an isomorphism in C, then the translated mor-
phism F (f) ∈ MorD(F (X), F (Y )) is an isomorphism in D.

2. In particular: If X ∼=C Y , then F (X) ∼=D F (Y ). In other words: If
F (X) 6∼=D F (Y ), then X 6∼=C Y .

Proof. The first part follows from the defining properties of functors: Because
f is an isomorphism, there is a morphism g ∈ MorC(Y,X) with

g ◦ f = idX and f ◦ g = idY .

Hence, we obtain

F (g) ◦ F (f) = F (g ◦ f) = F (idX) = idF (X)

and F (f)◦F (g) = idF (Y ). Thus, F (f) is an isomorphism from F (X) to F (Y )
in D.

The second part is a direct consequence of the first part.

Therefore, suitable functors can help to prove that certain objects are not
isomorphic.

Caveat A.2.19. In general, the converse is not true! I.e., objects that are
mapped via a functor to isomorphic objects are, in general, not isomorphic
(check!).

A.2.3 Natural transformations

Functors are compared through natural transformations; roughly speaking,
natural transformations are “structure preserving maps between functors”.

Definition A.2.20 (natural transformation, natural isomorphism). Let C and D
be categories and let F,G : C −→ D be functors.
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• A natural transformation T from F to G, in short T : F =⇒ G, is a
family

(
T (X) ∈ MorD(F (X), G(X))

)
X∈Ob(C)

of morphisms such that

for all objects X,Y ∈ Ob(C) and all(!) morphisms f ∈ MorC(X,Y ) the
equation

G(f) ◦ T (X) = T (Y ) ◦ F (f)

holds in D. In other words, the following diagrams in D are commuta-
tive:

F (X)
F (f)

//

T (X)

��

F (Y )

T (Y )

��

G(X)
G(f)

// G(Y )

• A natural isomorphism is a natural transformation that consists of
isomorphisms (equivalently, a natural isomorphism is a natural trans-
formation that admits an object-wise inverse natural transformation;
check!).

Study note. The definition of natural transformation can easily be recon-
structed: From (linear) algebra we already know examples of “natural iso-
morphisms”. Natural isomorphisms only receive objects as input; hence, it
is clear what type of families natural transformations have to be. Moreover,
naturality should contain compatibility with morphisms. The only reason-
able notion that can be formulated with this amount of data is the one in
the commutative diagram above. That’s it!

Remark A.2.21 (natural). The attribute “natural” is used in two related ways:
On the one hand, it refers to functorial constructions; on the other hand, it
refers to things based on natural transformations.

Natural transformations between represented functors can be completely
classified; the key trick is to evaluate on identity morphisms:

Example A.2.22 (morphisms lead to natural transformations between repre-
sented functors). Let C be a category, let X, Y ∈ Ob(C), and let f ∈
MorC(X,Y ). Then

Tf :=

(
MorC(Y,Z) −→ MorC(X,Z)

)

Z∈Ob(C)g 7−→ g ◦ f

defines a natural transformation MorC(Y, · ) =⇒ MorC(X, · ) (check!).

Proposition A.2.23 (Yoneda Lemma). Let C be a category, let X, Y ∈ Ob(C),
and let N(Y,X) be the collection (which turns out to be describable as a set)
of all natural transformations MorC(Y, · ) =⇒ MorC(X, · ).
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1. Then

ϕ : MorC(X,Y ) −→ N(Y,X)

f 7−→ Tf

ψ : N(Y,X) −→ MorC(X,Y )

T 7−→
(
T (Y )

)
(idY )

are mutually inverse bijections.

2. In particular: The functors MorC(X, · ),MorC(Y, · ) : C −→ Set are
isomorphic if and only if X and Y are isomorphic in C.

Proof. The first part follows from a straightforward calculation: It should be
noted that the map ϕ is indeed well-defined by Example A.2.22. The maps ϕ
and ψ are mutually inverse:

The composition ψ ◦ ϕ: On the one hand, by definition, we have

ψ ◦ ϕ(f) = ψ
(
ϕ(f)

)
=
(
Tf (Y )

)
(idY ) = idY ◦ f = f

for all f ∈ MorC(X,Y ).

The composition ϕ ◦ ψ: On the other hand, let T ∈ N(Y,X) and let
Z ∈ Ob(C), g ∈ MorC(Y,Z). Then we obtain

(
T (Z)

)
(g) =

(
T (Z)

)
(g ◦ idY )

= T (Z)
(
MorC(Y, g)(idY )

)
(by definition of MorC(Y, · ))

= MorC(X, g)
(
T (Y )(idY )

)
(because T is a natural transformation)

= g ◦ ψ(T ) (by construction of ψ)

=
(
Tψ(T )(Z)

)
(g) (by construction of Tψ(T ))

=
((
ϕ ◦ ψ(T )

)
(Z)
)
(g) (by definition of ϕ).

Hence, ϕ ◦ ψ(T ) = T , as desired.

The second part can be derived from the first part: The maps ϕ and ψ
are compatible with identity morphisms/transformations and with the com-
position of morphisms/natural transformations. Hence, isomorphisms in C
correspond under ϕ and ψ to natural isomorphisms. Alternatively, one can
use the same proof strategy as in the first part [46, Proposition 1.3.6].

Definition A.2.24 (representable functor). Let C be a category. A func-
tor F : C −→ Set is representable if there exists an object X ∈ Ob(C) such
that F and the represented functor MorC(X, · ) : C −→ Set are naturally
isomorphic. In this case, X is a representing object for F .

(In view of Proposition A.2.23, representing objects of representable func-
tors are unique up to isomorphism.)
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F (i)

F (k)

F (g)X

pi

pk

Z

fi

fk

∃!f

F (i)

F (k)

F (g) X

ji

jk

Z

fi

fk

∃!f

Figure A.3.: Cones/inverse limits and cocones/colimits, schematically

Remark A.2.25 (compatibility with inverse limits). One advantage of repre-
sentable functors is that we gain compatibility with inverse limits (e.g., with
products) for free [46, Bemerkung 1.4.12].

Outlook A.2.26. By now, category theory is a foundational language that
is not only used in mathematics, but also in other fields such as computer
science [63] or linguistics.

Literature exercise. Read about “The Birth of Categories and Functors” [24,
p. 96f].

A.2.4 Limits

Limits and colimits are a fundamental tool that encompass constructions such
as products and pushouts; to avoid misunderstandings, we will always speak
of “inverse limits” and “colimits”. We briefly outline the general terminology
and some basic examples.

(Commutative) Diagrams are formalised as functors from small categories.

Definition A.2.27 (small diagram). Let I be a small category (i.e., Ob(I) is a
set) and let C be a category. An I-shaped diagram in C is a functor I −→ C.

An inverse limit/colimit of such a diagram is an terminal/initial solution
to the corresponding mapping problems (Figure A.3):

Definition A.2.28 (cone, cocone, inverse limit, colimit). Let I be a small cat-
egory, let C be a category, and let F : I −→ C be an I-shaped diagram
in C.

• A cone over F in C is a pair (Z, (fi)i∈Ob(I)), consisting of an object Z
in C and morphisms fi ∈ MorC(Z,F (i)) for all i ∈ Ob(I) with the
following naturality property:

∀i,k∈Ob(I) ∀g∈MorI(i,k) F (g) ◦ fi = fk.
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• An inverse limit over F in C is a cone (X, (pi)i∈Ob(I)) that is ter-
minal among all cones over F , i.e., that has the following universal
property: For every cone (Z, (fi)i∈Ob(I)) over F , there exists a unique
morphism f ∈ MorC(Z,X) with

∀i∈Ob(I) pi ◦ f = fi.

• A cocone over F in C is a pair (Z, (fi)i∈Ob(I)), consisting of an object Z
in C and morphisms fi ∈ MorC(F (i), Z) for all i ∈ Ob(I) with the
following naturality property:

∀i,k∈Ob(I) ∀g∈MorI(i,k) fk ◦ F (g) = fi.

• A colimit over F in C is a cocone (X, (ji)i∈Ob(I)) that is initial among
all cocones over F , i.e., that has the following universal property: For
every cocone (Z, (fi)i∈Ob(I)) over F , there exists a unique morphism f ∈
MorC(X,Z) with

∀i∈Ob(I) f ◦ ji = fi.

Example A.2.29 (special diagrams). In the following examples, we only indi-
cate the non-identity morphisms.

1. If I is a small discrete category (i.e., a category that only contains
identity morphisms), then inverse limits of I-diagrams are the same as
categorical products.

2. If I is a small discrete category, then colimits of I-diagrams are the
same as categorical coproducts.

3. If I is the category
• •

•

then colimits of I-diagrams are the same as pushouts.

4. If I is the category

•

•

•

then inverse limits of I-diagrams are the same as pullbacks.

Proposition A.2.30 (uniqueness of inverse limits/colimits). Let I be a small
category, let C be a category, and let F : I −→ C be an I-shaped diagram
in C.
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1. If (X, (pi)i∈Ob(I)) and (X ′, (p′i)i∈Ob(I)) are inverse limits of F in C,
then X ∼=C X ′. Moreover, there is a unique such isomorphism in C
that is compatible with (pi)i∈Ob(I) and (p′i)i∈Ob(I).

2. If (X, (ji)i∈Ob(I)) and (X ′, (j′i)i∈Ob(I)) are colimits of F in C, then
X ∼=C X ′. Moreover, there is a unique such isomorphism in C that is
compatible with (ji)i∈Ob(I) and (j′i)i∈Ob(I).

Proof. This is the usual uniqueness argument for universal properties: We
apply the universal properties in both directions to obtain morphisms in
both directions. We then use the uniqueness in the universal property to
show that both compositions are the respective identity morphisms.

In view of Proposition A.2.30, we also sometimes use the (somewhat
sloppy!) formulation to say that lim←−i∈I F (I) is a/the inverse limit of F or

that lim−→i∈I F (I) is a/the colimit of F .

In the category of sets, all small inverse limits and colimits exist:

Proposition A.2.31 (inverse limits and colimits in Set). Let I be a small cate-
gory and let F : I −→ Set be an I-shaped diagram in Set.

1. The set

X :=

{
x ∈

∏

i∈Ob(I)

F (i)

∣∣∣∣ ∀i,k∈Ob(I) ∀g∈MorI(i,k) F (g)(xi) = xk

}
,

together with the maps X −→ F (i) induced by the canonical projec-
tions

∏
k∈Ob(I) F (k) −→ F (i), is an inverse limit of F in Set.

2. The set

X :=

( ⊔

i∈Ob(I)

F (i)

) / (
∀i,k∈Ob(I) ∀g∈MorI(i,k) ∀x∈F (i) jk◦F (g)(x) ∼ ji(x)

)
,

together with the maps F (i) −→ X induced by the canonical inclu-
sions ji : F (i) −→ ⊔

k∈Ob(I) F (k), is an inverse limit of F in Set.

Proof. A straightforward calculation shows that these constructions have the
corresponding universal properties in Set (check!).
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A.3 Basic homological algebra

We collect basic notions and facts from homological algebra. Homological
algebra is the algebraic theory of [non-]exact sequences and functors that [do
not] preserve exactness.

For simplicity, we will only consider homological algebra in module cate-
gories (instead of general Abelian categories); in view of the Freyd–Mitchell
embedding theorem, this is not a substantial limitation.

Setup A.3.1. In the following, R will always be a (not necessarily commuta-
tive) ring with unit.

A.3.1 Exact sequences

We briefly recall exact sequences; we will stick to left modules (but clearly
the analogous statements for right modules also hold).

Definition A.3.2 ((short) exact sequence).

• A sequence A
f
// B

g
// C of morphisms in RMod ist exact (at

the middle position B), if im f = ker g.

• A sequence

0 // A
f
// B

g
// C // 0

in RMod is a short exact sequence in RMod, if the sequence is exact at
all positions (i.e., f is injective, g is surjective, and im f = ker g).

• An N-indexed or Z-indexed sequence

· · · // Ak
fk // Ak−1

fk−1
// Ak−1

fk−1
// Ak−2

// · · ·

in RMod is exact, if it is exact at all positions.

Example A.3.3 (exact sequences). The sequences

x
� // (x, 0)

0 // Z // Z⊕ Z/2 // Z/2 // 0

(x, y)
� // y

and
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x � // 2 · x
0 // Z // Z // Z/2 // 0

x � // [x]

in ZMod are exact; it should be noted that the middle modules are not iso-
morphic even though the outer terms are isomorphic. The sequence

x
� // x

0 // Z // Z // Z // 0

x � // x

is not exact.

Caveat A.3.4. If S is a ring with unit, then additive functors RMod −→ SMod
in general do not map exact sequences to exact sequences. For example, tensor
product functors, in general, do not preserve exactness!

Remark A.3.5 (flatness). A right R-module M is flat, if the tensor product
functor M ⊗R · : RMod −→ ZMod is exact, i.e., it maps exact sequences to
exact sequences (Definition IV.3.2.15, Beispiel IV.3.2.16, Beispiel IV.3.2.18,
Lemma IV.3.4.7, Korollar IV.5.2.5, Satz IV.3.2.14). For example:

• The R-module R is flat.

• Direct sums of flat modules are flat. Therefore, all free modules are flat.
In particular: If R is a field, then every R-module is flat.

• Direct summands of flat modules are flat. Therefore, all projective mod-
ules are flat.

• Localisations are flat; e.g., Q is a flat Z-module.

• The Z-module Z/2 is not flat.

Particularly well-behaved exact sequences are the split short exact se-
quences:

Proposition A.3.6 (split exact sequence). Let

0 // A
i // B

p
// C // 0

be a short exact sequence in RMod. Then the following are equivalent:

1. There exists an R-module homomorphism r : C −→ B with p ◦ r = idC .

2. There exists an R-module homomorphism s : B −→ A with s ◦ i = idA.



A.3. Basic homological algebra A.27

If these conditions hold, then the sequence above is a split exact sequence
in RMod, and

A⊕ C −→ B

(a, c) 7−→ i(a) + r(c)

B −→ A⊕ C
b 7−→

(
s(b), p(b)

)

are isomorphisms in RMod.

Proof. We first show the implication 2 =⇒ 1: Let s : B −→ A be an R-
homomorphism with s ◦ i = idA. We then consider the R-homomorphism

r̃ : B −→ B

b 7−→ b− i ◦ s(b).

We have ker p ⊂ ker r̃, because: Let b ∈ ker p. In view of exactness, there is
an a ∈ A with i(a) = b; thus,

r̃(b) = i(a)− i ◦ s(i(a)) = i(a)− i(idA(a)) = 0.

By the universal property of the quotient module, r̃ induces an R-homo-
morphism r : C ∼=R B/ ker p −→ B, which, by construction, satisfies p ◦ r =
idC .

Similarly, one can show the implication 1 =⇒ 2.
If the statements 1 and 2 are satisfied, then a straightforward calculation

shows that the given R-homomorphisms between B and A⊕ C are bijective
(check!), whence isomorphisms.

When comparing exact sequences, the five lemma is very useful:

Proposition A.3.7 (five lemma). Let

A
a //

fA
��

B
b //

fB
��

C
c //

fC
��

D
d //

fD
��

E

fE
��

A′
a′
// B′

b′
// C ′

c′
// D′

d′
// E′

be a commutative diagram in RMod with exact rows. Then the following holds:

1. If fB, fD are injective and fA is surjective, then fC is injective.

2. If fB, fD are surjective and fE is injective, then fC is surjective.

3. In particular: If fA, fB, fD, fE are isomorphisms, then fC is an iso-
morphism.
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A B C D E

A′ B′ C ′ D′ E′

x

0 0

0

A B C D E

A′ B′ C ′ D′ E′

x

0 0

0y

A B C D E

A′ B′ C ′ D′ E′

x

0 0

0y

•z′

A B C D E

A′ B′ C ′ D′ E′

x

0 0

0y

•z′

z

A B C D E

A′ B′ C ′ D′ E′

x

0 0

0y

•z′

z

Figure A.4.: The diagram chase in the proof of the five lemma

A.28
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Proof. We prove the first part via a so-called diagram chase (many statements
in homological algebra are established in this way). The second part can be
proved in a similar way; the third part is a direct consequence of the first two
parts.

Ad 1. Let fB and fD be injective and let fA be surjective. Let x ∈ C
with fC(x) = 0. Then we have x = 0, because (Figure A.4):

• Because of fD ◦ c(x) = c′ ◦ fC(x) = c′(0) = 0 and the injectivity of fD,
we obtain c(x) = 0.

• In view of im b = ker c, there exists a y ∈ B with b(y) = x.

• As b′ ◦fB(y) = fC ◦b(y) = fC(x) = 0 and im a′ = ker b′, we have: There
exists a z′ ∈ A′ with a′(z′) = fB(y).

• Because fA is surjective, there is a z ∈ A with fA(z) = z′.

• Then a(z) = y, because: We have fB
(
a(z)

)
= a′ ◦ fA(z) = a′(z′) =

fB(y) and fB is injective.

• Thus (because im a ⊂ ker b)

x = b(y) = b ◦ a(z) = 0,

as desired.

For the proof of the Mayer–Vietoris sequence (Theorem 3.2.1) we will need
the following construction of long exact sequences:

Proposition A.3.8 (algebraic Mayer–Vietoris sequence). Let

· · · ck+1
// Ak

ak //

fA,k

��

Bk
bk //

fB,k

��

Ck
ck //

fC,k

��

Ak−1

ak−1
//

fA,k−1

��

· · ·

· · ·
c′k+1

// A′k a′k

// B′k b′k

// C ′k c′k

// A′k−1 a′k−1

// · · ·

be a (Z-indexed) commutative ladder in RMod with exact rows. Moreover, for
every k ∈ Z, let fC,k : Ck −→ C ′k be an isomorphism and let

∆k := ck ◦ f−1
C,k ◦ b′k : B′k −→ Ak−1.

Then the following sequence in RMod is exact:

· · · ∆k+1
// Ak

(fA,k,−ak)
// A′k ⊕Bk

a′k⊕fB,k // B′k
∆k // Ak−1

// · · ·

Proof. This follows from a diagram chase (Exercise).
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A.3.2 Chain complexes and homology

Chain complexes are a generalisation of exact sequences. The non-exactness
of chain complexes is measured in terms of homology.

Definition A.3.9 (chain complex). An R-chain complex is a pair C = (C∗, ∂∗),
consisting of

• a sequence C∗ = (Ck)k∈Z of left R-modules (the chain modules), and

• a sequence ∂∗ = (∂k : Ck −→ Ck−1)k∈Z of R-homomorphisms (the
boundary operators or differentials) with

∀k∈Z ∂k ◦ ∂k+1 = 0.

Let k ∈ Z.

• The elements of Ck are the k-chains,

• the elements of ZkC := ker ∂k ⊂ Ck are the k-cycles,

• the elements of BkC := im ∂k+1 ⊂ Ck are the k-boundaries.

In the same way, one can also define chain complexes that are indexed over N
instead of Z. In this case, one defines Z0C := C0.

Example A.3.10 (chain complexes).

• Every long exact sequence is a chain complex.

• The sequence

· · · idZ // Z idZ // Z idZ // · · ·
is no chain complex of Z-modules, because the composition of successive
homomorphisms is not the zero map.

The terms cycle, boundary, chain, . . . originate from algebraic topology.
This can be seen in the construction of singular or simplicial homology (Chap-
ter 3).

Remark A.3.11 (Co). Reversing the direction of arrows in the definition
of chain complexes, leads to cochain complexes (and cochains, cocycles,
coboundaries, coboundary operators, cochain maps, cohomology, . . . ). Usu-
ally, one denotes coboundary operators in cochain complexes with δ (instead
of ∂) and indices are denoted as superscripts (instead of subscripts).

Such objects naturally arise in the study of smooth manifolds and differ-
ential forms: the de Rham cochain complex and de Rham cohomology.
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In order to obtain a category of chain complexes, we introduce chain maps
as structure-preserving maps between chain complexes:

Definition A.3.12 (chain map). Let C = (C∗, ∂∗) and (C ′∗, ∂
′
∗) be R-chain

complexes. An R-chain map C −→ C ′ is a sequence (fk ∈ RHom(Ck, C
′
k))k∈Z

with
∀k∈Z fk ◦ ∂k+1 = ∂′k+1 ◦ fk+1.

· · · // Ck+1

∂k+1
//

fk+1

��

Cn

fk

��

// · · ·

· · · // C ′k+1 ∂′k+1

// C ′k // · · ·

Definition A.3.13 (category of chain complexes). The category RCh of R-chain
complexes consists of:

• objects: the class of all R-chain complexes

• morphisms: R-chain maps

• compositions: degree-wise ordinary composition of maps.

Example A.3.14 (tensor product of a module and a chain complex). Let Z be
a right(!) R-module and let C = (C∗, ∂∗) ∈ Ob(RCh). Then

Z ⊗R C :=
(
(Z ⊗R Ck)k∈Z, (idZ ⊗R∂k)k∈Z

)

is a Z-chain complex (check!). If R is non-commutative, then Z ⊗R C, in
general, will not be an R-chain complex (for this, we need a bimodule struc-
ture on Z). Moreover, it should be noted that, in general, homology is not
compatible with taking tensor products!

Taking the degree-wise tensor product with idZ turns this construction
into a functor (check!)

Z ⊗R · : RCh −→ ZCh .

Example A.3.15 (chain complexes of simplicial modules). Let S : ∆op −→
RMod be a functor (a so-called simplicial left R-module); here, ∆op is the
dual of the simplex category (obtained from ∆ by reversing morphisms).
For k ∈ Z, we define

Ck(S) :=

{
S
(
∆(k)

)
if k ≥ 0

0 if k < 0,

∂k :=

{∑k
j=0(−1)j · S(dkj ) if k > 0

0 if k ≤ 0;
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here, dkj ∈ Mor∆(∆(k−1),∆(k)) is the morphism, whose image is {0, . . . , k}\
{j}. We write

C(S) :=
(
(Ck(S))k∈Z, (∂k)k∈Z

)
.

Then C(S) is an R-chain complex (check!). This is one of the key construc-
tions that underlies many homology theories.

This construction can also be extended to a functor

C : ∆(RMod) −→ RCh .

Here, ∆(RMod) is the category whose objects are functors ∆op −→ RMod
and whose morphisms are natural transformations between such functors.

The (non-)exactness of chain complexes is measured in terms of homology:

Definition A.3.16 (homology). Let C = (C∗, ∂∗) be an R-chain complex. For
k ∈ Z, the k-th homology of C is defined as

Hk(C) :=
Zk(C)

Bk(C)
=

ker(∂k : Ck → Ck−1)

im(∂k+1 : Ck+1 → Ck)
∈ Ob(RMod).

Remark A.3.17 (homology and exactness). A chain complex C ∈ Ob(RCh) is
an exact sequence if and only if Hk(C) ∼=R 0 for all k ∈ Z.

Remark A.3.18 (computation of homology). Algorithmically, homology of
(sufficiently finite) chain complexes can be computed with the tools developed
in linear algebra (over fields: Gaussian elimination (Satz I.5.2.8); over Eu-
clidean domains/principal ideal domains: Smith normal form (Satz II.2.5.6)).

Proposition A.3.19 (homology as functor). Let k ∈ Z.

1. Let C,C ′ ∈ Ob(RCh), let f : C −→ C ′ be an R-chain map. Then

Hk(f) : Hk(C) −→ Hk(C ′)

[z] 7−→
[
fk(z)

]

is a well-defined R-homomorphism.

2. In this way, Hk becomes a functor RCh −→ RMod.

Proof. Ad 1. The map Hk(f) is well-defined: Because f is a chain map,
fk maps cycles to cycles (check!). Let z, z′ ∈ Zk(C) with z − z′ ∈ Bk(C);
let b ∈ Ck+1 such that ∂k+1b = z − z′. Then we obtain in Hk(C ′):

[
fk(z)

]
−
[
fk(z′)

]
=
[
fk(z)− fk(z′)

]

=
[
fk(z − z′)

]

=
[
fk(∂k+1b)

]
(choice of b)

=
[
∂′kfk+1(b)

]
(f is a chain map)

= 0. (definition of Hk(C ′))
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Hence, Hk(f) is well-defined. By construction, Hk(f) is R-linear (because fk
is R-linear).

Ad 2. This is a straightforward computation (check!).

When computing homology, inheritance results and computational tricks
can save a lot of time and space. One key tool is the long exact homology
sequence:

Proposition A.3.20 (algebraic long exact homology sequence). Let

0 // A
i // B

p
// C // 0

be a short exact sequence in RCh (i.e., in every degree, the corresponding
sequence in RCh is exact). Then there is a (natural) long exact sequence

· · · ∂k+1
// Hk(A)

Hk(i)
// Hk(B)

Hk(p)
// Hk(C)

∂k // Hk−1(A) // · · ·

This sequence is natural in the following sense: If

0 // A
i //

fA
��

B
p
//

fB
��

C //

fC
��

0

0 // A′
i′
// B′

p′
// C ′ // 0

is a commutative diagram in RCh with exact rows, then the corresponding
ladder

· · · ∂k+1
// Hk(A)

Hk(i)
//

Hk(fA)

��

Hk(B)
Hk(p)

//

Hk(fB)

��

Hk(C)
∂k //

Hk(fC)

��

Hk−1(A) //

Hk−1(fA)

��

· · ·

· · ·
∂k+1

// Hk(A′)
Hk(i′)

// Hk(B′)
Hk(p′)

// Hk(C ′)
∂k

// Hk−1(A′) // · · ·

is commutative and has exact rows.

Proof. Let k ∈ Z. We construct the connecting homomorphism

∂k : Hk(C) −→ Hk−1(A)

as follows: Let γ ∈ Hk(C); let c ∈ Ck be a cycle representing γ. Because
pk : Bk −→ Ck is surjective, there is a b ∈ Bk with

pk(b) = c.

As p is a chain map, we obtain pk−1 ◦ ∂Bk (b) = ∂Ck ◦ pk(b) = ∂Ck (c) = 0; then
exactness in degree k shows that there exists an a ∈ Ak−1 with
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ik−1(a) = ∂Bk (b).

In this situation, we call (a, b, c) a compatible triple for γ and we define

∂k(γ) := [a] ∈ Hk−1(A).

Straightforward diagram chases then show (check!):

• If (a, b, c) is a compatible triple for γ, then a ∈ Ak−1 is a cycle (and so
indeed defines a class in Hk−1(A)).

• If (a, b, c) and (a′, b′, c′) are compatible triples for γ, then [a] = [a′]
in Hk−1(A).

These observations show that ∂k is an R-homomorphism and that ∂k is nat-
ural (check!).

Further diagram chases then show that the resulting long sequence is exact
(even more to check . . . ).

Combining the five lemma and the algebraic long exact sequence gives us:

Example A.3.21 (drie halen, twee betalen). Let

0 // A
i //

fA
��

B
p
//

fB
��

C //

fC
��

0

0 // A′
i′
// B′

p′
// C ′ // 0

be a commutative diagram in RCh with exact rows. Then: If two of the three
sequences (Hk(fA))k∈Z, (Hk(fB))k∈Z, (Hk(fC))k∈Z consist of isomorphisms,
then so does the third. This can be seen as follows:

The long exact homology sequences of the rows lead to a commutative
ladder with exact rows (Proposition A.3.20). We can then apply the five
lemma (Proposition A.3.7) to five successive rungs (where we put the mystery
homomorphism into the middle).

A.3.3 Homotopy invariance

A key property of homology of chain complexes is homotopy invariance. This
algebraic homotopy invariance is the source of homotopy invariance of many
functors in geometry and topology; moreover, algebraic homotopy invariance
often simplifies the computation of homology.

We briefly explain how topological considerations naturally lead to the
notion of chain homotopy (Definition A.3.28):

In Top, homotopy is defined as follows: Continuous maps f, g : X −→ Y
are homotopic, if there exists a continuous map h : X × [0, 1] −→ Y with
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0 1

degree 1 degree 0

Z Z⊕ Z
x (−x, x)

Figure A.5.: an algebraic model of [0, 1]

h ◦ i0 = f and h ◦ i1 = g;

here, i0 : X ↪→ X×{0} ↪→ X×[0, 1] and i1 : X ↪→ X×{1} ↪→ X×[0, 1] denote
the canonical inclusions of the bottom and the top into the cylinder X× [0, 1]
over X, respectively.

We model this situation in the category RCh: As first step, we model the
unit interval [0, 1] by a suitable chain complex (Figure A.5).

Definition A.3.22 (algebraic model [0, 1]). Let I ∈ Ob(ZCh) be the chain
complex

degree 2 1 0 −1

. . .
0
// 0

0
// 0

0
// Z // Z⊕ Z

0
// 0

0
// 0

0
// . . .

x � // (−x, x)

As analogy of the product of topological spaces, we consider the tensor
product of chain complexes; the basic idea is that chain modules of the prod-
uct in degree k should contain information on k-dimensional phenomena and
thus the degree of the tensor factors should add up to k. Geometrically, one
can show that cellular chain complexes of products of finite CW-complexes
(with respect to the product cell structure) are isomorphic to the tensor prod-
uct of the cellular chain complexes of the factors [26, V.3.9]. More generally,
the Eilenberg–Zilber theorem shows that the singular chain complex of a
product of two spaces is chain homotopy equivalent to the tensor product of
the singular chain complexes of the factors [26, Chapter VI.12].

Definition A.3.23 (tensor product of chain complexes). Let C ∈ Ob(RCh) and
D ∈ Ob(ZCh). Then we define C ⊗Z D ∈ Ob(RCh) by

(C ⊗R D)k :=
⊕

j∈Z
Cj ⊗R Dk−j

and the boundary operators

(C ⊗R D)k −→ (C ⊗R D)k−1

Cj ⊗R Dk−j 3 c⊗ d 7−→ ∂Cj c⊗ d+ (−1)j · c⊗ ∂Dk−jd
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for all k ∈ Z. (This indeed defines a chain complex!)

Study note. This definition generalises the tensor product of a module and
a chain complex (Example A.3.14). Do you see why/how?

More generally, if C is an (S,R)-bimodule chain complex and D is a left
R-chain complex, then one can also define the left S-chain complex C ⊗RD.

Remark A.3.24 (sign convention). We use the following convention for the
choice of signs: If a boundary operator is “moved past” an element, then we
introduce the sign

(−1)degree of that element.

It should be noted that different authours use different sign conventions.
Therefore, for all formulae in the literature concerning products of chain
complexes or products on (co)homology, one has to carefully check the sign
conventions used in that source.

Remark A.3.25 (functoriality of the tensor product). Let C,C ′ ∈ Ob(RCh), let
D,D′ ∈ Ob(ZCh), and let f ∈ Mor

RCh(C,C ′) und g ∈ MorZCh(D,D′). Then

f ⊗R g : C ⊗Z D −→ C ′ ⊗Z D
′

c⊗ d 7−→ f(c)⊗ g(d)

yields a well-defined chain map in RCh.

As next step, we model the inclusions of the bottom and the top of cylin-
ders in the algebraic setting.

Definition A.3.26 (algebraic model of inclusion of top/bottom of cylinders).
Let C ∈ Ob(RCh). Then, we define the R-chain maps (check!)

i0 : C −→ C ⊗Z I

Ck 3 c 7−→ (c, 0, 0) ∈ Ck ⊕ Ck−1 ⊕ Ck ∼=R (C ⊗Z I)k

i1 : C −→ C ⊗Z I

Ck 3 c 7−→ (0, 0, c) ∈ Ck ⊕ Ck−1 ⊕ Ck ∼=R (C ⊗Z I)k.

Under the correspondence indicated in Figure A.5, these chain maps are an
algebraic version of the geometric inclusions of bottom and top, respectively.

Remark A.3.27. Let C,D ∈ Ob(RCh) and let f, g ∈ Mor
RCh(C,D). A chain

map h : C ⊗Z I −→ D in RCh with h ◦ i0 = f and h ◦ i1 = g corresponds to
a family (h̃k ∈ Mor

RMod(Ck, Dk+1))k∈Z satisfying

∂Dk+1 ◦ h̃k = h̃k−1 ◦ ∂Ck + (−1)k · gk − (−1)k · fk

(Figure A.6) for all k ∈ Z. This last equation can be rewritten as

∂Dk+1 ◦ (−1)k · h̃k + (−1)k−1 · h̃k−1 ◦ ∂Ck = gk − fk.
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(C ⊗Z I)k+1 =

Ck+1

⊕
Ck

⊕
Ck+1

= (C ⊗Z I)k

Ck

⊕
Ck−1

⊕
Ck

Dk+1 Dk

∂Ck+1

∂Ck+1

∂Ck+1

−(−1)k

(−1)k

∂Dk+1

fk+1 ⊕ h̃k ⊕ gk+1 fk ⊕ h̃k−1 ⊕ gk

Figure A.6.: discovering the notion of chain homotopy

Therefore, one defines the notion of chain homotopy (and related terms)
as follows:

Definition A.3.28 (chain homotopy, null-homotopic, contractible). Let C,D ∈
Ob(RCh).

• Chain maps f, g ∈ Mor
RCh(C,D) are chain homotopic (in RCh), if there

exists a sequence h = (hk ∈ Mor
RMod(Ck, Dk+1))k∈Z with

∂Dk+1 ◦ hk + hk−1 ◦ ∂Ck = gk − fk

for all k ∈ Z. In this case, h is a chain homotopy from f to g (in RCh),
and we write f '

RCh g.

• A chain map f ∈ Mor
RCh(C,D) is a chain homotopy equivalence

(in RCh), if there exists a chain map g ∈ Mor
RCh(D,C) with

g ◦ f '
RCh idC and f ◦ g '

RCh idD .

We then write C '
RCh D.

• Chain maps that are (in RCh) chain homotopic to the zero map are
null-homotopic (in RCh).

• The chain complex C ist contractible (in RCh), if idC is null-homotopic
in RCh (equivalently, if C is chain homotopic to the zero chain complex).
Homotopies in RCh from idC to the zero map are also called chain
contractions (in RCh).

Example A.3.29. Let C ∈ Ob(RCh). Then i0 'RCh i1 : C −→ C⊗ZI (check!).
Moreover, we consider the chain map
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p : C ⊗Z I −→ C

Ck ⊕ Ck−1 ⊕ Ck 3 (c0, c, c1) 7−→ c0 + c1 ∈ Ck

in RCh. Then p ◦ i0 = idC and i0 ◦ p 'RCh idC⊗RI . Hence, C '
RCh C ⊗Z I, as

we would expect from topology.

Proposition A.3.30 (basic properties of chain homotopy).

1. Let C,D ∈ Ob(RCh) and let f, f ′, g, g′ ∈ Mor(RCh) with f '
RCh f

′ and
g '

RCh g
′. Then, we have

a · f + b · g '
RCh a · f ′ + b · g′

for all a, b ∈ R.

2. Let C,D ∈ Ob(RCh). Then “'
RCh” is an equivalence relation on the

morphism set Mor
RCh(C,D).

3. Let C,D,E ∈ Ob(RCh), let f, f ′ ∈ Mor
RCh(C,D) and let g, g′ ∈

Mor
RCh(D,E) with f '

RCh f
′ and g '

RCh g
′. Then, we have

g ◦ f '
RCh g

′ ◦ f ′.

4. Let C,D ∈ Ob(ZCh), let Z ∈ Ob(RMod), and let f, f ′ ∈ MorZCh(C,D)
mit f 'ZCh f

′. Then,

Z ⊗Z f 'RCh Z ⊗Z f
′.

5. Let C,C ′ ∈ Ob(RCh), D,D′ ∈ Ob(ZCh), and let f, f ′ ∈ Mor
RCh(C,C ′),

g, g′ ∈ MorZCh(D,D′) with f '
RCh f

′ and g 'ZCh g
′. Then

f ⊗Z g 'RCh f
′ ⊗Z g

′.

Proof. All these properties follow via straightforward calculations directly
from the definitions (check!).

In particular, we can pass to the corresponding homotopy category:

Definition A.3.31 (homotopy category of chain complexes). The homotopy cat-
egory of left R-chain complexes is the category RChh consisting of:

• objects: Let Ob(RChh) := Ob(RCh).

• morphisms: For all left R-chain complexes C, D, we set

[C,D] := Mor
RChh

(C,D) := Mor
RCh(C,D)

/
'
RCh .

• compositions: The compositions of morphisms are defined by ordinary
(degree-wise) composition of representatives.
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As mentioned before, a key property of homology of chain complexes is
homotopy invariance in the following sense:

Proposition A.3.32 (homotopy invariance of homology of chain complexes).
Let k ∈ Z. Then the functor Hk : RCh −→ RMod factors over RChh. More
explicitly: Let C,C ′ ∈ Ob(RCh) and let f, g : C −→ C ′ be R-chain maps
with f '

RCh g. Then,
Hk(f) = Hk(g).

Proof. Let h be a chain homotopy from f to g in RCh. Moreover, let z ∈
Zk(C) be a k-cycle. Then, we obtain in Hk(C ′):

Hk(f)
(
[z]
)
−Hk(g)

(
[z]
)

=
[
fk(z)− gk(z)

]

=
[
∂′k+1 ◦ hk(z) + hk−1 ◦ ∂k(z)

]
(h is a chain homotopy)

=
[
∂′k+1 ◦ hk(z) + 0

]
(z is a cycle)

= [0] (definition of Hk(C ′))

Hence, Hk(f) = Hk(g).
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Applied Algebraic Topology: Exercises

Prof. Dr. C. Löh/M. Uschold Sheet 1, October 21, 2022

Quick check A (contractibility?). Which of the following subspaces of R2 are
convex, star-shaped, contractible?

Quick check B (homotopies). Give explicit homotopies between the following
maps; visualise your homotopies via suitable illustrations:

1. [0, 1] −→ S1, x 7−→ (cosx, sinx) and [0, 1] −→ S1, x 7−→ (cosx,− sinx);

2. idS1 and S1 −→ S1, (x1, x2) 7−→ (−x2, x1);

Quick check C (motion planning on S1). Sketch a reasonable motion planning
for the state space S1 (of course, this will not be continuous!).

Quick check D (deformations of images).

1. Read/explain the statement on hashing of images in the following tweet:

https://twitter.com/marcan42/status/1428578906412437507

2. Read/learn more on hashing of images and technical and other issues
connected with it:

https://twitter.com/marcan42/status/1427896137696960513

3. Enjoy the result of the challenge:

https://twitter.com/marcan42/status/1428758281476927488

Exercise 1 (contractibility? 3 credits). Is the following statement true? Justify
your answer with a suitable proof or counterexample.

If n ∈ N and X ⊂ Rn is non-empty, path-connected, and a finite union of
star-shaped sets, then X is contractible.

Exercise 2 (spheres and stars; 3 credits). Let n ∈ N. Show directly that the
sphere Sn is not a star-shaped subset of Rn+1.
Hints. You might need to resurrect some Euclidean geometry.

Exercise 3 (convex motion planning; 3 credits). Let n ∈ N and let X ⊂ Rn be
non-empty and convex. Give an explicit continuous motion planning for X (and
prove that it has the claimed property).

Exercise 4 (compact-open topology vs. uniform convergence; 3 credits). Let X be
a compact space and let Y be a metric space. Show one of the two inclusions
of the fact that the compact-open topology on map(X,Y ) coincides with the
topology of uniform convergence.

Bonus problem (real-life homotopy; 3 credits). Find three real-life situations that
could be modelled by homotopies and explain your model.

Submission before October 28, 2022, 8:30, via GRIPS (in English or German)

The Quick checks are not to be submitted and will not be graded; they will be
solved and discussed in the exercise class on October 27, 2022.
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Prof. Dr. C. Löh/M. Uschold Sheet 2, October 28, 2022

Quick check A (Haus/Rakete des Nikolaus). Which of the following doodles can
be drawn in a single stroke (without re-drawing lines)? Can you do it in such a
way that the path closes up?

Quick check B (Eulerian cycles in infinite graphs?). Let X be an infinite connec-
ted graph, all of whose vertices have finite even degree. Does X then necessarily
contain a partial Eulerian cycle of non-zero length?

Quick check C (real-life simplicial complexes). Construct (fragments of) the sim-
plicial complexes described as follows:

• Food ingredients that taste well together.

• Pitches that sound consonantly.

• Football players that could play well on the same team.

Exercise 1 (regular polyhedra; 3 credits). Is the following statement true? Justify
your answer with a suitable proof or counterexample.

If P is a regular polyhedron, then the graph of vertices/edges of P does
not admit an Eulerian cycle.

Exercise 2 (subgraphs and connectedness; 3 credits). Let X be a finite connected
graph. Let X ′ = (V ′, E′) be a subgraph of X with V ′ 6= ∅ and

∀v∈V ′ degX′ v = degX v.

Show that X ′ = X. Illustrate your proof with suitable pictures!

Exercise 3 (Eulerian paths; 3 credits). State and prove a characterisation for the
existence of Eulerian paths in finite connected graphs! Argue efficiently!

Exercise 4 (independence! 3 credits). Let K be a field and let V be a K-vector
space. Then we consider the simplicial complex

I(V ) := {σ ∈ Pfin(V ) | σ is linearly independent over K}.
In the following, let X := I(F2

3). Justify your answers!

1. What is dimX ?

2. How many edges does X have?

3. Do there exist vertices x, y, z ∈ X(0) with {x, y}, {x, z}, {y, z} ∈ X(1) and
{x, y, z} 6∈ X(2) ?

Bonus problem (de Bruijn graphs in DNA reconstruction; 3 credits). Give a formal
definition of directed graphs. How are de Bruijn graphs in DNA reconstruction
defined? How can Eulerian paths in de Bruijn graphs help in DNA reconstruc-
tion? Do not forget to cite your sources!

Submission before November 4, 2022, 8:30, via GRIPS (in English or German)

The Quick checks are not to be submitted and will not be graded; they will be
solved and discussed in the exercise class on November 3, 2022.
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Prof. Dr. C. Löh/M. Uschold Sheet 3, November 4, 2022

Quick check A (constant maps). Let X and Y be simplicial complexes and let
y ∈ V (Y ). Show that then the constant map V (X) −→ V (Y ) with value y
indeed is a simplicial map. What is there to prove anyway?!

Quick check B (pushouts and products). Recall/Learn about the universal pro-
perty of pushouts and products in categories.

Quick check C (unions/intersections lead to pushouts). Let X and Y be simplicial
complexes. Show that the following diagram of inclusions of simplicial complexes
is a pushout diagram in SC:

X ∩ Y

��

// X

��

Y // X ∪ Y
Quick check D (simplicial maps and connectedness). Let X and Y be simplici-
al complexes and let f : X −→ Y be a simplicial map. Show that f(X) is a
subcomplex of Y and that f(X) is connected if X is connected. Compare this
connectedness result/proof with the topological case!

Exercise 1 (simplicial complexes with three vertices; 3 credits). Is the following
statement true? Justify your answer with a suitable proof or counterexample.

There exist exactly five isomorphism classes of simplicial complexes with
exactly three vertices.

Exercise 2 (simplicial products of standard simplices; 3 credits). Let n,m ∈ N.
What is ∆(n)�∆(m) ? Give a concrete description and prove your claim!

Exercise 3 (connectedness from covers; 3 credits). Let X be a simplicial complex
and let (Ui)i∈I be a family of connected subcomplexes of X with

⋃
i∈I V (Ui) =

V (X). Let N be the graph (I, {{i, j} | i, j ∈ I, i 6= j, V (Ui) ∩ V (Uj) 6= ∅}).
Show that X is connected if N is connected. Illustrate!

Exercise 4 (transitivity of contiguity? 3 credits). Let X and Y be simplicial com-
plexes. Two maps f, g : X −→ Y are contiguous if the following holds:

∀σ∈X f(σ) ∪ g(σ) ∈ Y.
Show that contiguity in general is not transitive on the set map∆(X,Y ).

Bonus problem (adjoints of the vertex functor; 3 credits). Let V : SC −→ Set be
the functor mapping simplicial complexes to the underlying set of vertices and
mapping simplicial maps to the underlying map between the sets of vertices.
Show that this functor V has both a left adjoint and a right adjoint.
Hints. There are two generic ways to convert sets into simplicial complexes with
the given set as set of vertices. These ways are the desired left/right adjoints
of V .

Submission before November 11, 2022, 8:30, via GRIPS (in English or German)

The Quick checks are not to be submitted and will not be graded; they will be
solved and discussed in the exercise class on November 10, 2022.
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Quick check A (Čech triangle). LetX ⊂ R2 be the vertices of a regular Euclidean
triangle of side length 1. Compute and illustrate Čε(X,R2, d2) for all ε ∈ R>0.

Quick check B (a non-triangulable space). Show that {1/n | n ∈ N>0} ∪ {0} is
not triangulable (with respect to the subspace topology of R).

Quick check C (finiteness leads to compactness). Let X be a finite simplicial
complex. Show that |X| is compact.

Exercise 1 (open simplices? 3 credits). Is the following statement true? Justify
your answer with a suitable proof or counterexample.

If X is a simplicial complex and σ ∈ X, then
{
ξ ∈ |σ|

∣∣ ∀x∈σ ξx > 0
}

is
open in |X|.

Exercise 2 (simplices via open stars; 3 credits). Let X be a simplicial complex
and let σ ⊂ V (X) be a finite non-empty subset. Show that σ is a simplex of X
if and only if

⋂
x∈σ star◦X x 6= ∅.

Exercise 3 (Rips complexes are flag; 3 credits). Look up the notion of flag sim-
plicial complexes and prove that Rips complexes are flag.
Hints. Add the definition of “flag” that you use and add a reference for it.

Exercise 4 (small data; 3 credits). Pick four locations in Regensburg, two north of
the Danube and two south of the Danube. Compute the Rips complexes of these
four points with respect to the metrics “shortest way by car” and “shortest way
on foot” for all radii. Add documentation/maps for your distance calculations.

Bonus problem (random Rips complexes; 3 credits). Write a program that gene-
rates pictures of Rips complexes of 20 random (uniformly distributed) points on
the boundary of the square [−1, 1]×[−1, 1] with respect to the Euclidean metric.
Display five samples, each with the radii 0.3, 0.9, 1.8. Explain your approach to
the program.

Submission before November 18, 2022, 8:30, via GRIPS (in English or German)

The Quick checks are not to be submitted and will not be graded; they will be
solved and discussed in the exercise class on November 17, 2022.
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Quick check A (barycentric counting). Let n ∈ N. How many vertices does the
iterated subdivision sd2 ∆(2) have?

Quick check B (simplicial approximation and compositions). Show that composi-
tions of simplicial approximations are simplicial approximations of the compo-
sition.

Quick check C (approximating triple wrapping). Give an N ∈ N and a simplicial
approximation sdN S(1) −→ S(1) of “the” map |S(1)| −→ |S(1)| wrapping three
times around the circle.

Quick check D (real-world triangulations). Give a real-world example, where
triangulations are used to approximate geometric objects.

Exercise 1 (counting homotopy classes? 3 credits). Is the following statement
true? Justify your answer with a suitable proof or counterexample.

If X is a countable simplicial complex, then [|X|, |X|] is (at most) coun-
table.

Exercise 2 (triangulating the torus; 3 credits). Give an example of a simplicial
complex X such that |X| is homeomorphic to the torus S1 × S1.
Hints. Give a precise specification of X. It is not necessary to give a formal
proof that |X| is homeomorphic to S1 × S1; it is sufficient to give pictures and
explanations that make it plausible.

 

Exercise 3 (simplicial approximation and barycentric subdivision; 3 credits). Let X
be a simplicial complex. Show that then the barycentric subdivision homeomor-
phism βX : | sdX| −→ |X| admits a simplicial approximation.
Hints. Choose a total ordering on V (X) (you may use this without proof),
then go for the minimum.

Exercise 4 (the nerve map; 3 credits). Let Z be a paracompact topological space,
let U = (Ui)i∈I be an open cover of Z, and let ϕ = (ϕi)i∈I be a paritition of
unity on Z that is subordinate to U . Show that the nerve map

νϕ : Z −→
∣∣N(U)

∣∣

ζ 7−→
∑

i∈I
ϕi(ζ) · ei

is well-defined and continous. Moreover, show that if νϕ′ is another partition of
unity on Z subordinate to U , then νϕ ' νϕ′ .

Bonus problem (measurability of Čech-realising a given space; 3 credits). Let Z
be a topological space, let n,N ∈ N, and let ε ∈ R>0. Show that the subset

{
x ∈ (RN )n

∣∣ ∣∣Čε({x1, . . . , xn},RN , d2)
∣∣ ' Z

}

of (RN )n is measurable (with respect to the Borel σ-algebra).

Submission before November 25, 2022, 8:30, via GRIPS (in English or German)

The Quick checks are not to be submitted and will not be graded; they will be
solved and discussed in the exercise class on November 24, 2022.
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Quick check A (medial axis, condition number). Compute the medial axis and
the condition number of the subset S1∪2·S1 ⊂ R2 (with respect to the Euclidean
metric).

Quick check B (components). Compute the connected components of the sim-
plicial complex

{
∅, {0}, . . . , {5}, {0, 2}, {0, 3}, {0, 5}, {1, 4}, {2, 5}, {0, 2, 5}

}
via

the algorithm discussed in the lecture. Illustrate!

Quick check C (homological algebra). Refresh your memory on chain complexes,
homology, chain maps, and chain homotopy. We will briefly recall these terms
in the lectures, but this is an additional opportunity to ask questions.

Exercise 1 (condition numbers; 3 credits). Is the following statement true? Justify
your answer with a suitable proof or counterexample.

If M , N are closed smooth submanifolds of R2 with M ∩N = ∅, the the
condition number of M ∪ N is the minimum of the condition numbers
of M and N .

Exercise 2 (number of components, algorithmically; 3 credits). Provide an al-
gorithm that, given a finite simplicial complex X, computes the number of
connected components of X. Explain your implementation model of simplicial
complexes and prove that your algorithm is correct.
Hints. You may base this on algorithmic material from the lecture or start
from scratch.

Exercise 3 (degrees of vertices, algorithmically; 3 credits). Provide an algorithm
that, given a finite simplicial complexX and a vertex x ofX computes the degree
of x in the graph determined by the vertices and 1-simplices of X. Explain your
implementation model of simplicial complexes and prove that your algorithm is
correct.

Exercise 4 (null-homotopic maps of spheres; 3 credits). Let m,n ∈ N with m < n.
Show that every continuous map Sm −→ Sn is null-homotopic.
Hints. Use ? to show that every continuous map Sm −→ Sn is homotopic to a
map that is not ??. Then apply the ??? to conclude.

Bonus problem (implementation; 3 credits each). Implement these algorithms in
your favourite programming language (document your code appropriately!):

1. Computation of connected components of finite simplicial complexes, using
the union-find framework.

2. Computation of the number of connected components of finite simplicial
complexes as in Exercise 2.

3. Computation of degrees of vertices in finite simplicial complexes as in
Exercise 3.

Submission before December 2, 2022, 8:30, via GRIPS (in English or German)

The Quick checks are not to be submitted and will not be graded; they will be
solved and discussed in the exercise class on December 1, 2022.
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Quick check A (simplicial homology of simplicial intervals). Compute Hn([0, N ]∆)
for all n,N ∈ N.

Quick check B (simplicial homology of the hollow square). Compute the simplicial
homology (in all degrees) of the following simplicial complex:

Quick check C (simplicial homology of not so hollow squares). Compute the sim-
plicial homology (in all degrees) of the following simplicial complexes:

Exercise 1 (trivial simplicial homology; 3 credits). Is the following statement true?
Justify your answer with a suitable proof or counterexample.

There exists an infinite simplicial complex X that satisfies Hn(X) ∼=Z 0
for all n ∈ N>0.

Exercise 2 (simplicial homology of the simplicial 2-sphere; 3 credits). Compu-
te Hn(S(2)) for all n ∈ N.

Exercise 3 (simplicial homology of the simplicial Möbius strip; 3 credits). Give a
triangulation of the (closed) Möbius strip and compute the simplicial homology
of this simplicial complex. Illustrate!

Exercise 4 (simplicial homology in degree 0; 3 credits). Let X be a finite simplicial
complex with m connected components. Show that H0(X) ∼=Z Zm.

Bonus problem (custom-made simplicial complex; 3 credits). Give an example of
a finite simplicial complex X with

H0(X) ∼=Z Z and H1(X) ∼=Z Z/2022 and H2022(X) ∼=Z Z.

Prove that your example does have this property!

Bonus problem (Nikolausaufgabe; 3 credits). The Blorx Building Trust once mo-
re has won the bid to construct the Haus des Nikolaus. The construction turned
out to be cheap, but also somewhat lacking: Blorx only delivered the set

{
(0, 0), (1, 0), (1, 1), (0, 1), (0.5, 2)

}
⊂ (R2, d2)

of vertices, the brand-new Čech-Complex-ConstructorTM, and the instruction:
Setting the radius appropriately will maximise your homological experience!

Which radii lead to the biggest (in terms of rank) simplicial homology of the
corresponding Čech complexes in degree 1 ? Justify your answer!

Submission before December 9, 2022, 8:30, via GRIPS (in English or German)

The Quick checks are not to be submitted and will not be graded; they will be
solved and discussed in the exercise class on December 8, 2022.
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The Python library simplicial (“Simplicial topology in Python”) and its docu-
mentation are available at https://simplicial.readthedocs.io/en/latest/index.html.

Quick check A (Mayer–Vietoris sequence). Compute Hn(S(2)) for all n ∈ N
inductively via the Mayer–Vietoris sequence, starting from a 2-simplex and then
adding one 2-simplex at a time.

S(2)

Quick check B (Smith normal form). Compute the Smith normal form (over Z)
of the following matrix: 


2 3 7 1
3 1 −2 1
1 0 2 3




Quick check C (algorithmic computation of simplicial homology). Compute the
F2-Betti numbers of the simplicial complexes on Sheet 7, using the simplicial
library for Python.

Exercise 1 (simplicial homology of unions; 3 credits). Is the following statement
true? Justify your answer with a suitable proof or counterexample.

If X and Y are finite simplicial complexes, then

b2(X ∪ Y ;Z) = b2(X;Z) + b2(Y ;Z)− b2(X ∩ Y ;Z).

Exercise 2 (homology of simplicial spheres; 3 credits). Let d ∈ N>0. Compute the
homology Hn(∆(d+ 1), S(d)) for all n ∈ N directly from the definition. Use this
result to compute Hn(S(d)) for all n ∈ N.

Exercise 3 (an alternating sum of binomial coefficients via homology; 3 credits).
Let d ∈ N. Use the computation of Hn(∆(d)) for all n ∈ N to show that

d+1∑

k=1

(−1)k−1 ·
(
d+ 1

k

)
= 1,

Exercise 4 (barycentric subdivision in the Python library simplicial; 3 credits).
What does the method SimplicialComplex.barycentricSubdivide(simplex) from the
Python library simplicial do? Give a mathematical definition of this subdivision.
Illustrate!

Bonus problem (simplicial products in Python; 3 credits). Write a Python method
that computes the simplicial product of two finite simplicial complexes. Use
this method to compute the F2-Betti numbers of S(1) � ∆(0), S(1) � ∆(1),
S(1)� S(1), and S(1)� S(2). Document your code!

Submission before December 16, 2022, 8:30, via GRIPS (in English or German)

The Quick checks are not to be submitted and will not be graded; they will be
solved and discussed in the exercise class on December 15, 2022.
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Quick check A (simplicial homology of continuous maps). Let X be a finite sim-
plicial complex and let n ∈ N. Determine Hn(βX) : Hn(sdX) −→ Hn(X).

Quick check B (self-maps of the circle I). Let ϕ : |S(1)| −→ |S(1)| be the map
“wrapping the simplicial circle around itself twice”. Give a precise description
of ϕ and compute H1(ϕ) : H1(S(1)) −→ H1(S(1)).

Quick check C (self-maps of the circle II). Does every continuous map S1 −→ S1

have a fixed point?

Quick check D ( Lefschetz ?). Reflect about the question whether there exists a
finite simplicial complex X and a continuous map ϕ : |X| −→ |X| that has a
fixed point and satisfies Λ(ϕ;K) = 0 for all fields K.

Exercise 1 (self-maps of spheres; 3 credits). Is the following statement true?
Justify your answer with a suitable proof or counterexample.

If f : S2022 −→ S2022 is a continuous map, then f2022 has a fixed point.

Exercise 2 (Lefschetz number of chain maps; 3 credits). Let K be a field and
let C be a chain complex over K that has only finitely many non-zero chain
modules and such that each chain module is finite-dimensional. Let f : C −→ C
be a chain map. Show that

∑

n∈N
(−1)n · trHn(f) =

∑

n∈N
(−1)n · tr fn.

Hints. Choose convenient bases.

Exercise 3 (Sperner’s lemma; 3 credits). Derive the classical version of Sperner’s
lemma from the manifold version.
Hints. Show the case of dimension 1 by hand. Then, proceed by induction.
You may use without proof: If (X,ϕ) is a subdivision of ∆(n), then X is an
n-pseudomanifold with boundary.

Exercise 4 (piece of cake; 3 credits). What is the Simmons–Su protocol for envy-
free cake division? Explain the terminology, the protocol, and the role of Sper-
ner’s lemma.
Hints. Don’t forget to cite your sources!

Bonus problem (graph-theoretic proof of Sperner’s lemma; 3 credits). Give a
homology-free proof of Sperner’s lemma for manifolds by considering the du-
al graph (plus an “external” vertex) and shaking hands.

Submission before December 23, 2022, 8:30, via GRIPS (in English or German)

The Quick checks are not to be submitted and will not be graded; they will be
solved and discussed in the exercise class on December 22, 2022.
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Quick check A (consensus). Draw the input complex for 3-process consensus
on {0, 1}. Which 2-simplices may occur in the image of the task map?

Quick check B (prisoner’s dilemma). Look up the prisoner’s dilemma. Formalise
this as a 2-person game. Does this game have pure Nash equilibria? Interpret!

Quick check C (mapping degrees for self-maps of the preference complex). Let X
be the preference complex in the proof of Arrow’s theorem and let g : X −→ X
be a simplicial map. Show that then g = d · idH1(X) with d ∈ {−1, 0, 1}.

Exercise 1 (unanimity and dictators; 3 credits). Let n ∈ N≥2, let A be a finite
set with #A ≥ 3, and let P be the set of total orders on A. Is the following
statement true? Justify your answer with a suitable proof or counterexample.

If f : Pn −→ P has a dictator, then f satisfies unanimity.

Exercise 2 (the simplicial aggregation map; 3 credits). In the proof of Arrow’s
theorem, show that the map F : V ′ −→ V obtained from the aggregation
map f : P 2 −→ P indeed defines a simplicial map X ′ −→ X.

Exercise 3 (“games”; 3 credits). We consider the two-person games described
by the following payoff functions:

À

Á
L R

L

R

1

1

−1

−1

−1

−1
1

1

À

Á
L R

L

R

1
−1

−1

1

−1

1

1
−1

How can the left one be interpreted as “evasion on a narrow road” and the right
one as “penalty kick”? Do these games have pure Nash equilibria? Justify your
answer!

Exercise 4 (Nash equilibria; 3 credits). Let G = (S0, . . . , Sn, p0, . . . , pn) be an
(n+ 1)-person game and let ξ ∈ S(G). Show that ξ is a Nash equilibrium for G
if and only if

∀j∈{0,...,n} pj(ξ) = max
α∈Sj

pj
(
ξ[j : α]

)
.

Bonus problem (social choice checking; 3 credits). Write a program that gi-
ven n ∈ N, a finite set A, the set P of total orders on A, and a map f : Pn −→ P
checks which of the properties “unanimity”, “independence of irrelevant alter-
natives”, “existence of a dictator” are satisfied by f . Document your code and
apply your program to interesting examples.

Please turn over



Bonus problem (simplicial star; 3 credits). Construct a simplicial complex X
that resembles a “nice” “star” shape; the simplicial complex X should have a
simplicial automorphism group with more than 20 elements and H1(X) should
be non-trivial. Illustrate your complex!

Bonus problem (Lefschetz fixed point theorem; 3 credits). Write a poem contai-
ning the statement and proof of the Lefschetz fixed point theorem.

Bonus problem (approximate agreement; 3 credits). Look up what the appro-
ximate agreement task is in distributed computing. Formalise this task via a
suitable input complex, output complex, and task map.

Bonus problem (homology of preferences; 3 credits). For the simplicial com-
plex X ′ in the proof of Arrow’s theorem, use a computer program to com-
pute Hn(X ′;F2) for all n ∈ N. Document your code/solution!

Submission before January 13, 2023, 8:30, via GRIPS (in English or German)

The Quick checks are not to be submitted and will not be graded; they will be
solved and discussed in the exercise class on January 12, 2023.
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Quick check A (simplicial homology: summary). Recall the construction of sim-
plicial homology, different strategies for the computation of simplicial homology,
and applications of simplicial homology.

Quick check B (long-term persistence?). Let X ⊂ RN be a finite set, let (εn)n∈N
be an increasing sequence in R>0 with limn→∞ εn = ∞. What can be said
about bi,jk (X, d2, ε∗) for “large” j ?

Quick check C (the graded ring Z[T ]). Show that not every homogeneous ideal
(i.e., generated by homogeneous elements) in Z[T ] is principal. Here, we consider
the grading of Z[T ] given by the usual degree of polynomials.

Quick check D (elementary divisors). Determine the elementary divisors of the
Z-module Z/(2)⊕ Z/(3)⊕ Z/(9)⊕ Z/(81)⊕ Z/(25)⊕ Z/(25).

Exercise 1 (filtrations from functions; 3 credits). Is the following statement true?
Justify your answer with a suitable proof or counterexample.

If X is a finite simplicial complex and f : X −→ N is a map, then the
preimages sequence (f−1({0, . . . , n}))n∈N are a filtration of X.

Exercise 2 (persistent Betti numbers; 3 credits). Let X be the following subset
of R2:

1 2

Let ε∗ := (0.1, 1.1, 2.1, 100, 101, 102, . . . ). Compute the persistent Betti num-
bers bi,j1 (X, d2, ε∗;Q) for all (i, j) ∈ {(1, 1), (1, 2), (1, 3)}.
Exercise 3 (homogeneous elements; 3 credits). Let R be a graded principal ideal
domain. Show one of the following:

1. If f, g, h ∈ R with f = g · h and f 6= 0 is homogeneous, then g and h are
homogeneous.

2. If M is a graded R-module and x ∈M is homogeneous, then the annihil-
ator Ann(x) := {f ∈ R | f · x = 0} is a principal ideal that is generated
by a homogeneous element of R.

Exercise 4 (sensor networks; 3 credits). Give an example of a sensor network that
does not satisfy the sufficient coverage condition, but such that the network still
covers the whole fenced region.

Bonus problem (zigzag persistence; 3 credits). What is zigzag persistence? What
is the structure theorem for zigzag persistence and on which theory is it based?
As always: Cite all sources!

Submission before January 20, 2023, 8:30, via GRIPS (in English or German)

The Quick checks are not to be submitted and will not be graded; they will be
solved and discussed in the exercise class on January 19, 2023.
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Quick check A (barcodes). Draw a “random” (or not) finite set of points in R2.
What barcodes (over Q) you would expect for a given sequence of radii?

Quick check B (graded modules). Let K be a field and let M be a finitely
generated graded torsion K[T ]-module. What can be said about (T + 1) ·M ?

Quick check C (barcodes and disjoint unions). How can the barcode of persistent
homology of the disjoint union of two filtered finite simplicial complexes be
computed from the individual barcodes?

Exercise 1 (persistent Betti numbers; 3 credits). Let K be a field and let (C∗, f∗)
be a persistence K-chain complex of finite type. Let i, j ∈ N with i ≤ j and
let k ∈ N. Is the following statement true? Justify your answer with a suitable
proof or counterexample.

If b
(i,j)
k (C∗, f∗) = 0, then b

(i+2022,j)
k (C∗, f∗) = 0.

Exercise 2 (graded structure; 3 credits). Let ϕ :
⊕6

j=1 ΣjF2[T ] −→⊕5
j=1 ΣjF2[T ]

=: F be the homomorphism of graded F2[T ]-modules given by the matrix



1 T T 2 T 3 T 4 0
0 0 T 0 T 3 T 4

0 0 0 0 T 2 T 3

0 0 0 1 0 T 2

0 0 0 0 1 T



.

Determine a graded decomposition of F/ imϕ as in the structure theorem.

Exercise 3 (persistent eight; 3 credits). We consider the following finite subset
of R2 and ε∗ := (n · ε′)n∈N, where ε′ is roughly the minimal distance bet-
ween any of the two points. What do you expect for the barcode of the Rips
complexes Rε∗(X, d2) (connected by inclusion) with Q-coefficients? Justify your
answer!

Exercise 4 (persistent Betti numbers from barcodes; 3 credits). How can the per-
sistent Betti numbers be computed from the barcodes of persistent homology?
Formulate a precise statement and provide a proof.

Bonus problem (applications of persistent homology; 3 credits). Find three rese-
arch papers that describe (different) applications of persistent homology outside
of mathematics and appeared after 2017.

Submission before January 27, 2023, 8:30, via GRIPS (in English or German)

The Quick checks are not to be submitted and will not be graded; they will be
solved and discussed in the exercise class on January 26, 2023.
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Quick check A (homogeneous matrix reduction via rows). Formulate a row-
version of the homgeneous matrix reduction. Explain how to read off elementary
divisors and graded module decompositions from the result.

Quick check B (persistent homology). Compute the barcode of persistent ho-
mology in degree 1 over a field of the following three-step filtration of ∆(2):

Exercise 1 (empty barcodes; 3 credits). Let K be a field and let (C∗, f∗) be
a persistence K-chain complex of finite type with Cnk 6∼= 0 for all n ∈ N,
k ∈ {0, . . . , 2023}. Is the following statement true? Justify your answer with
a suitable proof or counterexample.

There exists a k ∈ N such that the barcode for persistent homology
of (C∗, f∗) in degree k is non-empty.

Exercise 2 (persistent homology; 3 credits). Compute the barcode of persistent
homology in degree 1 over a field of the following four-step filtration:

Exercise 3 (persistent homology, reverse engineering; 3 credits). Give a filtration
of a simplicial complex with four vertices whose persistent homology in degree 1
over Q has the barcode (1, 4), (2, 2), (2, 0). Justify your answer!

Exercise 4 (a modified homogeneous matrix reduction algorithm; 3 credits). Show
that the following algorithm results in a reduced graded matrix. How can one
read off a graded decomposition for

⊕r
j=1 ΣnjK[T ]/ imA from the resulting

matrix ? Justify your answer!
Given a fieldK, numbers r, s ∈ N, monotonically increasing sequences n1, . . . , nr,
m1, . . . ,ms ∈ N, and an (n∗,m∗)-graded matrix A ∈Mr×s(K[t]), do:

• For each k from 1 up to s (in ascending order):

Let ` := lowA(k).

If ` 6= 0, then:

– For each j from ` down to 1 (in descending order):

If lowA(k) = j and there exists k′ ∈ {1, . . . , k−1} with lowA(k′) = j,
then: Update the matrix A by subtracting Ajk/Ajk′ -times the co-
lumn k′ from column k.

• Return the resulting matrix A.

Bonus problem (persistent homology, implementation; 3 credits). Use a publicly
available persistent homology library in a programming language of your choice
to solve Exercise 2 over Q or over F2. Document your code/solution!

Submission before February 3, 2023, 8:30, via GRIPS (in English or German)

The Quick checks are not to be submitted and will not be graded; they will be
solved and discussed in the exercise class on February 2, 2023.
This is the last regular exercise sheet.
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Quick check A (persistent homology: summary). Recall the definition of persis-
tent homology, the definition of barcodes, strategies for the computation, and
important properties.

Quick check B (bottleneck distance). Compute the bottleneck distance between
the following two weighted barcodes:

(0, 42), (0, 2023), (2023, 0) and (2023, 2022)

Quick check C (Gromov–Hausdorff distance). Compute the Gromov–Hausdorff
distance between the following two subsets of R2 (with the Euclidean metric):

{
(0, 0), (1, 0), (1, 1), (0, 1)

}
and

{
(0, 0), (1.1, 0), (1, 1), (0, 1)

}

Exercise 1 (stability of Betti numbers; 3 credits). Let X,Y ⊂ R2 be finite sets
(with the Euclidean metric). Is the following statement true? Justify your answer
with a suitable proof or counterexample.

Then
∣∣b1(R1(X, d2);Q)− b1(R1(Y, d2);Q)

∣∣ ≤ 2 · dGH

(
(X, d2), (Y, d2)

)
.

Exercise 2 (bottleneck distance, properties; 3 credits). Show that the bottleneck
distance defines a pseudo-metric on the set of all weighted barcodes.

Exercise 3 (Gromov–Hausdorff distance, non-degeneracy; 3 credits). Solve one of
the following:

1. Show that the Gromov–Hausdorff distance satisfies the triangle inequality.

2. Let (X, d), (X ′, d′) be finite metric spaces with dGH((X, d), (X ′, d′)) = 0.
Show that (X, d) and (X ′, d′) are isometric.

Hints. This is less obvious than it looks.

Exercise 4 (persistent homology of point clouds; 3 credits). Sketch an implemen-
tation plan for the computation of barcodes of persistent homology in degree 1
for point clouds in R2, taking the following into account: Which input is needed
and how could it be represented? How could the output be represented? Which
intermediate steps are necessary? How could one solve these intermediate steps?

Bonus problem (persistent triforce; 3 credits). Use a persistent homology library
of your choice to generate 42 random points on the lines of

and to compute the barcodes of associated Rips filtrations (with respect to
reasonable radii) in degree 1. Document your code and the results! Are the
results consistent with your expectations?

Optional submission before February 10, 2023, 8:30, via GRIPS

The Quick checks are not to be submitted and will not be graded; they will be
solved and discussed in the exercise class on February 9, 2023.
All credits on this exercise sheet count as bonus credits.
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Commander Blorx currently resides on planet Apalto, recovering from past ad-
ventures and structure theorems.

B

Problem 1 (the hourglass). While reading “Foundation”, a note drops from the
book into Blorx’s hands. The note smells of time travel and clearly says:

Of all the timeless objects,
is most simplicial and complex.

From the following instructions,
just make homology deductions:

{
∅, {0}, . . . , {4}, {0, 1} . . . , {0, 4}, {1, 2}, {2, 3}, {3, 4}, {4, 1}, {0, 1, 2}, {0, 3, 4}

}

Which of the following homology deductions are valid?

H0(| |) ∼=Z Z2 (1,−1)
H1(| |) ∼=Z Z2 (3.625, 1.875)
H2(| |) ∼=Z Z2 (−3, 1.25)

Problem 2 (to move or not to move?). Blorx is tempted to follow up on the note
– but also indulges the benefits of laziness. Thus, before taking further steps, he
develops a theory of laziness: A simplicial complex X is lazy if every continuous
map |X| −→ |X| has a fixed point. Which of the following simplicial complexes
are lazy?

∆(0) (2.3, 0.45)
S(0) (4.5, 0)
S(1) (−2, 1)
∆(2023) (6.1.3)
{∅, 0, 1, 2, {0, 1}, {0, 2}} (1.75, 2.25)

Problem 3 (structure). After completing the theory and practice of laziness,
Blorx cannot continue to resist to get hold of the hourglass . He reads the
complete library of Apalto; at least the barcodes. As a service for future readers,
he translates the barcodes:

(2, 0) 0.4 Σ0Q[T ] 3
(0,∞) 3.5 Σ2Q[T ]/(T 2) 1
(2, 1) 0.6 Σ2Q[T ]/(T ) 0

Problem 4 (manufacturing the hourglass). Finally! The book describing how to
manufacture the hourglass has the barcode (2,∞), (2,∞), (3, 0), (3, 0). For
physics reasons, only one of the following processes is possible. Which one is it?

(5.5, 1.5)

0 1 2 3 4

(5, 2.875)

0 1 2 3 4

Please turn over



Problem 5 (the Blorx molecule). To power the hourglass, Hallam’s electron pump
or the Blorx molecule is needed. Since Blorx is fresh out of tungsten, he syn-
thesises the Blorx molecule. For which of the following finite subsets X of R2 is
|R1(X, d2)| homotopy equivalent to B ?

0.5

(3.2, 4)

0.7

(2, 3.33)

0.9

(6.7, 3)

1.1

(7, 0)

Problem 6 (making the hourglass ready for export). In order to transport the
hourglass , Blorx applies a simplicial map f : −→ . What are possible out-
comes for H1(|f |) ?

0 · idH1( ) (−2, 3)
1 · idH1( ) (5, 1)
2 · idH1( ) (4.3, 2.3)
−1 · idH1( ) (−1, 1.5)

Problem 7 (Blorx evolution). The superior intellectual powers and the remar-
kable moral compass of Blorx can be explained by his genome BLORX. Which
of the following sequences could be common ancestors of BLORX, BLOBR, and
ROXOR in tree-only evolution?

BLORB (−1,−1)
BLORR (6.5,−0.2)
RLORR (4, 0.8)
ROORR (−0.125, 2.625)
LOLOL (5,−1.125)

Problem 8 (escape!). Encouraged by his moral compass, Blorx jumps into the
Sea of Tranquility and decides to leave Apalto as soon as possible with the
priceless artefact. Connect the dots using brand-new raster image processors of
type 2.023 and help Blorx to escape Apalto with a suitable vehicle!

(0, 0)

No submission
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Homepage. Information and news concerning the lectures, exercise classes, of-
fice hours, literature, as well as the exercise sheets can be found on the
course homepage and in GRIPS:

https://loeh.app.ur.de/teaching/aat ws2223

https://elearning.uni-regensburg.de

Lectures. The lectures are on Tuesdays (8:30–10:00; M104) and on Fridays
(8:30–10:00; M104).

Basic lecture notes will be provided, containing an overview of the
most important topics of the course. These lecture notes can be found
on the course homepage and will be updated after each lecture. Please
note that these lectures notes are not meant to replace attending the
lectures or the exercise classes!

According to current plans (13.10.2022): This course will be taught
on campus in person. On request, this could be turned into a hybrid
format (with live zoom streaming). Please note that there will be no
recordings of the lectures. The lectures are a precious opportunity for
live interaction and I want to keep the atmosphere as casual and un-
intimidating as possible. For asynchronous self-study, lecture notes will
be made available. Please send an email to Clara Löh in case there is a
need for the hybrid option!

Exercises. Homework problems will be posted on Fridays (before 8:30) on the
course homepage; submission is due one week later (before 8:30, via
GRIPS).

Each exercise sheet contains regular exercises (12 credits in total)
and more challenging bonus problems (3 credits each).

It is recommended to solve the exercises in small groups; however,
solutions need to be written up individually (otherwise, no credits will
be awarded). Solutions can be submitted alone or in teams of at most
two participants; all participants must be able to present all solutions
of their team.

The first exercise sheet will appear on Friday, October 21. The exer-
cise classes start in the second week.

In addition, the exercise sheets will contain simple problems that
will be solved and discussed during the exercise classes. These problems
should ideally be easy enough to be solved within a few minutes. Solu-
tions are not to be submitted and will not be graded.



Registration for the exercise classes. Please register for the exercise classes via
GRIPS:

https://elearning.uni-regensburg.de

Please register before Wednesday, October 19, 2022, 10:00.

Credits/Exam. This course can be used as specified in the commented list of
courses and in the module catalogue.

• Studienleistung : Successful participation in the exercise classes:
50% of the credits (of the regular exercises), presentation of so-
lutions in class (twice).

• Prüfungsleistung : Oral exam (25 minutes), by individual appoint-
ment at the end of the lecture period/during the break.

You will have to register in FlexNow for the Studienleistung and the
Prüfungsleistung (if applicable). Registration will open at the end of the
lecture period.

Further information on formalities can be found at:

https://www.uni-regensburg.de/mathematik/fakultaet/studium/studierende/index.html

Contact.

• If you have questions regarding the organisation of the exercise
classes or the exercises, please contact Matthias Uschold:

matthias.uschold@ur.de

• If you have mathematical questions regarding the lectures, please
contact Matthias Uschold or Clara Löh.

• If you have questions concerning your curriculum or the examina-
tion regulations, please contact the student counselling offices or
the exam office:

http://www.uni-regensburg.de/mathematik/fakultaet/studium/ansprechpersonen/index.html

• In many cases, also the Fachschaft can help:

https://www-app.uni-regensburg.de/Studentisches/FS MathePhysik/cmsms/

• Official information of the administration related to the COVID-19
pandemic can be found at:

https://go.ur.de/corona
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[48] C. Löh. Geometric Group Theory, Universitext, Springer, 2017. Cited
on page: 21
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simpliziale Modul simplicial module A.31

simplizialer Approximationssatz simplcial approximation theorem
55

simplizialer Komplex simplicial complex 27

Standardsimplex standard simplex 28
sternförmig star-shaped 7

stetig continuous A.5

T

Teilraumtopologie subspace topology A.4

Topologie topology A.2
triangulierbar triangulable 47

Triangulierung triangulation 47

U

Überdeckung cover 39, A.8

Überlagerung covering 39
Umgebung neighbourhood A.3

Untergraph subgraph 20

V

verästelt reticulate 164
Vergissfunktor forgetful functor A.17

vollständiger Graph complete graph 21

Vorzeichenkonvention sign convention A.36

W

Weg path 22, A.6
wegzusammenhängend path-connected A.6

Z

zusammenhängend connected A.7

zusammenziehbar contractible 6

Zwischenwertsatz intermediate value theorem A.6
Zykel cycle 22, A.30
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English → Deutsch

A

adjacent adjazent 20

algebraic topology algebraische Topologie 1

applied algebraic topology angewandte algebraische Topolo-

gie 1

B

barycentre Schwerpunkt 48

barycentric subdivision baryzentrische Unterteilung 48

Betti number Betti-Zahl 79

boundary Rand A.30

C

category Kategorie A.11

chain Kette A.30

chain complex Kettenkomplex A.30

chain contraction Kettenkontraktion A.37

chain homotopic kettenhomotop A.37

chain homotopy Kettenhomotopie A.37

chain homotopy equivalence Kettenhomotopieäquivalenz A.37

chain map Kettenabbildung A.31

chain module Kettenmodul A.30

closed path geschlossener Weg A.6

closed set abgeschlossene Menge A.2

closure Abschluss A.3

cochain complex Kokettenkomplex A.30

cocone Kokegel A.21

colimit Kolimes A.21

colouring Färbung 102
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compact kompakt A.8

compact-open topology kompakt-offene Topologie 8, 9
complete graph vollständiger Graph 21

cone Kegel A.21
connected zusammenhängend A.7

contiguous benachbart 35

continuous stetig A.5
contractible kontraktibel, zusammenziehbar 6

contravariant functor kontravarianter Funktor A.15

covariant functor kovarianter Funktor A.15
cover Überdeckung 39, A.8

covering Überlagerung 39

cycle Zykel 22, A.30

D

diagram chase Diagrammjagd A.29
diameter Durchmesser 41

discrete topology diskrete Topologie A.3

E

edge Kante 20

equilibrium Gleichgewicht 114
Eulerian cycle Euler-Zykel 23

Eulerian path Euler-Weg 23
exact sequence exakte Sequenz A.25

exponential law Exponentialgesetz 8

F

filtration Filtrierung 122

five lemma Fünferlemma A.27
flat module flacher Modul A.26

forgetful functor Vergissfunktor A.17

free generation functor freier Erzeugungsfunktor A.17
functor Funktor A.15

G

gamete Geschlechtszelle 164

geometric realisation geometrische Realisierung 43

graded module graduierter Modul 127
graded ring graduierter Ring 127

graph Graph 20

H

Hausdorff hausdorffsch A.8

homeomorphc homöomorph A.6
homeomorphism Homöomorphismus A.6

homological algebra homologische Algebra A.25
homology Homologie A.32

homotopic homotop 6

homotopy Homotopie 6
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homotopy category Homotopiekategorie 17, 18

homotopy equivalence Homotopieäquivalenz 6

homotopy invariant functor homotopoieinvarianter Funktor17

I

identity morphism Identitätsmorphismus A.11

incident inzident 20

interior Inneres A.3

intermediate value theorem Zwischenwertsatz A.6

inverse limit inverser Limes A.21

isomorphism Isomorphismus A.12

L

Lebgesgue Lemma Lebesgue-Lemma 55

Lefschetz number Lefschetz-Zahl 99

locally compact lokalkompakt 9

M

metric topology metrische Topologie A.2

mixed strategy gemischte Strategie 114

morphism Morphismus A.11

motion planning Bewegungsplanung 11

N

natural transformation natürliche Transformation A.18

neighbour Nachbar 20

neighbourhood Umgebung A.3

nerve Nerv 39

null-homotopic nullhomotop 6

O

object Objekt A.11

open set offene Menge A.2

orientation Orientierung 71

P

pair of spaces Raumpaar A.14

path Weg 22, A.6

path-connected wegzusammenhängend A.6

persistent homology persistente Homologie 121

point-set topology mengentheoretische Topologie A.2

product topology Produkttopologie A.4

pseudomanifold Pseudomannigfaltigkeit 103

pure strategy reine Strategie 114

R

representable functor darstellbarer Funktor A.20

represented functor dargestellter Funktor A.17
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restriction Einschränkung A.5

reticulate verästelt 164
rock-paper-scissors Schere-Stein-Papier 115

S

sequentially compact folgenkompakt A.9

short exact sequence kurze exakte Sequenz A.25
sign convention Vorzeichenkonvention A.36

simplcial approximation theorem simplizialer Approximationssatz55

simplex Simplex 27
simplex category Simplexkategorie A.14

simplicial chain simpliziale Kette 72

simplicial complex simplizialer Komplex 27
simplicial map simpliziale Abbildung 30

simplicial module simpliziale Modul A.31

standard simplex Standardsimplex 28
star-shaped sternförmig 7

subgraph Untergraph 20

subspace topology Teilraumtopologie A.4

T

topology Topologie A.2

triangulable triangulierbar 47

triangulation Triangulierung 47
trivial topology Klumpentopologie A.3

V

vertex Ecke 27

vertex Knoten 20



Index

A

A1-homotopy theory, 11
adjacent, 20
adjoint functor, B.4
algebraic topology, 1

applied, 2
algorithm

barcode, 143, 149
Betti number, 89, 90
connected components, 66, B.7
degree, B.7
homogeneous matrix reduction,

137, 148, B.15
homology, 89, 90, B.9
homology of a graded matrix,

141
persistent homology, 143, 144,

146, 149, B.15
simplicial homology, 90, 91
sparse homogeneous matrix re-

duction, 148
union-find, B.7

application
approximate agreement, B.11
Arrow’s theorem, 110
consensus, 105
DNA reconstruction, 26, B.3

envy-free division, 103, B.10
evolution, 162
exploring multi-dimensional data,

167
horizontal evolution, 162
motion planning, 11
Nash equilibrium, 114
persistent homology, B.14
sensor network coverage, 117,

B.13
set agreement, 105
shape from data, 62
Simmons–Su protocol, 103, B.10
social choice, 110
the seven bridges of Königs-

berg, 22
applied algebraic topology, 2
approximate agreement, 109, B.11
arcwise connected, see path-connected
array, 146
Arrow’s impossibility theorem, 110,

B.11

B

ball, 7
barcode, 134, B.14

algorithm, 143, 149
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bottleneck distance, 158, 159,
B.16

multiset, 157
persistent Betti number, 135
persistent Betti numbers, B.14
persistent homology, 134
Wasserstein distance, 160
weighted, 158, B.16

barycentre, 49
barycentric subdivision, 48, B.6

functoriality, 48
geometric realisation, 49
mesh size, 52
simplicial homology, 93, 94

Betti number, 79
algorithm, 89, 90
lack of stability, 161
persistent, 124

big data, 38
binomial coefficients, B.9
birth, 125
Blorx, B.17
bottleneck

matching, 158
bottleneck distance, 158, B.16

properties, 159
boundary, 74, 103, A.3
bounded vs. compact, A.9
brigdes of Königsberg, 23
Brouwer fixed point theorem, 101,

103, 105

C

category, A.11
discrete, A.22
homotopy category, 17, 18
isomorphism, A.12
morphisms, A.11
objects, A.11
of Abelian groups, A.13
of all categories, A.16
of chain complexes, A.31
of finite metric spaces, 155
of graded modules, 128
of groups, A.13

of modules, A.13
of pairs of spaces, A.14
of sets, A.12
of topological spaces, A.13
of vector spaces, A.13
simplex, A.14
simplicial complexes, 31

Cayley graph, 21
Čech complex, 40, B.5

random, B.6
chain, A.30

simplicial, 72
chain complex, A.30

category, A.31
homology, A.32
homotopy category, A.38
of simplicial modules, A.31
simplicial, 71, 73
tensor product, A.31

chain contraction, A.37
chain homotopic, 84
chain homotopy, 84, A.37

basic properties, A.38
genesis, A.34

chain homotopy equivalence, A.37
chain map, A.31

Lefschetz number, 100, B.10
chain module, A.30
chromatic carrier map, 106
chromatic simplicial complex, 106
class, A.12
closed

vs. compact, A.9
closed star, 46
closed subset, A.2
closure, A.3
cochain complex, A.30
colimit, A.21

examples, A.22
of sets, A.23
uniqueness, A.22

collision detection, 58
colouring, 102

rainbow simplex, 102
Sperner, 102
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compact, A.8
product, A.10
subspace of Rn, A.9
vs. bounded, A.9
vs. closed, A.9

compact-Hausdorff trick, A.10
compact-open topology, 8, 9, B.2
complete graph, 21
complex

simplicial, 27
composition of simplicial maps, 30
computer graphics, 58
concatenation, 13
condition number, 59, B.7
cone, A.21
connected, A.7

graph, 22
simplicial complex, 31

connected components, 64, 66
connecting homomorphism, A.33
connecting the dots, 39
consensus, 105, 106, B.11
constant simplicial map, 30
contiguous, 35, B.4

simplicial approximation, 53
continuous, A.5

glueing principle, A.6
inheritance, A.5

continuous map
Lefschetz number, 99, B.10

contractible, 6, 11
chain complex, A.37

contractible space, B.2
contravariant functor, A.15
correspondence, 156

distortion, 156
covariant functor, A.15
cover

cover
Čech complex, 40

nerve, 39
nerve map, B.6
Rips complex, 41

currying map, 9
CW-structure, 47

cycle, 74, A.30
Eulerian, 23, B.3
Hamiltonian, 25
in a graph, 22
reduced, 22

D

data exploration, 167
death, 125
decision map, 107
deformation of images, B.2
degree, 113, B.11

of a vertex in a graph, 20
de Bruijn graph, B.3
de Rham cohomology, A.30
diagram, A.21

examples, A.22
diagram chase, A.29
diameter, 41
dictator, 110
dimension

monotonicity, 30
of a simplicial complex, 27

discrete category, A.22
discrete topology, A.3
distortion, 156
distributed system, 105
DNA reconstruction, 26, B.3
drie halen, twee betalen, A.34
dual graph, 103

E

Earth
motion planning, 15

edge, 20
incident, 20

Eilenberg–Zilber theorem, A.35
elder rule, 125
endpoints map, 12
envy-free division, 103, B.10
equality, 3
equilibrium, 114
Eulerian cycle, 23, B.3

existence, 24
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Eulerian path, 23, B.3
evasion on a narrow road, B.11
evolution, 162

influenza, 165
reassortment, 165
SARS-CoV-2, 166

exact arithmetic, 87
exact sequence, A.25

homology, A.32
short, A.25
split, A.26

exploring multi-dimensional data,
167

exponential law, 8

F

fenced region, 118
filtration, 122, B.13

persistent homology, 144
spectral sequence, 124

find, 64
finite

graph, 20
finite element method, 58
finite metric space, 155
finite multiset, 157
finite simplicial complex, 29

geometric realisation, B.5
finite type, 123
five lemma, A.27
flat module, A.26
forgetful functor, A.17
four gamete test, 164
free generation functor, A.17
Freyd–Mitchell embedding theorem,

A.25
functor, A.15

barycentric subdivision, 48
composition, A.16
contravariant, A.15
covariant, A.15
forgetful, A.17
free generation, A.17
geometric realisation, 44
homology, A.32

homotopy invariant, 17, 18
identity, A.16
preserves isomorphism, A.18
representable, A.20
represented, A.17
simplicial chain complex, 75
tensor product, A.18

G

game, 114
evasion on a narrow road, B.11
mixed strategy, 114
Nash equilibrium, 114, B.11
payoff function, 114
penalty kick, B.11
prisoner’s dilemma, B.11
pure strategy, 114
rock-paper-scissors, 115
utility function, 114

generalised maximum principle, A.9
generated simplicial complex, 29
genotype, 162
geometric realisation, 43, 44, B.6

barycentric subdivision, 49
functor, 44
point cloud, 59
topology, 43, 44

glueing principle for continuous maps,
A.6

graded matrix, 136
homology algorithm, 141

graded module, 127, B.14
category, 128
homomorphism, 128
persistence module, 128
shift, 128
structure theorem, 128, 130

graded PID
structure theorem, 128, 130

graded ring, 127, B.13
graded module, 127
polynomial ring, 127

graph, 20
adjacent, 20
as simplicial complex, 28
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Cayley graph, 21
complete, 21
connected, 22
cycle, 22
degree, 20
de Bruijn, B.3
edge, 20
Eulerian cycle, 23, B.3
Eulerian path, 23, B.3
finite, 20
incident, 20
isomorphis, 22
neighbour, 20
partial Eulerian cycle, 23
partial Eulerian path, 23
path, 22
regular, 21
social, 21
subgraph, 20
vertex, 20

Gromov–Hausdorff distance, 153,
155, B.16

correspondences, 156
properties, 156
theory, 156

group
Cayley graph, 21

H

Hamiltonian cycle, 25
Haus des Nikolaus, B.3
Hausdorff, A.8
Hausdorff distance, 153

properties, 155
Heine-Borel (theorem), A.9
homeomorphism, A.6

sufficient condition, A.10
homogeneous matrix reduction, B.15

sparse, 148
homogeneous matrix reduction al-

gorithm, 137
homological algebra, A.25, B.7
homology

algebraic homotopy equivalence,
A.39

algorithm, 89, 90
algorithmically, A.32
and exactness, A.32
Betti number, 79
functor, A.32
of a chain complex, A.32
persistence, 125
persistent, 121, 124
simplicial, 69, 76, 79
simplicial sphere, B.9

homology class
birth, 125
death, 125
persistence, 125

homomorphism
graded modules, 128

homotopic, 6
homotopy, 5, 6, B.2

elementary properties, 9
generalisations, 11
homology, 97, 98
of chain maps, A.37
simplicial, 34
simplicial approximation, 56
straight-line, 54

homotopy category, 18
of chain complexes, A.38
of simplicial complexes, 36
of spaces, 17

homotopy equivalence, 6
of chain complexes, A.37

homotopy invariance, 5, A.34
of homology of chain complexes,

A.39
simplicial homology, 84, 86,

93, 97, 98
homotopy invariant, 17
homotopy invariant functor, 17, 18
homotopy type

triangulable spaces, 57
horizontal evolution, 162
hourglass, B.17

I

identity functor, A.16
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identity morphism, A.11
image

deformation, B.2
implementation

connected components, B.7
simplicial complex, 63
simplicial homology, 86
union-find, 65

incident, 20
incompatible food triad, 36
index persistence, 125
indiscrete topology, A.3
influenza, 165
input complex, 107
interior, A.3
intersection of simplicial complexes,

32
inverse limit, A.21

examples, A.22
of sets, A.23
uniqueness, A.22

irrelevant alternatives, 110
isometric embedding, 155
isomorphism, A.12

and functors, A.18
natural, A.18
of graphs, 22
of simplicial complexes, 31

L

Lebesgue number, 56
Lefschetz fixed point theorem, 99,

B.11
Lefschetz number, 99, B.10

chain map, 100, B.10
lemma

Lebesgue lemma, 55
nerve lemma, 61

Library, 4
limit, see inverse limit
linked list, 146
list, 146
local feature size, 59
locally compact, 9
long exact sequence

homology (algebraic), A.33
long exact sequence of pairs, 83, 84

M

make-set, 64
make-sets, 64
manifold

pseudomanifold, 103
smooth, 47

manifold protocol, 108
map

continuous, A.5
currying, 9
simplicial, 30

map of multisets, 157
mapping space, 8
matching, 158
matrix

graded, 136
reduced, 136
Smith normal form, 87
sparse, 87, 147

matrix reduction
persistent homology, 143

matrix reduction algorithm, 137
Mayer–Vietoris sequence, 80, 82,

B.9
algebraic, A.29

medial axis, 59, B.7
mesh, 58
metric space

tree-like, 164
metric topology, A.2
mixed strategy, 114
model

bridges of Königsberg, 23
evolutionary tree, 162
incomaptible food triad, 37
motion planning, 12
robot arm, 15
voting preferences, 37

modelling, 2
module

flat, A.26
graded, 127
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Monsky’s theorem, 103
morphism, A.11

identity, A.11
motion planning, 11, 12, 15, B.2

continuity, 12
convex case, 14
Earth, 15

MRI, 39
multiset, 157

finite, 157
map, 157
multiplicity, 157
subset, 157

N

Nash equilibrium, 114, B.11
existence, 115

natural, A.19
natural isomorphism, A.18
natural transformation, A.18
neighbour, 20
neighbourhood, A.3
nerve, 39

of open stars, 46
nerve lemma, 61
nerve map, B.6
non-triangulable, 47
null-homotopic, 6, B.7

chain map, A.37

O

object, A.11
open cover

nerve, 39
open neighbourhood, A.3
open star, 46, B.5

nerve, 46
open subset, A.2
opposite orientation, 72
ordered simplex, 71
orientation, 71

opposite, 72
oriented simplex, 71
output complex, 107

P

pair of spaces, A.14
pair sequence, 83
partial Eulerian cycle, 23
partial Eulerian path, 23
path, A.6

boring, 11
concatenation, 13
Eulerian, 23, B.3
in a graph, 22
in a simplicial complex, 31
reduced, 22

path compression, 66
path space, 12
path-connected, A.6
path-space, 13
payoff function, 114
penalty kick, B.11
persistence

weighted, 125
persistence chain complex, 123

finite type, 123
persistence diagram, 159
persistence module, 123, 160

barcode, 134
finite type, 123
graded module, 128
structure theorem, 134

persistence of a homology class,
125

persistent Betti number, 124, B.13
barcode, 135, B.14

persistent homology, 121, 124, B.15
algorithm, 143, 144, 146, 149
applications, B.14
barcode, 134, B.14
birth, 125
death, 125
elder rule, 125
in degree 0, 146
library, 151
noise, 153
of a filtration, 144
persistence, 125
persistence diagram, 159
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points on circles, 151, 153
stability, 153, B.16
stability theorem, 160, 161
tree-like metric space, 164
zigzag, B.13

phenotype, 162
phylogenetic tree, 163
point cloud, 39

barcode, 158
geometric realisation, 59
Gromov–Hausdorff distance, 153,

155
MRI, 39
persistent Betti number, 124
persistent homology, 124, 125
weighted barcode, 158

point-removal trick, A.7
point-set topology, A.2
polynomial ring

graded, 127
preferences, 37
prisoner’s dilemma, B.11
problem

bridges of Königsberg, 23
consensus, 106
equilibria in games, 114
incompatible food triad, 36
motion planning, 11
sensor network coverage, 117
set agreement, 106
shape from data, 62
travelling salesman, 25
voting preferences, 37, 110

product topology, A.4
compactness, A.10

protocol, 107
complex, 107
decision map, 107
manifold, 108
solves, 107

protocol map, 107
pseudomanifold, 103

boundary, 103
dual graph, 103

pure strategy, 114

pushout, B.4
simplicial complex, 32

R

rainbow simplex, 102
random Čech complex, B.6
random Rips complex, B.5
random sampling, 59
reassortment, 165
reduced cycle, 22
reduced matrix, 136
reduced path, 22
References, 4
regular graph, 21
regular polyhedra, B.3
relative simplicial chain complex,

82
relative simplicial homology, 82
rendering, 58
representable functor, A.20

and inverse limits, A.20
represented functor, A.17
ring

graded, 127
Rips complex, 41

filtration, 122
random, B.5

Rips filtration, 122
robot arm, 15
rock-paper-scissors, 115

S

sampling theorem, 59
SARS-CoV-2, 166
sensor network, 117

fenced region, 118
shadow map, 118

sensor network coverage, 117, 118,
B.13

sequence
exact, A.25
long exact homology sequence,

A.33
Mayer–Vietoris, A.29
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short exact, A.25
split exact, A.26

sequentially compact, A.9
set agreement, 106
shadow map, 118
shaped diagram, A.21
shifted graded module, 128
short exact sequence, A.25

split, A.26
Simmons–Su protocol, 103, B.10
simplex, 27

barycentre, 49
ordered, 71
orientation, 71
oriented, 71
spanned, 28
standard, 28
via open stars, 46

simplex category, A.14
simplicial approximation, 54, B.6

contiguous, 53
homotopic, 54
homotopy, 56
simplicial homology, 95, 96

simplicial approximation theorem,
55

simplicial boundary, 74
simplicial chain, 72
simplicial chain complex, 71, 73

functoriality, 75
relative, 82

simplicial circle
simplicial homology, 77

simplicial complex, 27
barycentric subdivision, 48, B.6
Betti number, 79
boundary, 74
category, 31
chain complex, 71, 73
chromatic, 106
closed star, 46
colouring, 102
connected, 31, B.4
connected components, 64, 66
CW-structure, 47

cycle, 74
dimension, 27
empty, 28
filtration, 122
finite, 29
generated, 29
geometric realisation, 43, 44,

B.6
graph, 28
homology, 69, 76, 79, B.8
homotopy category, 36
identity map, 30
implementation, 63
intersection, 32
isomorphism, 31
open star, 46, B.5
path, 31
preferences, 37
product, B.4
pushout, 32, B.4
relative chain complex, 82
relative homology, 82
simplicial chain, 72
simplicial homotopy, 34, 36
simplicial product, B.9
subcomplex, 27
union, 32
voting preferences, 37

simplicial cycle, 74
simplicial homology, 69, 76, B.8

algorithm, 90, 91, B.9
barycentric subdivision, 93, 94
Betti number, 79
continuous map, 95, 96
degree 0, 79
functoriality, 76, 77
homotopy invariance, 93, 97,

98
long exact sequence of pairs,

83, 84
Mayer–Vietoris sequence, 80,

82, B.9
of triangulable spaces, 98
relative, 82
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simplicial approximation, 95,
96

simplicial circle, 77
simplicial homotopy invariance,

84, 86
simplicial sphere, 85
standard simplex, 78, 85
universal coefficient theorem,

80
with coefficients, 79

simplicial homotopy, 34, 36
homology, 84, 86
topological homotopy, 56

simplicial isomorphism, 31
simplicial map, 30

composition, 30
connectedness, B.4
constant, 30
contiguous, 35
degree, 113, B.11
geometric realisation, 44
identity, 30
isomorphism, 31

simplicial module, A.31
simplicial product, B.9
simplicial set, 34
simplicial sphere, 28

homology, B.9
simplicial homology, 85

simplicial star, B.11
simplicially homotopic, 34
small data, B.5
small diagram, A.21
Smith normal form, 87
smooth manifold

triangulable, 47
social choice, 110, B.11
social graph, 21
space

contractible, B.2
topological, A.2

spanned simplex, 28
sparse homogeneous matrix reduc-

tion, 148
sparse matrix, 147

spectral sequence, 124
Sperner colouring, 102
Sperner’s lemma, 102, 105, B.10

for manifolds, 104
sphere, 7

null-homotopic maps, B.7
simplicial, 28

split exact sequence, A.26
stability

persistent homology, 153
stability theorem, 160, 161
standard simplex, 28

simplicial homology, 78, 85
standard topology

on Rn, A.3
star

closed, 46
open, 46

star condition, 54
star-shaped, 7
straight-line homotopy, 54
strategy

mixed, 114
pure, 114

structure theorem
for persistence modules, 134

structure theorem for graded mod-
ules, 128, 130

subcomplex, 27
subdivision, 102
subgraph, 20
submanifold

condition number, 59
local feature size, 59
medial axis, 59

subset of multisets, 157
subspace topology, A.4

T

task, 107
consensus, 106
set agreement, 106
solved by protocol, 107

task map, 107
tensor product, A.18
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chain complex, A.31
of chain complexes, A.35

theorem
approximate agreement, 109
Arrow’s impossibility theorem,

110, B.11
Brouwer fixed point theorem,

101, 103, 105
Eilenberg–Zilber, A.35
Eulerian cycles, 24
existence of Nash equilibria,

115
five lemma, A.27
Freyd–Mitchell, A.25
handshake lemma, 21
Heine-Borel, A.9
homotopy invariance, 97, 98
Lebesgue lemma, 55
Lefschetz fixed point theorem,

99, B.11
long exact sequence of pairs,

83, 84
Mayer–Vietoris sequence, 80,

82, B.9
Monsky, 103
motion planning, 12
nerve lemma, 61
sampling theorem, 59
sensor network coverage, 118
simplicial approximation, 55
simplicial homotopy invariance,

84, 86
Sperner’s lemma, 102, 105, B.10
Sperner’s lemma for manifolds,

104
stability theorem for persis-

tent homology, 160, 161
structure theorem for graded

modules, 128, 130
structure theorem for persis-

tence modules, 134
Tychonoff, A.10
universal coefficient theorem,

80
Yoneda, A.19

thick sphere, 8
topological complexity, 15
topological data analysis, 38
topological space, A.2

compact, A.8
connected, A.7
Hausdorff, A.8
locally compact, 9
non-metrisable, A.8
pair, A.14
path-connected, A.6
triangulable, 47
triangulation, 47

topology, A.2
compact-open, 8
discrete, A.3
indiscrete, A.3
induced by a metric, A.2
point-set, A.2
product, A.4
subspace, A.4
trivial, A.3

travelling salesman problem, 25
tree

phylogenetic, 163
tree-like metric space, 164
triangulable, 47, B.5

non-example, 47
smooth manifold, 47

triangulable space
homotopy types, 57

triangulation, 47
trick

compact-Hausdorff, A.10
removal of a point, A.7

trivial topology, A.3
TSP, see travelling salesman prob-

lem
Tychonoff’s Theorem, A.10

U

unanimity, 110
undecidable problems, 68
uniform convergence, 8, B.2
union, 64
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union of simplicial complexes, 32
union-find, 64, 65
unit interval

algebraic model, A.35
universal coefficient theorm, 80
universal property, A.22

colimit, A.21
inverse limit, A.21

utility function, 114

V

vertex, 20, 27
adjacent, 20
degree, 20

vertex functor
adjoints, B.4

Vietoris–Rips complex, see Rips
complex

virus
influenza, 165
SARS-CoV-2, 166

voting preferences, 37

W

Wasserstein distance, 160
weighted barcode, 158, B.16
weighted persistence, 125
wild sinus, A.7

Y

Yoneda Lemma, A.19

Z

zigzag persistence, B.13
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