Seminar zur Algebraischen Geometrie I

Prof. Dr. S. Bosch/Dr. C. Löh

Blatt 3 vom 27. Oktober 2008

Thema 1 (Abgeschlossene Punkte in Spektren). Sei R ein Ring.

- 1. Zeigen Sie, dass jede nichtleere abgeschlossene Teilmenge von SpecR einen abgeschlossenen Punkt enthält.
- 2. Folgern Sie: Eine offene Menge in Spec R, die alle abgeschlossenen Punkte von Spec R enthält, stimmt bereits mit Spec R überein.

Thema 2 (Die affine Gerade). Sei R ein (nullteilerfreier) Hauptidealring. Im folgenden studieren wir den topologischen Raum $\mathbb{A}^1_R := \operatorname{Spec} R[X]$, die sogenannte affine Gerade über R. Die kanonische Inklusion $R \longrightarrow R[X]$ induziert eine stetige Abbildung $\pi : \mathbb{A}^1_R \longrightarrow \operatorname{Spec} R$, deren "Fasern" wir genauer beschreiben wollen:

- 1. Die Fasern über abgeschlossenen Punkten: Zeigen Sie: Ist $x \in \operatorname{Spec} R \{0\}$, so bildet die von $R[X] \longrightarrow R/\mathfrak{p}_x[X]$ induzierte Abbildung $\mathbb{A}^1_{R/\mathfrak{p}_x} \longrightarrow \mathbb{A}^1_R$ den Raum $\mathbb{A}^1_{R/\mathfrak{p}_x}$ bijektiv auf die Faser $\pi^{-1}(x)$ ab.
- Die Faser über dem Nullideal: Zeigen Sie: Ist K := Q(R) der Quotientenkörper von R, so bildet die von R[X] → K[X] induzierte Abbildung A¹_K → A¹_R den Raum A¹_K bijektiv auf π⁻¹(0) ab.
 Daher wird jedes von Null verschiedene Primideal in π⁻¹(0) von einem Polynom der Form f = c₀ · Xⁿ + c₁ · Xⁿ⁻¹ + ··· + c_n ∈ R[X] erzeugt, wobei ggT_R(c₀,...,c_n) = 1 ist und f in K[X] irreduzibel ist.
- 3. Elemente von \mathbb{A}^1_R : Schließen Sie daraus, dass alle Primideale von R[X] von der folgenden Form sind:
 - 0 (p) für ein Primelement $p \in R$
 - (p, f) für ein Primelement $p \in R$ und ein normiertes $f \in R[X]$, dessen Bild in R/(p)[X] irreduzibel ist
 - (f) für ein Polynom wie in Teil 2.

Beschreiben Sie für $x \in \mathbb{A}^1_R$ die Menge $V(\mathfrak{p}_x)$.

4. Veranschaulichung von \mathbb{A}^1_R : Illustrieren Sie dies in den Fällen $R = \mathbb{Z}$ bzw. R = K[Y], wobei K ein Körper ist; zeichnen Sie insbesondere auch die zugehörigen Bilder (Mumford: The red book of varieties and schemes (Examples II.1.E/H), Hartshorne: Algebraic Geometry (Example II.2.3.4)).

Thema 3 (Neilsche Parabel). Sei K ein Körper und $A:=K[X,Y]/(Y^2-X^3)$, d.h. Spec A beschreibt die semikubische Parabel " $y^2=x^3$ " in der Ebene K^2 .

- 1. Zeigen Sie, dass die Ringe A und K[X] nicht isomorph sind.
- 2. Zeigen Sie, dass die topologischen Räume $\operatorname{Spec} A$ und $\operatorname{Spec} K[X]$ homöomorph sind.

 $\mathit{Hinweis}.\;$ Betrachten Sie den Ringhomomorphismus $f\colon A\longrightarrow K[X],$ der durch

$$\begin{split} f \colon A &\longrightarrow K[X] \\ 1 &\longmapsto 1 \\ \overline{X} &\longmapsto X^2 \\ \overline{Y} &\longmapsto X^3 \end{split}$$

gegeben ist. Die induzierte Abbildung ${}^a\!f\colon\operatorname{Spec} K[X]\longrightarrow\operatorname{Spec} A$ ist ein Homö
omorphismus:

- Zeigen Sie, dass af bijektiv ist, indem Sie zeigen, dass die Einschränkung ${}^af|\colon {}^af^{-1}(U)\longrightarrow U$ von af über $U:=D_A(\overline{X})$ bijektiv ist.
- Zeigen Sie, dass die Abbildung af abgeschlossen ist, indem Sie zeigen, dass die Zariski-abgeschlossenen Mengen von Spec A endlich oder ganz Spec A sind.

Besprechung am 5. November 2008