
ProofLab:

A Short Introduction to

Formalising Mathematics in Lean

Seminar on Simplicial Topology

Wintersemester 2021/22

Clara Löh
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The Lean proof assistant

Proof assistants allow us to formalise mathematical statements and to verify
formalised mathematical proofs.

The Lean proof assistant uses type theory as foundation; we quickly explain
how one can formalise statements and proofs in this setup.

We then practice basic proof techniques in Lean by formalising simple
examples of properties of maps.

This is a very minimalistic introduction to Lean “for the working mathe-
matician”. In particular, we will not explain the underlying dependent type
theory and we will not give a systematic introduction to all concepts and
programming paradigms available in Lean. More information on Lean can be
found in the standard Lean introduction [1] and in the Lean documentation [5].
For dependent types, there is a step-by-step introduction available [3].

Overview of this chapter.

1.1 Proof assistants 2
1.2 Foundations 3
1.3 Proofs 4
1.4 First examples 5
1.E Exercises 17
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1.1 Proof assistants

Proofs are an essential part of Mathematics and the formal, objective concept
of proof distinguishes Mathematics from most other sciences.

• What is important about proofs? Correctness!

• What is interesting about proofs? The underlying ideas.

Unfortunately, many conventional pen-and-paper proofs contain small (or
substantial) inaccuracies or gaps. Most of these problems can be fixed; how-
ever, it would be beneficial for readers if there was an a priori guarantee for
correctness.

• What is a proof assistant?

A proof assistant is a programming language together with a corre-
sponding interpreter/compiler that allow us to formalise mathematical
objects and facts; this includes definitions, theorems, proofs, and ex-
amples. The main task of a proof assistant is not to find proofs, but to
check proofs for correctness. Proof assistants can thus provide certifi-
cates for correctness (based on the assumption that the proof assistant
in itself is correct).

• Why do we need proof assistants?

Proof assistants help to detect and avoid mistakes. Moreover, indirectly,
they also lead to a better overall understanding of mathematical con-
nections and in the long run will lead to more systematic and structured
ways to generalise results to new contexts. In addition to applications
in theoretical Mathematics, proof assistants are used in the analysis of
complex processes, systems, and algorithms in Computer Science and
in industrial applications.

• Why aren’t proof assistants used by default by all mathematicians?

As of today, the formalisation of mathematical theories in proof as-
sistants is still more cumbersome than on paper (because one has to
be much more precise and careful . . . ). As soon as a critical mass of
mathematical basics is formalised, this will change. There are several
ongoing projects in this direction [11] and so there is hope that in the
not too distant future proof assistants are more widely used, both in
research and in teaching.

One of the big challenges is to use proof assistants in such a way that
the formalisation is not only easy to check by the interpreter/compiler,
but also comprehensible for human readers: The beauty of Mathematics
does not lie in complicated technical details, but in the underlying ideas.
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Another difficulty is more subtle: Formalisation in a proof assistant re-
quires a solid understanding of formalisation and foundations. In par-
ticular, one has to understand to which extent the logical foundations of
the proof assistant coincide with the intended mathematical meaning.
In this course, we will ignore this delicate point.

• Which proof assistants are in use?

There are many proof assistants; currently, the most popular ones are
Coq, Isabelle, Lean, . . . . In this course, we will use Lean [5, 1].

• Why Lean?

The proof assistant Lean is an active and dynamically developing
project; the Lean community already created many mathematical li-
braries and Lean is used in several ambitious formalisation projects in
Mathematics. Moreover, Lean offers a convenient web interface that
allows to experiment with Lean without a proper installation.

1.2 Foundations

The formalisation of Mathematics consists of the following components:

• a universe of objects,

• a language of logic,

• a concept of proof,

• and usually a meta language (in which all of this is formulated).

The fact that these different levels interact with each other in various ways
makes it challenging to give a complete and rigorous treatment of foundations
of Mathematics.

In classical pen-and-paper proofs, we usually work with set theory (e.g.,
ZFC or NBG), with a classical logic (but there are also other interesting
choices!), and a proof calculus that enables us to decompose, construct, and
recombine logical statements.

Lean is based on type theory instead of set theory, offers a choice between
classical and intuitionistic logic, and the proof calculus is based on the Curry–
Howard isomorphism (a correspondence between proofs and implementations
of terms/functions with suitable types; Section 1.3).

Caveat 1.2.1. Thus, strictly speaking, statements formalised in Lean do not
necessarily have the same meaning as their pen-and-paper counterparts (even
though they might look “equal”); for our applications, these subtle differences
will not be relevant.
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1.3 Proofs

Proofs derive statements from axioms and hypotheses via deduction rules.
The central deduction rule in mathematical proofs is modus ponens:

If statement A is proved and if the implication A =⇒ B is proved, then
it follows that also B is proved.

The Curry–Howard isomorphism identifies

• statements with types and

• proofs of statements with elements of the corresponding type.

Under this translation, modus ponens corresponds to function application:

Given an element of type A and a function A −→ B, we obtain an
element of type B.

Hence, proofs in Lean are just implementations of functions (and also syn-
tactically look like that):

In Lean the term x : A means that x has type A. A lemma of the form
below thus says that under the hypothesis that x has type A (“satisfies A”),
then deep_lemma of x has type ϕ x (i.e., ϕ x is “satisfied”). Usually, ϕ x is a
type that represents a concrete mathematical statement (e.g., “x is prime”).

lemma deep_lemma

(x : A)

: ϕ x

:=

begin

...

end

A proof of this lemma is nothing but an implementation of a function from
the type A to another type (satisfying the constraints posed by ϕ) and this
proof is enclosed in := begin ... end.

The claim of a lemma causes that a goal (or several goals) have to be
reached. During the proof these goals are manipulated; depending on the
used deduction rules and intermediate claims, goals are resolved or new goals
are added. The proof is complete once all goals are reached.

Parts of the state remain implicit and also the implicit order can play a
role; in order to increase readability and robustness it is therefore recom-
mended to make proofs more explicit than Lean would require.
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lemma, theorem,
have, . . .

claims a statement; introduces corresponding goals;
requires a proof

show claims/solves a goal; if successful, this goal will be
removed from the active list of goals

assume introduces an identifier, as preparation for a proof
of an all-statement or an implication

use allows to prove an existence statement from an ex-
ample

rcases extracts, e.g., a witness from an existential term

cases case distinction

induction proof by induction (not only over natural numbers)

by gives a justification;
can interact with other statements or proof strate-
gies via apply, exact, simp, rw, refine, arith, . . .

calc starts a calculation

library_search,
suggest, hint

searches the libraries for ways to make progress in
the proof

sorry pretends to be a proof (useful for developing the
overall structure of a proof)

def definition

unfold unfolds a definition

let local definition

Figure 1.1.: Basic Lean vocabulary

A selection of the Lean vocabulary is collected in Figure 1.1. More details
can be found in the documentation [1, 5]. The individual steps in proofs
usually consist of the elimination or introduction of logical constructs:

• The proof of a combined statement requires an introduction (e.g., the
introduction of quantifiers or logical connectors).

• The extraction of components of combined statements requires an elim-
ination (e.g., the extraction of the components of an and-statement).

1.4 First examples

We will now practice basic proof techniques in Lean by formalising simple ex-
amples of properties of maps, such as injectivity, surjectivity, etc.. Of course,
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all these facts are available in the standard libraries; in this section, the focus
is on learning how to formulate statements and proofs in Lean.

Interactive tool 1.4.1. Try out Lean programs in a local Lean installation [6]
or in the Lean web interface [8]! For more complex projects and a more
efficient workflow, a local installation is highly recommended.

Many Lean proofs in current libraries or other Lean code will only be
comprehensible when loading them into a Lean interpreter. Usually, we will
try to make all relevant steps in Lean proofs explicit enough that they can
be enjoyed and understood by humans.

1.4.1 Pen-and-paper

As a first step, we note down what we want to formulate and prove in classical
pen-and-paper style. As always, a theory consists of definitions, theorems, and
examples. Being precise and well-structured in this phase, will simplify the
formalisation step.

Definition 1.4.2 (injective). Let X and Y be sets and let f : X −→ Y be a
map. The map f is called injective if

∀x,x′∈X f(x) = f(x′) =⇒ x = x′.

Definition 1.4.3 (surjective). Let X and Y be sets and let f : X −→ Y be a
map. The map f is called surjective if

∀y∈Y ∃x∈X f(x) = y.

Definition 1.4.4 (bijective). Let X and Y be sets and let f : X −→ Y be a
map. The map f is called bijective if f is injective and f is surjective.

Proposition 1.4.5. Let X and Y be sets and let f : X −→ Y be a map. Then:

1. If f is bijective, then f is injective.

2. If f is bijective, then f is surjective.

3. If f is surjective and injective, then f is bijective.

Proof. Ad 1. Let f be bijective, i.e., f is injective and surjective. In particular,
f is injective (elimination property of and-clauses).

Ad 2. Let f be bijective, i.e., f is injective and surjective. In particular, f
is surjective (elimination property of and-clauses).

Ad 3. Let f be surjective and injective. Then, f is also injective and sur-
jective (commutativity of the logical operator “and”). Hence, f is bijective
(by definition of “bijective”).
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Proposition 1.4.6. Let X, Y , Z be sets and let f : X −→ Y , g : Y −→ Z be
maps.

1. If g ◦ f is injective, then f is injective.

2. If g ◦ f is surjective, then g is surjective.

Proof. Ad 1. Let g ◦ f be injective. Let x, x′ ∈ X with f(x) = f(x′). Then

g ◦ f(x) = g
(
f(x)

)
(by definition of ◦)

= g
(
f(x′)

)
(because f(x) = f(x′))

= g ◦ f(x′). (by definition of ◦)

Because g ◦ f is injective, it follows that x = x′. Hence, f is injective.
Ad 2. Let g ◦ f be surjective. Let z ∈ Z. Because g ◦ f is surjective, there

exists an x ∈ X with g ◦ f(x) = z. We now consider y := f(x) ∈ Y . Then,
we obtain

g(y) = g
(
f(x)

)
(by definition of y)

= g ◦ f(x) (by definition of ◦)
= z. (by the choice of z)

Hence, g is surjective.

Corollary 1.4.7. Let X be a set and let f : X −→ X be a map such that f ◦ f
is bijective. Then f is bijective.

Proof. We show that f is injective and surjective:

• The map f is injective, because: As f ◦ f is bijective, f ◦ f is injective.
Applying Proposition 1.4.6 (first part) shows that f is injective.

• The map f is surjective, because: As f ◦f is bijective, f ◦f is surjective.
Applying Proposition 1.4.6 (second part) shows that f is surjective.

As f is injective and surjective, we conclude that f is bijective.

Example 1.4.8. We consider the map

f : {1, 2, 3} −→ {1, 2, 3}
1 7−→ 1

2 7−→ 1

3 7−→ 2.

Then the map f is not injective (because f(1) = 1 = f(2) but 1 6= 2) and f
is not surjective (because 3 is not a value of f).
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Example 1.4.9. The map

g : {1, 2} −→ {1, 2}
1 7−→ 2

2 7−→ 1

is bijective: Checking all elements shows that g is both injective and surjective
and thus bijective.

1.4.2 Lean

We will now implement the material from Section 1.4.1 in Lean.

Interactive tool 1.4.10. The source code discussed in this section is available
on the course homepage

http://www.mathematik.uni-r.de/loeh/teaching/prooflab ws2122/maps.lean

You can also clone (or pull from) the course git repository; the project can
then be properly initialised via leanproject build [9].

We start with general declarations and imports:

import tactic -- standard proof tactics

open classical -- we want to work in classical logic

The definitions of injectivity, surjectivity, and bijectivity are straightfor-
ward adaptions of their pen-and-paper counterparts (Definitions 1.4.2–1.4.4).
The declarations before := are the hypotheses of the definition. We replace
sets by Lean types and maps by Lean functions. The actual definition follows
after :=. For the notions of injectivity, surjectivity, and bijectivity, these are
just the corresponding logical formulas.

/- Injectivitiy -/

def is_injective

(X : Type*)

(Y : Type*)

(f : X → Y)

:= ∀ x : X, ∀ x’ : X,

(f x = f x’) → (x = x’)

/- Surjectivity -/

def is_surjective

(X : Type*)

(Y : Type*)

(f : X → Y)

http://www.mathematik.uni-r.de/loeh/teaching/prooflab_ws2122/maps.lean
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:= ∀ y : Y,

∃ x : X, f x = y

/- Bijectivity -/

def is_bijective

(X : Type*)

(Y : Type*)

(f : X → Y)

:= (is_injective X Y f) ∧ (is_surjective X Y f)

In Lean, in logical formulas, implication is denoted by the function ar-
row → (Curry–Howard isomorphism!). Equality is denoted by = (and yields
a truth/Prop value).

As next step, we state and prove some basic inheritance properties for
injective, surjective, bijective maps (Proposition 1.4.5–Corollary 1.4.7).

The hypotheses are listed before : and the claimed conclusion after :. The
proof follows after :=; here, it is useful to recall that under the Curry–Howard
isomorphism proofs correspond to implementations of functions.

The first three lemmas correspond to Proposition 1.4.5. The first two parts
(bij_inj, bij_surj) are proved by extracting the correct parts from the
defining ∧-formula; these are elimination steps.

/- Simple inheritance properties

of injective, surjective, bijective maps-/

lemma bij_inj

(X : Type*)

(Y : Type*)

(f : X → Y)

(f_bijective: is_bijective X Y f)

: is_injective X Y f

:=

-- we extract the correct part of the and-statement

-- in the definition of is_bijective

by {exact and.elim_left f_bijective}

lemma bij_surj

(X : Type*)

(Y : Type*)

(f : X → Y)

(f_bijective: is_bijective X Y f)

: is_surjective X Y f

:=

-- we extract the correct part of the and-statement

-- in the definition of is_bijective

by {exact and.elim_right f_bijective}
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The keyword exact applies the corresponding arguments to resolve an
open goal.

The third part is proved by re-assembling the ∧-formula in the correct
order; this is an introduction/construction step.

lemma surj_inj_bij

(X : Type*)

(Y : Type*)

(f : X → Y)

(f_surjective: is_surjective X Y f)

(f_injective: is_injective X Y f)

: is_bijective X Y f

:=

-- we construct the and-statement

-- in the definition of is_bijective

-- in the correct order

by {exact and.intro f_injective f_surjective}

The lemmas inj_comp_injfirst and inj_comp_surjfirst are transla-
tions of Proposition 1.4.6; we took the liberty to shift the first part of the
If-statements into the hypotheses. In pen-and-paper proofs, such modifica-
tions are usually implicit; in Lean, all of this is explicit (but can be easily
converted into each other).

For the Lean proofs, we closely follow the pen-and-paper proofs, using
suitable Lean concepts.

/- If a composition is injective,

then the first map is injective -/

lemma inj_comp_injfirst

(X : Type*)

(Y : Type*)

(Z : Type*)

(f : X → Y)

(g : Y → Z)

(gf_injective : is_injective X Z (g ◦ f))

: is_injective X Y f

:=

begin

-- we prove the all-statement (double ∀)
-- in the definition of is_injective

assume x : X,

assume x’ : X,

-- we assume the hypothesis of the implication

-- in the definition of is_injective

assume f_xx’ : f x = f x’,

-- and then show that this implies x = x’,
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-- using injectivity of g ◦ f

have gf_xx’ : (g ◦ f) x = (g ◦ f) x’, from

calc (g ◦ f) x = g (f x) : by {simp}

... = g (f x’) : by {simp[f_xx’]}

... = (g ◦ f) x’ : by {simp},

show x = x’,

by {apply gf_injective, apply gf_xx’},

end

What happens in this proof? In order to show is_injective X Y f, we
need to establish a double ∀-statement. Such statements can be proved/con-
structed by showing the corresponding inner statement for every possible
candidate; these candidates are introduced by assume.

Inside of the double ∀-statement, we need to prove an implication. Such
an implication can be proved/constructed by assuming the left-hand side
and deriving the right-hand side; this assumption on the left-hand side is
introduced by assume and is given the name f_xx’.

We then introduce an intermediate claim via have (with the name gf_xx’),
which is proved through a calculation, as indicated by calc.

Finally, we can apply the hypothesis gf_injective and the computation
gf_xx’ to conclude that x = x’ (which is the desired right-hand side of the
implication). At this point, all goals are resolved and the proof is complete.

/- If a composition is surjective,

then the last map is surjective -/

lemma surj_comp_surjsecond

(X : Type*)

(Y : Type*)

(Z : Type*)

(f : X → Y)

(g : Y → Z)

(gf_surjective : is_surjective X Z (g ◦ f))

: is_surjective Y Z g

:=

begin

-- we prove the all-statement

-- in the definition of is_surjective

assume z : Z,

-- we use surjectivity of g ◦ f

have ex_x : ∃ x : X, (g ◦ f) x = z,

by {exact gf_surjective z},

-- we extract such a preimage

rcases ex_x with 〈 x : X, gf_x_z〉,
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-- and use it to define a g-preimage of z

let y : Y := f x,

-- we construct the existential statement

-- in the definition of is_surjective,

-- by using the example y

use y,

-- it remains to show that y indeed is a g-preimage of z

show g y = z, from

calc g y = g (f x) : by {simp}

... = (g ◦ f) x : by {simp}

... = z : by {exact gf_x_z},

end

Similarly, in order to prove the inheritance of surjectivity, we construct
the desired ∀-statement. Surjectivity of the composition gives us existence
of a preimage for the composition. To extract such a preimage from the ∃-
statement, we can use rcases to eliminate the quantifier and extract a witness
(whose defining property is named gf_x_z). Through let, we introduce a
new name y for the term f x (which will serve as the desired preimage for x
under g). To build the claimed ∃-statement, it suffices to give one suitable
example; this is introduced via use. Finally, a small calculation finishes the
proof by showing that y has the correct properties.

Also, the proof of the Lean-counterpart of Corollary 1.4.7 is a direct trans-
lation of our pen-and-paper proof:

/- If the square of a self-map is bijective,

then the self-map is bijective -/

lemma square_bij_bij

(X : Type*)

(f : X → X)

(ff_bijective: is_bijective X X (f ◦ f))

: is_bijective X X f

:=

begin

-- the map f is injective

have f_injective: is_injective X X f, from

begin

-- the composition f ◦ f is bijective, whence injective

have ff_injective,

by {exact bij_inj X X (f ◦ f) ff_bijective},

-- thus, the first map (namely f) is injective

show _,

by {exact inj_comp_injfirst X X X f f ff_injective},

end,
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-- the map f is surjective

have f_surjective: is_surjective X X f, from

begin

-- the composition f ◦ f is bijective, wehnce surjective

have ff_surjective,

by {exact bij_surj _ _ (f ◦ f) ff_bijective},

-- thus, the second map (namely f) is surjective

show _,

by {exact surj_comp_surjsecond _ _ _ f f ff_surjective

},

end,

-- thus, f is bijective

show is_bijective X X f,

by {exact and.intro f_injective f_surjective},

end

Finally, we explain how to formalise Example 1.4.8 and Example 1.4.9
in Lean. At this point, we will deviate slightly from the pen-and-paper exam-
ples: In pen-and-paper Mathematics, sets of the form {1, 2, 3} and functions
between such sets are quickly handled; however, implicitly, many statements
would require a proof: e.g., in the definition of the map f in Example 1.4.8,
it is implicit that all terms on the right-hand side indeed lie in {1, 2, 3} and
that all points in {1, 2, 3} occur exactly once on the left-hand side. All of this
can be done in Lean. However, for the purpose and the spirit of the Exam-
ples 1.4.8 and 1.4.9 it is much simpler to work with simple sum/enumeration
types instead of with sets of natural numbers.

The following type A has exactly three values, namely A_1, A_2, A_3. Func-
tions on this type can conveniently be defined by a case distinction. Similarly,
also proofs can make use of such case distinctions via cases.

/- The map {1,2,3} -> {1,2,3},

1 -> 1, 2 -> 1, 3 -> 2

is neither injective nor surjective -/

inductive A : Type

| A_1

| A_2

| A_3

def f

: A → A

| A.A_1 := A.A_1

| A.A_2 := A.A_1

| A.A_3 := A.A_2

As in Example 1.4.8, we show that this map f is neither injective nor
surjective. We follow the outline given in Example 1.4.8; however, we will
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need to be more disciplined than in the pen-and-paper version (which contains
many implicit steps).

lemma not_inj_f

: ¬ is_injective A A f

:=

begin

-- idea: f A_1 = f A_2, even though A_1 6= A_2

let x : A := A.A_1,

let x’ : A := A.A_2,

-- x and x’ are witnesses for non-injectivity:

have f_xx’_x_neg_x’ : f x = f x’ ∧ x 6= x’, from

begin

have f_xx’ : f x = f x’, by {simp[f]},

have x_neg_x’ : x 6= x’, by {finish},

show _, by {exact and.intro f_xx’ x_neg_x’},

end,

-- we move the negation to the innermost formula,

-- use x and x’ as examples for the existential quantifier,

-- and then conclude via f_xx’_x_neg_x’

show _, from

begin

unfold is_injective,

push_neg,

use x,

use x’,

exact f_xx’_x_neg_x’,

end

end

lemma not_surj_f

: ¬ is_surjective A A f

:=

begin

-- we first move the negation through the all-quantifier

refine not_forall_of_exists_not _,

show ∃ y : A, ¬(∃ x : A, f x = y), by

begin

-- we show that A_3 does not lie in the image

use A.A_3,

have A3_not_in_im : ∀ x : A, ¬ f x = A.A_3, from

begin

assume x : A,
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-- we now just consider all three cases

cases x,

case A.A_1 : {simp[f]}, -- alternatively: {finish}

case A.A_2 : {simp[f]},

case A.A_3 : {simp[f]},

end,

show _,

by {simp at *, exact A3_not_in_im}

end

end

Similarly, we can also transform Example 1.4.9 into Lean:

/- The map {1,2} -> {1,2},

1 -> 2, 2 -> 1

is bijective -/

inductive B

| B_1

| B_2

def g : B → B

| B.B_1 := B.B_2

| B.B_2 := B.B_1

lemma bij_g

: is_bijective B B g

:=

begin

-- we check injectivity and surjectivity

-- by going through all the cases

have inj_g : is_injective B B g, from

begin

assume x : B,

assume x’ : B,

assume g_xx’ : g x = g x’,

cases x,

case B.B_1 : begin cases x’, finish, finish end,

case B.B_2 : begin cases x’, finish, finish end,

end,

have surj_g : is_surjective B B g, from

begin

assume y : B,

cases y,

case B.B_1 : begin use B.B_2, finish end,

case B.B_2 : begin use B.B_1, finish end,
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end,

show _,

by {exact surj_inj_bij _ _ g surj_g inj_g}

end

Alternative proofs for not_inj_f and bij_g are developed in the Exercises
(Section 1.E).

The source code maps.lean also contains an indication of how to do these
examples with sets {1, 2, 3} and {1, 2} of natural numbers.
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1.E Exercises

Exercise 1.E.1 (the identity map). Show that the identity map is bijective.

1. Give a pen-and-paper proof of this statement.

2. Formalise this statement and its proof in Lean. The identity map (on
the type X) is given by:

def id_map

(X : Type*)

: X → X

:= λ x, x

Exercise 1.E.2 (compositions of injective maps). Show the following statement:
The composition of injective maps is injective.

1. Give a pen-and-paper proof of this statement.

2. Formalise this statement and its proof in Lean.

Exercise 1.E.3 (formalising Example 1.4.8). Let X and Y be sets and let
f : X −→ Y be a map with the following property: There exist x, x′ ∈ X
with x 6= x′ and f(x) = f(x′). Show that then f is not injective.

1. Give a pen-and-paper proof of this statement.

2. Formalise this statement and its proof in Lean.

3. Use this to give an alternative proof of lemma not_inj_f.

Exercise 1.E.4 (formalising Example 1.4.9).

1. Show that the map g from Example 1.4.9 satisfies g ◦ g = id{1,2}. How
can this be used to show that g is bijective?

2. Formalise this argument in Lean to give an alternative proof of lemma
bij_gs.

Hints. In case you need help: There is a basic source skeleton for these exer-
cises available (p. A.10; also in the course git repository):

http://www.mathematik.uni-r.de/loeh/teaching/prooflab ws2122/maps exercise.lean

http://www.mathematik.uni-r.de/loeh/teaching/prooflab_ws2122/maps_exercise.lean
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Further examples in Lean

The Lean mathlib provides a wide range of proof tactics and mathematical
libraries to simplify the task of formalising and proving mathematical state-
ments.

We will first get acquainted with basic induction proofs, using geometric
sums as example. Such proofs are very common; we will learn how to use
mathlib to solve tasks of this type.

Moreover, as a first example of other structures provided by mathlib, we
will look at a basic example in group theory.

Overview of this chapter.

2.1 Example: Induction 20
2.2 Example: Sums 23
2.3 Example: Commutators 24
2.E Exercises 28
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2.1 Example: Induction

The natural numbers are built on the induction principle. Therefore, induc-
tive definitions and inductive proofs play a prominent role in the context of
natural numbers.

We will get acquainted with basic inductive definitions and proofs (over
the natural numbers), using geometric sums as example. The goal is to give
a closed expression for the geometric sums

∑n
j=0 2j with n ∈ N.

2.1.1 Pen-and-Paper

As a first step, we note down what we want to formulate and prove in classical
pen-and-paper style.

Proposition 2.1.1. Let n ∈ N. Then

n∑
j=0

2j = 2n+1 − 1.

Proof. We prove the claim by induction on n:

• Base case. For n = 0, we obtain

n∑
j=0

2j = 20 = 1 = 20+1 − 1,

as claimed.

• Induction hypothesis. Let m ∈ N. We assume that the claim is proved
for m, i.e., that

∑m
j=0 2j = 2m+1 − 1.

• Induction step. We show that the claim then also holds for m + 1. To
this end, we calculate

m+1∑
j=0

2j =

m∑
j=0

2j + 2m+1 (by definition of
∑

)

= 2m+1 − 1 + 2m+1 (by the induction hypothesis)

= 2 · 2m+1 − 1

= 2m+1+1 − 1, (by definition of exponentiation)

as claimed.
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2.1.2 Lean

We will now implement the material from Section 2.1.1 in Lean.

Interactive tool 2.1.2. The source code discussed in this (and the next) sec-
tion is available on the course homepage

http://www.mathematik.uni-r.de/loeh/teaching/prooflab ws2122/induction.lean

You can also clone (or pull from) the course git repository.

We start with general declarations and imports; the imports finset and
big operators are only relevant for Section 2.2:

import tactic -- standard proof tactics

open finset -- for range operator

open_locale big_operators -- to enable Σ notation

open classical -- we want to work in classical logic

In order to define geometric sums, we first pretend that we don’t know
anything about the sum operators provided by mathlib (Section 2.2). Thus,
we first need to define the geometric sum at base 2 up to a given natural
number. This is an inductive definition over the natural numbers.

Before we give this inductive definition, we briefly explain how natural
numbers appear in Lean: In Lean, the inductive nature of natural numbers is
reflected in the (inductive) construction of the datatype nat:

inductive nat : Type

| zero : nat

| succ : nat → nat

In other words, the datatype nat has two constructors:

• The constructor zero (which is a constant of type nat) and

• The constructor succ (which turns natural numbers into natural num-
bers).

The Peano axioms require that zero is not the successor of any natural number
(this is guaranteed by the property that Lean constructors are injective), that
no two different natural numbers can have the same successor (again, this
is guaranteed by the injectivity of Lean constructures), and the induction
principle that all natural numbers can be reached as iterated successors of
zero (this is guaranteed by the property that the Lean declaration above also
includes that there is no other way of constructing natural numbers).

We can then define functions with arguments in nat by induction over this
structure; in the case of the geometric sums at base 2, we thus define:

http://www.mathematik.uni-r.de/loeh/teaching/prooflab_ws2122/induction.lean
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def geometric_sum

: nat → nat

| 0 := 1

| (nat.succ n) := geometric_sum n + 2^(n+1)

The Lean version of Proposition 2.1.1 then reads as follows:

lemma geometric_sum_eval

(n : nat)

: geometric_sum n = 2^(n+1) - 1

:=

As in the pen-and-paper situation, we prove this claim by induction over
the nat-argument. The induction proof is initialised with the induction

keyword; the base case and induction step are indicated by case. This syntax
already suggests that Lean induction proofs are much more general than
proofs over natural numbers: We can use induction proofs for all inductively
defined datatypes (e.g., also for the types A and B from Chapter 1.4.2).

begin

-- we prove this claim by induction (over the natural number

argument n);

-- here, m is the variable used in the induction step

-- and ind_hyp is the induction hypothesis used in the

induction step

induction n with m ind_hyp,

-- base case: 0

case nat.zero : {simp[geometric_sum]},

-- induction step: m -> m+1

case nat.succ :

begin

calc geometric_sum (m+1) = geometric_sum m + 2^(m+1)

: by {simp[geometric_sum]}

... = 2^(m+1) - 1 + 2^(m+1)

: by {simp[ind_hyp]}

... = 2^(m+1) + 2^(m+1) - 1

: by {omega}

... = 2 * 2^(m+1) - 1

: by {ring}

... = 2^(m+2) - 1

: by {ring},

end

end

Here, we used the ring tactic to perform simple calculations in rings and
the omega tactic for specifics of nat arithmetic.
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Finally, we note that our definition of geometric sums can also be used
by Lean to evaluate this function on given natural numbers, i.e., to actually
compute geometrics sums at base 2:

#eval geometric_sum 0

#eval geometric_sum 5

Thus, in contrast with pen-and-paper Mathematics, a formalisation in Lean
also can allow us to compute certain simple cases of definitions etc. to test
hypotheses.

2.2 Example: Sums

In Section 2.1.2, we considered geometric sums in Lean through an explicit
inductive definition. As sums of a variable number of summands are widely
used in Mathematics, such sums and ways to handle them are provided by
the main Lean mathematical library: mathlib.

In this section, we will consider a simple example using sums as provided
by the library big operators, which is part of mathlib.

Interactive tool 2.2.1. The source code discussed in this (and the previous)
section is available on the course homepage

http://www.mathematik.uni-r.de/loeh/teaching/prooflab ws2122/induction.lean

You can also clone (or pull from) the course git repository.
The Lean mathlib can be found at:

https://leanprover-community.github.io/mathlib-overview.html

We consider the sum
∑n

j=0 1 with n ∈ N. Using the
∑

-notation, this sum
can be written as follows:

-- using the sum operator from mathlib (big_operators)

def one_sum

: nat → nat

:= λ n : nat,

Σ (i : nat) in range n, 1

The sum notation
∑

is provided by the library big operators and range

n (which corresponds to {0, . . . , n − 1}) is provided by the library finset.
Moreover, \lambda is a constructor for (unnamed) functions.

Of course, we have
∑n

j=0 1 = n for all n ∈ N. This statement can be
formalised and proved as in the case of geometric sums in Section 2.1.2:

lemma one_sum_eval

(n : nat)

: (one_sum n = n)

http://www.mathematik.uni-r.de/loeh/teaching/prooflab_ws2122/induction.lean
https://leanprover-community.github.io/mathlib-overview.html
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:=

begin

-- we prove this claim by induction (over the natural number

argument n)

induction n with m ind_hyp,

-- base case: 0

case nat.zero : {simp[one_sum]},

-- induction step: m -> m+1

case nat.succ :

begin

calc one_sum (m+1) = Σ (i : nat) in range (m+1), 1

: by {simp[one_sum]}

... = (Σ (i : nat) in range m, 1) + 1

: by {simp}

... = m + 1

: by {simp[ind_hyp]},

end

end

Such proofs are common. Therefore, there is a suitable abstraction avail-
able, the lemma sum_range_induction (in the library big operators.basic).
How can one find out that such a lemma exists? One can either browse the
mathlib documentation [7] or one can use the tactic library_search that
searches mathlib for statements that can resolve the corresponding goal (in a
single step). As mathlib does not contain anything on our function one_sum,
we first have to unfold its definition:

begin

unfold one_sum,

-- found by library_search :)

by {exact sum_range_induction (λ (k : N), 1) (λ (n : N), n)

rfl (congr_fun rfl) n},

end

It is the objective of Exercise 2.E.3 to figure out what sum_range_induction
exactly is about and how it is proved in mathlib.

2.3 Example: Commutators

Groups are basic algebraic structures that are used in many ways. The Lean
mathlib provides a formalisation of many concepts and statements from basic
group theory (in algebra.group).
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We will experiment with these libraries by considering commutators in
groups.

2.3.1 Pen-and-Paper

As a first step, we note down what we want to formulate and prove in classical
pen-and-paper style:

Definition 2.3.1 (commutator). Let G be a group, let g, h ∈ G. The commu-
tator of g and h is defined as

[g, h] := g · h · g−1 · h−1 ∈ G.

Proposition 2.3.2. Let G, H be groups, let f : G −→ H be a group homo-
morphism, and let g, h ∈ G. Then

f
(
[g, h]

)
=
[
f(g), f(h)

]
.

Proof. We compute that

f
(
[g, h]

)
= f(g · h · g−1 · h−1

)
(definition of the commutator)

= f(g) · f(h) · f(g−1) · f(h−1) (as f is a group homomorphism)

= f(g) · f(h) ·
(
f(g))−1 ·

(
f(h)

)−1
(as f is a group homomorphism)

=
[
f(g), f(h)

]
, (definition of the commutator)

as claimed.

Proposition 2.3.3. Let G be a group, let a, b ∈ G, and let A := a−1, B := b−1.
Then, we have

[a, b]3 = [abA,BabA2] · [Bab, b2].

Proof. This is a straightforward computation: We have

[abA,BabA2] · [Bab, b2] = abA ·BabA2 · aBA · a2BAb ·Bab · b2 ·BAb ·B2

= abAB · abAB ·Aa2 ·BAbBab · b2B ·A · bB2

= [a, b] · [a, b] · a · 1 · b ·A ·B
= [a, b] · [a, b] · [a, b]
= [a, b]3,

as claimed.

The previous proposition is important in the study of stable commutator
length in groups [2].
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2.3.2 Lean

We will now implement the material from Section 2.3.1 in Lean.

Interactive tool 2.3.4. The source code discussed in this section is available
on the course homepage

http://www.mathematik.uni-r.de/loeh/teaching/prooflab ws2122/commutator.lean

You can also clone (or pull from) the course git repository.
The Lean mathlib can be found at:

https://leanprover-community.github.io/mathlib-overview.html

We start with general declarations and imports; in particular, we import
basics on groups from the mathlib library algebra.group.basic.

import tactic -- standard proof tactics

import algebra.group.basic -- basic group theory

open classical -- we want to work in classical logic

Definition 2.3.1 translates directly to Lean. In this definition, [group G]

is also an argument/hypothesis (namely that G is a group), but the square
brackets turn this into an implicit argument; this means that when applying
cmtr, we do not need to pass a proof that G is a group as explicit argument.
This unclutters notation.

def cmtr

(G : Type*) [group G]

(g : G)

(h : G)

:= g * h * g−1 * h−1

Proposition 2.3.2 can be formalised as follows:

lemma cmtr_hom

(G : Type*) [group G]

(H : Type*) [group H]

(f : monoid_hom G H) -- f is a group homomorphism

(g : G)

(h : G)

: f (cmtr G g h) = cmtr H (f g) (f h)

:=

Here, f is assumed to be a group homomorphism; as G and H are groups,
this amounts to saying that f is compatible with multplication, i.e., a monoid
homomorphism between the underlying multiplicative monoids.

http://www.mathematik.uni-r.de/loeh/teaching/prooflab_ws2122/commutator.lean
https://leanprover-community.github.io/mathlib-overview.html
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The proof is a straightforward computation, using from mathlib that f

is compatible with multiplication (mul_hom.map_mul) and compatible with
taking inverses (monoid_hom.map_inv).

begin

calc f (cmtr G g h) = f (g * h * g−1 * h−1)

: by {simp[cmtr]}

... = f g * f h * f (g−1) * f (h−1)

: by {simp[mul_hom.map_mul]}

... = f g * f h * (f g)−1 * (f h)−1

: by {congr, simp[monoid_hom.map_inv],

simp[monoid_hom.map_inv]}

... = cmtr H (f g) (f h)

: by {simp[cmtr]},

end

Finally, we prove Proposition 2.3.3 on triple powers of commutators: triple
powers of commutators can be written as a product of only two commutators.
To this end, we first show that g3 = g · g · g holds for every group element g
(where ·3 is defined by induction . . . ):

lemma pow_three

(G : Type*) [group G]

(g : G)

: (g^3 = g * g * g)

:=

begin

calc g^3 = g^2 * g : by {exact pow_succ’ g 2}

... = g * g * g : by {simp[pow_two]}

end

Using this lemma, Lean can basically perform the computation in the proof
of Proposition 2.3.3 on its own, using the group tactic:

lemma cmtr_pow_three

(G : Type*) [group G]

(a : G) [A : G]

(b : G) [B : G]

[A_def : A = a−1]

[B_def : B = b−1]

: (cmtr G a b)^3

= cmtr G (a*b*A) (B*a*b*A^2) * cmtr G (B*a*b) (b^2)

:=

begin

unfold cmtr,

by {simp[pow_three,A_def,B_def],group},

end
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2.E Exercises

Exercise 2.E.1 (the sum of the first natural numbers).

1. Define a Lean function first_nat_sum that formalises the map

s : N 7−→ N

n 7−→ 2 ·
n∑

j=0

j.

2. Give a pen-and-paper proof that s(n) = n · (n+ 1) for all n ∈ N.

3. Formalise this statement/proof in Lean.

Hints. It might be easier not to use the
∑

-functionality.

Exercise 2.E.2 (powers in groups). Let G be a group, let a, b ∈ G, and n ∈ N.

1. Pen-and-paper: Prove that (a · b · a−1)n = a · bn · a−1.

2. Formalise this statement/proof in Lean.

3. Pen-and-paper: Prove that bn · a = a · bn if a · b = b · a.

4. Formalise this statement/proof in Lean.

Hints. Lean and its tactics can be pedantic about associativity in groups.
When in doubt, add extra steps that spell out such transformations.

Exercise 2.E.3 (general sums and inductive computation). We consider the
lemma sum_range_induction from Lean library algebra.big operators.basic.

1. Pen-and-paper: What does this lemma say?

2. Pen-and-paper: How would you prove this lemma?

3. Pen-and-paper: How would you use it to show
∑n

j=0 1 = n for all n ∈ N?

4. How is sum_range_induction proved in the Lean library?

Exercise 2.E.4 (cyclic groups).

1. Recall a pen-and-paper definition of cyclic groups.

2. Find a definition of cyclic groups in mathlib.

3. Translate this Lean-definition into a pen-and-paper definition.

4. Compare these two definitions!

5. Which statements on cyclic groups are proved in the corresponding
Lean library?

Hints. In case you need help: There is a basic source skeleton for these exer-
cises available (p. A.18; also in the course git repository):

http://www.mathematik.uni-r.de/loeh/teaching/prooflab ws2122/induction exercise.lean

http://www.mathematik.uni-r.de/loeh/teaching/prooflab_ws2122/induction_exercise.lean


A

Source code

• maps.lean: An implementation of basic properties of maps in Lean;
p. A.2.

• maps exercise.lean: Skeleton for the exercises in Section 1.E; p. A.10

• induction.lean: Simple induction proofs for sums; p. A.13.

• induction exercise.lean: Skeleton for the exercises in Section 2.E; p. A.18

• commutator.lean: Basics on commutators in groups; p. A.16.
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maps.lean

/- Clara L"oh 2021 -/

import tactic -- standard proof tactics

open classical -- we want to work in classical logic

/-

# Injective, surjective, bijective maps

-/

/- Injectivitiy -/

def is_injective

(X : Type*)

(Y : Type*)

(f : X → Y)

:= ∀ x : X, ∀ x’ : X,

(f x = f x’) → (x = x’)

/- Surjectivity -/

def is_surjective

(X : Type*)

(Y : Type*)

(f : X → Y)

:= ∀ y : Y,

∃ x : X, f x = y

/- Bijectivity -/

def is_bijective

(X : Type*)

(Y : Type*)

(f : X → Y)

:= (is_injective X Y f) ∧ (is_surjective X Y f)

/- Simple inheritance properties

of injective, surjective, bijective maps-/

lemma bij_inj

(X : Type*)

(Y : Type*)

(f : X → Y)

(f_bijective: is_bijective X Y f)
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: is_injective X Y f

:=

-- we extract the correct part of the and-statement

-- in the definition of is_bijective

by {exact and.elim_left f_bijective}

-- alternatively: by {exact f_bijective.1}

lemma bij_surj

(X : Type*)

(Y : Type*)

(f : X → Y)

(f_bijective: is_bijective X Y f)

: is_surjective X Y f

:=

-- we extract the correct part of the and-statement

-- in the definition of is_bijective

by {exact and.elim_right f_bijective}

-- alternatively: by {exact f_bijective.2}

lemma surj_inj_bij

(X : Type*)

(Y : Type*)

(f : X → Y)

(f_surjective: is_surjective X Y f)

(f_injective: is_injective X Y f)

: is_bijective X Y f

:=

-- we construct the and-statement

-- in the definition of is_bijective

-- in the correct order

by {exact and.intro f_injective f_surjective}

/- If a composition is injective,

then the first map is injective -/

lemma inj_comp_injfirst

(X : Type*)

(Y : Type*)

(Z : Type*)

(f : X → Y)

(g : Y → Z)

(gf_injective : is_injective X Z (g ◦ f))

: is_injective X Y f

:=

begin

-- we prove the all-statement (double ∀)
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-- in the definition of is_injective

assume x : X,

assume x’ : X,

-- we assume the hypothesis of the implication

-- in the definition of is_injective

assume f_xx’ : f x = f x’,

-- and then show that this implies x = x’,

-- using injectivity of g ◦ f

have gf_xx’ : (g ◦ f) x = (g ◦ f) x’, from

calc (g ◦ f) x = g (f x) : by {simp}

... = g (f x’) : by {simp[f_xx’]}

... = (g ◦ f) x’ : by {simp},

show x = x’,

by {apply gf_injective, apply gf_xx’},

end

/- If a composition is surjective,

then the last map is surjective -/

lemma surj_comp_surjsecond

(X : Type*)

(Y : Type*)

(Z : Type*)

(f : X → Y)

(g : Y → Z)

(gf_surjective : is_surjective X Z (g ◦ f))

: is_surjective Y Z g

:=

begin

-- we prove the all-statement

-- in the definition of is_surjective

assume z : Z,

-- we use surjectivity of g ◦ f

have ex_x : ∃ x : X, (g ◦ f) x = z,

by {exact gf_surjective z},

-- we extract such a preimage

rcases ex_x with 〈 x : X, gf_x_z〉,
-- and use it to define a g-preimage of z

let y : Y := f x,

-- we construct the existential statement

-- in the definition of is_surjective,
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-- by using the example y

use y,

-- it remains to show that y indeed is a g-preimage of z

show g y = z, from

calc g y = g (f x) : by {simp}

... = (g ◦ f) x : by {simp}

... = z : by {exact gf_x_z},

end

/- If the square of a self-map is bijective,

then the self-map is bijective -/

lemma square_bij_bij

(X : Type*)

(f : X → X)

(ff_bijective: is_bijective X X (f ◦ f))

: is_bijective X X f

:=

begin

-- the map f is injective

have f_injective: is_injective X X f, from

begin

-- the composition f ◦ f is bijective, whence injective

have ff_injective,

by {exact bij_inj X X (f ◦ f) ff_bijective},

-- thus, the first map (namely f) is injective

show _,

by {exact inj_comp_injfirst X X X f f ff_injective},

end,

-- the map f is surjective

have f_surjective: is_surjective X X f, from

begin

-- the composition f ◦ f is bijective, wehnce surjective

have ff_surjective,

by {exact bij_surj _ _ (f ◦ f) ff_bijective},

-- thus, the second map (namely f) is surjective

show _,

by {exact surj_comp_surjsecond _ _ _ f f ff_surjective

},

end,

-- thus, f is bijective

show is_bijective X X f,

by {exact and.intro f_injective f_surjective},
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-- alternatively: by {exact surj_inj_bij X X f

f_surjective f_injective}

end

/- Some simple examples -/

/- The map {1,2,3} -> {1,2,3},

1 -> 1, 2 -> 1, 3 -> 2

is neither injective nor surjective -/

inductive A : Type

| A_1

| A_2

| A_3

def f

: A → A

| A.A_1 := A.A_1

| A.A_2 := A.A_1

| A.A_3 := A.A_2

lemma not_inj_f

: ¬ is_injective A A f

:=

begin

-- idea: f A_1 = f A_2, even though A_1 6= A_2

let x : A := A.A_1,

let x’ : A := A.A_2,

-- x and x’ are witnesses for non-injectivity:

have f_xx’_x_neg_x’ : f x = f x’ ∧ x 6= x’, from

begin

have f_xx’ : f x = f x’, by {simp[f]},

have x_neg_x’ : x 6= x’, by {finish},

show _, by {exact and.intro f_xx’ x_neg_x’},

end,

-- we move the negation to the innermost formula,

-- use x and x’ as examples for the existential quantifier,

-- and then conclude via f_xx’_x_neg_x’

show _, from

begin

unfold is_injective,

push_neg,

use x,
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use x’,

exact f_xx’_x_neg_x’,

end

end

lemma not_surj_f

: ¬ is_surjective A A f

:=

begin

-- we first move the negation through the all-quantifier

refine not_forall_of_exists_not _,

show ∃ y : A, ¬(∃ x : A, f x = y), by

begin

-- we show that A_3 does not lie in the image

use A.A_3,

have A3_not_in_im : ∀ x : A, ¬ f x = A.A_3, from

begin

assume x : A,

-- we now just consider all three cases

cases x,

case A.A_1 : {simp[f]}, -- alternatively: {finish}

case A.A_2 : {simp[f]},

case A.A_3 : {simp[f]},

end,

show _,

by {simp at *, exact A3_not_in_im}

end

end

/- The map {1,2} -> {1,2},

1 -> 2, 2 -> 1

is bijective -/

inductive B

| B_1

| B_2

def g : B → B

| B.B_1 := B.B_2

| B.B_2 := B.B_1

lemma bij_g

: is_bijective B B g

:=

begin

-- we check injectivity and surjectivity
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-- by going through all the cases

have inj_g : is_injective B B g, from

begin

assume x : B,

assume x’ : B,

assume g_xx’ : g x = g x’,

cases x,

case B.B_1 : begin cases x’, finish, finish end,

case B.B_2 : begin cases x’, finish, finish end,

end,

have surj_g : is_surjective B B g, from

begin

assume y : B,

cases y,

case B.B_1 : begin use B.B_2, finish end,

case B.B_2 : begin use B.B_1, finish end,

end,

show _,

by {exact surj_inj_bij _ _ g surj_g inj_g}

end

/- And (parts of) the same thing,

but with (types from) sets instead of sum types -/

def set_123 : set N
:= {1,2,3}

lemma one_in_123 : 1 ∈ set_123

:= by {fconstructor,linarith}

lemma two_in_123 : 2 ∈ set_123

:= by {apply or.inr, finish}

lemma three_in_123 : 3 ∈ set_123

:= by {apply or.inr, finish}

def map_const1

: set_123 → set_123 --({1,2,3} : set N) → ({1,2,3} : set N
)

:= λ 〈x, _〉, 〈1, one_in_123〉

def f’

: set_123 → set_123

:= λ 〈x, x_in_123〉,
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if x = 3 then 〈 2, two_in_123 〉
else 〈 1, one_in_123 〉

lemma not_inj_f’

: ¬ is_injective set_123 set_123 f’

:=

begin

-- idea: f’ 1 = f’ 2, even though 1 6= 2

let x1 : 7→set_123 := 〈 1, one_in_123 〉,
let x2 : 7→set_123 := 〈 2, two_in_123 〉,

-- we move the negation through the first all-quantifier

refine (not_forall.mpr _),

-- we use A_1 as first input

use x1,

-- we move the negation through the second all-quantifier

refine (not_forall.mpr _),

-- we use A_2 as second input

use x2,

-- we use the definition of f’

by {finish},

end
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maps exercise.lean

/- Clara L"oh 2021 -/

import tactic

import maps

open classical

/- Exercise 1 -/

-- the identity map

def id_map

(X : Type*)

: X → X

:= λ x, x

lemma id_bijective

(X : Type*)

: is_bijective X X (id_map X)

:=

begin

let f : X → X := id_map X,

-- injectivity

have id_inj : is_injective X X f, from

begin

sorry,

end,

-- surjectivity

have id_surj : is_surjective X X f, from

begin

sorry,

end,

show _,

by {exact surj_inj_bij X X f id_surj id_inj},

end
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/- Exercise 2 -/

lemma comp_inj_is_inj

(X : Type*)

(Y : Type*)

(Z : Type*)

(f : X → Y)

(g : Y → Z)

(f_injective : is_injective X Y f)

(g_injective : is_injective Y Z g)

: is_injective X Z (g ◦ f)

:=

begin

sorry,

end

/- Exercise 3 -/

lemma inj_from_examples

(X : Type*)

(Y : Type*)

(f : X → Y)

(x : X)

(x’ : X)

(x_neq_x’ : x 6= x’)

(f_xx’ : f x = f x’)

: ¬ is_injective X Y f

:=

begin

sorry,

end

-- redoing the first example

lemma not_inj_f_alt

: ¬ is_injective A A f

:=

begin

sorry,

end
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/- Exercise 4 -/

-- redoing the second example

lemma gg_id

: g ◦ g = id_map B

:=

begin

sorry,

end

lemma bij_g_alt

: is_bijective B B g

:=

begin

sorry,

end
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induction.lean

/- Clara L"oh 2021 -/

import tactic -- standard proof tactics

open finset -- for range operator

open_locale big_operators -- to enable Σ notation

open classical -- we want to work in classical logic

/-

# A simple induction proof

-/

-- we define geometric sums (at base 2) ...

def geometric_sum

: nat → nat

| 0 := 1

| (nat.succ n) := geometric_sum n + 2^(n+1)

-- ... and show how they can be computed

lemma geometric_sum_eval

(n : nat)

: geometric_sum n = 2^(n+1) - 1

:=

begin

-- we prove this claim by induction (over the natural number

argument n);

-- here, m is the variable used in the induction step

-- and ind_hyp is the induction hypothesis used in the

induction step

induction n with m ind_hyp,

-- base case: 0

case nat.zero : {simp[geometric_sum]},

-- induction step: m -> m+1

case nat.succ :

begin

calc geometric_sum (m+1) = geometric_sum m + 2^(m+1) : by {

simp[geometric_sum]}
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... = 2^(m+1) - 1 + 2^(m+1) : by {

simp[ind_hyp]}

... = 2^(m+1) + 2^(m+1) - 1 : by {

omega}

... = 2 * 2^(m+1) - 1 : by {

ring}

... = 2^(m+2) - 1 : by {

ring},

end

end

-- computing some examples:

#eval geometric_sum 0

#eval geometric_sum 5

/-

# Using the Σ notation

-/

-- and another simple sum,

-- using the sum operator from mathlib (big_operators)

def one_sum

: nat → nat

:= λ n : nat,

Σ (i : nat) in range n, 1

lemma one_sum_eval

(n : nat)

: (one_sum n = n)

:=

begin

-- we prove this claim by induction (over the natural number

argument n)

induction n with m ind_hyp,

-- base case: 0

case nat.zero : {simp[one_sum]},

-- induction step: m -> m+1

case nat.succ :

begin

calc one_sum (m+1) = Σ (i : nat) in range (m+1), 1 : by {

simp[one_sum]}
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... = (Σ (i : nat) in range m, 1) + 1 : by {

simp}

... = m + 1 : by {

simp[ind_hyp]},

end

/-

unfold one_sum,

-- found by library_search :)

by {exact sum_range_induction (λ (k : N), 1) (λ (n : N), n)

rfl (congr_fun rfl) n},

-/

end
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commutator.lean

/- Clara L"oh 2021 -/

import tactic -- standard proof tactics

import algebra.group.basic -- basic group theory

open classical -- we want to work in classical logic

/-

# Commutators in groups

-/

-- we define the commutator of two given group elements

def cmtr

(G : Type*) [group G]

(g : G)

(h : G)

:= g * h * g−1 * h−1

-- images of commutators under homomorphisms are commutators

lemma cmtr_hom

(G : Type*) [group G]

(H : Type*) [group H]

(f : monoid_hom G H) -- f is a group homomorphism

(g : G)

(h : G)

: f (cmtr G g h) = cmtr H (f g) (f h)

:=

begin

-- this is a straightforward computation,

-- using that f is a homomorphism

calc f (cmtr G g h) = f (g * h * g−1 * h−1)

: by {simp[cmtr]}

... = f g * f h * f (g−1) * f (h−1)

: by {simp[mul_hom.map_mul]}

... = f g * f h * (f g)−1 * (f h)−1

: by {congr,simp[monoid_hom.map_inv],

simp[monoid_hom.map_inv]}

... = cmtr H (f g) (f h)

: by {simp[cmtr]},
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end

-- as a preparation for triple powers of commutators,

-- we establish that g^3 = g * g * g:

lemma pow_three

(G : Type*) [group G]

(g : G)

: (g^3 = g * g * g)

:=

begin

calc g^3 = g^2 * g : by {exact pow_succ’ g 2}

... = g * g * g : by {simp[pow_two]}

end

-- triple powers of commutators are products of _two_

commutators

lemma cmtr_pow_three

(G : Type*) [group G]

(a : G) [A : G]

(b : G) [B : G]

[A_def : A = a−1]

[B_def : B = b−1]

: (cmtr G a b)^3 = cmtr G (a*b*A) (B*a*b*A^2) * cmtr G (B*a

*b) (b^2)

:=

begin

-- with the help of pow_three,

-- the group tactic can perform the computation

unfold cmtr,

by {simp[pow_three,A_def,B_def],group},

end
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induction exercise.lean

/- Clara L"oh 2021 -/

import tactic -- standard proof tactics

import algebra.group.basic -- basic group theory

open finset -- for range operator

open_locale big_operators -- to enable Σ notation

open classical -- we want to work in classical logic

/- Exercise 1 -/

-- the sum of the natural numbers 0,...,n

def first_nat_sum

: nat → nat

| 0 := -- add definition

| (nat.succ n) := -- add definition

-- ... and its value in closed form

lemma first_nat_sum_eval

(n : nat)

: first_nat_sum n = n * (n+1)

:=

begin

-- we prove this claim by induction (over the natural number

arugment n)

induction n with m ind_hyp,

-- base case: 0

case nat.zero : {sorry},

-- induction step: m -> m+1 with induction hypothesis ind_hyp

case nat.succ :

begin

sorry,

end

end
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-- alternatively: using Σ (optional)

/-

def first_nat_sum’

: nat → nat

:= λ n, 2 * Σ (i : nat) in range (n+1), -- complete definition

lemma first_nat_sum’_eval

(n : nat)

: first_nat_sum’ n = n * (n+1)

:=

begin

have rw_sum : first_nat_sum’ = λ n : nat, Σ (i : nat) in

range (n+1), 2 * i, from

begin

sorry,

-- unfold, ext1, and library_search might help

end,

-- induction proof, using rw_sum

-- sum_range_succ might help

induction n with m ind_hyp,

end

-/

/- Exercise 2 -/

lemma powers_of_conjugates

(G : Type*) [group G]

(a : G)

(b : G)

(n : nat)

: -- complete statement

:=

begin

-- we prove this claim by induction (over the natural number

arugment n)

sorry,
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end

lemma commuting_powers

(G : Type*) [group G]

(a : G)

(b : G)

-- complete the hypotheses

(n : nat)

: -- complete the statemnt

:=

begin

sorry,

end
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