## **Differential Geometry I: Week 8**

Prof. Dr. C. Löh/AG Ammann

December 17, 2020

**Reading assignment** (for the lecture on December 23). We now let connections and Riemannian metrics interact. In particular, we will formulate the *funda-mental theorem of Riemannian geometry* (sounds important!).

- Recall the concept of tensor bundles of the tangent bundle (Chapter 1.2.4)
- Read Chapter 2.3.1 Connections on tensor bundles.
- Recall the notion of *Lie brackets* of vector fields.
- Read Chapter 2.3.2 *The Levi-Civita connection* until Theorem 2.3.17 (without proof).

The technicalities of the proofs of the alternative characterisations of compatibility of a connection with a metric and of symmetry are a good opportunity to practice the various notions and constructions, but they are not that important in the long run. Thus, for now, it is sufficient to have a quick glance at these computations.

I wish you a restful Christmas break and a good start into the year 2021!

Reading assignment (for the lecture on January 7). Welcome back!

- Recall the terms Riemannian manifolds, connections, geodesics, and parallel transport.
- Recall the defining properties of the Levi-Civita connection.
- Read the rest of Chapter 2.3.2 The Levi-Civita connection.
- Read (the beginning of) Chapter 2.4.1 The Riemannian curvature tensor.

Next week, we will study first properties of the Riemannian curvature tensor and its siblings.

**Étude** (decrypting differential geometry). Find the correct bijection between terms (with the "obvious" implicit meaning of all symbols) and descriptions!

| $\nabla_{E_i} E_j = \sum_k \Gamma_{ij}{}^k \cdot E_k$                                                                       | Riemannian metric of the hyperbolic halfspace model    |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| $\sum_{\ell} (\Gamma_{ki}{}^{\ell} \cdot g_{\ell j} + \Gamma_{kj}{}^{\ell} \cdot g_{i\ell}) = E_k(g_{ij})$                  | parallel transport equation                            |
| $\frac{4}{1-\ x\ _2^2} \cdot \sum_i^n (\mathrm{d}  x^i)^2$                                                                  | compatibility of a connection with a Riemannian metric |
| $x^{k\prime\prime} + \sum_{i} \sum_{j} x^{i\prime} \cdot x^{j\prime} \cdot \Gamma_{ij}^{k} \circ (x^{1}, \dots, x^{n}) = 0$ | zero                                                   |
| $X^{k\prime} + \sum_{i} \sum_{j} X^{i} \cdot \gamma^{j\prime} \cdot \Gamma_{ij} \circ \gamma = 0$                           | defining equation for connection coefficients          |
| $\frac{2020}{2021} \cdot (g_{ij} - g_{ji})$                                                                                 | geodesic equation                                      |

**Exercises** (for the session on January 11/12). The following exercises (which all are solvable with the material read/discussed in week 7) will be discussed.

Please turn over

**Exercise 7.1** (reparametrising geodesics). Let M be a smooth manifold with a linear connection  $\nabla$  and let  $\gamma \colon \mathbb{R} \longrightarrow M$  be a smooth curve. Which of the following statements are in this situation always true? Justify your answer with a suitable proof or counterexample.

- 1. If  $\gamma$  is a geodesic with respect to  $\nabla$ , then also  $t \mapsto \gamma(-2020 \cdot t)$  is a geodesic with respect to  $\nabla$ .
- 2. If  $\gamma$  is a geodesic with respect to  $\nabla$ , then also  $t \mapsto \gamma(t^{2020})$  is a geodesic with respect to  $\nabla$ .

**Exercise 7.2** (maximal geodesics; Corollary 2.2.24). Let M be a smooth manifold with a linear connection  $\nabla$  and let  $x \in M$ .

1. Show that for each  $v \in T_x M$  there exists a unique maximal geodesic  $\gamma \colon I \longrightarrow M$  with  $0 \in I^\circ$  and

$$\gamma(0) = x$$
 and  $\dot{\gamma}(0) = v$ 

2. Let  $y \in M$  with  $x \neq y$ . Can it happen that there are two different maximal geodesics  $\gamma, \eta: I \longrightarrow M$  with  $\gamma(0) = x = \eta(0)$  and  $\gamma(1) = y = \eta(1)$ ? Justify your answer with a suitable proof or counterexample!



**Exercise 7.3** (connections via parallel transport; Corollary 2.2.35). Let M be a smooth manifold with a linear connection  $\nabla$ , let  $X, Y \in \Gamma(T M)$ , and let  $x \in M$ . Moreover, let  $\gamma: I \longrightarrow M$  is a smooth curve in M with  $0 \in I$  and

$$\gamma(0) = x$$
 and  $\dot{\gamma}(0) = X(x)$ ,

Show that

$$(\nabla_X Y)(x) = \lim_{h \to 0} \frac{P_{h,0}^{\gamma}(Y(\gamma(h)) - Y(x))}{h}.$$

**Exercise 7.4** (geodesics and parallel transport). On  $\mathbb{R}^3$ , we consider the linear connection  $\nabla$  that is given by

$$\begin{aligned} \nabla_X X &= 0 & \nabla_Y X = -Z & \nabla_Z X = Y \\ \nabla_X Y &= Z & \nabla_Y Y = 0 & \nabla_Z Y = -X \\ \nabla_X Z &= -Y & \nabla_Y X = X & \nabla_Z Z = 0 \end{aligned}$$

in terms of the standard coordinate frame (X, Y, Z) of T  $\mathbb{R}^3$ .

- 1. Show that the maximal geodesics with respect to  $\nabla$  are exactly the constant speed affine lines.
- 2. We consider  $\gamma \colon \mathbb{R} \longrightarrow \mathbb{R}^3, t \longmapsto (t, 0, 0)$ . Compute the parallel transport  $P_{0,1}^{\gamma} \colon \mathrm{T}_{\gamma(0)} \mathbb{R}^3 \longrightarrow \mathrm{T}_{\gamma(1)} \mathbb{R}^3$  and illustrate the result suitably!

## Bonus problem (SageMath).

- 1. Install SageMath (https://www.sagemath.org).
- 2. Use SageMath to compute the connection coefficients of the Euclidean linear connection on  $\mathbb{R}^2$  with respect to polar coordinates and document the individual steps.

Submission before January 7, 2021, 10:00, via email to your tutor.