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Introduction

This course provides an introduction to Algebraic Topology, more precisely, to
basic reasoning and constructions in Algebraic Topology and some classical
invariants such as the fundamental group, singular homology, and cellular
homology.

The basic idea of Algebraic Topology is to translate topological problems
into algebraic problems; topological spaces will be translated into algebraic
objects (e.g., vector spaces) and continuous maps will be translated into
homomorphisms (e.g., linear maps). The right setup for this is the language
of categories of functors.

Topology  Algebra
topological spaces e.g., vector spaces
continuous maps linear maps

flexible rigid

Algebraic Topology then is concerned with the classification of topological
spaces and continuous maps up to “continuous deformation”, i.e., up to so-
called homotopy. To this end, one constructs and studies homotopy invariant
functors. The main design problem consists of finding functors that

• are fine enough to recover interesting features of topological spaces, but
that also

• are coarse enough to be computable in many cases.

Classical examples of homotopy invariant functors are homotopy groups
and (co)homology theories such as singular/cellular homology. A first, intu-
itive, description of homotopy groups and singular homology is that these
functors describe “which and how many holes” topological spaces have.
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Why Algebraic Topology?

Algebraic Topology has a large variety of applications, both in theoretical
and applied mathematics:

Topology

• Fixed-point theorems

• (Non-)Embeddability theorems

• Study of the geometry and topology of manifolds

• . . .

Other fields in theoretical mathematics

• Yet another proof of the fundamental theorem of algebra

• (Non-)Existence of certain division algebras

• Freeness and finiteness properties in group theory

• Blueprint for parts of Algebraic Geometry

• . . .

Applied mathematics

• Existence of Nash equilibria in Game Theory

• Configuration spaces for robotics

• Lower complexity bounds for distributed algorithms

• Higher statistics and big data

• Knot theory

• Foundations of computing/Homotopy Type Theory

• . . .

Many conclusions in Algebraic Topology are based on arguments by con-
tradiction (if something strange were possible on topological spaces, then one
would also obtain a strange situation in algebra, which often can be shown to
be impossible). Therefore, Algebraic Topology is particularly good at proving
that certain deformations etc. do not exist and results in Algebraic Topology
are often of a non-constructive flavour.
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Overview of this Course

The main goal of this course is to understand basic concepts of Algebraic
Topology.

As a preparation, we will first recall some point-set topology and basic
constructions of topological spaces as well as basic notions from category
theory. We will then introduce the central notion of homotopy and homotopy
invariance, and explain how homotopy invariant functors can be used to solve
various problems.

The lion share of the course will consist of constructing and analysing
examples of homotopy invariant functors:

• First, we will construct the fundamental group functor and investigate
its relation with covering theory.

• Second, we will study homology theories, both from the axiomatic point
of view, and through concrete constructions and computations.

This course will be complemented with the course Geometric Group The-
ory in the summer semester 2022, where Group Theory, (Algebraic) Topology,
and (Metric) Geometry will interact.

Study note. These lecture notes document the topics covered in the course
(as well as some additional optional material). However, these lectures notes
are not meant to replace attending the lectures or the exercise classes!

Furthermore, this course will only treat a small fraction of Algebraic Topol-
ogy. It is therefore recommended to consult other sources (books!) for further
information on this field.

References of the form “Satz I.6.4.11”, “Satz II.2.4.33”, “Satz III.2.2.25”,
or “Satz IV.2.2.4” point to the corresponding locations in the lecture notes for
Linear Algebra I/II, Algebra, Commutative Algebra in previuos semesters:

http://www.mathematik.uni-r.de/loeh/teaching/linalg1 ws1617/lecture notes.pdf
http://www.mathematik.uni-r.de/loeh/teaching/linalg2 ss17/lecture notes.pdf

http://www.mathematik.uni-r.de/loeh/teaching/algebra ws1718/lecture notes.pdf
http://www.mathematik.uni-r.de/loeh/teaching/calgebra ss18/lecture notes.pdf

Literature exercise. Where in the math library (including electronic re-
sources) can you find books on Algebraic Topology, Point-Set Topology, Cat-
egory Theory?

Convention. The set N of natural numbers contains 0. All rings are unital
and associative. Usually, we assume manifolds to be non-empty (but we might
not always mention this explicitly).

http://www.mathematik.uni-r.de/loeh/teaching/linalg1_ws1617/lecture_notes.pdf
http://www.mathematik.uni-r.de/loeh/teaching/linalg2_ss17/lecture_notes.pdf
http://www.mathematik.uni-r.de/loeh/teaching/algebra_ws1718/lecture_notes.pdf
http://www.mathematik.uni-r.de/loeh/teaching/calgebra_ss18/lecture_notes.pdf
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What is Algebraic Topology?

Algebraic Topology translates topology into algebra. We will formalise this
translation using categories and functors.

As a preparation, we will first recall some point-set topology and intro-
duce basic constructions of topological spaces; in particular, we will meet
important building blocks of topological spaces such as spheres and sim-
plices. Moreover, we will recall basic notions from category theory. We will
then introduce the central notion of homotopy and homotopy invariance.

Finally, we will explain how homotopy invariant functors can be used to
solve various problems, demonstrating the elegance and power of Algebraic
Topology.

Overview of this chapter.

1.1 Topological Building Blocks 6
1.2 Categories and Functors 17
1.3 Homotopy and Homotopy Invariance 27

Running example. spheres, balls, standard simplices
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1.1 Topological Building Blocks

Topological spaces model a non-quantitative version of geometry, using the
system of open sets as a qualitive version of “being close”. We will assume
familiarity with the notions of topological spaces, continuous maps, com-
pactness, path-connectedness, and the subspace and product topology (Ap-
pendix A.1).

In this section, we will discuss basic constructions of topological spaces;
these constructions will allow us to generate a large collection of interesting
examples.

1.1.1 Construction: Subspaces

Subsets of topological spaces inherit a topology from the ambient space: the
subspace topology (Remark A.1.11). Many real-world problems lead to sub-
sets of some Rn. These subsets hence inherit a topology from the metric
topology on Rn. In many cases, this topology reflects aspects of the underly-
ing real-world problem in a meaningful way.

The most important building blocks in Algebraic Topology are spheres,
balls, and simplices (Figure 1.1).

Definition 1.1.1 (ball, sphere, standard simplex). Let n ∈ N.

• The n-dimensional ball is defined as

Dn :=
{
x ∈ Rn

∣∣ ‖x‖2 ≤ 1
}
⊂ Rn

(endowed with the subspace topology of the standard topology on Rn).

• The n-dimensional sphere is defined as

Sn :=
{
x ∈ Rn+1

∣∣ ‖x‖2 = 1
}

= ∂Dn+1 ⊂ Rn+1

(endowed with the subspace topology).

• The n-dimensional standard simplex is defined as

∆n :=
{
x ∈ Rn+1

∣∣∣ x1 ≥ 0, . . . , xn+1 ≥ 0 and

n+1∑

j=1

xj = 1
}
⊂ Rn+1

(endowed with the subspace topology).

In other words: The standard simplex ∆n is the convex hull of the standard
unit vectors e1, . . . , en+1 ∈ Rn+1. Clearly, we could also define ∆n as an
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10
∆0 D0

(1, 0)

(0, 1)

1−1 1−1

∆1 D1 S0

∆2 D2 S1

∆3 D3 S2

Figure 1.1.: Standard simplices, balls, spheres

appropriate subset of Rn instead of Rn+1; however, passing to Rn+1 offers
the advantage of a simple symmetric description of this space.

Remark 1.1.2 (balls vs. simplices). Let n ∈ N. Then Dn and ∆n are homeo-
morphic (Exercise). In the context of singular (co)homoloogy, the standard
simplex is more convenient because of its combinatorial structure.
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Figure 1.2.: The two-dimensional torus

1.1.2 Construction: Product Spaces

One way to combine two topological spaces into a new space is by taking the
product (Remark A.1.12), which satisfies the universal property of products
in the category of topological spaces (Remark 1.1.4). For example, taking
products of circles leads to tori (Figure 1.2):

Definition 1.1.3 (torus). Let n ∈ N>0. The n-dimensional torus is defined as
the n-fold cartesian product (S1)n, endowed with the product topology.

If X is a topological space, then the product X×[0, 1] can be used to model
what happens to points in X in the “time interval” [0, 1]. Therefore, products
of the form X × [0, 1] will be important to define deformation concepts such
as homotopy (Chapter 1.3.1).

Let us recall the universal property of products: Roughly speaking, prod-
ucts are characterised by maps to the product. Hence, it is easy to construct
maps to products; but, in general, it is much harder to construct maps out
of products!

Remark 1.1.4 (universal property of product spaces). LetX1,X2 be topological
spaces, let X := X1 × X2 (endowed with the product topology), and let
p1 : X −→ X1, p2 : X −→ X2 be the canonical projections; by definition of
the product topology, p1 and p2 are continuous. Then X together with p1

and p2 satisfies the universal property of the product of X1 and X2 in the
category of topological spaces (check!):

For every topological space Y and all continuous maps f1 : Y −→ X1 and
f2 : Y −→ X2 there is exactly one continuous map f : Y −→ X with

p1 ◦ f = f1 and p2 ◦ f = f2

(namely, f = (y 7→ (f1(y), f2(y)))).

More generally, this also holds for products of arbitrary families of topo-
logical spaces (check!).
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1.1.3 Construction: Quotient Spaces and Glueings

In order to model the glueing of several topological spaces, we proceed as
follows:

• We first model glueing parts of a single topological space, using quotient
spaces.

• We then model putting topological spaces next to each other, using the
disjoint union topology.

• Finally, we model general glueings by combining the first two steps.
This leads to so-called pushouts.

Quotient spaces provide a means to model “glueing” parts of a topological
space together.

Definition 1.1.5 (quotient topology). Let X be a topological space, let Y be
a set, and let p : X −→ Y be a surjective map. The quotient topology on Y ,
induced by p, is defined as

{
U ⊂ Y

∣∣ p−1(U) is open in X
}
.

This is indeed a topology on Y (check!).

Usually, the surjective map p : X −→ Y arises as the quotient projection
of a (geometric) explicit equivalence relation on X (so that Y is the set of
equivalence classes).

Caveat 1.1.6. By construction, the quotient map to a quotient space is always
continuous. But, in general, the quotient map is not open (even though the
definition might suggest otherwise).

Example 1.1.7 (Möbius strip). The Möbius strip is the quotient space

M :=
(
[0, 1]× [0, 1]

)
/∼,

where [0, 1]× [0, 1] carries the product topology of the standard topology on
the unit interval and the equivalence relation “∼” is defined as follows:

For all x, y ∈ [0, 1] × [0, 1], we have x ∼ y if and only if x = y or the
condition that x1 ∈ {0, 1} and y1 = 1− x1, y2 = 1− x2 is satisfied.

We equip M with the quotient topology induced by the canonical projec-
tion [0, 1] × [0, 1] −→ ([0, 1] × [0, 1]) / ∼. This construction is illustrated in
Figure 1.3.

Of course, we could also describe the homeomorphism type of M by an
appropriate subset of R3. However, it is much simpler (and also topologically
more illuminating) to use the glueing description of the Möbius strip.



10 1. What is Algebraic Topology?

∼
(0, x2)

(1, 1− x2)

 

Figure 1.3.: The Möbius strip as quotient space

Example 1.1.8 (real projective spaces). Let n ∈ N. The n-dimensional real
projective space is defined as

RPn := Sn /∼,

where “∼” is the equivalence relation on Sn generated by

∀x∈Sn x ∼ −x.

We equip RPn with the quotient topology (of the standard topology on the
sphere Sn). It should be noted that it is not clear a priori how to describe
(the homeomorphism type of) this space as a subspace of some Euclidean
space . . .

Study note. Where in the building of the Fakultät für Mathematik can you
find a model of RP 2 ?

Example 1.1.9 (collapsing a subspace). Let X be a topological space and let
A ⊂ X. We then write X/A for the quotient space X / ∼, where “∼” is the
equivalence relation

{
(a, b)

∣∣ a, b ∈ A
}
∪
{

(x, x)
∣∣ x ∈ X

}
⊂ X ×X

on X; we equip X/A with the corresponding quotient topology. In other
words: In the quotient X/A, all points of A are identified to a single point.

For instance: If n ∈ N>0, then Dn/Sn−1 ∼=Top S
n (Exercise). This descrip-

tion is useful, when constructing maps out of spheres (Proposition 1.1.13).

Glueing multiple topological spaces is modelled through so-called pushouts.
As intermediate step, we will first model “putting topological spaces next to
each other”, using the disjoint union topology:

Definition 1.1.10 (disjoint union topology). Let I be a set and let (Xi)i∈I be a
family of topological spaces. Then the disjoint union topology on the disjoint
union

⊔
i∈I Xi is given by
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{
U ⊂

⊔

i∈I
Xi

∣∣∣∣ ∀j∈I i−1
j (U) is open in Xj

}
,

where (ij : Xj −→
⊔
i∈I Xi)j∈I is the corresponding family of canonical in-

clusion maps. In the following, we will often view the spaces Xi as subsets
of
⊔
i∈I Xi, in order to reduce notational overhead.

Combining the disjoint union topology and the quotient topology leads to
the pushout of topological spaces:

Definition 1.1.11 (pushout of topological spaces). Let X0, X1, X2 be topo-
logical spaces and let i1 : X0 −→ X1 and i2 : X0 −→ X2 be continuous maps.
The pushout of the diagram

X0
i2 //

i1

��

X2

X1

is the topological space (endowed with the quotient topology of the disjoint
union topology)

X1 ∪X0
X2 := (X1 tX2) /∼,

where “∼” denotes the equivalence relation on X1 tX2 that is generated by

∀x∈X0 i1(x) ∼ i2(x).

Example 1.1.12 (some pushouts). Some concrete examples of pushouts of
topological spaces are depicted in Figure 1.4.

How can we work rigorously (and not only by handwaving and vague
intuition) with quotient spaces, disjoint unions, and pushouts? All these con-
structions can be viewed as colimits in the category of topological spaces
(Chapter IV.1.4); hence, they possess a corresponding universal property that
characterises continuous maps out of these spaces:

Proposition 1.1.13 (universal property of quotient spaces). Let X be a topo-
logical space, let Y be a set, and let p : X −→ Y be a surjective map. The
quotient topology on Y induced by p has the following universal property: For
every topological space Z and every map g : Y −→ Z, the map g is continuous
(with respect to the quotient topology on Y ) if and only if g ◦ p : X −→ Z is
continuous.

Proof. Let Z be a topological space and let g : Y −→ Z be a map.
If g is continuous, then also the composition g ◦ p with the continuous

map p is continuous.
Conversely, let g ◦ p be continuous. We show that also g is continuous: Let

U ⊂ Z be an open subset. Then g−1(U) ⊂ Y is open with respect to the



12 1. What is Algebraic Topology?

Sn−1 inclusion //

inclusion

��

Dn

upper
hemisphere

��

Dn

lower
hemisphere

// Sn

inclusion //

inclusion
��

upper
hemisphere��

lower
hemisphere

//

{0, 1} × [0, 1]
inclusion //

(0, t) 7→ (0, t)
(1, t) 7→ (1, 1− t)

��

[0, 1]× [0, 1]

��
[0, 1]× [0, 1] //

Möbius strip

inclusion //

��

��

//

Figure 1.4.: Pushouts in Top

quotient topology on Y because

p−1
(
g−1(U)

)
= (g ◦ p)−1(U)

is open in view of the continuity of g ◦ p. Hence, g is continuous.

The disjoint union topology turns the disjoint union of topological spaces
into the coproduct of these spaces (in the category of topological spaces, with
respect to the canonical inclusions).

Proposition 1.1.14 (universal property of pushouts). Let X0, X1, X2 be topo-
logical spaces and let i1 : X0 −→ X1 and i2 : X0 −→ X2 be continuous
maps. A topological space X together with continuous maps j1 : X1 −→ X,
j2 : X2 −→ X satisfies the universal property of this pushout, if the follow-
ing holds: We have j1 ◦ i1 = j2 ◦ i2 and for every topological space Z and all
continuous maps f1 : X1 −→ Z, f2 : X2 −→ Z with f1 ◦ i1 = f2 ◦ i2 there
exists a unique continuous map f : X −→ Z with (Figure 1.5)

f ◦ j1 = f1 and f ◦ j2 = f2.

In this case, we also say that
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X0 X2

X1

i2

i1 j2

j1
X

∃!f

f2

f1 Z

Figure 1.5.: The universal property of pushouts

X0
i2 //

i1

��

X2

j2

��

X1
j1
// X

is a pushout diagram of topological spaces.

1. The pushout X := X1∪X0
X2 with respect to i1 and i2, together with the

continuous maps j1 : X1 −→ X, j2 : X2 −→ X induced by the inclusions
into X1 tX2, satisfies the universal property of this pushout.

2. If X ′, together with j′1 : X1 −→ X ′ and j′2 : X2 −→ X ′, satisfies the
universal property of this pushout, then there is a unique homeomor-
phism f : X −→ X ′ with f ◦ j1 = j′1 and f ◦ j2 = j′2.

Proof. Ad 1. This is an easy consquence of the universal property of quotient
spaces and disjoint union spaces: By construction, j1 ◦ i1 = j2 ◦ i2. Let Z be
a topological space and let f1 : X1 −→ Z and f2 : X2 −→ Z be continuous
maps with f1 ◦ i1 = f2 ◦ i2.

• Existence of a glued map: By definition of the disjoint union topology,
the maps f1 and f2 yield a continuous map f̃ : X1 tX2 −→ Z with

f̃ |X1
= f1 and f̃ |X2

= f2.

Because of f1 ◦ j1 = f2 ◦ j2, this map induces a well-defined map

f : X = X1 ∪X0 X2 −→ Z

[x] 7−→ f̃(x).

In view of the universal property of quotient spaces, the map f is also
continuous. By construction, it satisfies f ◦ j1 = f1 and f ◦ j2 = f2.
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• Uniqueness of the glued map: As j1(X1)∪j2(X2) = X, the glued map is
uniquely determined by the composition with j1 and j2, whence by f1

and f2.

Thus, the pushout construction indeed has the universal property of the
pushout.

Ad 2. This follows directly from the standard uniqueness argument for
universal properties (Proposition IV.1.4.6).

In the next section, we will demonstrate in a concrete example how these
techniques can be used.

1.1.4 The Homeomorphism Problem

In the previous sections, we have seen how to construct interesting exam-
ples of topological spaces out of simple building blocks. However, in general,
comparing different topological spaces is rather difficult. In particular, the
obvious classification problem

Classify topological spaces up to homeomorphism!

is unsolvable in a precise mathematical sense (Outlook 2.2.19). However, there
are some strategies that allow us to decide whether certain special topological
spaces are homeomorphic or not.

How to prove that two topological spaces are homeomorphic. Let X and
Y be topological spaces and let us suppose that it is plausible that X and Y
are homeomorphic. How can we prove this rigorously?

One option is to follow the definition of being homeomorphic, by con-
structing continuous maps X −→ Y and Y −→ X that are mutually inverse.

However, in practice, X or Y will often be the result of a specific construc-
tion that satisfies a universal property. This universal property will usually
grant a continuous map in one of the two directions. In order to conclude
that such a map is a homeomorphism, additional information is needed. At
this point, the compact-Hausdorff trick (Corollary A.1.40) can be helpful:

Proposition 1.1.15 (compact-Hausdorff trick). Let X be a compact topolog-
ical space, let Y be a Hausdorff topological space, and let f : X −→ Y be
continuous and bijective. Then f is a homeomorphism(!).

Example 1.1.16 (the circle). Let

C := [0, 1]/(0 ∼ 1)

(endowed with the quotient topology of the standard topology on [0, 1]); i.e.,
C is obtained from the unit interval by glueing the two end points. We prove
that C ∼=Top S

1:
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Figure 1.6.: The torus via glueing

• We first observe that C is constructed as a quotient space; hence, we
can apply the universal property of quotient spaces (Proposition 1.1.13)
to construct continuous maps out of C: Let

f : [0, 1] −→ S1

t 7−→
(
cos(2 · π · t), sin(2 · π · t)

)
.

Then f is a well-defined continuous map (because cos and sin are contin-
uous and the fact that S1 carries the subspace topology of the product
topology on R2 = R× R).

By definition, f(0) = (1, 0) = f(1). Hence, f induces a well-defined
map f : C −→ S1. Because f is continuous, the universal property of
quotient spaces (Proposition 1.1.13) lets us deduce that f is continuous.

• The constructed map f : C −→ S1 is bijective (this follows from ele-
mentary analysis).

• The space C is compact (as continuous image of the compact space [0, 1])
and S1 is Hausdorff (as subspace of the Hausdorff space R2).

• Applying the compact-Hausdorff trick (Proposition 1.1.15) to f , we
obtain that f is a homeomorphism.

In the same way, one can prove that the glueing of the unit square as
indicated in Figure 1.6 results in a topological space homeomorphic to the
torus S1 × S1 (check!).

This shows, for example, that the classical Asteroids [2] game by Atari
takes place on a torus.

How to prove that two topological spaces are not homeomorphic. Let X
and Y be topological spaces and let us suppose that it is plausible that X
and Y are not homeomorphic. How can we prove this rigorously?

Determining all continuous maps X −→ Y and Y −→ X and checking
whether there is a mutually inverse pair among them is certainly not feasible
in general.
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Therefore, we are interested in finding homeomorphism invariants that
have different values for X and Y . We then could argue by contradiction to
prove that X and Y are not homeomorphic.

Some simple examples of homeomorphism invariant properties of topolog-
ical spaces are:

• Being path-connected (Proposition A.1.22).

• Being connected (Proposition A.1.28).

• Being Hausdorff (Proposition A.1.32).

• Being compact (Proposition A.1.36).

Moreover, cardinality, the number of path-connected components, and the
number of connected components are preserved by homeomorphisms. Also
properties such as

• Every continuous self-map has at least one fixed point.

are preserved by homeomorphisms.
The following list of simple-minded questions shows that we will need more

sophisticated invariants to understand topological spaces:

• For which n,m ∈ N are Rn and Rm homeomorphic? For which n,m ∈ N
do there exist non-empty open subsets of Rn and Rm, respectively, that
are homeomorphic?

• For which n,m ∈ N are Sn and Sm homeomorphic?

• For which n is (S1)n homeomorphic to Sn ?

• Let n ∈ N and let S ⊂ Rn+1 be homeomorphic to Sn. What can be
said about the complement Rn+1 \ S ?

• Is there a subspace of R3 that is homeomorphic to RP 2 ?

• Are there continuous maps Dn −→ Dn that do not have a fixed point?

• Can hedgehogs be combed? For which n ∈ N does there exist a nowhere
vanishing vector field on Sn ?

• . . .

Example 1.1.17 (the dimension problem: 0). Let m ∈ N. If R0 is homeomor-
phic to Rm, then m = 0 (as can be seen by comparing cardinalities).

Example 1.1.18 (the dimension problem: 1). Let m ∈ N such that R is home-
omorphic to Rm. We show that then m = 1, using the point-removal trick :
Let f : R −→ Rm be a homeomorphism. Then the restriction
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f |R\{0} : R \ {0} −→ Rm \ {f(0)}

is also a homeomorphism. Therefore, as R \ {0} is not path-connected, also
Rm \ {f(0)} is not path-connected. This implies m = 1 (check!).

Experiment 1.1.19 (the dimension problem: 2 ?!). We try to generalise the
argument of Example 1.1.18 to prove that R2 and R3 are not homeomorphic.
Assume for a contradiction that there exists a homeomorphism f : R2 −→ R3.
Let L := R× {0} ⊂ R2 be a line. Then the restriction

f |R2\L : R2 \ L −→ Rm \ f(L)

is also a homeomorphism and R2 \L is not path-connected. However, at this
point we are stuck: We do not yet have any tools available to make predictions
on f(L) or R3 \ f(L) (the homeomorphism could do wild stuff . . . ). We will
see later how to overcome this problem with a generalised version of the
point-removal trick (Corollary 1.3.24).

In this course, we will see how suitable invariants from Algebraic Topology
help to solve problems of this type. To this end, we will first introduce a
general notion of invariant, via the language of categories and functors.

1.2 Categories and Functors

We will model the translation of topological problems into algebraic problems
via the language of categories and functors. More precisely, mathematical the-
ories will be modelled as categories, translations as functors, and the com-
parison between different translations by natural transformations. Therefore,
we will first quickly review basic terminology from category theory.

1.2.1 Categories

Mathematical theories consist of objects (e.g., groups, topological spaces,
. . . ) and structure preserving maps (e.g., group homomorphisms, continuous
maps, . . . ). This can be abstracted to the notion of a category [33, 5, 58, 60].

Definition 1.2.1 (category). A category C consists of the following data:

• A class Ob(C); the elements of Ob(C) are called objects of C.

• For all objects X,Y ∈ Ob(C) a set MorC(X,Y ); the elements of the
set MorC(X,Y ) are called morphisms from X to Y in C. (Implicitly, we
will assume that the morphism sets between different pairs of objects
are disjoint and that we can recover the source and target object from
a morphism.)
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• For all objects X,Y, Z ∈ Ob(C) a composition of morphisms:

◦ : MorC(Y,Z)×MorC(X,Y ) −→ MorC(X,Z)

(g, f) 7−→ g ◦ f

This data is required to satisfy the following conditions:

• For each object X in C there exists a morphism idX ∈ MorC(X,X)
such that: For all Y ∈ Ob(C) and all morphisms f ∈ MorC(X,Y )
and g ∈ MorC(Y,X), we have

f ◦ idX = f and idX ◦g = g.

(The morphism idX is uniquely determined by this property (check!);
it is the identity morphism of X in C.)

• The composition of morphisms is associative: For all objects W , X,
Y , Z in C and all morphisms f ∈ MorC(W,X), g ∈ MorC(X,Y ), and
h ∈ MorC(Y, Z) we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Remark 1.2.2 (classes). Classes are a tool to escape the set-theoretic para-
doxon of the “set of all sets” (Chapter I.1.3.3) [21]. In case you are not familiar
with von Neumann–Bernays–Gödel set theory, you can use the slogan that
classes are “potentially large”, “generalised” sets.

All concepts and facts in mathematical theories that can be expressed in
terms of objects, identity morphisms, and (the composition of) morphisms
also admit a category theoretic version. For instance, in this way, we obtain
a general notion of isomorphism:

Definition 1.2.3 (isomorphism). Let C be a category. Objects X,Y ∈ Ob(C)
are isomorphic in C, if there exist morphisms f ∈ MorC(X,Y ) and g ∈
MorC(Y,X) with

g ◦ f = idX and f ◦ g = idY .

In this case, f and g are isomorphisms in C and we write X ∼=C Y . If the
category is clear from the context, we might also write X ∼= Y .

Proposition 1.2.4 (elementary properties of isomorphisms). Let C be a category
and let X,Y, Z ∈ Ob(C).

1. Then the identity morphism idX is an isomorphism in C (from X
to X).

2. If f ∈ MorC(X,Y ) is an isomorphism in C, then there is a unique
morphism g ∈ MorC(Y,X) that satisfies g ◦ f = idX and f ◦ g = idY .
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3. Compositions of (composable) isomorphisms are isomorphisms.

4. If X ∼=C Y , then Y ∼=C X.

5. If X ∼=C Y and Y ∼=C Z, then X ∼=C Z.

Proof. All claims follow easily follow from the definitions (check!).

Moreover, the setup of categories can be used to give a general definition
of commutative diagrams (Chapter IV.1.1.4).

We collect some basic examples of categories and introduce some categories
that are relevant in Algebraic Topology.

Example 1.2.5 (set theory). The category Set of sets consists of:

• objects: Let Ob(Set) be the class(!) of all sets.

• morphisms: If X and Y are sets, then we define MorSet(X,Y ) as the
set of all set-theoretic maps X −→ Y .

• compositions: If X, Y , and Z are sets, then the composition map
MorSet(Y,Z)×MorSet(X,Y ) −→ MorSet(X,Z) is ordinary composition
of maps.

Clearly, this composition is associative. If X is a set, then the usual identity
map

X −→ X

x 7−→ x

is the identity morphism idX of X in Set. Objects in Set are isomorphic if
and only if there exists a bijection between them, i.e., if they have the same
cardinality.

Caveat 1.2.6. The concept of morphisms and compositions in the definition
of categories is modelled on the example of maps between sets and ordinary
composition of maps. In general categories, morphisms are not necessarily
maps between sets and the composition of morphisms is not necessarily or-
dinary composition of maps!

Example 1.2.7 (algebra). Let K be a field. The category VectK of K-vector
spaces consists of:

• objects: Let Ob(VectK) be the class(!) of all K-vector spaces.

• morphisms: If X, Y are K-vector spaces, then we define MorVectK (X,Y )
as the set of all K-linear maps X −→ Y . In this case, we also
write HomK(X,Y ) for the set of morphisms.

• compositions: As composition we take the ordinary composition of
maps.
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Objects in VectK are isomorphic if and only if they are isomorphic in the
classical sense from Linear Algebra.

Analogously, we can define the category Group of groups, the category Ab
of Abelian groups, the category RMod of left-modules over a ring R, the
category ModR of right-modules over a ring R, . . .

Example 1.2.8 (absolute topology). The category Top of topological spaces
consists of:

• objects: Let Ob(Top) be the class(!) of all topological spaces.

• morphisms: If X and Y are topological spaces, then we define

map(X,Y ) := MorTop(X,Y )

to be the set of all continuous maps X −→ Y .

• compositions: As composition we take the ordinary composition of
maps.

Objects in Top are isomorphic if and only if they are homeomorphic.

Often, we are only interested in the difference between a topological space
and a certain subspace. For example, we can model this situation through
quotient spaces. However, in general, the quotient topology tends to have bad
properties. Alternatively, we can use the following trick to handle differences
between spaces and subspaces:

Example 1.2.9 (relative topology, pairs of spaces). The category Top2 of pairs
of spaces consists of:

• objects: Let

Ob(Top2) :=
{

(X,A)
∣∣ X ∈ Ob(Top), A ⊂ X

}
.

• morphisms: If (X,A) and (Y,B) are pairs of spaces, then we define

map
(
(X,A), (Y,B)

)
:= MorTop2

(
(X,A), (Y,B)

)

:=
{
f ∈ map(X,Y )

∣∣ f(A) ⊂ B
}
.

• compositions: As composition we take the ordinary composition of maps
(this is well-defined!).

The absolute case corresponds to pairs of spaces with empty subspace. A
particularly important special case is the case where the subspace consists of
a single point. This leads to the category Top* of pointed spaces (which is
used in homotopy theory; Definition 1.3.8).

Finally, let us introduce a category that (at least implicitly) plays a key
role in the definition of singular homology:



1.2. Categories and Functors 21

F

 

C D

object X

object Y

object Z

morphism f

morphism g

F (X) object

F (Y ) object

F (Z) object

F (f) morphism

F (g) morphism

Figure 1.7.: Functor, schematically

Definition 1.2.10 (the simplex category). The simplex category ∆ consists of:

• objects: Let Ob(∆) :=
{

∆(n)
∣∣ n ∈ N

}
. Here, for n ∈ N, we write

∆(n) := {0, . . . , n}.

• morphisms: If n,m ∈ N, then Mor∆

(
∆(n),∆(m)

)
is defined to be the

set of all maps {0, . . . , n} −→ {0, . . . ,m} that are monotonically in-
creasing.

• compositions: As compositions we take the ordinary composition of
maps (this is well-defined!).

In ∆, objects are isomorphic if and only if they are equal.

1.2.2 Functors

As next step, we will formalise translations between mathematical theories,
using functors. Roughly speaking, functors are “structure preserving maps be-
tween categories” (Figure 1.7). In particular, functors preserve isomorphisms
(Proposition 1.2.18).

Definition 1.2.11 (functor). Let C and D be categories. A (covariant) func-
tor F : C −→ D consists of the following data:

• A map F : Ob(C) −→ Ob(D).

• For all objects X,Y ∈ Ob(C) a map

F : MorC(X,Y ) −→ MorD
(
F (X), F (Y )

)
.
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This data is required to satisfy the following conditions:

• For all X ∈ Ob(C), we have F (idX) = idF (X).

• For all X,Y, Z ∈ Ob(C) and all f ∈ MorC(X,Y ), g ∈ MorC(Y,Z), we
have

F (g ◦ f) = F (g) ◦ F (f).

A contravariant functor F : C −→ D consists of the following data:

• A map F : Ob(C) −→ Ob(D).

• For all objects X,Y ∈ Ob(C) a map

F : MorC(X,Y ) −→ MorD
(
F (Y ), F (X)

)
.

This data is required to satisfy the following conditions:

• For all X ∈ Ob(C), we have F (idX) = idF (X).

• For all X,Y, Z ∈ Ob(C) and all f ∈ MorC(X,Y ), g ∈ MorC(Y,Z), we
have

F (g ◦ f) = F (f) ◦ F (g).

In other words, contravariant functors reverse the direction of arrows. More
concisely, contravariant functors C −→ D are the same as covariant func-
tors C −→ Dop, where Dop denotes the dual category of D.

Example 1.2.12 (identity functor). Let C be a category. Then the identity
functor IdC : C −→ C is defined as follows:

• on objects: We consider the map

Ob(C) −→ Ob(C)

X 7−→ X.

• on morphisms: For objects X, Y ∈ Ob(C), we consider the map

MorC(X,Y ) −→ MorC(X,Y )

f 7−→ f.

Clearly, this defines a functor C −→ C.

Example 1.2.13 (composition of functors). Let C, D, E be categories and let
F : C −→ D, G : D −→ E be functors. Then the functor G ◦ F : C −→ E is
defined as follows:
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• on objects: Let

G ◦ F : C −→ E

X 7−→ G
(
F (X)

)
.

• on morphisms: For all X, Y ∈ Ob(C), we set

G ◦ F : MorC(X,Y ) −→ MorE
(
G(F (X)), G(F (Y ))

)

f 7−→ G(F (f)).

Clearly, this defines a functor C −→ E. Moreover, composition of functors is
associative.

Caveat 1.2.14 (the category of categories). In view of the previous examples,
it is tempting to introduce the “category of all catgories” (whose objects
would be categories and whose morphisms would be functors). However, con-
structions of this type require set-theoretic precautions [10]. In the following,
we will only use basic category theory and hence we will avoid these issues.

Three important, general, sources for functors are forgetful functors (by
forgetting structure), free generation functors (by freely generating objects),
and represented/representable functors (by viewing a category through the
eyes of a given object).

Example 1.2.15 (forgetful functor). The forgetful functor Top −→ Set is de-
fined as follows:

• on objects: We take the map Ob(Top) −→ Ob(Set) that maps a topo-
logical space to its underlying set.

• on morphisms: For all topological spaces X and Y , we consider the map

MorVectR(X,Y ) = HomR(X,Y ) −→ MorSet(X,Y )

f 7−→ f.

Hence, this functor “forgets” the topological structure and only retains the
underlying set-theoretic information. Analogously, we can define forgetful
functors VectR −→ Set, VectR −→ Ab, . . .

Example 1.2.16 (free generation functor). We can translate set theory to Lin-
ear Algebra via the following functor F : Set −→ VectR:

• on objects: We define

F : Ob(Set) −→ Ob(VectR)

X 7−→
⊕

X

R.
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• on morphisms: If X and Y are sets and if f : X −→ Y is a map,
we define F (f) :

⊕
X R −→ ⊕

Y R as the unique R-linear map that
extends f from the basis X to all of

⊕
X R.

Example 1.2.17 (represented functor). Let C be a category and let X ∈
Ob(C). Then the functor MorC(X, · ) : C −→ Set represented by X is defined
as follows:

• on objects: Let

MorC(X, · ) : Ob(C) −→ Ob(Set)

Y 7−→ MorC(X,Y ).

• on morphisms: Let

MorC(X, · ) : MorC(Y,Z) −→ MorSet

(
MorC(X,Y ),MorC(X,Z)

)

g 7−→ (f 7→ g ◦ f).

As we will see, additional structure on the object X will allow us to refine
the represented functor MorC(X, · ) to a functor from C to categories with
more structure than Set (Outlook 2.1.5).

Analogously, one can define the contravariant functor MorC( · , X) repre-
sented by X.

A fundamental geometric example of a functor is the suspension functor
(Exercise; Chapter 3.2.1).

Fundamental examples of algebraic functors are tensor product functors
(Bemerkung IV.1.5.7).

The key property of functors is that they preserve isomorphisms. In par-
ticular, functors provide a good notion of invariants.

Proposition 1.2.18 (functors preserve isomorphism). Let C and D be cate-
gories, let F : C −→ D be a functor, and let X, Y ∈ Ob(C).

1. If f ∈ MorC(X,Y ) is an isomorphism in C, then the translated mor-
phism F (f) ∈ MorD(F (X), F (Y )) is an isomorphism in D.

2. In particular: If X ∼=C Y , then F (X) ∼=D F (Y ). In other words: If
F (X) 6∼=D F (Y ), then X 6∼=C Y .

Proof. The first part follows from the defining properties of functors: Because
f is an isomorphism, there is a morphism g ∈ MorC(Y,X) with

g ◦ f = idX and f ◦ g = idY .

Hence, we obtain

F (g) ◦ F (f) = F (g ◦ f) = F (idX) = idF (X)
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and F (f)◦F (g) = idF (Y ). Thus, F (f) is an isomorphism from F (X) to F (Y )
in D.

The second part is a direct consequence of the first part.

Therefore, suitable functors can help to prove that certain objects are not
isomorphic.

Caveat 1.2.19. In general, the converse is not true! I.e., objects that are
mapped via a functor to isomorphic objects are, in general, not isomorphic
(check!).

1.2.3 Natural Transformations

Functors are compared through natural transformations; roughly speaking,
natural transformations are “structure preserving maps between functors”.

Definition 1.2.20 (natural transformation, natural isomorphism). Let C and D
be categories and let F,G : C −→ D be functors.

• A natural transformation T from F to G, in short T : F =⇒ G, is a
family

(
T (X) ∈ MorD(F (X), G(X))

)
X∈Ob(C)

of morphisms such that

for all objects X,Y ∈ Ob(C) and all(!) morphisms f ∈ MorC(X,Y ) the
equation

G(f) ◦ T (X) = T (Y ) ◦ F (f)

holds in D. In other words, the following diagrams in D are commuta-
tive:

F (X)
F (f)

//

T (X)

��

F (Y )

T (Y )

��

G(X)
G(f)

// G(Y )

• A natural isomorphism is a natural transformation that consists of
isomorphisms (equivalently, a natural isomorphism is a natural trans-
formation that admits an object-wise inverse natural transformation;
check!).

Study note. The definition of natural transformation can easily be recon-
structed: From (Linear) Algebra we already know examples of “natural iso-
morphisms”. Natural isomorphisms only receive objects as input; hence, it
is clear what type of families natural transformations have to be. Moreover,
naturality should contain compatibility with morphisms. The only reason-
able notion that can be formulated with this amount of data is the one in
the commutative diagram above. That’s it!



26 1. What is Algebraic Topology?

Remark 1.2.21 (natural). The attribute “natural” is used in two related ways:
On the one hand, it refers to functorial constructions; on the other hand, it
refers to things based on natural transformations.

Natural transformations between represented functors can be completely
classified; the key trick is to evaluate on identity morphisms:

Example 1.2.22 (morphisms lead to natural transformations between repre-
sented functors). Let C be a category, let X, Y ∈ Ob(C), and let f ∈
MorC(X,Y ). Then

Tf :=

(
MorC(Y,Z) −→ MorC(X,Z)

)

Z∈Ob(C)g 7−→ g ◦ f

defines a natural transformation MorC(Y, · ) =⇒ MorC(X, · ) (check!).

Proposition 1.2.23 (Yoneda Lemma). Let C be a category, let X, Y ∈ Ob(C),
and let N(Y,X) be the collection (which turns out to be describable as a set)
of all natural transformations MorC(Y, · ) =⇒ MorC(X, · ).

1. Then

ϕ : MorC(X,Y ) −→ N(Y,X)

f 7−→ Tf

ψ : N(Y,X) −→ MorC(X,Y )

T 7−→
(
T (Y )

)
(idY )

are mutually inverse bijections.

2. In particular: The functors MorC(X, · ),MorC(Y, · ) : C −→ Set are
isomorphic if and only if X and Y are isomorphic in C.

Proof. The first part follows from a straightforward calculation: It should be
noted that the map ϕ is indeed well-defined by Example 1.2.22. The maps ϕ
and ψ are mutually inverse:

The composition ψ ◦ ϕ: On the one hand, by definition, we have

ψ ◦ ϕ(f) = ψ
(
ϕ(f)

)
=
(
Tf (Y )

)
(idY ) = idY ◦ f = f

for all f ∈ MorC(X,Y ).

The composition ϕ ◦ ψ: On the other hand, let T ∈ N(Y,X) and let
Z ∈ Ob(C), g ∈ MorC(Y,Z). Then we obtain
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(
T (Z)

)
(g) =

(
T (Z)

)
(g ◦ idY )

= T (Z)
(
MorC(Y, g)(idY )

)
(by definition of MorC(Y, · ))

= MorC(X, g)
(
T (Y )(idY )

)
(because T is a natural transformation)

= g ◦ ψ(T ) (by construction of ψ)

=
(
Tψ(T )(Z)

)
(g) (by construction of Tψ(T ))

=
((
ϕ ◦ ψ(T )

)
(Z)
)
(g) (by definition of ϕ).

Hence, ϕ ◦ ψ(T ) = T , as desired.
The second part can be derived from the first part: The maps ϕ and ψ

are compatible with identity morphisms/transformations and with the com-
position of morphisms/natural transformations. Hence, isomorphisms in C
correspond under ϕ and ψ to natural isomorphisms. Alternatively, one can
use the same proof strategy as in the first part (Proposition IV.1.3.6).

Definition 1.2.24 (representable functor). Let C be a category. A func-
tor F : C −→ Set is representable if there exists an object X ∈ Ob(C) such
that F and the represented functor MorC(X, · ) : C −→ Set are naturally
isomorphic. In this case, X is a representing object for F .

(In view of Proposition 1.2.23, representing objects of representable func-
tors are unique up to isomorphism.)

Remark 1.2.25 (compatibility with inverse limits). One advantage of repre-
sentable functors is that we gain compatibility with inverse limits (e.g., with
products) for free (Bemerkung IV.1.4.12).

Outlook 1.2.26. By now, category theory is a foundational language that
is not only used in mathematics, but also in other fields such as computer
science [58] or linguistics.

Literature exercise. Read about “The Birth of Categories and Functors” [12,
p. 96f].

After this excursion to category theory, we return to the geometric setting.

1.3 Homotopy and Homotopy Invariance

The notion of homeomorphism is too rigid for many problems and techniques
in Algebraic Topology (Figure 1.8). Therefore, we will introduce a weaker
notion of isomorphism, namely homotopy equivalence. To this end, we will
identify continuous maps that only differ by continuous deformations (Fig-
ure 1.9). We will then define the notion of homotopy invariant functors and
we will show how the existence of certain homotopy invariant functors allows
us to solve concrete problems in topology and geometry (Chapter 1.3.3).
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Figure 1.8.: These spaces are not homeomorphic (check!), but they all share
the same “principal shape”, namely a “circle” with a “hole”.

1.3.1 Homotopy

Definition 1.3.1 (homotopy, homotopic, homotopy equivalence, null-homotopic,
contractible). Let X and Y be topological spaces.

• Let f, g : X −→ Y be continuous maps. Then f is homotopic to g, if
f can be deformed continuously into g, i.e., if there exists a homotopy
from f to g (Figure 1.9).

A homotopy from f to g is a continuous map h : X × [0, 1] −→ Y with

h( · , 0) = f and h( · , 1) = g.

In this case, we write f ' g.

• Maps that are homotopic to constant maps are called null-homotopic.

• The topological spaces X and Y are homotopy equivalent, if there exist
continuous maps f : X −→ Y and g : Y −→ X satisfying

g ◦ f ' idX and f ◦ g ' idY ;

such maps are called homotopy equivalences. We then write X ' Y .

• Topological spaces that are homotopy equivalent to one-point spaces
are called contractible.

Study note (etymology). This might be a good time to briefly investigate the
etymology of the different terms:
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AX
0

1

t

(X × [0, 1], A× [0, 1])

h

g

f

h( · , t)

B

(Y,B)

Figure 1.9.: Homotopies are “movies” between continuous maps [of pairs of
spaces]; such movies can also be illustrated via flipbooks (Ap-
pendix A.2).

Ancient Greek English
ὅμοιος similar
μορφή shape, figure
ὁμός equal, similar
τόπος location

Remark 1.3.2 (deformation of maps vs. paths of maps). For sufficiently nice
topological spaces, the exponential law for mapping spaces shows that homo-
topies between maps are the same as continuous paths between these maps
in mapping spaces. More precisely: Let X be a locally compact topological
space, i.e., for every x ∈ X and every open neighbourhood U of x there exists
a compact neighbourhood K of x with K ⊂ U . Then, for every topological
space Y the currying map

map
(
X × [0, 1], Y

)
7−→ map

(
[0, 1],map(X,Y )

)

h 7−→
(
t 7→ h( · , t)

)

is well-defined and bijective. Here, map(X,Y ) carries the compact-open topol-
ogy, i.e., the topology on map(X,Y ) that is generated by sets of the form

{
f ∈ map(X,Y )

∣∣ f(K) ⊂ U
}

where K ⊂ X is compact and U ⊂ Y is open.

Example 1.3.3 (balls are contractible). Let n ∈ N. Then the ball Dn is con-
tractible (Figure 1.10): We consider the continuous maps
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Figure 1.10.: The homotopy equivalences of Example 1.3.3 and Exam-
ple 1.3.4, schematically; these illustration do not indicate an
actual deformation of the spaces, but of maps.

f : Dn −→ {0}
x 7−→ 0

g : {0} −→ Dn

0 7−→ 0.

Then f ◦ g = id{0}, and so f ◦ g ' id{0}. Moreover, the homotopy

Dn × [0, 1] −→ Dn

(x, t) 7−→ t · x

shows that g ◦ f ' idDn (check!). Hence, Dn ' {0}. In the same way, one
can prove that every star-shaped non-empty subspace of Rn is contractible;
in particular, also Rn is contractible.

We will later develop tools that allow us to prove that the sphere Sn is
not contractible (Corollary 4.4.2).

Example 1.3.4 (thick spheres). Let n ∈ N. Then Sn ' Rn+1 \ {0} (Fig-
ure 1.10): We consider the maps

f : Sn −→ Rn+1 \ {0}
x 7−→ x

g : Rn+1 \ {0} −→ Sn

x 7−→ 1

‖x‖2
· x.

Then g ◦ f = idSn , whence g ◦ f ' idSn . Moreover, the (well-defined!) homo-
topy
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(
Rn+1 \ {0}

)
× [0, 1] −→ Rn+1 \ {0}

(x, t) 7−→ t · ‖x‖2 + (1− t)
‖x‖2

· x

shows that f ◦ g ' idRn+1\{0} (check!). Hence, Sn ' Rn+1 \ {0} and we may
view the punctured space Rn+1 \ {0} as a “thick sphere”.

Caveat 1.3.5. Every homeomorphism is a homotopy equivalence. The con-
verse does not hold in general. For example, by Example 1.3.3, D1 ' {0} and
D1 and {0} do not even have the same cardinality. This example also shows
that homotopy equivalences, in general, are neither injective nor surjective.

In the same way as in Top, we can also introduce homotopies etc. for pairs
of spaces and for pointed spaces:

Definition 1.3.6 (homotopy/homotopy equivalence in Top2). Let (X,A) and
(Y,B) be pairs of spaces.

• We abbreviate

(X,A)× [0, 1] :=
(
X × [0, 1], A× [0, 1]

)
∈ Ob(Top2).

• Let f, g : (X,A) −→ (Y,B) be continuous maps of pairs (i.e., morphisms
in Top2). Then f is homotopic to g with respect to the subspaces A
and B, if there is a homotopy of pairs from f to g. A homotopy of pairs
from f to g is a continuous map h : (X,A)× [0, 1] −→ (Y,B) satisfying

h( · , 0) = f and h( · , 1) = g.

In this case, we write f 'A,B g.

(In particular, in this situation, we have h(x, t) ∈ B for all x ∈ A and
all t ∈ [0, 1]).

• The pairs of spaces (X,A) and (Y,B) are homotopy equivalent if there
exist continuous maps f : (X,A) −→ (Y,B) and g : (Y,B) −→ (X,A)
of pairs such that

g ◦ f 'A,A id(X,A) and f ◦ g 'B,B id(Y,B);

such maps are called homotopy equivalences of pairs. In this case, we
write (X,A) ' (Y,B).

Caveat 1.3.7 (relative homotopy). For pairs of spaces, there is also a notion
of relative homotopy (where the homotopy is required to fix each point in the
subspace). This is useful when inductively constructing/modifying continuous
maps; we will need this concept only at a later stage.
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In some situations (e.g., for the construction of homotopy groups), it is
convenient to have a distinguished basepoint available. This leads to the
category of pointed spaces:

Definition 1.3.8 (pointed spaces). The category Top* of pointed spaces is the
full subcategory of Top2 whose objects are of the form (X, {x0}) with x0 ∈ X.
In order to simplify notation, we will usually write (X,x0) instead of (X, {x0})
and call x0 the basepoint of (X,x0). More explicitly: The category Top* con-
sists of:

• objects: We let

Ob(Top*) :=
{

(X,x0)
∣∣ X ∈ Ob(Top), x0 ∈ X

}
.

• morphisms: For pointed spaces (X,x0) and (Y, y0) we set

map∗
(
(X,x0), (Y, y0)

)
:= MorTop*

(
(X,x0), (Y, y0)

)

:=
{
f ∈ map(X,Y )

∣∣ f(x0) = y0

}
.

• compositions: As composition we take the ordinary composition of
maps.

Definition 1.3.9 (homotopy/homotopy equivalence in Top*). Let (X,x0), (Y, y0)
be pointed spaces.

• We abbreviate

(X,x0)× [0, 1] :=
(
X × [0, 1], {x0} × [0, 1]

)
∈ Ob(Top2).

• Let f, g : (X,x0) −→ (Y, y0) be continuous pointed maps. Then f is
pointedly homotopic to g if there exists a pointed homotopy from f
to g. A pointed homotopy from f to g is a continuous map h : (X,x0)×
[0, 1] −→ (Y, y0) with

h( · , 0) = f and h( · , 1) = g.

Let us point out that this includes the condition that h does not move
the basepoint:

∀t∈[0,1] h(x0, t) = y0.

We then write f '∗ g.

• Pointed maps that are pointedly homotopic to the constant pointed
map are called pointedly null-homotopic.

• The pointed spaces (X,x0) and (Y, y0) are pointedly homotopy equiva-
lent, if there exist pointed continuous maps f : (X,x0) −→ (Y, y0) and
g : (Y, y0) −→ (X,x0) such that
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g ◦ f '∗ id(X,x0) and f ◦ g '∗ id(Y,y0);

such maps are called pointed homotopy equivalences. In this case, we
write (X,x0) '∗ (Y, y0).

• Pointed spaces that are pointedly homotopy equivalent to a pointed
one-point space are pointedly contractible.

Example 1.3.10 (balls are pointedly contractible). The same arguments as in
Example 1.3.3 show that (Dn, 0) and (Rn, 0) are pointedly contractible for
every n ∈ N (check!).

Caveat 1.3.11 (different notions of homotopy equivalence). In general, abso-
lute homotopy equivalences will not always lead to corresponding relative or
pointed homotopy equivalences:

• Even though D1 ' R and S0 ' R \ {0}, the pairs (D1, S0) and (R,R \
{0}) are not homotopy equivalent as pairs of spaces: The problem is that
R \ {0} = R and that S0 is disconnected. More precisely, we can argue
as follows: Assume for a contradiction that there exist mutually inverse
homotopy equivalences f : (R,R\{0}) −→ (D1, S0) and g : (D1, S0) −→
(R,R\{0}) of pairs. In particular, there exists a homotopy h : (D1, S0)×
[0, 1] −→ (D1, S0) with

h( · , 0) = f ◦ g and h( · , 1) = id(D1,S0) .

Because of

f(R) = f
(
R \ {0}

)
⊂ f(R \ {0}) ⊂ S0 = S0,

we obtain h(U) ⊂ S0, where

U :=
(
{−1} × [0, 1]

)
∪
(
D1 × {0}

)
∪
(
{1} × [0, 1]

)
⊂ D1 × [0, 1].

However, the U -shaped subspace U is path-connected; thus, the im-
age h(U) ⊂ S0 is path-connected (Proposition A.1.22), and so h|U is
constant. In particular,

−1 = h(−1, 1) = h(1, 1) = 1,

which is impossible. Hence, such a homotopy h of pairs cannot exist.

• If (X,x0) is a pointed space and X is contractible (in Top), then, in
general, (X,x0) is not pointedly contractible: We consider the bushy
sea urchin (with the subspace topology of R2)

X :=
{
s · (cos t, sin t)

∣∣ s ∈ [0, 1], t ∈ Q ∩ [0, 2 · π]
}

with the basepoint (1, 0) (Figure 1.11). Then X is contractible (because
it is star-shaped, Example 1.3.3), but not pointedly contractible (one
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Figure 1.11.: The bushy sea urchin

can argue in a similar way as in the previous example, looking at the
spikes “close” to the basepoint).

With a little bit more effort, one can extend this example to show that
there are contractible spaces that for every choice of basepoint are not
pointedly contractible.

More generally, in order to define a notion of homotopy and homotopy
equivalences we need suitable products and a suitable model of the unit
interval. For example, translating this concept into homological algebra leads
to the notion of chain homotopy and chain homotopy equivalence for chain
complexes (Appendix A.6.3).

Outlook 1.3.12 (A1-homotopy). In A1-homotopy theory (a branch of Alge-
braic Geometry inspired by homotopy theory), the affine line A1 plays a role
similar to the unit interval [0, 1] in classical homotopy theory.

Of course, we can recover the case of homotopies etc. in Top or Top*

from Top2 (by taking empty subspaces or one-point subspaces, respectively).
So, when stating and proving properties of homotopies, it suffices to deal
with the case of pairs of spaces.

Proposition 1.3.13 (elementary properties of homotopy).

1. Let (X,A) and (Y,B) be pairs of spaces. Then “'A,B” is an equivalence
relation on map

(
(X,A), (Y,B)

)
.

2. Let (X,A), (Y,B), and (Z,C) be pairs of spaces and let f, f ′ : (X,A) −→
(Y,B), g, g′ : (Y,B) −→ (Z,C) be continuous maps of pairs with f 'A,B
f ′ and g 'B,C g′. Then

g ◦ f 'A,C g′ ◦ f ′.

3. If X is a contractible topological space and Y is a topological space, then
all continuous maps X −→ Y and Y −→ X are null-homotopic. The
analogous statement also holds in the pointed setting.
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X
0

1

1/2
f

g

e

h( · , 2 · t)

k( · , 2 · t− 1)

Y

Figure 1.12.: Transitivity of being homotopic, schematically

Proof. Ad 1. Reflexivity. Let f ∈ map
(
(X,A), (Y,B)

)
. Then f 'A,B f follows

from the constant movie, i.e., via the homotopy of pairs:

(X,A)× [0, 1] −→ (Y,B)

(x, t) 7−→ f(x)

Symmetry. Let f, g ∈ map
(
(X,A), (Y,B)

)
with f 'A,B g; moreover, let

h : (X,A) × [0, 1] −→ (Y,B) be such a homotopy of pairs of spaces. Then
g 'A,B f follows from the inverse movie, i.e., via the homotopy

(X,A)× [0, 1] −→ (Y,B)

(x, t) 7−→ h(x, 1− t)

of pairs.

Transitivity. Let e, f, g ∈ map
(
(X,A), (Y,B)

)
with e 'A,B f and f 'A,B

g; let h, k : (X,A) × [0, 1] −→ (Y,B) be such homotopies of pairs of spaces.
Then e 'A,B g follows from the concatenated (and reparametrised) movie
(Figure 1.12), i.e., via the homotopy

(X,A)× [0, 1] −→ (Y,B)

(x, t) 7−→
{
h(x, 2 · t) if t ∈ [0, 1/2]

k(x, 2 · t− 1) if t ∈ [1/2, 1]

of pairs; it should be noted that this map is indeed well-defined and contin-
uous (Proposition A.1.17).

Ad 2. Let h : (X,A)× [0, 1] −→ (Y,B) and k : (Y,B)× [0, 1] −→ (Z,C) be
homotopies of pairs from f to f ′ and from g to g′, respectively. Then

(X,A)× [0, 1] −→ (Z,C)

(x, t) 7−→ k
(
h(x, t), t

)
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is a homotopy of pairs showing that g ◦ f 'A,C g′ ◦ f ′ (check!).
Ad 3. Let X be contractible. Then idX ' c, where c : X −→ X is a

constant map (check!). If f : X −→ Y is continuous, then the second part
shows that

f = f ◦ idX ' f ◦ c.
Moreover, because c is constant, also f ◦ c is constant. Hence, f is null-
homotopic. Analogously, one can handle the case of maps to X, as well as
the pointed case.

Example 1.3.14 (boring paths). If X is path-connected space, then all con-
tinuous maps [0, 1] −→ X are homotopic to each other (Exercise).

1.3.2 Homotopy Invariance

One of the main goals of Algebraic Topology is to study the homotopy equiv-
alence problem

Classify topological spaces up to homotopy equivalence!

As in the case of the homeomorphism problem, also this problem is not
solvable in full generality (Outlook 2.2.19). However, the problem can be
solved for many concrete examples, using suitable functors as invariants.

In order to define the notion of homotopy invariance, we first introduce
appropriate categories for the homotopy equivalence problem. The basic idea
is to construct such categories by identifying maps in Top, Top2, Top*, . . .
that are homotopic. In view of Proposition 1.3.13, these categories are well-
defined (check!).

Definition 1.3.15 (homotopy category of topological spaces). The homotopy
category of topological spaces is the category Toph consisting of:

• objects: Let Ob(Toph) := Ob(Top).

• morphisms: For all topological spaces X, Y , we set

[X,Y ] := MorToph
(X,Y ) := map(X,Y ) /'.

Homotopy classes of maps will be denoted by “[ · ]”.

• compositions: The compositions of morphisms are defined by ordinary
composition of representatives.

Definition 1.3.16 (homotopy category of pairs of spaces). The homotopy cat-
egory of pairs of spaces is the category Top2

h consisting of:

• objects: Let Ob(Top2
h) := Ob(Top2).
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• morphisms: For all pairs of spaces (X,A), (Y,B), we set

[
(X,A), (Y,B)

]
:= MorTop2

h

(
(X,A), (Y,B)

)

:= map
(
(X,A), (Y,B)

)
/'A,B .

Homotopy classes of maps of such pairs will be denoted by “[ · ]A,B”.

• compositions: The compositions of morphisms are defined by ordinary
composition of representatives.

Definition 1.3.17 (homotopy category of pointed spaces). The homotopy cat-
egory of pointed spaces is the category Top*h consisting of:

• objects: Let Ob(Top*h) := Ob(Top*).

• morphisms: For all pointed spaces (X,x0), (Y, y0), we set

[
(X,x0), (Y, y0)

]
∗ := MorTop*h

(
(X,x0), (Y, y0)

)

:= map
(
(X,x0), (Y, y0)

)
/'∗.

Pointed homotopy classes of pointed maps will be denoted by “[ · ]∗”.

• compositions: The compositions of morphisms are defined by ordinary
composition of representatives.

Remark 1.3.18. In this way, we obtain a category theoretic formulation of
homotopy equivalence: Topological spaces are homotopy equivalent if and
only if they are isomorphic in the category Toph (and similarly for the case
of Top2 and Top*) (check!).

Hence, in order to study spaces up to homotopy equivalence, it is reason-
able to study functors mapping out of Toph, Top2

h, Top*h, . . . .

Definition 1.3.19 (homotopy invariant functor). Let T be one of the cate-
gories Top, Top2, Top*, . . . (this list will grow during this course) and let C
be a category. A functor F : T −→ C is homotopy invariant if the following
holds: For all X,Y ∈ Ob(T ) and all f, g ∈ MorT (X,Y ) with f 'T g, we have

F (f) = F (g).

Remark 1.3.20 (homotopy invariant functors and homotopy categories). Let
T be one of the categories Top, Top2, Top*, . . . , let C be a category, and
let F : T −→ C be a functor. Then F is homotopy invariant in the sense
of the previous definition if and only if it factors over the homotopy classes
functor H : T −→ Th (which is the identity on objects and maps each map
to its homotopy class), i.e., if and only if there exists a functor Fh : Th −→ C
with Fh ◦H = F :
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T

H

��

F // C

Th

Fh

>>

Proposition 1.3.21 (homotopy invariant functors yield homotopy invariants).
Let T be one of the categories Top, Top2, Top*, . . . , let C be a category, and
let F : T −→ C be a homotopy invariant functor. Let X, Y ∈ Ob(T ). Then
the following hold:

1. If X 'T Y , then F (X) ∼=C F (Y ).

2. If F (X) 6∼=C F (Y ), then X 6'T Y .

Proof. It suffices to prove the first part. Because F is a homotopy invariant
functor, there is a factorisation Fh of F over the homotopy classes func-
tor H : T −→ Th. Because Fh preserves isomorphisms (Proposition 1.2.18)
and because X 'T Y is equivalent to H(X) ∼=Th

H(Y ), the claim follows.
Of course, alternatively, one can also go through the definition of homotopy

invariant functors and prove the claim “by hand”.

In this language, the aim of this course is to find “good” examples of
homotopy invariant functors.

1.3.3 Using Homotopy Invariant Functors

During this course, we will establish the following theorem (Corollary 4.4.2):

Theorem 1.3.22 (existence of “interesting” homotopy invariant functors).
There exists a sequence (Fn)n∈N of homotopy invariant functors Top −→ Ab
with the following properties:

1. For all n, m ∈ N, we have

Fm(Sn) ∼=Ab

{
{0} if n 6= m

Z if n = m.

2. For all n ∈ N and all j ∈ {1, . . . , n+ 1} we have

Fn(r
(n)
j ) 6= idFn(Sn),

where

r
(n)
j : Sn −→ Sn

x 7−→ (x1, . . . , xj−1,−xj , xj+1, . . . , xn+1)

is the reflection at the j-th coordinate hyperplane in Rn+1.
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Notation 1.3.23. We will now demonstrate how this result can be used in
practice; in the following, we mark results by a star if we give a proof that
depends on Theorem 1.3.22:

Corollary* 1.3.24 (invariance of dimension I).

1. For all n ∈ N, the sphere Sn is not contractible.

2. For all n, m ∈ N, we have Sn ' Sm if and only if n = m.

3. For all n, m ∈ N, we have Sn ∼=Top S
m if and only if n = m.

4. For all n, m ∈ N, we have Rn ∼=Top Rm if and only if n = m.

Proof. Ad 1. If n = 0, then S0 is not path-connected, whence not homotopy
equivalent to a point (Exercise).

Let us consider the case n > 0. Assume for a contradiction that Sn

were contractible. Then all continuous maps Sn −→ Sn would be null-
homotopic; because Sn is path-connected, this would mean that all continu-
ous maps Sn −→ Sn would be homotopic. In particular, we would obtain

idFn(Sn) = Fn(idSn) = Fn(r
(n)
1 ) 6= idFn(Sn)

for the functor Fn : Top −→ Ab from Theorem 1.3.22, which is impossible.
Hence, Sn is not contractible.

Ad 2. This follows directly from the first part of Theorem 1.3.22 and
homotopy invariance (Proposition 1.3.21).

Ad 3. This follows from the second part (because every homeomorphism
is a homotopy equivalence).

Ad 4. We apply the point-removal trick : Let n, m ∈ N and let f : Rn −→
Rm be a homeomorphism; without loss of generality, we may assume that
n 6= 0 and m 6= 0 (because cardinality is a homeomorphism invariant). Then
f induces a homeomorphism Rn \ {0} −→ Rm \ {f(0)}. In particular, using
Example 1.3.4, we obtain that

Sn−1 ' Rn \ {0} ' Rm \ {f(0)} ' Sm−1.

Therefore, the second part shows that n− 1 = m− 1, whence n = m.

The last part of Corollary 1.3.24 is essential in the study of topolog-
ical manifolds, in order to obtain a well-defined notion of dimension of
(non-empty) topological manifolds. We will return to this problem in Corol-
lary 4.4.2.

Corollary* 1.3.25 (Brouwer fixed point theorem). Let n ∈ N. Then every con-
tinuous map Dn −→ Dn has at least one fixed point.

Proof. Without loss of generality, we may assume that n ≥ 1 (because D0

consists of a single point).
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g(x) ∈ ∂Dn = Sn−1

f(x)

x

Figure 1.13.: Construction of g, in the proof of the Brouwer fixed point the-
orem

Assume for a contradiction that there is a continuous map f : Dn −→ Dn

with f(x) 6= x for all x ∈ Dn. We will derive a contradiction as follows:

À Using f , we will construct a continuous map g : Dn −→ Sn−1 satisfy-
ing g ◦ i = idSn−1 , where i : Sn−1 −→ Dn denotes the inclusion.

Á Using À, we will conclude that Sn−1 is contractible (which contradicts
Corollary 1.3.24).

Ad À. We consider the map

g : Dn −→ Sn−1

x 7−→ x+
t(x)

‖x− f(x)‖22
·
(
x− f(x)

)
,

where

t(x) := −
〈
x, x− f(x)

〉

+

√〈
x, x− f(x)

〉2 −
∥∥x− f(x)

∥∥
2
2 ·
(
‖x‖22 − 1

)
.

In other words: Given x ∈ Dn, the point g(x) is the intersection of the
unique(!) ray from f(x) through x with the boundary ∂Dn = Sn−1 (Fig-
ure 1.13; check!).

A straightforward calculation shows that g is well-defined and continuous
(check!). Moreover, we have (check!)

∀x∈Sn−1 g(x) = x,

and so g ◦ i = idSn−1 .
Ad Á. By À, we have g ◦ i = idSn−1 ' idSn−1 . Conversely, we also have

that i ◦ g ' idDn (because Dn is contractible; check!). Thus,
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Sn−1 ' Dn,

which means that Sn−1 is contractible (Example 1.3.3). However, this con-
tradicts Corollary 1.3.24.

Study note. Where in the proof of Corollary 1.3.25 did we use the assumption
that the map under consideration has no fixed points?

Example 1.3.26 (maps). Because filled rectangles are homeomorphic to D2

and the Brouwer fixed point theorem (Corollary 1.3.25) also applies to spaces
homeomorphic to balls (check!), we obtain: If a rectangular rubber map of
Regensburg is crumpled/stretched and put on the floor in Regensburg (in the
area that is represented on the map), then there exists a point in Regensburg,
that lies beneath its corresponding point on the map.

Remark 1.3.27 (on the non-constructive nature). While this proof of the
Brouwer fixed point theorem is elegant, it does have the disadvantage that it
is highly non-constructive. Also Brouwer’s original proof suffers from being
non-constructive and Brouwer quite strongly felt that this is a serious issue.

In fact, it can be shown that in dimension bigger than 1, even computable
continuous functions need not have computable fixed points [57, 3, 59]. How-
ever, as Brouwer already observed, there is a constructive approximate version
of this theorem [8].

Study note (fixed point theorems). Compare the Brouwer fixed point theorem
with the Banach fixed point theorem, keeping the following questions in mind:

• How do the hypotheses on the spaces differ?

• How do the hypotheses on the self-map differ?

• Which one is more constructive?

Outlook 1.3.28 (Nash equilibria). One of the most famous applications of
the Brouwer fixed point theorem is Nash’s (second) proof of the existence
of Nash equilibria in game theory [56]. Nash was awarded the Nobel Prize
(in Economic Sciences, 1994) for his work in game theory. Moreover, Nash
made many visionary contributions to different aspects of geometry (e.g., the
so-called Nash embedding theorem).

Moreover, Theorem 1.3.22 allows us to solve the hedgehog-combing prob-
lem. As a preparation, we will first consider the following variation of the
mapping degree principle:

Proposition 1.3.29 (mapping degrees of self-maps). Let C be a category, let
F : C −→ Ab be a functor, and let X ∈ Ob(C) be an object with F (X) ∼=Ab Z.
The degree map on X with respect to F is given by

degF : MorC(X,X) −→ Z
f 7−→ d ∈ Z with F (f) = d · idF (X).
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Then the following hold:

1. The map degF : MorC(X,X) −→ Z is well-defined.

2. For all f, g ∈ MorC(X,X), we have degF (g ◦ f) = degF g · degF f .

3. We have degF (idX) = 1 and all C-isomorphisms f ∈ MorC(X,X)
satisfy

degF f ∈ {−1, 1}.

Proof. Ad 1. We only need to apply the following basic observation to F (X):
If Z is an Abelian group with Z ∼=Ab Z, then every group homomor-
phism Z −→ Z is of the form d · idZ with d ∈ Z; moreover, the number d is
determined uniquely by the homomorphism.

Ad 2. Because F is a functor, we obtain

degF (g ◦ f) · idF (X) = F (g ◦ f) (definition of degF )

= F (g) ◦ F (f) (F is a functor)

=
(
degF g · idF (X)

)
◦
(
degF f · idF (X)

)
(definition of degF )

= degF g · degF f · idF (X) .

Therefore, degF (g ◦ f) = degF g · degF f .
Ad 3. Because F is a functor, we have

F (idX) = idF (X) = 1 · idF (X);

thus, degF (idX) = 1. The statement about automorphisms of X is hence
a consequence of the second part and the fact that −1 and 1 are the only
multiplicative units of Z.

Theorem* 1.3.30 (hedgehog theorem). Let n ∈ N>0. Then there exists a
continuous nowhere vanishing vector field on Sn if and only if n is odd.

Remark 1.3.31 (vector fields). Let us recall the following terminology: Let M
be a differentiable manifold and let p : TM −→M be its tangent bundle.

• A continuous vector field on M is a continuous map v : M −→ TM
with p ◦ v = idM ; i.e., v continuously picks a vector in every tangent
space.

• A continuous vector field v : M −→ TM is nowhere vanishing, if

∀x∈M v(x) 6= 0 ∈ TxM.

• Let n ∈ N>0. Then continuous [nowhere vanishing] vector fields on Sn

correspond to continuous maps v : Sn −→ Rn+1 with

∀x∈Sn

〈
x, v(x)

〉
= 0

[
and v(x) 6= 0

]
.
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Figure 1.14.: Continuous combing of a one-dimensional hedgehog

In particular, Theorem 1.3.30 shows that the hedgehog (biologically almost
correctly modelled by S2) cannot be combed continuously.

Proof of Theorem 1.3.30. Let n ∈ N be odd, say n = 2 · k + 1 with k ∈ N.
Then

Sn −→ Rn+1

x 7−→ (x2,−x1, x4,−x3, . . . , x2·k+2,−x2·k+1)

is a continuous nowhere vanishing vector field on Sn (Figure 1.14).
Conversely, let n ∈ N>0 and let v : Sn −→ Rn+1 be a nowhere vanishing

vector field on Sn. Then

h : Sn × [0, 1] −→ Sn

(x, t) 7−→ cos(π · t) · x+ sin(π · t) · 1

‖v(x)‖2
· v(x)

is well-defined (check!) and continuous; by construction, h is a homotopy
from idSn to the antipodal map − idSn = (x 7→ −x).

We will apply the mapping degree principle (Proposition 1.3.29), using a
functor Fn as provided by Theorem 1.3.22:

For all j ∈ {1, . . . , n + 1}, the reflection r
(n)
j : Sn −→ Sn is a homeomor-

phism (being its own inverse); moreover, we have Fn(r
(n)
j ) 6= idFn(Sn) and

so degFn
(r

(n)
j ) = −1. Because Fn is homotopy invariant, we obtain

1 = degFn
(idSn) (Proposition 1.3.29)

= degFn
(− idSn) (Fn is homotopy invariant and idSn ' − idSn)

= degFn
(r

(n)
n+1 ◦ · · · ◦ r

(n)
1 ) (elementary calculation/geometry)

= degFn
(r

(n)
n+1) · · · · · degFn

(r
(n)
1 ) (Proposition 1.3.29)

= (−1)n+1.

In particular, n is odd.
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Literature exercise. Read about the origin of the notion of homotopy and
homotopy invariance [12, p. 43].



2

Fundamental Group
and Covering Theory

We investigate a first class of homotopy invariant functors, so-called ho-
motopy groups. Geometrically speaking, homotopy groups “count spherical
holes” in (pointed) spaces. In terms of category theory, this means to look at
the functors

πn :=
[
(Sn, e1), ·

]
∗ : Top*h −→ Set

represented by the (pointed) spheres.
We focus on the case of the one-dimensional sphere S1, leading to the

fundamental group. In particular, we will study the following questions:

• How can we define a group structure on π1 ?

• How does π1 behave with respect to (de)compositions of spaces?

• Can we interpret π1 as an automorphism group?

• Which applications does π1 have?

Overview of this chapter.

2.1 The Fundamental Group 46
2.2 Divide and Conquer 53
2.3 Covering Theory 71
2.4 Applications 103

Running example. the circle and its relatives
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2.1 The Fundamental Group

We first give an explicit description of the functor

π1 :=
[
(S1, e1), ·

]
∗ : Top*h −→ Set

and its group structure. We then briefly also discuss a more conceptual way
of thinking about this group structure and the role of the basepoint.

2.1.1 The Group Structure on the Fundamental Group

Remark 2.1.1 (π1, intuitively). Before going into the technical details, let us
first look at π1 from a geometric point of view: Let (X,x0) be a pointed
space. Then

π1(X,x0) =
[
(S1, e1), (X,x0)

]
∗ = map∗

(
(S1, e1), (X,x0)

) /
'∗

is the set of pointed homotopy classes of pointed loops in (X,x0) (Figure 2.1).
The pointed loop À in Figure 2.1 is pointedly null-homotopic. If the pointed
loop Á is not pointedly null-homotopic (which we will establish in Theo-
rem 2.3.40), then this loop Á detects the “hole” of this space.

x0À Á

Figure 2.1.: π1, intuitively

Notation 2.1.2 (parametrisation of S1). In the following, we use the homeo-
morphism

[0, 1]/(0 ∼ 1) −→ S1

[t] 7−→ e2·π·i·t

from Example 1.1.16; hence, we parametrise points on S1 by elements in the
unit interval [0, 1].
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x0γ η

Figure 2.2.: The group structure on π1: The purple loop is γ ∗ η and thus
represents [γ]∗ · [η]∗.

x0 γ −→fX y0 f ◦ γY

Figure 2.3.: The induced group homomorphism on π1

Concatenating (and reparametrising) loops at the same basepoint leads to
a new loop; this defines a group structure on π1:

Proposition and Definition 2.1.3 (fundamental group). Let (X,x0) be a
pointed space.

1. Then the map

· : π1(X,x0)× π1(X,x0) −→ π1(X,x0)

(
[γ]∗, [η]∗

)
7−→

[
γ ∗ η :=

(
[t] 7→

{
γ([2 · t]) if t ∈ [0, 1/2]

η([2 · t− 1]) if t ∈ [1/2, 1]

)]

∗

is well-defined and π1(X,x0) is a group with respect to this composition.
We call π1(X,x0) the fundamental group of (X,x0).

2. Let (Y, y0) be a pointed space and let f ∈ map∗
(
(X,x0), (Y, y0)

)
. Then

π1(f) = MorTop*h

(
(S1, 1), f

)
: π1(X,x0) −→ π1(Y, y0)

[γ]∗ 7−→ [f ◦ γ]∗

is a group homomorphism (with respect to the group structure introduced
in the previous item).
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0

1

11/2

x0

γ

γ

c

γ ∗ c '∗ γ
analogously: c ∗ γ '∗ γ

0

1

11/2

x0 x0

γ γ

γ

γ ∗ γ '∗ c
analogously: γ ∗ γ '∗ c

0

1

11/21/4

3/41/2

γ

γ

η

η

ω

ω

(γ ∗ η) ∗ ω '∗ γ ∗ (η ∗ ω)

Figure 2.4.: Verifying the group axioms for the composition defined in Propo-
sition 2.1.3; here, γ, η, ω : (S1, e1) −→ (X,x0) are pointed con-
tinuous maps and c : (S1, e1) −→ (X,x0) denotes the constant
loop at x0.

Proof. Ad 1. The composition · on π1(X,x0) is well-defined :

• If γ, η ∈ map∗((S
1, e1), (X,x0)) are pointed continuous maps, then γ∗η

is a well-defined continuous (Proposition A.1.17) loop, based at x0; here,
the basepoint plays an important role!

• Moreover, if γ '∗ γ′ (via h) and η '∗ η′ (via k), then the (in S1-
direction concatenated) pointed homotopy (check!)

(S1, e1)× [0, 1] −→ (X,x0)

(
[s], t

)
7−→

{
h
(
[2 · s], t

)
if s ∈ [0, 1/2]

k
(
[2 · s− 1], t

)
if s ∈ [1/2, 1]

shows that γ ∗ η '∗ γ′ ∗ η′; here, it is important that we use pointed
homotopies!

Moreover, the composition · satisfies the group axioms; here, it is essential
that we pass to (pointed) homotopy classes of loops – so that we can enjoy
the freedom of reparametrisation:

• Existence of a neutral element: Let c : (S1, e1) −→ (X,x0) be the con-
stant loop at x0. Then [c]∗ ∈ π1(X,x0) is neutral with respect to · :
For every γ ∈ map∗((S

1, e1), (X,x0)) the pointed homotopy (check!)

(S1, e1)× [0, 1] −→ (X,x0)

(
[s], t) 7−→

{
γ
(
[ 2
1+t · s]

)
if s ∈ [0, 1/2 · (1 + t)]

x0 if s ∈ [1/2 · (1 + t), 1]
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shows that c ∗ γ '∗ γ (Figure 2.4). Similarly, we obtain γ ∗ c '∗ γ.

• Existence of inverses: Let γ ∈ map∗
(
(S1, e1), (X,x0)

)
. We then con-

sider (walking the loop γ backwards)

γ : (S1, e1) −→ (X,x0)

[s] 7−→ γ
(
[1− s]

)
.

Then γ ∗ γ '∗ c through the pointed homotopy (check! Figure 2.4; see
also Appendix A.2)

(S1, e1)× [0, 1] −→ (X,x0)

(
[s], t

)
7−→





x0 if s ∈ [0, 1/2 · t] ∪ [1− 1/2 · t, 1]

γ
(
[2 · s− t]

)
if s ∈ [1/2 · t, 1/2]

γ
(
[2 · s− 1 + t]

)
if s ∈ [1/2, 1− 1/2 · t]

(one should note that γ([2 · 1/2 − 1 + t]) = γ([2 · 1/2 − t]) holds for
all t ∈ [0, 1]). Similarly, we obtain γ ∗ γ '∗ c. Hence [γ]∗ is an/the
inverse of [γ]∗.

• Associativity: Let γ, η, ω ∈ map∗
(
(S1, e1), (X,x0)

)
. Then the canonical

homotopy associated with the rightmost diagram in Figure 2.4 shows
that

(γ ∗ η) ∗ ω '∗ γ ∗ (η ∗ ω).

Therefore, · is associative.

Hence, π1(X,x0) indeed forms a group with respect to · .
Ad 2. Let γ, η ∈ map∗

(
(S1, e1), (X,x0)

)
. Then the definition of the con-

catenation ∗ shows that

f ◦ (γ ∗ η) = (f ◦ γ) ∗ (f ◦ η).

In particular, π1(f)
(
[γ]∗ · [η]∗

)
= π1(f)

(
[γ]∗) · π1(f)

(
[η]∗
)
, as desired.

Remark 2.1.4 (π1 as group-valued functor). The group structure on π1 con-
structed in Proposition 2.1.3 is compatible with composition of pointed
maps/group homomorphisms and identity maps (check!). Hence, we found
the desired factorisation of π1 over the forgetful functor Group −→ Set:

Group

forget
��

Top*h π1

//

?
::

Set

In order to keep notation simple, we will also denote the resulting func-
tors Top*h −→ Group and Top* −→ Group by π1.
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γ η

γ η

γ

η

+1

+2

Figure 2.5.: Composition on πn, schematically

Outlook 2.1.5 (π1 via cogroup objects). The proof that concatenation of rep-
resenting loops induces a group structure on π1 (Proposition 2.1.3) only uses
the corresponding properties of (S1, e1). More precisely, (S1, e1) is a cogroup
object in Top*h and this cogroup object structure corresponds to a factori-
sation of π1 over Group (Appendix A.3). Moreover, one can show that the
cogroup object structure on (S1, e1) is essentially unique [1, Theorem 7.3].

Because S1 does not admit a cogroup object structure in Toph (or Top
or Top*), the functor [S1, · ] : Toph −→ Set does not factor over Group. This
shows that the use of basepoints and pointed homotopies is not an artefact
of our construction; it is essential in order to obtain a group-valued functor
in this way.

Alternative functors that do not require the use of basepoints are the
fundamental groupoid (Outlook 2.1.10) as well as the first (singular) homol-
ogy H1( · ;Z) (Chapter 4).

Outlook 2.1.6 (higher homotopy groups). If n ∈ N≥2, then similarly to the
group structure on π1, one can also introduce a group structure on πn
(or a cogroup object structure on (Sn, e1) in Top*h), resulting in the n-
th homotopy group πn; more precisely: Let �n := [0, 1]n be the unit n-
cube. Similarly to Example 1.1.9 one can prove that there is a homeomor-
phism ϕn : �n/∂�n −→ Sn with ϕn(∂�n) = e1; in the following, we will
parametrise points in Sn by �n using this homeomorphism ϕn. For pointed
spaces (X,x0) and j ∈ {1, . . . , n} we define the composition (Figure 2.5)

+j : πn(X,x0)× πn(X,x0) −→ πn(X,x0)

(
[γ]∗, [η]∗

)
7−→

[
�n 3 t 7→

{
γ([t1, . . . , 2 · tj , . . . , tn]) if tj ∈ [0, 1/2]

η([t1, . . . , 2 · tj − 1, . . . , tn]) if tj ∈ [1/2, 1]

]

∗

Similar arguments as in the case of π1(X,x0) show that +j indeed yields
a well-defined functorial group structure on πn(X,x0). Moreover, one can
prove that +j = +1 for all j ∈ {1, . . . , n} and that πn(X,x0) is an Abelian
group with respect to +1 if n ≥ 2 (Eckmann–Hilton trick; Exercise).
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Remark 2.1.7 (π0 and path-connected components). If (X,x0) is a pointed
space, then π0(X,x0) =

[
(S0, 1), (X,x0)

]
∗ corresponds to the set of path-

connected components of X (Exercise).
As (S0, 1) does not admit the structure of a comonoid object or even

cogroup object in Top*h, the functor π0 does not admit a monoid/group
structure. Geometrically, this is plausible as there is no geometric reason why
path-connected components should admit a “multiplication” that is compat-
ible with all (pointed) continuous maps.

Example 2.1.8 (trivial fundamental groups).

• If (X,x0) is pointedly contractible, then π1(X,x0) is the trivial group
(because every pointed loop is pointedly homotopic to the constant
pointed loop; Proposition 1.3.13). Moreover, also contractible spaces
have trivial fundamental group (Exercise).

• If n ∈ N≥2, then all pointed loops in (Sn, e1) are pointedly null-
homotopic. Hence, also π1(Sn, e1) is a trivial group. One can prove
this by a direct geometric argument or via the theorem of Seifert and
van Kampen (Example 2.2.11).

2.1.2 Changing the Basepoint

Before delving into further examples and calculations of π1, we discuss the ef-
fect of changing basepoints on π1. A first, simple, observation is that π1(X,x0)
can only see the path-connected component of the basepoint x0 in X. Base-
points in the same path-connected component lead to isomorphic fundamen-
tal groups; but, in general, there is no canonical isomorphism between these
fundamental groups:

Proposition 2.1.9 (fundamental group and change of basepoint). Let X be a
topological space, let x, y ∈ X, and let η, η′ : [0, 1] −→ X be paths in X from x
to y.

1. Then

ϕη : π1(X, y) −→ π1(X,x)

[γ]∗ 7−→
[
(η ∗ γ) ∗ η

]
∗

is a well-defined map, which is a group isomorphism (Figure 2.6).

2. We have ch ◦ ϕη = ϕη′ , where

ch : π1(X,x) −→ π1(X,x)

g 7−→ h · g · h−1

denotes the conjugation by the element h := [η′ ∗ η]∗ ∈ π1(X,x).
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x

η

η y

γ

Figure 2.6.: Changing the basepoint in π1,

Proof. In the formulation of this proposition, we extended the concatena-
tion “∗” and the inverse parametrisation “ · ” in the obvious way from loops
to paths [0, 1] −→ X. Similarly to the proof of Proposition 2.1.3, this concate-
nation is also associative with respect to homotopies that fix the endpoints
of paths, etc. (check!). In particular, the pointed loops η ∗ η and η ∗ η are
pointedly null-homotopic.

Ad 1. A straightforward calculation shows that ϕη indeed is a well-defined
map that is compatible with the group structures on π1(X, y) and π1(X,x)
(which are also given by concatenation of representatives) and that ϕη is the
inverse of ϕη (check!). Hence, ϕη is a group isomorphism.

Ad 2. By construction, η′∗η is a loop, based at x. Hence, h := [η′∗η]∗ is an
element of π1(X,x). Moreover, for all γ ∈ map∗((S

1, e1), (X, y)), we obtain

ϕη′
(
[γ]∗

)
= [η′ ∗ γ ∗ η′]∗
= [η′ ∗ η ∗ η ∗ γ ∗ η ∗ η ∗ η′]∗
= h · [η ∗ γ ∗ η]∗ · h−1

= ch
(
ϕη([γ]∗)

)

(we omit various parentheses when concatenating paths, because after taking
pointed homotopy classes, concatenation is associative).

Outlook 2.1.10 (the fundamental groupoid). Sometimes, fixing a basepoint
can be inconvenient. In such cases, the fundamental groupoid can serve as a
good replacement of the fundamental group: A groupoid is a (small) category
in which all morphisms are isomorphisms. In this language, groups correspond
to groupoids with a single object (and then the group elements correspond
to the automorphisms of this unique object). The fundamental groupoid of a
topological space X consists of:

• objects: the set (of points of) X.

• morphisms: for x, y ∈ X, the set of morphisms from x to y is the set
of homotopy classes of paths [0, 1] −→ X from x to y with respect to
homotopies that fix the start and end points.
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• compositions: concatenation/reparametrisation of representatives.

While the fundamental groupoid allows for more elegant formulations of
many results on π1, it does have the disadvantage of the additional overhead
of dealing with groupoids instead of groups (and one hence, would need to
translate these results back into the language of groups.)

Definition 2.1.11 (simply connected). A non-empty topological space X is
simply connected if it is path-connected and if for one (hence every; Propo-
sition 2.1.9) basepoint x0 ∈ X, the fundamental group π1(X,x0) is trivial.

Example 2.1.12. In this language, pointedly contractible spaces are simply
connected; more generally, all contractible spaces are simply connected (Ex-
ample 2.1.8).

Moreover, spheres of dimension at least 2 are simply connected (Exam-
ple 2.1.8). In contrast, we will see that the circle S1 is not simply connected
(Theorem 2.3.40).

Study note. Where in Analysis did you already come across the notion of
simple connectedness?

More generally, one can introduce higher connectedness properties:

Definition 2.1.13 (higher connectedness). Let n ∈ N. A non-empty topological
space X is n-connected if (the condition on π0 ensures that such spaces are
path-connected!)

∀j∈{0,...,n} ∀x0∈X
∣∣πn(X,x0)

∣∣ = 1.

2.2 Divide and Conquer

We investigate how the fundamental group behaves with respect to (de)com-
positions of spaces. By construction, the fundamental group is a (covariant)
represented functor. Therefore, we may expect that the compatibility of π1

with respect to inverse limits (such as products) should be easy to obtain.
However, the compatibility with colimits (such as glueings) should be more
involved. In the following, we study

• products,

• glueings,

• ascending unions

of pointed spaces.
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2.2.0 The Fundamental Example

The fundamental group of the circle will serve as basic input for the inductive
calculation of fundamental group out of simple building blocks. As one might
expect, wrapping loops around the circle multiple times defines an isomor-
phism between Z and π1(S1, e1). In particular, π1 indeed detects the “hole”
in the circle.

Theorem 2.2.1 (fundamental group of the circle). The map

Z −→ π1(S1, e1)

d 7−→
[
[t] 7→ [d · t mod 1]

]
∗

is a group isomorphism.

It would be possible to prove this theorem now “by hand”. However, we
prefer to wait with the proof until Chapter 2.3.4, when we will have the
“right” tools to access this problem.

Remark 2.2.2 (complex analysis). The homotopy invariance of complex inte-
gration shows that

π1(S1, e1) −→ Z (!)

[γ]∗ 7−→
1

2 · π · i ·
∫

γ

1

z
dz

is well-defined. Moreover, basic computations in complex analysis show that
this map is surjective and compatible with the group structures. However, at
this point, it is not so clear why this map should also be injective.

2.2.1 Products

Products are special cases of inverse limits. Hence, the represented functor π1

is compatible with products. More precisely:

Lemma 2.2.3 (products in Top*h). Let (Xi, xi)i∈I be a family of pointed topo-
logical spaces. Then

(∏
i∈I Xi, (xi)i∈I

)
, together with the pointed homotopy

classes of the canonical projections onto the factors, satisfies the universal
property of the product of (Xi, xi)i∈I in Top*h.

Proof. This is a straightforward computation (Exercise).

Proposition 2.2.4 (πn of products). Let n ∈ N and let (Xi, xi)i∈I be a family
of pointed topological spaces. Then
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Figure 2.7.: Generators of the fundamental group of the torus

πn

(∏

i∈I
Xi, (xi)i∈I

)
−→

∏

i∈I
πn(Xi, xi)

g 7−→
(
πn(pi)(g)

)
i∈I

is a bijection; here, for i ∈ I, we write pi :
∏
j∈I Xj −→ Xi for the projection

onto the i-th factor. If n ≥ 1, then this map is a group isomorphism.

Proof. Because (
∏
i∈I Xi, (xi)i∈I), together with ([pi]∗)i∈I is the category

theoretic product of (Xi, xi)i∈I in Top*h (Lemma 2.2.3), bijectivity of the
map above follows from the universal property of the product, applied to the
test space (Sn, e1)) and the definition πn = MorTop*h

((Sn, e1), · ).
For n ≥ 1, the maps πn(pi) are group homomorphisms (by functoriality

of πn as a functor to Group). Therefore, the definition of the group structure
on
∏
i∈I πn(Xi, xi) shows that the map above is a group homomorphism

(whence an isomorphism).

Example 2.2.5 (fundamental group of the torus). Combining Theorem 2.2.1
and Proposition 2.2.4, we obtain that

π1

(
T 2, (e1, e1)

) ∼=Group π1(S1, e1)× π1(S1, e1) ∼=Group Z× Z.

Corresponding generators (constructed from a generator of the fundamental
group of the circle) are depicted in Figure 2.7. It should be noted that this
is an instance of a perfect computation of a fundamental group: The result-
ing group is completely understood algebraically; moreover, we can exhibit
explicit, geometric, generators.

In particular:

• The torus and the circle are not pointedly homotopy equivalent.

• The torus and the two-dimensional sphere are not pointedly homotopy
equivalent. Hence, the two-dimensional sphere and the torus are not
homeomorphic. This is a part of the classification of compact surfaces
(where one can use the fundamental group to distinguish between dif-
ferent surfaces [51]).
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2.2.2 Glueings

We will now show that π1 is compatible with certain glueings, i.e., special
types of pushouts. Pushouts in Group will be discussed in more detail in
Chapter 2.2.3 and Appendix A.4.

Theorem 2.2.6 (Seifert and van Kampen). Let (X,x0) be a pointed topolog-
ical space and X1, X2 ⊂ X be path-connected subspaces with the following
properties:

• We have X◦1 ∪X◦2 = X,

• the intersection X0 := X1 ∩X2 is path-connected,

• and x0 lies in X0.

Then

π1(X0, x0)
π1(i1)

//

π1(i2)

��

π1(X1, x0)

π1(j1)

��

π1(X2, x0)
π1(j2)

// π1(X,x0)

is a pushout diagram in the catgory Group of groups. Here, we equip X0, X1,
and X2 with the subspace topology of X and i1, : X0 −→ X1, i2 : X0 −→ X2,
j1 : X1 −→ X, j2 : X2 −→ X denote the inclusion maps.

The basic idea of the proof – as in many glueing or approximation results
in Algebraic Topology – is to subdivide loops/homotopies into small pieces
(Figure 2.8). In order to ensure that there exist fine enough subdivisions, we
will use the Lebesgue lemma:

Lemma 2.2.7 (Lebesgue lemma). Let (X, d) be a compact metric space and
let (Ui)i∈I be an open cover of X. Then there exists an ε ∈ R>0 with the
following property: For every x ∈ X there is an i ∈ I such that the open
ball U(x, ε) of radius ε around x is contained in Ui.

Any such number ε is called a Lebesgue number of the cover (Ui)i∈I .

Proof. Because (Ui)i∈I is an open cover of X, for every x ∈ X there exists
an ix ∈ I and an rx ∈ R>0 with U(x, rx) ⊂ Uix . In view of compactness,
there is a finite set Y ⊂ X with

⋃
y∈Y U(y, ry/2) = X. Then

ε :=
1

2
·min
y∈Y

ry ∈ R>0

has the desired property: Let x ∈ X. Hence, there is a y ∈ Y with x ∈
U(y, ry/2). Therefore, we obtain U(x, ε) ⊂ U(y, ry) ⊂ Uiy , as desired.



2.2. Divide and Conquer 57

Proof of Theorem 2.2.6. We prove that π1(X,x0), together with the homo-
morphisms π1(j1) and π1(j2) satisfies the universal property of the pushout
of

π1(X0, x0)
π1(i1)

//

π1(i2)

��

π1(X1, x0)

π1(X2, x0)

in the category Group. Clearly, j1 ◦ i1 = j2 ◦ i2 and so

π1(j1) ◦ π1(i1) = π1(j1 ◦ i1) = π1(j2 ◦ i2) = π1(j2) ◦ π1(i2).

Let H be a group and let ϕ1 : π1(X1, x0) −→ H and ϕ2 : π1(X2, x0) −→ H be
group homomorphisms with ϕ1 ◦ π1(i1) = ϕ2 ◦ π1(i2). We have to show that
there exists a unique group homomorphism ϕ : π1(X,x0) −→ H satisfying

ϕ ◦ π1(j1) = ϕ1 and ϕ ◦ π1(j2) = ϕ2.

The basic, geometric, idea is to subdivide pointed loops and pointed ho-
motopies in (X,x0) with the help of the Lebesgue lemma (Lemma 2.2.7) into
small pieces that lie in the building blocks X1 or X2, respectively (Figure 2.8).

As a preparation, we introduce the following notation:

• A continuous path γ : [a, b] −→ X (with a, b ∈ R and a ≤ b) is small if
there exists a j ∈ {1, 2} such that

γ
(
[a, b]

)
⊂ Xj .

• Let γ ∈ map∗((S
1, e1), (X,x0)). A finite sequence (γ1, . . . , γn) of paths

in X is a decomposition of γ if there exists a partition 0 = t0 < t1 <
· · · < tn−1 < tn = 1 with the following properties:

– For all j ∈ {0, . . . , n− 1}, we have γj = γ|[tj ,tj+1]

– and for every j ∈ {0, . . . , n− 1} the path γj is small.

• For every j ∈ {1, 2} and every x ∈ Xj we choose a continuous
path wx : [0, 1] −→ Xj from x0 to x. If x ∈ X0, then we choose wx
in such a way that wx([0, 1]) ⊂ X0. For x = x0, we choose the constant
path. Such paths do exist in view of the hypothesis that X0, X1, and
X2 are path-connected.

• For a small path γ : [a, b] −→ X, we define the associated loop

c(γ) :=
(
(wγ(a) ∗R(γ)

)
∗ wγ(b) : (S1, e1) −→ (X,x0),
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The loop . . .

X1

X2

x0

. . . is subdivided into “small” paths . . .

X1

X2

x0

. . . that are extended to loops based at x0 by adding paths to the basepoint:

X1

X2

x0

Figure 2.8.: Subdivided loop in the proof of the theorem of Seifert and
van Kampen
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where R(γ) : [0, 1] −→ X is the affine linear reparametrisation of γ
(which is defined on the interval [a, b]). By construction, if γ([a, b]) ⊂
Xj , then also c(γ)(S1) ⊂ Xj .

We first prove uniqueness of ϕ: In order to prove uniqueness of ϕ, it
suffices to show that π1(X,x0) is generated by imπ1(j1) ∪ imπ1(j2), i.e.,
that every element in π1(X,x0) is a product of (pointed homotopy classes
of) finitely many small loops. Let g ∈ π1(X,x0), say g = [γ]∗ with γ ∈
map∗((S

1, e1), (X,x0)).

À Then γ admits a decomposition, because: In view of X◦1 ∪ X◦2 = X,
the family (γ−1(X◦1 ), γ−1(X◦2 )) is an open cover of S1. As S1 ∼=Top

[0, 1]/(0 ∼ 1) is a compact metrisable space, we obtain from the
Lebesgue lemma an n ∈ N and t0, . . . , tn ∈ [0, 1] with 0 = t0 <
t1 < · · · < tn = 1 such that γj := γ|[tj ,tj+1] is small for ev-
ery j ∈ {0, . . . , n− 1}. Then (γ0, . . . , γn) is a decomposition of γ.

Á By construction (with, implicit, leftmost binding priority of “∗”),

γ '∗ R(γ0) ∗ · · · ∗R(γn)

'∗ wx0
∗R(γ0) ∗ wγ(t1) ∗ wγ(t1) ∗R(γ1) ∗ wγ(t1) ∗ · · ·

∗ wγ(tn) ∗R(γn) ∗ wx0

'∗ c(γ0) ∗ · · · ∗ c(γn),

and so
g = [γ]∗ =

[
c(γ0)

]X
∗ · · · · ·

[
c(γn)

]X
∗ .

By construction, each loop c(γj) lies in X1 or X2; hence, [c(γj)]
X
∗

lies in imπ1(j1) ∪ imπ1(j2). Therefore, g is in the subgroup generated
by imπ1(j1) ∪ imπ1(j2).

It remains to show existence of ϕ: By the uniqueness part of the proof, we
already know how we have to define ϕ. The main difficulty is to show that
this is actually well-defined.

Â Definition on small paths. Let P ⊂ ⋃a,b∈R,a≤b map([a, b], X) be the set
of all small paths in X and let

ϕ̃ : P −→ H

γ 7−→
{
ϕ1

(
[c(γ)]X1∗

)
if im γ ⊂ X1

ϕ2

(
[c(γ)]X2∗

)
if im γ ⊂ X2.

This map is well-defined: Let γ ∈ P with im γ ⊂ X1 ∩X2 = X0. Then
im c(γ) ⊂ X0, and so
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ϕ1

(
[c(γ)]X1

∗
)

= ϕ1

(
[i1 ◦ c(γ)]X1

∗
)

= ϕ1 ◦ π1(i1)
(
[c(γ)]X0

∗
)

= ϕ2 ◦ π1(i2)
(
[c(γ)]X0

∗
)

(because ϕ1 ◦ π1(i1) = ϕ2 ◦ π1(i2))

= ϕ2

(
[i2 ◦ c(γ)]X2

∗
)

= ϕ2

(
[c(γ)]X2

∗
)
.

Ã Compatibility with decompositions. Let (γ : [a, b] −→ X) ∈ P , let t ∈
[a, b], and let γ1 := γ|[a,t], γ2 := γ|[t,b] (in particular, γ1 and γ2 are
small). Then we have (if im γ ⊂ Xj)

ϕ̃(γ) = ϕj
(
[c(γ)]

Xj
∗
)

= ϕj
(
[wγ(a) ∗R(γ) ∗ wγ(b)]

Xj
∗
)

= ϕj
(
[wγ(a) ∗R(γ1) ∗ wγ(t) ∗ wγ(t) ∗R(γ2) ∗ wγ(b)]

Xj
∗
)

= ϕj
(
[c(γ1)]

Xj
∗ · [c(γ2)]

Xj
∗
)

= ϕj
(
[c(γ1)]

Xj
∗
)
· ϕj
(
[c(γ2)]

Xj
∗
)

= ϕ̃(γ1) · ϕ̃(γ2).

Ä Definition on loops. We now define

ϕ◦ : map∗
(
(S1, e1), (X,x0)

)
−→ H

γ 7−→ ϕ̃(γ1) · · · · · ϕ̃(γn)

if (γ1, . . . , γn) is a decomposition of γ.

This is indeed well-defined:

– Every loop in (X,x0) admits a decomposition (by À),

– and any two decompositions of the same loop have a common
refinement and so lead to the same value (by Ã).

Å Definition on π1(X,x0). As last step, we set

ϕ : π1(X,x0) −→ H

[γ]X∗ 7−→ ϕ◦(γ).

If ϕ turns out to be well-defined, then it is in fact a group homomor-
phism (by construction; check!). We prove that ϕ is well-defined:

Let γ, η ∈ map∗((S
1, e1), (X,x0)) with [γ]X∗ = [η]X∗ and let h : (S1, e1)×

[0, 1] −→ (X,x0) be a pointed homotopy from γ to η. We apply the sub-
division principle to the homotopy h: The sets h−1(X◦1 ) and h−1(X◦2 )
form an open cover of the compact metrisable space S1× [0, 1]. Apply-
ing the Lebesgue lemma (Lemma 2.2.7), we obtain an n ∈ N such that:
For all j, k ∈ {0, . . . , n− 1} there exists an ijk ∈ {1, 2} with
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h|...

γ̃

γ1

γ2

γ3

η̃

η1

η2

η3

[0] [1] ∈ S1
0

1

Figure 2.9.: Changing γ̃ “square by square” to η̃ via h

h
([ j
n
,
j + 1

n

]
×
[k
n
,
k + 1

n

])
⊂ Xijk .

Proceeding square by square, we prove inductively that ϕ◦(γ) = ϕ◦(η):
To set up this induction, let

γ̃ := γ ∗ c and η̃ := c ∗ η,

where c denotes the constant loop at x0. By construction of ϕ◦, we have

ϕ◦(γ̃) = ϕ◦(γ) · ϕ◦(c)
= ϕ̃(γ) · ϕ◦(c)
= ϕ◦(γ),

ϕ◦(η̃) = ϕ◦(η).

Therefore, it suffices to prove ϕ◦(γ̃) = ϕ◦(η̃). Changing γ̃ “square by
square” to η̃, inductively, we can restrict attention to the situation in
Figure 2.9, where η1 = γ1 and η3 = γ3, and the paths η2 and γ2 are
small and related via h as in the sketch.

Out of h, we hence obtain a pointed homotopy

c(γ2) '∗ c(η2)

in X1 or X2 (check!). Therefore, ϕ̃(γ2) = ϕ̃(η2), and so

ϕ◦(γ̃) = (contribution of γ1) · ϕ̃(γ2) · (contribution of γ3)

= (contribution of η1) · ϕ̃(η2) · (contribution of η3)

= ϕ◦(η̃),

as claimed.
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Æ Solving the mapping problem. By construction, we have for all γ ∈
map∗((S

1, e1), (X1, x0)) that

ϕ ◦ π1(j1)
(
[γ]X1
∗
)

= ϕ
(
[γ]X∗

)

= ϕ1

(
[c(γ)]X1

∗
)

(because γ is X1-small)

= ϕ1

(
[γ]X1
∗
)

(because γ is a loop at x0);

thus, ϕ ◦ π1(j1) = ϕ1. In the same way, we also obtain ϕ ◦ π1(j2) = ϕ2.

In summary, π1(X,x0) (together with π1(j1) and π1(j2)) has the universal
property of the pushout specified in the theorem.

Caveat 2.2.8. The topological situation in the Seifert and van Kampen the-
orem (Theorem 2.2.6) can be viewed as a pushout in Top*. Moreover, in
the proof of Theorem 2.2.6, it is tempting to work in Top*h instead of
in Top*. However, one should note that, in general, the homotopy classes
functor Top* −→ Top*h does not turn pushouts into pushouts! Indeed, the
homotopy theory of pushouts (or more general colimits) involves several sub-
tle points [65, Chapter 6].

Outlook 2.2.9 (Blakers-Massey theorem). The analogue of the theorem of
Seifert and van Kampen (Theorem 2.2.6) for higher homotopy groups does
not hold in general: The higher homotopy groups of glueings depend in a
more subtle way on the higher homotopy groups of the building blocks [68,
Chapter 6.4, Chapter 6.10]; this is the Blakers–Massey theorem.

2.2.3 Computations

In order to compute fundamental groups via the theorem of Seifert and
van Kampen, we need a better understanding of pushouts of groups. Here, we
focus on the most important facts; more details can be found in Appendix A.4.

Example 2.2.10 (pushouts of groups).

• Pushouts of groups are a special type of colimits in the category Group.
Hence, all general observations on colimits also apply to these pushouts
(e.g., pushout groups are determined up to canonical isomorphism by
the input diagram and isomorphic diagrams lead to isomorphic pushout
groups).

• All pushouts in Group exist; a concrete construction of the pushout is
the amalgamated free product (Appendix A.4). Alternatively, one can
also use the Seifert and van Kampen theorem to establish the existence
of all pushouts in Group by translating pushout situations in group
theory into topology.
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• If A is a group, then
A //

��

1

��

1 // 1

(where all group homomorphisms are trivial and 1 denotes “the” trivial
group) is a pushout in Group (check!).

• If ϕ : A −→ G is a group homomorphism, then

A
ϕ
//

��

G

p

��

1 // G/N

is a pushout in Group (check!); here, N ⊂ G denotes the smallest (with
respect to inclusion) normal subgroup of G that contains ϕ(A) and
p : G −→ G/N is the canonical projection.

• Let

1 //

��

Z

��

Z // F

be a pushout in Group. Then F is not Abelian (Exercise).

More precisely, we have the following: Let F2 be “the” free group of
rank 2. A concrete model of F2 is given by looking at all reduced words
in two different elements a and b and taking concatenation (and re-
duction) as composition (Appendix A.4); then F2 is freely generated
by {a, b}, i.e., it satisfies the universal property of freeness in Group
(Appendix A.4). Then

1 //

��

Z

1 7→a
��

Z
17→b
// F2

is a pushout in Group.

Example 2.2.11 (fundamental group of higher-dimensional spheres). Let n ∈
N≥2. We write N := en+1 and S := −en+1 for the North and South pole,
respectively. We consider the open cover of Sn given by X1 := Sn \ {N} and
X2 := Sn \ {S} (Figure 2.10). Because X0 := X1 ∩X2 is path-connected as
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X1

X0 = X1 ∩X2

X2

Figure 2.10.: Computing the fundamental group of higher-dimensional
spheres via the theorem of Seifert and van Kampen

well, the Seifert and van Kampen theorem (Theorem 2.2.6) applies to this
cover. Hence, we obtain a pushout of the form

π1(X0, e1) //

��

π1(X1, e1) ∼= 1

��

1 ∼= π1(X2, e1) // π1(Sn, e1)

in Group. As X1 and X2 are homeomorphic to Rn (via the stereographic
projection; Exercise) and thus pointedly contractible, we obtain

π1(X1, e1) ∼=Group 1 ∼=Group π1(X2, e1).

Therefore, also π1(Sn, e1) is trivial (Example 2.2.10).
The same argument shows the following: If (X,x0) is a path-connected

pointed topological space, then the fundamental group π1(ΣX, [x0, 0]) of the
suspension ΣX is trivial.

Study note. Why doesn’t the same argument as in Example 2.2.11 also show
that π1(S1, e1) is trivial?!

Example 2.2.12 (fundamental group of RP 2). Similarly, using the calculation
of π1(S1, e1) and the theorem of Seifert and van Kampen (Theorem 2.2.6)
shows that

π1

(
RP 2, [e1]

) ∼=Group Z/2

and we can exhibit a generator geometrically (Exercise).

Glueing pointed spaces along their basepoints leads to the wedge of spaces
(Figure 2.11):

Definition 2.2.13 (wedge). For pointed spaces (X,x0) and (Y, y0), we define
the wedge

(X,x0) ∨ (Y, y0) :=
(
(X t Y )

/
(x0 ∼ y0), [x0] = [y0]

)
.
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X1 X2x1

x2  

(X1, x1) ∨ (X2, x2)

Figure 2.11.: The wedge of pointed spaces

More generally: Let (Xi, xi)i∈I be a non-empty family of pointed spaces. The
wedge of this family is defined as

∨

i∈I
(Xi, xi) :=

(⊔

i∈I
Xi/∼, z0

)

where
⊔
i∈I Xi/∼ carries the quotient topology of the disjoint union topology,

where “∼” is the equivalence relation on the disjoint union generated by

∀i,j∈I xi ∼ xj ,

and where z0 is the point represented by all the basepoints xi with i ∈ I.

The wedge of pointed spaces (together with the pointed homotopy classes
of the canonical inclusion maps of the summands) is the coproduct in the
category Top*h (check!).

Example 2.2.14 (fundamental group of wedges of finitely many circles). We
compute the fundamental group of the wedge (X,x0) := (S1, e1) ∨ (S1, e1)
of two circles, using the theorem of Seifert and van Kampen: Taking the two
circles as subspaces would not directly allow to apply the theorem of Seifert
and van Kampen (because the union of their interiors would miss the base-
point of the wedge). Therefore, we consider the decomposition indicated in
Figure 2.12. The corresponding subspaces X1, X2, and X0 = X1 ∩X2 satisfy
the hypotheses of the Seifert and van Kampen theorem (Theorem 2.2.6).

Hence, we obtain the following pushout in Group (where all homomor-
phisms are induced by the inclusions of the respective subspaces):

π1(X0, x0) //

��

π1(X2, x0)

��

π1(X1, x0) // π1(X,x0)

The space (X0, x0) is pointedly contractible (check!) and hence has trivial
fundamental group. The spaces (X1, x0) and (X2, x0) are pointedly homotopy
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Figure 2.12.: Computing the fundamental group of a wedge of two circles and
inductively of a finite wedge of circles

equivalent to (S1, e1) (check!) and hence have fundamental group isomorphic
to Z, generated by the loops wrapping around the corresponding circle once.
Therefore, we obtain a pushout in Group of the following form:

1 //

��

Z

��

Z // π1(X,x0)

Using Example 2.2.10, we see that π1(X,x0) is isomorphic the free group F2

of rank 2, freely generated by two loops wrapping once around the left/right
circle, respectively. In particular, the group π1(X,x0) is non-abelian (and the
loops corresponding to the two circles do not commute).

In combination with Example 2.2.5, we obtain: The torus is not pointedly
homotopy equivalent to (S1, e1) ∨ (S1, e1).

Inductively, in this way we can compute the fundamental group of finite
wedges of circles: For n ∈ N>0, let (Bn, bn) :=

∨
{1,...,n}(S

1, e1) be the wedge

of n circles. Then π1(Bn, bn) is a free group of rank n, freely generated by
the circles in the wedge.
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Caveat 2.2.15 (fundamental group of wedges). Let (X,x0) and (Y, y0) be
pointed spaces. In general, π1((X,x0)∨ (Y, y0)) is not isomorphic to the free
product of π1(X,x0) and π1(Y, y0). The reason is that, in general, we cannot
expect to be able to find a “nice” neighbourhood of the basepoint in order
to extend the subspaces (X,x0) and (Y, y0) appropriately.

We will now briefly address some questions on the computability of funda-
mental groups. In order to understand these results, we first need to introduce
some terms from group theory:

Outlook 2.2.16 (presentations of groups by generators and relations). Let S be
a set, let F (S) :=FSZ be “the” free group generated by S (Appendix A.4),
and let R ⊂ F (S). Then the group generated by S with relations R is defined
as

〈S |R〉 := F (S)/N,

where N ⊂ F (S) is the smallest (with respect to inclusion) normal subgroup
of F (S) containing R.

For example, working with the corresponding universal properties shows
that [39, Chapter 2.2]

〈 | 〉 ∼=Group 1

〈a | 〉 ∼=Group Z
〈a, b | 〉 ∼=Group F2

〈a, b | aba−1b−1〉 ∼=Group Z2

〈a | a2021〉 ∼=Group Z/2021

〈s, t | s2021, t2, tst−1s〉 ∼=Group D2021.

However, it can be proved that there is no algorithm that, given a pre-
sentation with finitely many generators and finitely many relations, decides
whether the correspoding group is trivial or not [61, Chapter 12]. Hence, also
the analogous general isomorphism problem is not algorithmically solvable(!).

Outlook 2.2.17 (from complexes to π1). Let X be the geometric realisation
of a (finite) simplicial complex K, i.e., a space that is constructed from
finitely many simplices [54, Chapter 1]. Then, using the theorem of Seifert
and van Kampen (Theorem 2.2.6), we can read off a finite presentation of the
fundamental group of X from the combinatorics of K [19, Theorem 2.3.1];
roughly speaking, the edeges lead to generators, the triangles lead to relations,
and the higher-dimensional simplices do not contribute to the fundamental
group.

Outlook 2.2.18 (from presentations to complexes). Conversely, let (S,R) be
a finite presentation of a group. Modelling this situation in topology, we can
construct the presentation complex P (S,R) of (S,R) as the pushout



68 2. Fundamental Group and Covering Theory

(∨

R

(D2, e1)
)
∪ϕ
(∨

S

(S1, e1)
)

;

here, ϕ :
∨
R(S1, e1) −→ ∨

S(S1, e1) is a continuous map such that for
each r ∈ R, the restriction of ϕ to the r-th summand corresponds to the
element r ∈ F (S) ∼=Group π1(

∨
S(S1, e1)) under the isomorphism from Exam-

ple 2.2.14. The theorem of Seifert and van Kampen (Theorem 2.2.6) yields a
canonical isomorphism

π1

(
P (S,R)

) ∼=Group 〈S |R〉.

For example, applying this construction to the presentation 〈a, b | aba−1b−1〉
results in a space homeomorphic to the two-dimensional torus.

With careful bookkeeping, this construction can be refined to turn fi-
nite presentations (S,R) algorithmically into finite (pointed) simplicial com-
plexes X(S,R) with a canonical isomorphism π1(X(S,R)) ∼=Group 〈S |R〉.
Moreover, one can modify this construction in such a way, that

X(S,R) ' X(∅, ∅)⇐⇒ 〈S |R〉 ∼=Group 1

holds for all finite presentations (S,R) [50].

Outlook 2.2.19 (unsolvability of the homeomorphism/homotopy equivalence
problem). Using the observations from Outlook 2.2.16–2.2.18 (and similar,
refined constructions), one can prove the following [50]:

• There is no algorithm that, given a finite simplicial complex, decides
whether it is simply connected or not.

• There is no algorithm that, given two finite simplicial complexes, de-
cides whether they are homotopy equivalent or not.

• There is no algorithm that, given two finite simplicial complexes, de-
cides whether they are homeomorphic or not.

• There is no algorithm that, given two finite triangulations of closed
4-manifolds, decides whether they are homotopy equivalent or not.

• There is no algorithm that, given two finite triangulations of closed
4-manifolds, decides whether they are homeomorphic or not.

In particular, the homeomorphism problem and the homotopy equivalence
problem are not algorithmically solvable.

2.2.4 Ascending Unions

Finally, we consider the behaviour of the fundamental group with respect to
ascending unions:
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Proposition 2.2.20 (πn and ascending unions). Let n ∈ N, let (X,x0) be a
pointed space, let (I,≤) be a directed set, and let (Xi)i∈I be a directed system
of subspaces of X (with respect to inclusion) satisfying

X =
⋃

i∈I
X◦i and x0 ∈

⋂

i∈I
Xi.

Then

1. We have πn(X,x0) =
⋃
i∈I πn(Xi ↪→ X)

(
πn(Xi, x0)

)
.

2. If i, k ∈ I and g ∈ πn(Xi, x0), h ∈ πn(Xk, x0) with πn(Xi ↪→ X)(g) =
πn(Xk ↪→ X)(h), then there is a j ∈ I with i ≤ j and k ≤ j satisfying

πn(Xi ↪→ Xj)(g) = πn(Xk ↪→ Xj)(h).

In particular, πn(X,x0) (together with the maps (πn(Xi ↪→ X))i∈I) is
the colimit of the system ((πn(Xi, x0))i∈I , (πn(Xi ↪→ Xj))i,j∈I,i≤j) in Set
(or Group, if n ≥ 1).

Recall that a partially ordered set (I,≤) is directed if the following holds:
For all i, k ∈ I, there exists a j ∈ I with i ≤ j and k ≤ j.

Proof. The proof is based on a compactness argument: both Sn and Sn ×
[0, 1] are compact. Therefore, every pointed map representing an element
of πn(X,x0) and every pointed homotopy between such maps already lives
in one of the subspaces Xi. More precisely:

Ad 1. Let g ∈ πn(X,x0), say g = [γ]∗ with γ ∈ map∗((S
n, e1), (X,x0)).

Because Sn is compact, also γ(Sn) is compact. As (X◦i )i∈I is an open cover
of X, there exists a finite set J ⊂ I with

γ(Sn) ⊂
⋃

j∈J
Xj .

Because (I,≤) is directed and J is finite, there exists an i ∈ I with with

∀j∈J j ≤ i.

Hence, γ(Sn) ⊂ ⋃j∈J Xj ⊂ Xi. Therefore,

g = [γ]∗ ∈ πn(Xi ↪→ X)
(
πn(Xi, x0)

)
.

Ad 2. Let i, k ∈ I and let γ ∈ map∗((S
n, e1), (Xi, x0)) as well as η ∈

map∗((S
n, e1), (Xk, x0)) with [γ]X∗ = [η]X∗ . Let h : (Sn, e1)× [0, 1] −→ (X,x0)

be a pointed homotopy from γ to η (in X). Because Sn × [0, 1] is compact,
we can apply the same argument as in the first part to conclude that there is

a j ∈ I with h(Sn × [0, 1]) ⊂ Xj and i ≤ j, k ≤ j. Hence, [γ]
Xj
∗ = [η]

Xj
∗ .
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2 3 22 5

. . .

Figure 2.13.: A “telescope”

Example 2.2.21 (fundamental group of general wedges of circles). Let I be
a non-empty set. Then the computation of the fundamental group of finite
wedges of circles (Example 2.2.14) and Proposition 2.2.20 (applied to a suit-
able system of subspaces of thickened finite wedges of circles) shows that
π1(
∨
I(S

1, 1)) is free of rank |I|, where the circles correspond to generators
in a free generating set.

Combining Proposition 2.2.20 and the ideas from Outlook 2.2.17 and 2.2.18
allows us to describe fundamental groups of general complexes in terms of
generators and relations and to construct complexes with a given fundamental
group.

Example 2.2.22 (telescope). We consider the space in Figure 2.13, consisting
of a sequence of cylinders [0, 1] × S1 that are glued via the maps wrapping
the circle around the circle the given number of times; here, all prime powers
occur as such numbers.

We can then use the theorem of Seifert and van Kampen (Theorem 2.2.6)
to compute the fundamental groups of the initial pieces (given by finitely
many of the first glued cylinders; some care is needed to handle the base-
points!). Viewing these groups as subgroups of Q, we obtain the sequence

Z ⊂ 1

2
· Z ⊂ 1

6
· Z ⊂ 1

24
· Z ⊂ 1

120
· Z ⊂ . . .

of groups. Applying Proposition 2.2.20 then shows that the fundamental
group of the whole telescope is isomorphic to Q.

This example can be generalised to the theory of rationalisations and lo-
calisations of topological spaces [18].
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2.3 Covering Theory

Our next goal is to give an interpretation of fundamental groups as automor-
phism groups of geometric objects. This will allow us to

• classify certain geometric objects via fundamental groups,

• and to compute the fundamental group geometrically in some cases.

In particular, we will compute the fundamental group of the circle with this
method (Theorem 2.3.40).

The key notion in this context are coverings; coverings form a special class
of locally trivial bundles. We will first introduce the basic terminology and
investigate lifting properties of such maps. We will then study the universal
covering and prove the classification theorem. Finally, we sketch how these
techniques can be used to give a topological proof of the Nielsen–Schreier
theorem in group theory.

2.3.1 Coverings

Coverings are locally trivial bundles with discrete fibre:

p−1(U)

p−1(x)

p

B U x

p−1(U)

p−1(x)

p

B U x

Figure 2.14.: A locally trivial bundle and a covering, schematically

Definition 2.3.1 ((locally) trivial bundle, covering). Let F , E, B be topological
spaces.

• A continuous map p : E −→ B is a trivial bundle over B with fibre F if
there exists a homeomorphism f : E −→ B × F with
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projection projection

Figure 2.15.: Locally trivial bundles over S1 with fibre [0, 1]

pB ◦ f = p,

where pB : B × F −→ B denotes the projection onto the first factor.

• A continuous map p : E −→ B is a locally trivial bundle over B with
fibre F if: For every x ∈ B there exists an open neighbourhood U ⊂ B
of X such that the restriction p|p−1(U) : p−1(U) −→ U is a trivial bundle
over U with fibre F .

In this situation, E is the total space and B is the base space. For x ∈ B,
the preimage p−1(x) ⊂ E is the fibre of p over x (Figure 2.14).

• Locally trivial bundles with discrete fibre F are called coverings. We
then call |F | the number of sheets of the covering (Figure 2.14).

Caveat 2.3.2 (covering vs. cover). In this course, we will always use the term
“covering” in the sense above and the term “cover” in the sense of Defini-
tion A.1.33. In the literature, sometimes these words are used in different
ways.

Example 2.3.3 (locally trivial bundles).

• Vector bundles (e.g., tangent bundles of smooth manifolds) are locally
trivial bundles; the fibres are (real or complex) vector spaces. For a vec-
tor bundle one requires that there exists an atlas of local trivialisations
that is compatible with the linear structure on the fibres.

• The continuous maps in Figure 2.15 are locally trivial bundles with
fibre [0, 1] over S1. The bundle on the left-hand side is trivial, while
the bundle on the right-hand side is not trivial (Exercise). Because
[0, 1] does not carry the discrete topology, these maps are not covering
maps.
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x ∈ R

[x mod 1] ∈ S1

[x] ∈ S1

[2 · x mod 1] ∈ S1

Figure 2.16.: Coverings of S1

• Viewing S3 as the unit sphere in C2, the scalar multiplication with
elements of S1 ⊂ C defines a continuous group action S1 y S3. One
can show that the associated quotient map p : S3 −→ S1\S3 is a locally
trivial bundle with fibre S1, the so-called Hopf fibration. The base space
is homeomorphic to S2 [26, Example 4.45].

One of the foundational results of homotopy theory is that the class
in π3(S2, e1) represented by p is not trivial(!) [26, Example 4.51].

• If I is a set and X is a topological space, then
∐
I X

∐
I idX

// X is

a (trivial) |I|-sheeted covering.

• Figure 2.16 shows two coverings of S1. This can be checked directly
by hand (check!) or, alternatively, one can use suitable group actions
(Proposition 2.3.7). The total spaces of these coverings are connected
and have more than one sheet; hence, these coverings are non-trivial.

Remark 2.3.4. By definition, every covering map is a local homeomorphism.
Thus, covering maps are open maps, i.e., they map open sets to open sets
(check!).

An important source of coverings are group actions. Basic terminology on
group actions is reviewed in Appendix A.5.

Definition 2.3.5 (properly discontinuous action). Let G y X be a group ac-
tion in Top of a group G on a topological space X. This action is properly
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discontinuous, if the following holds: For every x ∈ X there is an open neigh-
bourhood U ⊂ X of x satisfying

∀g∈G\{e} g · U ∩ U = ∅.

Caveat 2.3.6. From the definition it is clear that every properly discontinuous
action is free (check!). However, in general, not every free action is properly
discontinuous: For example, the action of Z on S1 given by rotation around
an irrational multiple of π is free, but not properly discontinuous (check!).
Another instructive example is a non-trivial group G acting on itself by left
translation, where G is equipped with the trivial topology (check!).

Proposition 2.3.7 (group actions yield coverings). Let G y X be a properly
discontinuous action in Top. Then the canonical projection

p : X −→ G \X
x 7−→ G · x

is a covering map with fibre G. Here, G \ X is endowed with the quotient
topology induced by p.

Proof. As a first step, we show that the projection p : X −→ G\X is an open
map: Let U ⊂ X be open. Then V := p(U) ⊂ G \X is open, because: The
preimage

p−1(V ) =
⋃

g∈G
g · U

is open in X (as a union of homeomorphic images of open sets). By definition
of the quotient topology, V is open in G \X.

We now prove that p is a covering map with fibre G: Let z ∈ G \X, i.e.,
there is an x ∈ X with z = G · x. Because the action G y X is properly
discontinuous, there exists an open neighbourhood U ⊂ X of x with

∀g∈G\{e} U ∩ g · U = ∅.

As p is an open map, the image V := p(U) is an open neighbourhood of z
in G \X. Moreover, the map

p−1(V ) =
⋃

g∈G
g · U −→ V ×G

g · u 7−→
(
p(u), g

)

(where V × G carries the product topology of the subspace topology on V
and the discrete topology on G) is well-defined (check!), continuous (check!),
bijective (check!), and open (because p is open; check!); hence, this map is
a homeomorphism. Because this homeomorphism is compatible with p, the
restriction p|p−1(V ) is a trivial bundle with discrete fibre G.
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Figure 2.17.: A covering of the 2-torus by the Euclidean plane

Example 2.3.8 (tori). Let n ∈ N. Then the action Zn y Rn given by trans-
lation via

Zn × Rn −→ Rn

(z, x) 7−→ z + x

is properly discontinuous (check!). Therefore, the projection Rn −→ Zn \Rn
is a |Zn|-sheeted covering map of Zn \Rn. Moreover, the compact-Hausdorff
trick shows (similarly to Example 1.1.16) that

(S1)n −→ Zn \ Rn
(
[x1], . . . , [xn]

)
7−→ Zn + (x1, . . . , xn)

is a homeomorphism (check!). Hence, if n > 0, this action yields an infinite-
sheeted covering of the n-dimensional torus by Rn (Figure 2.17).

Example 2.3.9 (real projective spaces). Let n ∈ N. Then the action Z/2 y Sn

given by

Z/2× Sn −→ Sn

([0], x) 7−→ x

([1], x) 7−→ −x

is properly discontinuous (check!). Hence, the projection

Sn −→ Z/2 \ Sn = RPn
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is a 2-sheeted covering of RPn.

These considerations lead to the following questions:

• Is every covering induced by a properly discontinuous group action?

• (How) Is this related to the fundamental group?

• (How) Can we classify coverings of a given base space?

The link between coverings and fundamental groups is provided by the
deck transformation group. The deck transformation group of a covering is
its automorphism group in a suitable category of coverings. Therefore, we
first introduce categories of coverings.

Definition 2.3.10 (lift, morphism of coverings). Let p : Y −→ X be a covering
map.

• Let f : Z −→ X be a continuous map. A p-lift of f is a continuous
map f̃ : Z −→ Y with p ◦ f̃ = f .

Y

p

��

Z
f
//

f̃
>>

X

• Let p′ : Y ′ −→ X ′ be a covering map. A morphism from p′ to p is a
pair (f̃ , f), where f ∈ map(X ′, X) and f̃ : Y ′ −→ Y is a p-lift of f ◦ p′.

Y ′

p′

��

f̃
// Y

p

��

X ′
f
// X

Straightforward calculations show that coverings and morphisms of cover-
ings form a category:

Definition 2.3.11 (categories of coverings). The category Cov of all covering
maps consists of:

• objects: the class of all covering maps with non-empty total space.

• morphisms: morphisms between coverings (as in Definition 2.3.10).

• compositions: ordinary composition of maps of the two components.

Analogously, we define the category Cov* of pointed coverings:
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• objects: the class of all pointed covering maps between pointed spaces
with non-empty total space.

• morphisms: morphisms between pointed coverings, where both compo-
nents are pointed maps.

• compositions: ordinary composition of maps of the two components.

If X is a topological space, the category CovX of coverings of X consists of:

• objects: the class of all coverings of X with non-empty total space.

• morphisms: If p : Y −→ X and p′ : Y ′ −→ X are coverings of X, then
we set

MorCovX (p′, p) :=
{
f ∈ map(Y ′, Y )

∣∣ (f, idX) ∈ MorCov(p′, p)
}
.

• compositions: ordinary composition of maps.

Analogously, if (X,x0) is a pointed space, we define the category Cov(X,x0)

of all pointed coverings of (X,x0).

Definition 2.3.12 (deck transformation group). Let p : Y −→ X be a covering
map. Then the automorphism group

Deck(p) := AutCovX (p)

=
{
f : Y −→ Y

∣∣ f is a homeomorphism with p ◦ f = p
}

is the deck transformation group of p.

Example 2.3.13 (symmetric groups as deck transformation groups). If I is a
set (endowed with the discrete topology), then the trivial covering I −→ {1}
(i.e., the constant map) has the deck transformation group Sym(I) of all
bijections I −→ I (with respect to composition).

The goal is now to understand the category Cov(X,x0) for pointed topolog-
ical spaces (X,x0) as well as its relation with π1(X,x0).

Study note. Try to find similarities between the definition of the deck trans-
formation group of a covering map and the definition of the Galois group of
a field extension!

2.3.2 Lifting Properties

In order to understand morphisms between coverings and, in particular, the
deck transformation group, we study lifting properties of coverings. This leads
to an action of the fundamental group on covering spaces and to the π1-lifting
criterion. The key observation is the following lifting of paths (Figure 2.18),
which will be the origin of all other lifting results:
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γ̃
y0

p−1(x0)

Y

p

x0

γ

X

Figure 2.18.: Lifts of paths in coverings

Proposition 2.3.14 (lifts of (homotopies) of paths). Let p : Y −→ X be a
covering, let x0 ∈ X, and let y0 ∈ p−1(x0).

1. If γ : [0, 1] −→ X is a continuous path with γ(0) = x0, then there exists
a unique p-lift γ̃ : [0, 1] −→ Y of γ with γ̃(0) = y0.

2. If h : [0, 1] × [0, 1] −→ X is a homotopy with h(0, 0) = x0, then there

exists a unique p-lift h̃ : [0, 1]× [0, 1] −→ Y of h with h̃(0, 0) = y0.

In particular: If
∀t∈[0,1] h(0, t) = x0,

then also
∀t∈[0,1] h̃(0, t) = y0.

Proof. Ad 1. As first step, we consider the case that the covering is trivial;
i.e., there is a trivialisation homeomorphism f : Y −→ X × F of p, where F
is a discrete topological space. Let z0 ∈ F with f(y0) = (x0, z0).

• Existence of a p-lift: The map

γ̃ : [0, 1] −→ Y

t 7−→ f−1
(
γ(t), z0

)

is continuous (check!), satisfies p ◦ γ̃ = γ, and

γ̃(0) = f−1
(
γ(0), z0

)
= f−1(x0, z0) = y0.

• Uniqueness of p-lifts: Let η : [0, 1] −→ Y also be a p-lift of γ with η(0) =
y0. Then (where q : X×F −→ F denotes the projection onto the second
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factor)

∀t∈[0,1] q ◦ f
(
η(t)

)
= q ◦ f

(
η(0)

)
= q ◦ f(y0) = z0,

because q ◦ f ◦ η([0, 1]) is path-connected and F is discrete.

Because the map

X × {z0} −→ X

(x, z0) 7−→ x = p ◦ f−1(x, z0)

is injective and

p ◦ f−1 ◦ (f ◦ η) = p ◦ η = γ = p ◦ γ̃ = p ◦ f−1 ◦ (f ◦ γ̃),

we obtain f ◦ η = f ◦ γ̃, whence η = γ̃.

For the general case, we apply the Lebesgue lemma (Lemma 2.2.7) to
find n ∈ N and a subdivision 0 = t0 < t1 < · · · < tn = 1 such that p is trivial
over the pieces γ([t0, t1]), . . . , γ([tn−1, tn]).

• Existence of a p-lift: Using the case of trivial coverings, we induc-
tively construct p-lifts γ̃0 : [t0, t1] −→ Y, . . . , γ̃n−1 : [tn−1, tn] −→ Y
of γ|[t0,t1], . . . , γ|[tn−1,tn] with

γ̃0(0) = y0 and ∀j∈{1,...,n−1} γ̃j(tj) = γ̃j−1(tj).

Glueing these lifts leads to a p-lift γ̃ : [0, 1] −→ Y of γ with γ̃(0) = y0.

• Uniqueness of p-lifts: If η : [0, 1] −→ Y also is a p-lift of γ with η(0) = y0,
then the uniqueness part for trivial coverings shows inductively that

∀j∈{0,...,n−1} ∀t∈[tj ,tj+1] η(t) = γ̃j(t) = γ̃(t).

Hence, η = γ̃.

Ad 2. The second claim follows from the first one and the first part (applied
to the constant path h(0, . . . ). Therefore, it suffices to prove the first part.

There are several ways to prove this statement for homotopies. The most
straightforward way is to proceed as in the proof of the first part: One first
considers the case of trivial coverings (where one can argue as in the case of
paths; check!). For the general case, using the Lebesgue lemma, one subdi-
vides the square [0, 1] × [0, 1] into sufficiently small squares and inductively
applies the case of trivial coverings (check!); for the compatibility on the glue-
ing intervals, one makes use of the uniqueness properties of part 1. (check!).

Alternatively, one can prove uniqueness using the uniqueness of paths (see
also Corollary 2.3.18) or one can use the exponential law to view homotopies
as paths in mapping spaces (Remark 1.3.2) and then apply the first part.
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γ̃

y

y · [γ]∗

p−1(x0) Y

p

x0

γ

X

Figure 2.19.: The action of the fundamental group on the fibres

For example, we can use lifts of paths to define a (right) action of the
fundamental group of the base space on the fibres of coverings (Figure 2.19):

Corollary 2.3.15 (action of the fundamental group on the fibres). Let p : Y −→
X be a covering and let x0 ∈ X.

1. Then

p−1(x0)× π1(X,x0) −→ p−1(x0)

(y, [γ]∗) 7−→ γ̃(1)

where γ̃ : [0, 1] −→ Y is the p-lift

of [0, 1] −→ X, t 7→ γ([t]) with γ̃(0) = y

is a well-defined right action of π1(X,x0) on p−1(x0).

2. If y ∈ p−1(x0), then π1(p)(π1(Y, y)) is the stabiliser of y with respect to
this action.

3. This action is transitive if and only if the fibre p−1(x0) is contained in
a single path-connected component of Y , i.e., if all points in p−1(x0)
can be connected by continuous paths.

Proof. Ad 1. That the action map is well-defined follows from Proposi-
tion 2.3.14: First, given a representing pointed loop γ, existence and unique-
ness of an appropriate p-lift γ̃ of the path associated with the loop γ is
guaranteed by Proposition 2.3.14.

Independence of the chosen representatives: Let y ∈ p−1(x0) and let γ and
η be pointed loops with [γ]∗ = [η]∗ ∈ π1(X,x0), say via a pointed homotopy h.

By Proposition 2.3.14, there exists a p-lift h̃ : [0, 1]× [0, 1] −→ Y of
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[0, 1]× [0, 1] −→ X

(s, t) 7−→ h
(
[s], t

)

with h̃(0, t) = y for all t ∈ [0, 1]. Hence, the uniqueness of p-lifts of paths

(Proposition 2.3.14) shows that γ̃ := h̃( · , 0) is a/the p-lift of the path

associated with the loop γ̃ starting at y, that η̃ := h̃( · , 1) is a/the p-lift

of the path associated with η̃ starting at y, and that h̃(1, · ) is constant.
Therefore, we obtain

γ̃(1) = h̃(1, 0) = h̃(1, 1) = η̃(1),

as desired.

Action of the neutral element. The neutral element can be represented by
the constant loop and the constant loop acts trivially on p−1(x0) (because
the lifts of constant paths are constant).

Compatibility with the group structure. We go step by step through the
definition and use the lifting properties: Let y ∈ p−1(x0), and let γ, η ∈
map∗((S

1, e1), (X,x0)). If γ̃ : [0, 1] −→ Y is a p-lift of t 7−→ γ([t]) with γ̃(0) =
y and η̃ : [0, 1] −→ Y is a p-lift of t 7−→ η([t]) with η̃(0) = γ̃(1), then γ̃ ∗ η̃ is
a p-lift of t 7→ (γ ∗ η)([t]) with γ̃ ∗ η̃(0) = y. Hence,

y ·
(
[γ]∗ · [η]∗

)
= y · [γ ∗ η]∗ (group structure on π1)

= (γ̃ ∗ η̃)(1) (definition of the π1-action)

= η̃(1) (definition of concatenation)

=
(
γ̃(1)

)
· [η]∗ (definition of the π1-action)

=
(
y · [γ]∗

)
· [η]∗. (definition of the π1-action)

Ad 2. By construction, a pointed loop in (X,x0) acts trivially on y if and
only if it lifts to a closed path at y; this is equivalent to lying in the image
of π1(Y, y) under π1(p).

Ad 3. By construction, all π1(X,x0)-translates of a point y ∈ p−1(X,x0)
can be connected by a path to y.

Conversely, if y′ ∈ p−1(x0) can be connected by a path γ : [0, 1] −→ Y to y
with γ(0) = y and γ(1) = y′, then (by construction)

y · [p ◦ γ]∗ = y′

(where we view p ◦ γ as a pointed loop in (X,x0)).

Caveat 2.3.16. This action of the fundamental group on the fibres is only
interesting, because, in general, lifts of closed paths are not closed paths!

Example 2.3.17 (the π1-action of the fundamental example). We consider the
covering map (Example 2.3.3)
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R −→ S1

x 7−→ [x mod 1].

For d ∈ Z let γd : (S1, e1) −→ (S1, e1) be the pointed loop given by [t] 7−→ [d·t
mod 1] (wrapping around the circle d times). Then

γ̃d : [0, 1] −→ R
t 7−→ d · t

is a p-lift of the path t 7−→ γd([t]) with γ̃d(0) = 0 and γ̃d(1) = d. Hence, we
obtain

0 · [γd]∗ = γ̃d(1) = d

for the action from Corollary 2.3.15. In particular, this already shows that
the elements ([γd]∗)d∈Z in π1(S1, e1) are pairwise different.

We will now focus on lifts of maps from more general domain spaces.
For example, lifts of maps from path-connected domains are unique in the
following sense:

Corollary 2.3.18 (uniqueness of lifts). Let p : Y −→ X be a covering, let Z
be a path-connected space, let f : Z −→ X be continuous, and let z0 ∈ Z. If
f̃ , g : Z −→ Y are p-lifts of f with f̃(z0) = g(z0), then f̃ = g.

Proof. We reduce the claim to uniqueness of lifts of paths (Proposition 2.3.14):
Let z ∈ Z. Because Z is path-connected, there is a continuous path γ : [0, 1] −→
Z from z0 to z. Then f̃ ◦ γ and g ◦ γ are p-lifts of γ with

f̃ ◦ γ(0) = f̃(z0) = g(z0) = g ◦ γ(0).

By the uniqueness of p-lifts (Proposition 2.3.14), we obtain f̃ ◦ γ = g ◦ γ. In
particular, we have

f̃(z) = f̃ ◦ γ(1) = g ◦ γ(1) = g(z).

Hence, f̃ = g.

In particular, we see that deck transformations on path-connected covering
spaces are determined uniquely by their value on a single point!

Remark 2.3.19. The result of Corollary 2.3.18 can be improved in such a
way that it also works for connected (instead of path-connected) domains;
however, the proof is slightly different in that case [51, Lemma V.3.2].

Furthermore, we can derive the main lifting criterion; in combination with
mapping degrees, this criterion is a valuable tool in Geometric Topology.

Theorem 2.3.20 (lifting criterion for coverings via π1). Let p : (Y, y0) −→
(X,x0) be a pointed covering and let f : (Z, z0) −→ (X,x0) be a pointed
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Figure 2.20.: The Warsaw circle

continuous map, where Z is path-connected and locally path-connected. Then
f admits a p-lift (Z, z0) −→ (Y, y0) if and only if

π1(f)
(
π1(Z, z0)

)
⊂ π1(p)

(
π1(Y, y0)

)
.

Before proving this theorem, we recall local path-connectedness.

Definition 2.3.21 (locally path-connected). A topological space Z is locally
path-connected if: For every z ∈ Z and every open neighbourhood U ⊂ Z of z
there exists a path-connected open neighbourhood V ⊂ Z of z with V ⊂ U .

Example 2.3.22. Every manifold is locally path-connected.

Caveat 2.3.23 (path-connected vs. locally path-connected). Clearly, not every
locally path-connected space is path-connected (as can be seen by considering
a discrete space with at least two points). Conversely, also path-connected
spaces, in general, are not locally path-connected (as can be seen from the
Warsaw circle; Figure 2.20).

Study note. It helps to sketch the situations in the following proof!

Proof of Theorem 2.3.20. If f̃ : (Z, z0) −→ (Y, y0) is a p-lift of f , then func-
toriality of π1 shows that

π1(f)
(
π1(Z, z0)

)
= π1(p ◦ f̃)

(
π1(Z, z0)

)

= π1(p) ◦ π1(f̃)
(
π1(Z, z0)

)

⊂ π1(p)
(
π1(Y, y0)

)
.

Conversely, let us suppose that π1(f)
(
π1(Z, z0)

)
⊂ π1(p)

(
π1(Y, y0)

)
is sat-

isfied. We construct the desired p-lift f̃ : (Z, z0) −→ (Y, y0) of f using lifts
of paths: Let z ∈ Z; because Z is path-connected, there exists a continuous
path γ : [0, 1] −→ Z from z0 to z. Let γ̃ : [0, 1] −→ Y be the p-lift of f ◦ γ
with γ̃(0) = y0 (Proposition 2.3.14). We then set
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f̃(z) := γ̃(1).

We show step by step that this map f̃ is well-defined and has the desired
properties:

• By construction, p ◦ f̃(z) = p ◦ γ̃(1) = f ◦ γ(1) = f(z).

• The construction of f̃ is independent of the chosen path: Let η : [0, 1] −→
Z be a continuous path in Z from z0 to z. Then w := γ ∗η : [0, 1] −→ Z
is a (closed) continuous path in Z with w(0) = z0 = w(1). Let
w◦ : (S1, e1) −→ (Z, z0) be the corresponding loop.

Because imπ1(f) ⊂ imπ1(p) and because π1(p)(π1(Y, y0)) acts trivially
on y0 (Corollary 2.3.15), we have

y0 · [f ◦ w◦]∗ = y0 ·
(
π1(f)[w◦]∗

)
= y0.

In other words, the p-lift of f ◦ w that starts at y0 also ends at y0. We
apply this to a specific construction of the lift of f ◦ w:

If γ̃ : [0, 1] −→ Y is a p-lift of f ◦ γ with γ̃(0) = y0 and if η̃ : [0, 1] −→ Y
is a p-lift of f ◦ η with η̃(0) = γ̃(1), then w̃ := γ̃ ∗ η̃ : [0, 1] −→ Y is a
p-lift of f ◦ (γ ∗ η) = f ◦ w with w̃(0) = γ̃(0) = y0. Hence,

y0 = y0 · [f ◦ w◦]∗ = w̃(1) = η̃(1).

But this means that η̃ : [0, 1] −→ Y is the p-lift of f ◦ η = f ◦ η that
starts at y0. Because of

η̃(1) = η̃(0) = γ̃(1),

we thus obtain that the value of f̃(z) is independent of the choice of γ.

• Considering the constant path at z0 (and its constant lift) shows that

f̃(z0) = y0.

• It remains to show that f̃ : Z −→ Y is continuous; here, we will use that
Z is locally path-connected: Let z ∈ Z and let Ũ ⊂ Y be an open neigh-
bourhood of f̃(z). It suffices to show that z has an open neighbourhood

that is contained in f̃−1(Ũ). Shrinking Ũ if necessary, we may assume

that the restriction p|Ũ : Ũ −→ p(Ũ) =: U is a homeomorphism and
that U is open in X (this is possible because p is a covering map).

Let V := f−1(U), which is an open neighbourhood of z in Z. Because
Z is locally path-connected, there exists an open neighbourhood W ⊂
V ⊂ Z of z that is path-connected.

Let us establish that f̃(W ) ⊂ Ũ : To this end, let w ∈ W and
γw : [0, 1] −→W be a continuous path from z to w. Then f ◦γw is a con-
tinuous path from f(z) to f(w) that is contained in f(W ) ⊂ f(V ) ⊂ U .
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Let γ : [0, 1] −→ X be a continuous path from z0 to z and let γ̃ be
the p-lift of f ◦ γ with γ̃(0) = y0. Then η := γ ∗ γw : [0, 1] −→ Z is a
continuous path in Z from z0 to w and

η̃ := γ̃ ∗ (p|−1

Ũ
◦ f ◦ γw) : [0, 1] −→ Y

is the p-lift of η with
η̃(0) = γ̃(0) = y0.

Therefore,
f̃(w) = η̃(1) = p|−1

Ũ
◦ f ◦ γw(1) ∈ Ũ ,

as claimed.

Corollary 2.3.24 (lifts from simply connected domains). Let p : (Y, y0) −→
(X,x0) be a pointed covering map, let Z be locally path-connected and simply
connected, let z0 ∈ Z, and let f : (Z, z0) −→ (X,x0) be a continuous map.
Then f has exactly one p-lift (Z, z0) −→ (Y, y0).

Proof. This is a direct consequence of the lifting criterion (Theorem 2.3.20)
and the uniqueness of lifts (Corollary 2.3.18).

Higher-dimensional spheres are simply connected. Hence, we can use the
previous corollary to compute higher homotopy groups of covering spaces:

Corollary 2.3.25 (π∗(covering maps)). Let p : (Y, y0) −→ (X,x0) be a pointed
covering map. Then the following holds:

1. The induced homomorphism π1(p) : π1(Y, y0) −→ π1(X,x0) is injective.

2. For every n ∈ N≥2, the map πn(p) : πn(Y, y0) −→ πn(X,x0) is a group
isomorphism.

Proof. Before starting with the actual proof, let us recall that the n-dimensional
sphere Sn is

• locally path-connected for all n ∈ N,

• path-connected for all n ∈ N≥1,

• simply connected for all n ∈ N≥2 (Example 2.2.11).

Injectivity. Let n ∈ N≥1 and let γ, η ∈ map∗((S
n, e1), (Y, y0)) with

πn(p)[γ]∗ = πn(p)[η]∗. Let h : (Sn, e1)× [0, 1] −→ (X,x0) be a pointed homo-
topy from p ◦ γ to p ◦ η.

We lift h to Y via the lifting criterion (Theorem 2.3.20): Because the
inclusion (Sn × {0}, (e1, 0)) ↪→ (Sn × [0, 1], (e1, 0)) is a pointed homotopy
equivalence (check!), we obtain
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π1(h)
(
π1(Sn × [0, 1], (e1, 0))

)

= π1(h)
(
imπ1

(
(Sn × {0}, (e1, 0)) ↪→ (Sn × [0, 1], (e1, 0))

))

= π1(p ◦ γ)
(
π1(Sn, e1)

)

⊂ π1(p)
(
π1(Y, y0)

)
.

Also, h(e1, · ) = x0. Therefore, the lifting criterion is applicable and implies

the existence of a p-lift h̃ : Sn× [0, 1] −→ Y of h with h̃(e1, 0) = y0. Moreover,
the uniqueness of lifts shows that

h̃( · , 0) = γ, h̃(e1, · ) = y0, h̃( · , 1) = η.

Therefore, h̃ is a pointed homotopy from γ to η, which shows [γ]∗ = [η]∗
in πn(Y, y0). Thus, πn(p) is injective.

Surjectivity. For n ∈ N≥2, the sphere Sn is simply connected. Hence,
every continuous map (Sn, e1) −→ (X,x0) has a p-lift (Sn, e1) −→ (Y, y0)
(Corollary 2.3.24). So πn(p) : πn(Y, y0) −→ πn(X,x0) is surjective.

Example 2.3.26 (higher homotopy groups of the circle). The covering R −→
S1 from Example 2.3.3 and the fact that (R, 0) is pointedly contractible
(Example 1.3.10) show via Corollary 2.3.25 that the group

πn(S1, e1) ∼=Ab πn(R, 0)

is trivial for all n ∈ N≥2. The same argument also shows that all higher
homotopy groups of higher-dimensional tori are trivial.

Caveat 2.3.27. The corresponding result for higher-dimensional spheres is
wrong! While it is true that

πn(Sn, e1) ∼= Z und ∀k∈{0,...,n−1} πk(Sn, e1) ∼= {0}

holds for all n ∈ N≥2 (Example 4.5.11), the higher homotopy groups
of spheres are non-trivial in general (and rather mysterious); for exam-
ple π3(S2, e1) ∼=Ab Z [26, Example 4.51].

Outlook 2.3.28 (fibrations). A homotopy-theoretic generalisation of cover-
ings and locally trivial fibre bundles are so-called fibrations; these are de-
fined in terms of suitable homotopy lifting properties. Fibrations allow
to decompose spaces along maps. In contrast with glueings of spaces, fi-
brations are compatible with higher homotopy groups. More precisely, if

(F, f0)
i // (E, e0)

p
// (B, b0) is a fibration, then there is an associated

long exact sequence (the Puppe sequence)

· · · // πn(F, f0)
πn(i)

// πn(E, e0)
πn(p)

// πn(B, b0) // πn−1(F, f0) // · · ·
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(where on π0 we only have exactness in pointed sets and on the higher terms
we have exactness in Group) [68, Chapter 4.7].

Such sequences can be used to compute the fundamental group of SO(3)
as π1(SO(3), I3) ∼=Group Z/2, which is related to the so-called belt trick [62].

2.3.3 The Universal Covering

A first step towards understanding the category Cov(X,x0) is to think about
initial objects in this category. For reasonable topological spaces, being initial
can be expressed in terms of the fundamental group; it is customary to use
this π1-description as the defining notion, leading to universal coverings. We
show:

• Universal coverings do exist, provided that mild conditions on the topo-
logical space are satisfied;

• the deck transformation group of the universal covering is isomorphic
to the fundamental groups.

The classification of coverings will be completed in Chapter 2.3.5.

Definition 2.3.29 (universal covering). A covering X̃ −→ X of a topologi-

cal space X is a universal covering of X if X̃ is (non-empty and) simply
connected.

Proposition 2.3.30 (universal coverings are initial). Let X be a locally path-

connected topological space that admits a universal covering p : X̃ −→ X. Let
x0 ∈ X and let x̃0 ∈ p−1(x0).

1. Then the pointed covering p : (X̃, x̃0) −→ (X,x0) is an initial object in
the category Cov(X,x0), i.e., for every pointed covering q : (Y, y0) −→
(X,x0), there exists exactly one morphism from p to q in Cov(X,x0).

2. In particular: All pointed universal coverings of (X,x0) are canonically
isomorphic in Cov(X,x0).

Proof. Ad 1. Because p (as a covering map) is a local homeomorphism and

being locally path-connected is a local property, also X̃ is locally path-
connected. Moreover, X̃ is simply connected. Therefore, the lifting cri-
terion (Corollary 2.3.24) shows that there exists exactly one pointed q-

lift (X̃, x̃0) −→ (Y, y0) of p = p ◦ idX .

Ad 2. This follows directly from the standard uniqueness argument for
universal properties (Proposition IV.1.4.6).
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Figure 2.21.: The Hawaiian earring

Example 2.3.31 (universal coverings of tori/projective spaces). Let n ∈ N>0.

• The projection

Rn −→ (S1)n

x 7−→
(
[x1 mod 1], . . . , [xn mod 1]

)

is a covering of the n-dimensional torus (Example 2.3.8). Because
Rn is simply connected, this is a/“the” universal covering of the n-
dimensional torus.

• The projection

Sn −→ RPn

x 7−→ {x,−x}

is a covering of the n-dimensional projective space RPn (Example 2.3.9).
If n ≥ 2, then Sn is simply connected; hence, for n ≥ 2 this is a/“the”
universal covering of RPn.

Caveat 2.3.32 (non-existence of universal coverings). There exist non-empty,
path-connected, locally path-connected topological spaces that do not admit
a universal covering. An example of such a space is the Hawaiian earring
(Figure 2.21, Exercise).

Theorem 2.3.33 (existence of universal coverings). Every path-connected, lo-
cally path-connected, semi-locally simply connected, non-empty topological
space admits a universal covering.

Definition 2.3.34 (semi-locally simply connected). A topological space X is
semi-locally simply connected if the following holds: For every point x ∈ X,
there exists an open neighbourhood U ⊂ X of x with the property that the
homomorphism

π1(U, x) −→ π1(X,x)

induced by the inclusion is trivial (i.e., every pointed loop in (U, x) is point-
edly null-homotopic in (X,x)).
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Example 2.3.35 (semi-locally simply connected spaces).

• Every simply connected space is semi-locally simply connected.

• Manifolds are semi-locally simply connected (because every point has
an open neighbourhood that is homeomorphic to an open ball in a
Euclidean space).

• The Hawaiian earring (Figure 2.21) is not semi-locally simply connected
(check!).

In order to prove Theorem 2.3.33, we reduce everything to our knowledge
on (lifts of) paths in coverings. More specifically: In Galois theory, when con-
structing algebraic/separable closures of fields, we adjoin enough solutions of
polynomial equations. Analogously, to construct the universal covering, we
will “adjoin” all possible, essentially different, lifts of paths. This is imple-
mented by taking a suitable quotient of the space of all paths with a given
start point.

Proof of Theorem 2.3.33. LetX be a path-connected, locally path-connected,
semi-locally simply connected topological space and let x0 ∈ X. We consider
the following construction: Let

X̃ := map∗
(
([0, 1], 0), (X,x0)

) /
∼,

where two pointed paths γ, η ∈ map∗(([0, 1], 0), (X,x0)) satisfy γ ∼ η if and
only if γ(1) = η(1) and the (loop associated with the) closed path γ ∗η repre-

sents the neutral element in π1(X,x0). We equip X̃ with the quotient topol-
ogy of the subspace topology of the compact-open topology on map([0, 1], X)
(Remark 1.3.2).

We proceed in the following steps:

À The space X̃ is path-connected.

Á The evaluation map

p : X̃ −→ X

[γ]∼ 7−→ γ(1)

is a covering.

Â The space X̃ is simply connected.

Ad À. Let γ, η ∈ map∗(([0, 1], 0), (X,x0)). Then the curried “homotopy”

[0, 1] −→ X̃

t 7−→
{[
s 7→ γ((1− 2 · t) · s)

]
∼ if t ∈ [0, 1/2][

s 7→ η((2 · t− 1) · s)
]
∼ if t ∈ [1/2, 1]
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(that first shrinks γ to the constant path and then extends the constant

path to η) is a continuous path in X̃ from [γ]∼ to [η]∼ (check!). Hence, X̃ is
path-connected.

Ad Á. One can prove this by hand or one can make use of a suitable group
action: We consider the well-defined (check!) continuous (check! here, one can
use that X is locally path-connected) group action (check!)

π1(X,x0)× X̃ −→ X̃
(
[γ]∗, [η]∼

)
7−→

[
(t 7→ γ([t])) ∗ η

]
∼

of π1(X,x0) on X̃. Moreover, one can show that this action is properly dis-
continuous (check! here, one can use that X is semi-locally simply connected)
and that p induces a homeomorphism (check! in order to construct an inverse,
one needs that X is path-connected)

π1(X,x0) \ X̃ −→ X

π1(X,x0) · [γ]∼ 7−→ γ(1).

Hence, Proposition 2.3.7 shows that p is a covering map.

Ad Â. One can prove this by hand or one can make use of the action
of π1(X,x0) on the fibre p−1(x0): Let x̃0 ∈ X̃ be the point represented by
the constant path at x0; then x̃0 ∈ p−1(x0). In view of À, it suffices to prove

that the group π1(X̃, x̃0) is trivial. Because the map π1(p) : π1(X̃, x̃0) −→
π1(X,x0) is injective (Corollary 2.3.25) and the image π1(p)(π1(X̃, x̃0)) coin-
cides with the stabiliser of x̃0 under the action of π1(X,x0) (Corollary 2.3.15),
we only need to show that every non-trivial element of π1(X,x0) acts non-
trivially on x̃0.

Let [γ]∗ ∈ π1(X,x0) be a non-trivial element. In order to compute x̃0 · [γ]∗,
we first have to lift the path associated with γ to X̃. Such a lift is

γ̃ : [0, 1] −→ X̃

t 7−→
[
s 7→ γ([t · s])

]
∼

(check!). Therefore, we obtain

x̃0 · [γ]∗ = γ̃(1)

=
[
s 7→ γ([s])

]
∼.

Because [γ]∗ is non-trivial in π1(X,x0), the definition of the relation “∼”
shows that x̃0 6∼ (s 7→ γ([s])). Hence, x̃0 · [γ]∗ 6= x̃0. This completes the proof

that X̃ is simply connected.

Caveat 2.3.36. The assumptions on the space in Theorem 2.3.33 are suffi-
cient, but not necessary: For example, the Warsaw circle is not locally path-
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connected, but it is simply connected (Exercise) and thus its own universal
covering space.

Study note (the path-connectedness zoo). Complete the following table: In
covering theory, the condition of being

path-connected is used for . . .
locally path-connected is used for . . .
semi-locally simply connected is used for . . .

The universal covering allows us to give an interpretation of the funda-
mental group as an automorphism group:

Theorem 2.3.37 (fundamental group as automorphism group). Let X be a path-
connected, locally path-connected topological space that admits a universal
covering p : X̃ −→ X. Let x0 ∈ X and x̃0 ∈ p−1(x0). For g ∈ π1(X,x0), we

write fg : X̃ −→ X̃ for the unique p-lift of p with fg(x̃0) = x̃0 · g.

1. Then

π1(X,x0) −→ Deck(p)

g 7−→ fg

is a well-defined group isomorphism.

2. In particular, the fundamental group π1(X,x0) acts properly discontin-

uously on X̃ (from the left) and p : X̃ −→ X induces a homeomorphism

π1(X,x0) \ X̃ ∼=Top X.

Caveat 2.3.38 (action on the fibre vs. deck transformation action). In the sit-

uation of Theorem 2.3.37, the left action of π1(X,x0) on X̃ via deck trans-
formations given by

π1(X,x0)× X̃ −→ X̃

(g, x) 7−→ fg(x),

in general, coincides only on x̃0 with the action of π1(X,x0) on the fibres of p
from Corollary 2.3.15.

Proof of Theorem 2.3.37. Ad 1. Because X̃ is simply connected and because
X (whence X̃) is locally path-connected, the lifting criterion shows that in-

deed for every g ∈ π1(X,x0) there exists a unique p-lift fg : X̃ −→ X̃ of p
with fg(x̃0) = x̃0 · g (Corollary 2.3.24). Thus, we obtain a well-defined map

ϕ : π1(X,x0) −→ MorCovX (p, p)

g 7−→ fg.
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As next step, we show that ϕ is compatible with composition: For all g, h ∈
π1(X,x0) we have

ϕ(h · g) = ϕ(h) ◦ ϕ(g)

because: Let g, h ∈ π1(X,x0). In view of the uniqueness of lifts of maps with
path-connected domain spaces (Corollary 2.3.18), it suffices to show that
fh·g(x̃0) = fh ◦ fg(x̃0).

Let γ : (S1, e1) −→ (X,x0) represent g and let γ̃ : [0, 1] −→ X̃ be the
unique p-lift of γ′ := (t 7→ γ([t])) with γ̃(0) = x̃0. Then fh ◦ γ̃ is the p-lift
of γ′ starting in

fh ◦ γ̃(0) = fh(x̃0) = x̃0 · h.
Therefore, we obtain

fh·g(x̃0) = x̃0 · (h · g) (definition of fh·g)

= (x̃0 · h) · g (right π1-action on the fibre)

= fh ◦ γ̃(1) (definition of the action on the fibre)

= fh(x̃0 · g) (definition of the action on the fibre)

= fh ◦ fg(x̃0), (definition of fg)

as desired.
In particular, for all g ∈ π1(X,x0), we have

ϕ(g) ◦ ϕ(g−1) = ϕ(e) = idX̃ and ϕ(g−1) ◦ ϕ(g) = idX̃ ,

and so ϕ(g) ∈ Deck(p). The compatibility with the composition maps thus
shows that we can view ϕ as a group homomorphism π1(X,x0) −→ Deck(p).

Moreover, ϕ is bijective, because: It suffices to show that both the π1(X,x0)-
action and the Deck(p)-action on p−1(x0) are free and transitive (check!).

• The π1(X,x0)-action on p−1(x0) is free and transitive, because X̃ is
simply connected (Corollary 2.3.15).

• The Deck(p)-action on p−1(x0) is free and transitive by the lifting prop-
erties for simply connected domain spaces (Corollary 2.3.24).

Hence, ϕ is bijective (and so a group isomorphism).
Ad 2. In view of the first part, it suffices to prove the corresponding claim

for Deck(p). The lifting properties show that the deck transformation action

Deck(p)× X̃ −→ X̃

(f, x) 7−→ f(x)

is properly discontinuous (check!). In particular, the projection map q : X̃ −→
Deck(p) \ X̃ is a covering map (Proposition 2.3.7).

Because deck transformations of p are compatible with p, we obtain a
well-defined continuous map
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p : Deck(p) \ X̃ −→ X

[x] 7−→ p(x).

Then the map p is

• open, because p ◦ q = p and the covering map p is open;

• surjective, because p is surjective (as X̃ is non-empty);

• injective, because the deck transformation action is transitive on the
fibres of p.

Therefore, p is a homeomorphism.

Study note. In the proofs of Theorem 2.3.33 and 2.3.37, many details are not
spelled out. It is highly recommended to practice your covering theory skills
by filling in these details!

Conversely, group actions allow us to describe the deck transformation
group:

Corollary 2.3.39 (deck transformations via quotients). Let Gy Y be a properly
discontinuous action of the group G on a path-connected and locally path-
connected non-empty topological space Y , and let p : Y −→ G \ Y be the
associated covering (Proposition 2.3.7).

1. Then

G −→ Deck(p)

g 7−→ (x 7→ g · x)

is a group isomorphism.

2. If Y is simply connected, and x0 ∈ G \ Y , then

G ∼=Group Deck(p) ∼=Group π1(G \ Y, x0).

More explicitly: If y0 ∈ p−1(x0), then

G −→ π1(G \ Y, x0)

g 7−→
[
[t] 7→ p ◦ γ(t)

]
∗

where γ : [0, 1]→ Y is a path from y0 to g · y0

is a well-defined group isomorphism.

Proof. Ad 1. Clearly, the given map is a well-defined group homomorphism.
The uniqueness of lifts (Corollary 2.3.18, Theorem 2.3.20) and the definition
of the orbit space show that the map is bijective (check!), whence a group
isomorphism.

Ad 2. This follows from the first part and Theorem 2.3.37.
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2.3.4 The Fundamental Example

Finally, we have the tools available to comfortably compute the fundamental
group of the circle and of real projective spaces.

Theorem 2.3.40 (fundamental group of the circle). The following map is a
group isomorphism:

Z −→ π1(S1, e1)

d 7−→
[
γd := ([t] 7→ [d · t mod 1])

]
∗

Proof. Applying Corollary 2.3.39 to the translation action of Z on R (Exam-
ple 2.3.8) shows that Z ∼=Group π1(S1, e1).

That the map in the theorem is an isomorphism can be shown via the
explicit version of this isomorphism in Corollary 2.3.39 and the lifts of the γd
from Example 2.3.17.

Example 2.3.41 (fundamental group of real projective spaces). Let n ∈ N≥2.
Using the antipodal action of Z/2 on the simply connected sphere Sn, we
obtain from Corollary 2.3.39 and Example 2.3.9 that

π1

(
RPn, [e1]

) ∼=Group Z/2.

2.3.5 The Classification Theorem

We complete the classification of coverings: This is done in terms of the fun-
damental group of the base space; using the interpretation of the fundamental
group as deck transformation group, the classification theorem is similar to
the fundamental theorem of Galois theory (Satz III.3.4.23). More precisely,
coverings of (X,x0) will be classified by subgroups of π1(X,x0).

In order to formulate the theorem, we introduce some notation:

Notation 2.3.42.

• If (X,x0) is a pointed toplogical space, then Cov◦(X,x0) denotes the full
subcategory of Cov(X,x0), whose objects are pointed coverings with path-
connected total space. More explicitly, the category Cov◦(X,x0) consists
of:

– objects: the class of all pointed coverings of (X,x0) with path-
connected total space.

– morphisms: If p : (Y, y0) −→ (X,x0) and p′ : (Y ′, y′0) −→ (X,x0)
are pointed coverings of (X,x0) with path-connected total space,
then we set
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MorCov◦
(X,x0)

(p′, p) :=
{
f ∈ map∗((Y

′, y′0), (Y, y0))
∣∣ (f, idX) ∈ MorCov(p′, p)

}
.

– compositions: composition is the ordinary composition of maps.

• LetG be a group. Then SubgroupG denotes the category of all subgroups
of G, where the morphisms are the inclusions.

• A functor F : C −→ D between categories C and D is a natural equiva-
lence if there exists a functor G : D −→ C such that G ◦ F is naturally
isomorphic to idC and F ◦ G is naturally isomorphic to idD (see Defi-
nition 1.2.20 for the notion of natural isomorphism of functors).

• Let G be a group and let H ⊂ G be a subgroup. Then the normaliser
of H in G is the subgroup

NG(H) := {g ∈ G | g ·H · g−1 = H}

of G. In other words, NG(H) is the (with respect to inclusion) largest
subgroup of G in which H is normal. The quotient NG(H)/H is the
Weyl group of H in G.

• A covering is regular (or normal, or Galois) if the deck transformation
group acts transitively on the fibres.

Study note. Where was the normaliser used in the Algebra course? How
does this definition of regular coverings relate to the notion of Galois field
extensions?

Theorem 2.3.43 (classification of coverings). Let X be a path-connected, lo-
cally path-connected, semi-locally simply connected, non-empty topological
space, and let p : X̃ −→ X be the universal covering of X. Let x0 ∈ X
and x̃0 ∈ p−1(x0).

In the following, we consider the deck transformation action of π1(X,x0)

on X̃ with respect to this basepoint x̃0 (Theorem 2.3.37).

1. Then

ϕ : Cov◦(X,x0) ←→ Subgroupπ1(X,x0) :ψ
(
p : (Y, y0)→ (X,x0)

)
7−→ π1(p)

(
π1(Y, y0)

)

MorCov◦
(X,x0)

(q′, q) 3 f 7−→
(
im(π1(q′))⊂ im(π1(q))

)

(
qH : (H \ X̃,H · x̃0)→ (X,x0)

)
←− [ H

(projection : H ′ \ X̃ → H \ X̃) ←− [ (H ′ ⊂ H)

are mutually “inverse” natural equivalences of categories.

2. Moreover: If q : (Y, y0) −→ (X,x0) is a covering in Cov◦(X,x0) and H :=
π1(q)(π1(Y, y0)), then:
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a) The covering q is [π1(X,x0) : H]-sheeted.

b) We have Deck(q) ∼=Group Nπ1(X,x0)(H)/H.

c) The covering q is regular if and only if H is normal in π1(X,x0).

Proof. In the following, we will abbreviate G := π1(X,x0). If H ⊂ G, then
we define

qH : H \ X̃ −→ X

H · x 7−→ p(x).

Because p : X̃ −→ X and the projection pH : X̃ −→ H \ X̃ are coverings
and qH ◦ pH = p, it follows that also qH is a covering map (check!). Because

X̃ is path-connected, also the total space H \ X̃ is path-connected; moreover,
qH(H · x̃0) = x0. Hence, qH is an object in Cov◦(X,x0).

Ad 1.

À Clearly, ϕ is a functor (because π1 is a functor).

Á Also, ψ is a functor, as can be seen from a straightforward computation
(check!).

Â We have ϕ ◦ψ = IdSubgroupG
, because: Let H ⊂ G be a subgroup. Then

ϕ ◦ ψ(H) = π1(qH)(π1(H \ X̃,H · x̃0)) is the stabiliser of H · x̃0 with
respect to the π1(X,x0)-action on the fibre q−1

H (x0) (Corollary 2.3.15).

We connect this to the π1(X,x0)-action on the fibre p−1(x0): Let γ ∈
map∗((S

1, e1), (X,x0)) and let γ̃ : [0, 1] −→ X̃ be the p-lift of t 7→ γ([t])
with γ̃(0) = x̃0. Then pH ◦ γ̃ is the qH -lift that starts at H · x̃0 and so

[γ]∗ lies in the stabiliser group π1(qH)(π1(H \ X̃,H · x̃0)) if and only if

pH
(
γ̃(0)

)
= pH

(
γ̃(1)

)
.

In view of the construction of the deck transformation action of π1(X,x0)

on X̃ (starting from the fibre p−1(x0)), this is equivalent to [γ]∗ ∈ H.

Moreover, ϕ ◦ ψ maps inclusions of subgroups to the same inclusions.
This shows that ϕ ◦ ψ(H) = H.

Ã Conversely, we have ψ ◦ ϕ ∼= IdCov◦
(X,x0)

, because: Let q : (Y, y0) −→
(X,x0) be an object of Cov◦(X,x0) and let

H := ϕ(q) = π1(q)
(
π1(Y, y0)

)
⊂ G.

Then qH = ψ◦ϕ(q) and there is exactly one isomorphism q ∼=Cov◦
(X,x0)

qH

because: By the lifting criterion (Theorem 2.3.20) and Â there exists

– exactly one f ∈ map∗((Y, y0), (H \ X̃,H · x̃0)) with qH ◦ f = q,
and
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– exactly one g ∈ map∗((H \ X̃,H · x̃0), (Y, y0)) with q ◦ g = qH .

Moreover, uniqueness of lifts (Corollary 2.3.18; applied to f ◦ g and
g ◦ f) shows that

f ◦ g = idH\X̃ and g ◦ f = idY .

This implies that ψ ◦ϕ is naturally isomorphic to the identity (check!).

Ad 2. In view of the first part, it suffices to consider the standard cover-
ing qH : H \ X̃ −→ X (check!).

À The covering qH has exactly [G : H] sheets, because, by construction,
we have

∣∣q−1
H (x0)

∣∣ =
∣∣{H · g · x̃0 | g ∈ G}

∣∣ (by definition of qH)

=
∣∣{H · g | g ∈ G}

∣∣ (because G acts freely on X̃)

= [G : H] (by definition of the index).

Á We consider the map

f : NG(H) −→ Deck(qH)

g 7−→ fg,

where, for g ∈ NG(H), we define

fg : H \ X̃ −→ H \ X̃
H · x 7−→ H · g · x = g ·H · x;

the two descriptions of fg show that fg is a well-defined deck trans-
formation (check!) and that f is a group homomorphism (check!). We
compute the kernel and the image of f :

– We have ker(f) = H, because: By construction, H ⊂ ker f . Con-
versely, let g ∈ ker f . Then

H · g · x̃0 = fg(H · x̃0) = idH\X̃(H · x̃0) = H · x̃0,

and so H · g = H (because G acts freely on X̃). Therefore, g ∈ H.

– Moreover, f is surjective: Let d ∈ Deck(qH). Because the G-action
on the fibre p−1(x0) is transitive, there exists a g ∈ G with

d(H · x̃0) = H · g · x̃0.

We show that g ∈ NG(H), i.e., that H = g−1 ·H · g: We have
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H = π1(qH)
(
π1(H \ X̃,H · x̃0))

)
(proof of the first part)

= π1(qH) ◦ π1(d)
(
π1(H \ X̃,H · x̃0)

)
(because qH = qH ◦ d)

= π1(qH)
(
π1(H \ X̃,H · g · x̃0)

)
(d is a homeomorphism; choice of g)

= π1(qg−1·H·g)
(
π1(g−1 ·H · g \ X̃, g−1 ·H · g · x̃0)

)
(induced by x 7→ g−1 · x)

= g−1 ·H · g (proof of the first part).

Uniqueness of lifts proves that fg = d.

Therefore, f induces an isomorphism NG(H)/H ∼=Group Deck(qH) of
groups, as claimed.

Â The description of Deck(qH) in Á also shows that Deck(qH) acts tran-
sitively on q−1

H (x0) if and only if NG(H) = G. This is equivalent to H
being normal in G.

In summary, path-connected coverings correspond to subgroups of the fun-
damental group.

Remark 2.3.44 (comparison with Galois theory). Using the dictionary be-
low, we can translate between the classification theorem of coverings (Theo-
rem 2.3.43) and the fundamental theorem of Galois theory (Satz III.3.4.23):

covering theory Galois theory

covering (separable) field extension
(or the associated morphism of affine schemes)

universal covering separable closure (as extension)
number of sheets degree of the extension
regular covering Galois extension

deck transformation group Galois group
fundamental group absolute Galois group

(or étale fundamental group)
quotient covering fixed field

Outlook 2.3.45 (generalisations of the classification of coverings). In the situ-
ation of Theorem 2.3.43, one can consider the following generalisations [68,
Chapter 3.3–3.6]:

• Generalisation to Cov(X,x0): The classification theorem can be extended
to pointed coverings of (X,x0) with not necessarily path-connected to-
tal space by replacing the category of subgroups of π1(X,x0) with the
category of π1(X,x0)-actions on sets; then subgroups of π1(X,x0) will
correspond to the translation action of π1(X,x0) on the coset space of
this subgroup.

• Generalisation to CovX : Moreover, by paying attention to conjugations,
one can adapt the classification theorem to the unpointed case.
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All these generalisations can be proved with the tools that we already in-
troduced. However, for the sake of simplicity, we focus on the case in Theo-
rem 2.3.43.

Example 2.3.46 (coverings of simply connected spaces). Simply connected,
locally path-connected spaces X admit no non-trivial coverings:

By the classification theorem (Theorem 2.3.43), the (path-connected com-
ponents of pointed) coverings of such a space are determined up to isomor-
phism by their subgroup of the fundamental group of the base space X.
If x0 ∈ X, then idX : (X,x0) −→ (X,x0) is the covering that corre-
sponds to π1(X,x0). Because π1(X,x0) is trivial, there is no other subgroup
of π1(X,x0). Hence, every (path-connected component of) a covering of X is
isomorphic to a trivial covering of X, whence also itself trivial.

In particular, all simply connected manifolds are orientable (because the
orientation double covering is trivial).

Caveat 2.3.47 (simply connected wild spaces with non-trivial coverings). How-
ever, there exist simply connected spaces that do have non-trivial coverings;
for example, the Warsaw helix is a non-trivial covering of the Warsaw circle,
which is simply connected (Exercise).

Example 2.3.48 (coverings of the circle). The classification theorem (Theo-
rem 2.3.43) lets us easily classify all (path-connected) coverings of (S1, e1):
We know that π1(S1, e1) ∼=Group Z (Theorem 2.3.40) and that every sub-
group of Z is of the form d · Z for some d ∈ N. Then, under this isomor-
phism π1(S1, e1) ∼=Group Z, (Figure 2.16)

the universal covering (R, 0) −→ (S1, e1) corresponds to the subgroup 0 · Z ⊂ Z
the trivial covering idS1 : (S1, e1) −→ (S1, e1) corresponds to the subgroup 1 · Z ⊂ Z
for d ∈ N>0, the covering S1 −→ S1, [t] 7−→ [d · t mod 1] corresponds to the subgroup d · Z ⊂ Z

In this example, we can also see that we have to be careful about how
subgroups sit in the ambient group: Of course, 1 · Z ∼=Group 2 · Z; however,
1·Z 6∼=SubgroupZ 2·Z (and thus these subgroups of Z lead to different coverings).

Example 2.3.49 (double coverings). Subgroups of index 2 are always normal.
Hence, the classification theorem (Theorem 2.3.43) tells us that all (path-
connected) double coverings of (sufficiently nice) topological spaces are reg-
ular.

Subgroups of index 2 in the free group F2 = F (a, b) thus correspond to
kernels of epimorphisms F2 −→ Z/2. Using the universal property of the free
generating set {a, b} of F (a, b) = F2, we see that there exist precisely the
following three group epimorphisms F2 −→ Z/2:

B : F2 −→ Z/2
a 7−→ [0]

b 7−→ [1]
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a b

kerB

generated by a, bab−1, b2

a b

kerAB

generated by a2, ab, b2

a b

kerA

generated by a2, aba−1, b

Figure 2.22.: Two-sheeted coverings of (S1, e1) ∨ (S1, e1)

AB : F2 −→ Z/2
a 7−→ [1]

b 7−→ [1]

A : F2 −→ Z/2
a 7−→ [1]

b 7−→ [0]

We can use this to investigate coverings of (X,x0) := (S1, e1) ∨ (S1, e1):
Because π1(X,x0) ∼=Group F (a, b) (where the obvious loops in (X,x0) corre-
spond to a and b; Example 2.2.14) and because X is path-connected, locally
path-connected and semi-locally simply connected, we can apply the classi-
fication theorem (Theorem 2.3.43) to this situation. We hence obtain that
(X,x0) has (up to isomorphism in Cov◦(X,x0)) exactly three two-sheeted cov-
erings, which are depicted in Figure 2.22. A straightforward calculation on
the generators allows us to distinguish which covering must correspond to
which kernel (check!).

Moreover, we can use topology to determine generating sets of the ker-
nels of these epimorphisms: As we know generating sets of the fundamental
group of the covering spaces, we can use these to compute generating sets
of the corresponding images in the fundamental group of (X,x0). Because
we already know from the classification which covering corresponds to which
kernel, this gives the desired generating sets (Figure 2.22; check!).

Example 2.3.50 (many coverings). It is a fact from group theory that the free
group F2 of rank 2 has uncountably many different normal subgroups (!) [39,
Theorem 2.2.28]. Hence, by the classification theorem (Theorem 2.3.43), there
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are uncountably many different isomorphism classes of (pointed) regular cov-
erings of (S1, e1) ∨ (S1, e1) with path-connected total space.

Outlook 2.3.51 (gradient invariants of groups and spaces). The correspondence
between finite index subgroups and finite coverings leads to a rich interplay
between group theory and topology:

• If I is a numerical (isomorphism) invariant of groups, then one can

consider the associated gradient invariant Î, which is defined as follows:
If G is a group, then we set

Î(G) := inf
H∈Fin(G)

I(H)

[G : H]
,

where Fin(G) denotes the set of all finite index subgroups of G.

• If H is a numerical (homotopy) invariant of spaces, then one can con-

sider the associated gradient invariant Ĥ, which is defined as follows:
If X is a space, then we set

Ĥ(X) := inf
[p : Y→X]∈Fin(X)

H(Y )

[p : X]
,

where Fin(X) denotes the set of isomorphism classes of finite coverings
of X and [p : X] is the number of sheets of such a covering p.

One can then wonder how gradient invariants of spaces are related to gradient
invariants of their fundamental groups and whether such gradient invariants
admit an independent global description. Questions of this type are the sub-
ject of active research in geometric topology and group theory [44].

2.3.6 Application: The Nielsen–Schreier Theorem

As an application of covering theory, one can prove the Nielsen–Schreier
theorem (which is a purely group-theoretic statement):

Theorem 2.3.52 (Nielsen–Schreier theorem). Subgroups of free groups are free.

Proof. The basic idea is to apply the classification theorem of coverings (The-
orem 2.3.43) the other way around: Starting from groups and subgroups, we
construct suitable topological spaces and coverings; we then exploit topolog-
ical properties to transport properties of the base space to the total space,
which finally will tell us something about the subgroup in question.

Let G be a free group, say freely generated by S ⊂ G and let H ⊂ G be a
subgroup.

In order to translate G into topology, we consider the space
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(X,x0) :=
∨

S

(S1, e1).

Then we have (Example 2.2.21)

π1(X,x0) ∼=Group G;

let f : π1(X,x0) −→ G be such a group isomorphism.

By the classification theorem of coverings (Theorem 2.3.43), there exists
a covering q : (Y, y0) −→ (X,x0) with

π1(q)
(
π1(Y, y0)

)
= f−1(H).

We now exploit topology: We can view X as a one-dimensional complex
(i.e., as a space obtained by glueing points and unit intervals; Exercise). This
property is inherited under coverings (Exercise); hence, also Y carries the
structure of a one-dimensional complex. Furthermore, fundamental groups
of one-dimensional complexes are free (this follows from Theorem 2.2.6 and
Proposition 2.2.20; Exercise; or via spanning trees: Example A.7.12). There-
fore, π1(Y, y0) is a free group.

Because π1(q) : π1(Y, y0) −→ π1(X,x0) is injective (Corollary 2.3.25), we
thus obtain that the group

H = f ◦ π1(q)
(
π1(Y, y0)

) ∼=Group π1(q)
(
π1(Y, y0)

) ∼=Group π1(Y, y0)

is free.

A more careful analysis of such coverings allows us to determine the rank
of subgroups of free groups in terms of the rank of the ambient free group
and the index (Corollary 5.3.13, Example 2.3.49).

Study note. In case you find this proof of the Nielsen–Schreier theorem silly:
Try to prove the Nielsen–Schreier theorem by hand, using only elementary
group theory . . .

Outlook 2.3.53. The above proof of the Nielsen–Schreier theorem is a proto-
typical example of a topological dimension argument in group theory. Ar-
guments of this type are studied systematically in the context of group
(co)homology and classifying spaces [9, 43].

Study note (subobjects of free objects). For which algebraic structures do
you already know that sub-thingies of free stuff are free? For which algebraic
structures does this not hold? What does this have to do with the Möbius
strip?
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2.4 Applications

Let us collect a list of basic applications of the fundamental group and cov-
ering theory:

• Proof of the fundamental theorem of algebra (Exercise).

• Proof of the Brouwer fixed point theorem in dimension 2 (this can
be done as in the proof of Corollary 1.3.25; we will use homology to
establish the Brouwer theorem in full generality).

• Proof of the Jordan curve theorem (we will use homology to establish
the Jordan curve theorem in all dimensions; Theorem 4.4.5)

• Proof of the Nielsen–Schreier theorem (Theorem 2.3.52).

• Proof of the Borsuk–Ulam theorem in dimension 2 (Exercise; higher-
dimensional versions can be proved via cohomology rings).

• Topological and geometric classification of compact surfaces [51].

• Translation between geometric and algebraic properties of groups in
geometric group theory [39].

• Undecidability results in topology (Outlook 2.2.19).

• . . .

Final remark 2.4.1. In this chapter, we met an interesting sequence of Group-
valued homotopy invariant functors on Top*, namely the homotopy groups.
In principle, it would be possible to prove a statement similar to the ex-
istence of “interesting” homotopy invariant functors (Theorem 1.3.22) via
these functors. However, we will now shift focus to homological invariants
(which, in many cases, are easier to calculate) and then provide a proof of
Theorem 1.3.22 via homology.
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3

Axiomatic Homology Theory

We introduce the Eilenberg–Steenrod axioms for homology theories and learn
how to compute and work with these axioms. Roughly speaking, homology
theories are homotopy invariant functors from pairs of spaces to graded mod-
ules that are compatible with glueings of spaces. Hence, we may expect that
homology theories are amenable to computations.

While the axioms do not refer to chain complexes or homology of chain
complexes, they have a flavour of homological algebra (e.g., they mention
exact sequences). Moreover, many constructions of theories satisfying the
Eilenberg–Steenrod axioms do involve chain complexes (or related concepts
such as spectra).

In Chapter 4 and Chapter 5, we will construct examples of such homology
theories.

Overview of this chapter.

3.1 The Eilenberg–Steenrod Axioms 106
3.2 Homology of Spheres and Suspensions 112
3.3 Glueings: The Mayer–Vietoris Sequence 123
3.4 Classification of Homology Theories 131

Running example. again: spheres, and suspensions
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3.1 The Eilenberg–Steenrod Axioms

The Eilenberg–Steenrod axioms concisely list all common properties of ho-
mology theories in topology. The advantage of this axiomatic approach is
that we learn from the beginning to distinguish between generic properties
shared by all homology theories and special properties of specific examples
of homology theories.

3.1.1 The Axioms

Definition 3.1.1 (Eilenberg–Steenrod axioms for homology theories). Let R
be a ring with unit. A homology theory on Top2 with values in RMod is a
pair

(
(hk)k∈Z, (∂k)k∈Z

)
, consisting of

• a sequence (hk)k∈Z of functors Top2 −→ RMod and

• a sequence (∂k)k∈Z of natural transformations ∂k : hk =⇒ hk−1 ◦
U , the connecting homomorphisms (or boundary operators), where
U : Top2 −→ Top2 is the functor that maps pairs (X,A) to (A, ∅) and
maps of pairs to the corresponding restrictions,

with the following properties:

• Homotopy invariance. For every k ∈ Z the functor hk : Top2 −→ RMod
is homotopy invariant in the sense of Definition 1.3.19.

• Long exact sequences of pairs. For every pair (X,A) of spaces, the
sequence

· · · ∂k+1
// hk(A, ∅) hk(i)

// hk(X, ∅) hk(j)
// hk(X,A)

∂k // hk−1(A, ∅) hk−1(i)
// · · ·

is exact (Definition A.6.2), where i : (A, ∅) −→ (X, ∅) and j : (X, ∅) −→
(X,A) are the inclusion maps.

• Excision. For every pair (X,A) of spaces and all B ⊂ A with B ⊂ A◦,
the homomorphisms

hk(X \B,A \B) −→ hk(X,A)

induced by the inclusion (X \ B,A \ B) −→ (X,A) are isomorphisms
for every k ∈ Z (Figure 3.1).

Let • := {∅} be “the” one-point space. One says that
(
hk(•, ∅)

)
k∈Z are

the coefficients of the homology theory.
Such a homology theory

(
(hk)k∈Z, (∂k)k∈Z

)
is an ordinary homology theory,

if the dimension axiom is satisfied:
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X1

A \B

X \B
hk(X \B,A \B)

A

B

X

hk(X,A)

Figure 3.1.: Excision, schematically

• Dimension axiom. The one-point space • satisfies for all k ∈ Z \ {0}:

hk(•, ∅) ∼=R 0.

A homology theory
(
(hk)k∈Z, (∂k)k∈Z

)
is additive, if the additivity axiom

is satisfied:

• Additivity. For all sets I and all families (Xi)i∈I of topological spaces,
the canonical inclusions (Xi −→

⊔
j∈I Xj)i∈I induce for every k ∈ Z

an isomorphism

⊕

i∈I
hk(Xi, ∅) −→ hk

(⊔

i∈I
Xi, ∅

)
.

Remark 3.1.2 (digesting the axioms).

• In the situation of Definition 3.1.1, hk(X,A), intuitively, measures the
“difference” between X and A with respect to hk.

As quotient spaces tend to be ill-behaved, it is customary to consider
pairs of spaces to measure the “difference” between a space and a sub-
space.

The long exact sequence of pairs describes the connection between ho-
mology of a space, the given subspace, and the pair formed by these
spaces.

• Excision allows to compute homology of (pairs of) spaces by subdi-
vision into smaller parts (divide and conquer!). In contrast with the
excision theorem of Blakers–Massey for homotopy groups, excision in
homology holds for all degrees (and almost unconditionally). This is the
main reason why homology tends to be easier to compute in concrete,
geometric, examples than homotopy groups.

• If X is a topological space and k ∈ Z, then we also abbreviate (in the
setting of the Eilenberg–Steenrod axioms)
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hk(X) := hk(X, ∅).

This is the absolute homology of X. Homology of pairs of spaces is also
called relative homology.

• The Eilenberg–Steenrod axioms also admit versions in other categories
of spaces.

• In Chapter 5.2.3, we will see to which extent homology theories are
uniquely determined by the Eilenberg–Steenrod axioms and their coef-
ficients.

3.1.2 First Steps

Before turning to glueing results and topological applications of homology
theories, we first practice working with the Eilenberg–Steenrod axioms in
some simple cases. As the Eilenberg–Steenrod axioms are formulated in terms
of exact sequences, we will often need basic facts on exact sequences (Chap-
ter A.6.1).

Setup 3.1.3. In this section, R is a ring with unit and
(
(hk)k∈Z, (∂k)k∈Z

)
is

a homology theory on Top2 with values in RMod.

Proposition 3.1.4 (more on homotopy invariance). Let k ∈ Z.

1. If (X,A) is a pair of spaces and if the inclusion i : A −→ X is a homo-
topy equivalence, then

hk(X,A) ∼=R 0

In particular, hk(X,X) ∼=R 0.

2. If f : (X,A) −→ (Y,B) is a continuous map of spaces and if both
f : X −→ Y and f |A : A −→ B are homotopy equivalences in Top,
then

hk(f) : hk(X,A) −→ hk(Y,B)

is an isomorphism of R-modules.

Proof. Ad 1. Let j : (X, ∅) −→ (X,A) be the inclusion. By the long exact
sequence of the pair (X,A), the sequence

hk(A)
hk(i)

// hk(X)
hk(j)

// hk(X,A)
∂k // hk−1(A)

hk−1(i)
// hk−1(X)

in RMod is exact. Because hk and hk−1 are homotopy invariant and i is a
homotopy equivalence, hk(i) and hk−1(i) are isomorphisms. We now only
need to exploit exactness:

• On the one hand, im ∂k = kerhk−1(i) = 0, and so ∂k = 0.
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• On the other hand, kerhk(j) = imhk(i) = hk(X), and so we also
have hk(j) = 0.

Therefore,
hk(X,A) = ker ∂k = imhk(j) = 0.

Ad 2. The second part follows from the long exact sequence of pairs and the
five lemma (Proposition A.6.7): We consider the following ladder in RMod:

hk(A)
hk(incl)

//

hk(f |A)

��

hk(X)
hk(incl)

//

hk(f)

��

hk(X,A)
∂k //

hk(f)

��

hk−1(A)
hk−1(incl)

//

hk−1(f |A)

��

hk−1(X)

hk−1(f)

��

hk(B)
hk(incl)

// hk(Y )
hk(incl)

// hk(Y,B)
∂k

// hk−1(B)
hk−1(incl)

// hk−1(Y )

The rows are exact (long exact sequences of pairs). The two left squares
and the rightmost square are commutative (by functoriality of hk and hk−1,
respectively). The remaining square is commutative, because ∂k is a natural
transformation.

The outer four vertical R-homomorphisms are R-isomorphisms (by homo-
topy invariance).

Therefore, the five lemma (Proposition A.6.7) shows that also the middle
homomorphism is an isomorphism of R-modules.

Example 3.1.5 (relative homology of thick spheres). Let n ∈ N and k ∈ Z.
Then the inclusion (Dn+1, Sn) −→ (Rn+1,Rn+1 \ {0}) induces an isomor-
phism

hk(Dn+1, Sn) ∼=R hk
(
Rn+1,Rn+1 \ {0}

)
.

As next step, we study how we can split off the coefficients from the
homology of (non-empty) spaces:

Proposition 3.1.6 (splitting off the coefficients).

1. Let (X,x0) be a pointed space. Then the inclusion (X, ∅) ↪→ (X, {x0})
and the constant map X −→ {x0} induce for every k ∈ Z an isomor-
phism

hk(X) ∼=R hk
(
{x0}

)
⊕ hk

(
X, {x0}

)
.

2. These isomorphisms are natural in the following sense: If f : (X,x0) −→
(Y, y0) is a pointed continuous map and k ∈ Z, then the diagram

hk(X)
∼=R //

hk(f)

��

hk
(
{x0}

)
⊕ hk

(
X, {x0}

)

hk(f |{x0})⊕hk(f)

��

hk(Y ) ∼=R

// hk
(
{f(x0)}

)
⊕ hk

(
Y, {f(x0)}

)
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is commutative, where the horizontal isomorphism are the isomorphisms
of the first part.

The second part just says that the isomorphisms from the first part form
a natural transformation

hk ◦ F =⇒ hk ◦ U ⊕ hk : Top* −→ RMod,

where F : Top* −→ Top2 is the functor that replaces the singleton subspace
by the empty subspace and U is the subspace functor from Definition 3.1.1.

Proof. Ad 1. Again, this can be shown by investigating the long exact se-
quence of the pair (X, {x0}). Let i : {x0} −→ X and j : (X, ∅) −→ (X, {x0})
be the inclusions and let p : X −→ {x0} be the constant map. The sequence

hk
(
{x0}

) hk(i)
// hk(X)

hk(j)
// hk
(
X, {x0}

) ∂k // hk−1

(
{x0}

) hk−1(i)
// hk−1(X)

of the pair (X, {x0}) is exact. Because of p ◦ i = id{x0}, we obtain

hk(p) ◦ hk(i) = idhk({x0}) and hk−1(p) ◦ hk−1(i) = idhk−1({x0}) .

In particular, hk−1(i) is injective, and thus ∂k = 0; and the injective map hk(i)
has a section (namely hk(p)). Therefore, the exact sequence above yields the
split short exact sequence

0 // hk
(
{x0}

) hk(i)
// hk(X)

hk(j)
//

hk(p)

``
hk
(
X, {x0}

)
// 0

Now basic properties of split exact sequences (Proposition A.6.6) prove the
claim.

Ad 2. The naturality follows from the fact that the inclusion of the base-
points and the constant maps are compatible with f and that this property
is preserved after applying the functor hk.

This splitting can also be expressed in terms of reduced homology:

Remark 3.1.7 (reduced homology). If X is a topological space and k ∈ Z, we
define the k-th reduced homology of X with respect to

(
(hk)k∈Z, (∂k)k∈Z

)
by

h̃k(X) := ker
(
hk(cX) : hk(X) −→ hk(•)

)
⊂ hk(X),

where cX : X −→ • is the constant map. Then for every x0 ∈ X and every k ∈
Z, the composition

h̃k(X) −→ hk(X) −→ hk
(
X, {x0}

)
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of the inclusion and the homomorphism induced by the inclusion is an R-
isomorphism (Exercise). If f : X −→ Y is a continuous map, then

h̃k(f) := hk(f)|h̃k(X) : h̃k(X) −→ h̃k(Y )

is well-defined (Exercise). In this way, we obtain a homotopy invariant func-

tor h̃k : Top −→ RMod with h̃k(•) ∼= 0.

Therefore, whenever convenient, we can remove the homology of the base-
point from our computations.

In the context of excision arguments, one often considers triples of spaces
(i.e., a space together with a subspace and a subspace of this subspace). In
this situation, the following sequence is helpful:

Proposition 3.1.8 (long exact sequence of triples). Let X be a topological space
and let B ⊂ A ⊂ X be subspaces. Then the sequence

· · ·
∂

(X,A,B)
k+1
// hk(A,B) // hk(X,B) // hk(X,A)

∂
(X,A,B)
k // hk−1(A,B) // · · ·

in RMod is exact, where for k ∈ Z, the connecting homomorphism ∂
(X,A,B)
k

in the triple sequence is defined as the composition

hk(X,A)
∂

(X,A,B)
k //

∂
(X,A)
k

%%

hk−1(A,B)

hk−1(A)

88

(and the unmarked homomorphisms are the R-homomorphisms induced by
the respective inclusions of (pairs of) spaces).

Proof. Let k ∈ Z. We consider the braid diagram in Figure 3.2, consisting of
the desired triple sequence and the interwoven long exact sequences of the
pairs (A,B), (X,B), and (X,A).

This diagram is commutative by definition of the connecting homomor-
phism of the sequence of the triple, by functoriality of the (hm)m∈Z, and the
naturality of the connecting homomorphisms of the homology theory.

In the triple sequence, the composition of consecutive homomorphisms is
zero:

• At hk(X,B): The relevant composition factors over hk(A,A) (which is
trivial by Proposition 3.1.4) and thus is trivial.

• At hk(X,A): The relevant composition factors over the portion

hk−1(B) // hk−1(A) // hk−1(A,B)
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. . . . . .

hk+1(X,A)

∂
(X,A)
k

hk(A)

hk(B)

hk(A,B)

∂
(A,B)
k

hk(X,B)
∂
(X,B)
k

hk(X)

hk−1(B)

hk−1(A)

hk(X,A)
∂
(X,A)
k

hk−1(X)

hk−1(A,B)

∂
(X,A,B)
k+1

∂
(X,A,B)
k

Figure 3.2.: The braid diagram of the long exact sequence of a triple; all
unmarked R-homomorphisms are induced by the respective in-
clusions.

of the long exact sequence of the pair (A,B) and hence is trivial.

• At hk(A,B): In this case, we use the long exact sequence of the
pair (X,A).

The exactness of the triple sequence follows now from a diagram chase,
using the exactness of the three long exact sequences of pairs (check!).

Outlook 3.1.9 (spectral sequences). For longer, descending, chains of sub-
spaces, exact sequences are not powerful enough; the right tool in such cases
are spectral sequences [69, 9, 43].

3.2 Homology of Spheres and Suspensions

We will now calculate homology of spheres. As spheres can be constructed
inductively from lower-dimensional spheres via suspension, we will first com-
pute homology of suspensions.

Setup 3.2.1. In the following, let R be a ring with unit, let
(
(hk)k∈Z, (∂k)k∈Z

)

be a homology theory on Top2 with values in RMod.
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3.2.1 Suspensions

The suspension of a space is constructed by attaching cones on top and at
the bottom (Figure 3.3):

X

[−1]

[0]

[1]

X

[−1]

[0]

[1]

X × [−1, 1]
/
∼ = ΣX

Figure 3.3.: The suspension, schematically

Definition 3.2.2 (suspension).

• The (unreduced) suspension of a topological space X is defined as

ΣX := X × [−1, 1]
/
∼

(endowed with the quotient topology of the product topology), where
“∼” is the equivalence relation generated by

∀x,x′∈X (x, 1) ∼ (x′, 1)

∀x,x′∈X (x,−1) ∼ (x′,−1).

• If f : X −→ Y is a continuous map of topological spaces, then we write

Σf : ΣX −→ ΣY

[x, t] 7−→
[
f(x), t

]

(which is well-defined and continuous; Exercise).

In this way, we obtain the suspension functor Σ: Top −→ Top.
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x x

∼=Top

Figure 3.4.: Suspensions of spheres are spheres

Outlook 3.2.3 (join, smash). More conceptually, the unreduced suspension
can also be viewed as a join of S0 with the given space or map. The reduced
suspension of a pointed space or map is obtained by taking the so-called
smash product with (S1, e1).

Study note (suspension in architecture). There are many examples of (usually
only one-sided) suspension constructions in architecture (e.g., many famous
bridges and the Yoyogi Park National Stadium in Tokyo). Do you know an
example close-by?

Example 3.2.4 (suspensions of spheres are spheres). Let n ∈ N. Then

ΣSn −→ Sn+1

[x, t] 7−→
(
cos(π/2 · t) · x, sin(π/2 · t)

)

is a well-defined homeomorphism (Exercise; Figure 3.4).

Theorem 3.2.5 (homology of suspensions). Let (X,x0) be a pointed space and
let k ∈ Z. Then there is a natural (on Top*) isomorphism, the suspension
isomorphism,

σk(X,x0) : hk
(
X, {x0}

)
−→ hk+1

(
ΣX, {[(x0, 0)]}

)
.

Proof. In the situation of the theorem, we obtain a chain of natural isomor-
phisms as in Figure 3.5.

The lowest vertical homomorphism is the connecting homomorphism of
the long exact triple sequence (Proposition 3.1.8) of the triple

{x0} ⊂ X ⊂ C−X.

This connecting homomorphism is anR-isomorphism because: The cone C−X
is contractible; hence, Proposition 3.1.4 implies that hm(C−X, {x0}) ∼=R 0
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C+X

X

[−1]

[0]

[1]

1
2C+X

X

[−1]

[0]

[1]

C+X \ 1
2C+X

X

[−1]

[0]

[1]

C−X

X

[−1]

[0]

[1]

hk+1

(
ΣX, {[x0, 0]}

)

∼=R generalised homotopy invariance (Proposition 3.1.4)
��

hk+1(ΣX,C+X)

hk+1

(
ΣX \ 1

2C+X,C+X \ 1
2C+X

)
∼=R excision

OO

hk+1

(
C−X,X × {0}

)
∼=R homotopy invariance

OO

∼=R connecting homomorphism of the triple sequence
��

hk
(
X, {x0}

)

Figure 3.5.: Computing the homology of suspensions

holds for all m ∈ Z. Then the portion

hk+1(C−X, {x0}) // hk+1(C−X,X)
∂

(C−X,X,{x0})
k+1

// hk(X, {x0}) // hk(C−X, {x0})

of the long exact sequence of the triple shows that the connecting homomor-
phism must be an R-isomorphism.
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Study note. Make the naturality claim in Theorem 3.2.5 explicit! Which
diagram do you need to draw? How could you formulate the suspension iso-
morphism in terms of reduced homology?

Remark 3.2.6 (how to apply excision?). Let X be a topological space. As in
the proof of Theorem 3.2.5, we can often compute the homology (hk(X))k∈Z
via excision as follows:

First, we try to find subspaces B ⊂ A ⊂ X with B ⊂ A◦ such that

• (hk(A))k∈Z is accessible, and

• (hk(X \B,A\B))k∈Z is accessible (for instance, via the triple sequence
(Proposition 3.1.8) or the pair sequence).

We then combine excision with the long exact pair sequence of the pair (X,A).
For example, this strategy can be used to compute the homology of the two-
dimensional torus (Exercise).

In Chapter 3.3, we will meet a reformulation of excision that allows for a
systematic divide and conquer computation of homology.

Outlook 3.2.7 (stable homotopy theory). It turns out that not every space
is the suspension of another space, not even up to homotopy equivalence
(can you find such an example?!). Forcing the suspension functor to be a
self-equivalence of a suitable category leads to so-called stable homotopy
theory [49, 16]. Stable homotopy theory, among other things, explains how
(co)homology theories can be constructed from homotopy groups and allows
one to compute examples of generalised homology theories in geometrically
relevant examples. In this course, we will focus on a different, even more
classical, approach via standard homological algebra (which will lead to a
different type of geometric applications).

3.2.2 Homology of Spheres

The computation of the homology of suspensions and the fact that spheres
are iterated suspensions of S0 allow us to compute homology of spheres:

Corollary 3.2.8 (homology of spheres).

1. For all n ∈ N and all k ∈ Z, there is a natural R-isomorphism

hk
(
Sn, {e1}

) ∼=R hk+1

(
ΣSn, {[e1, 0]}

) ∼=R hk+1

(
Sn+1, {e1}

)
.

2. Inductively, we obtain for all n ∈ N and all k ∈ Z:

hk(Sn) ∼=R hk
(
Sn, {e1}

)
⊕ hk

(
{e1}

)
(Proposition 3.1.6)

∼=R hk−n
(
S0, {e1}

)
⊕ hk

(
{e1}

)
(first part)

∼=R hk−n(•)⊕ hk(•). (excision on S0)
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3. If
(
(hk)k∈Z, (∂k)k∈Z

)
is an ordinary homology theory, n ∈ N>0, and

k ∈ Z, then:

hk(S0) ∼=R

{
h0(•)⊕ h0(•) if k = 0

0 if k 6= 0.

hk(Sn) ∼=R

{
h0(•) if k ∈ {0, n}
0 if k ∈ Z \ {0, n}.

Proof. The first part follows by combining the computation of homology of
suspensions (Theorem 3.2.5) and the fact that suspensions of spheres are
spheres (Example 3.2.4). A straightforward induction then shows the second
part. The third part is a special case of the second part.

Caveat 3.2.9 (how not to apply excision!). In general, when applying excision,
we have to make sure that the closure of the excised subspace lies in the
interior of the larger subspace! For example: For all n ∈ N>0, we have (where
S := −en+1 ∈ Sn and N := en+1 ∈ Sn)

hk
(
Sn, {S}

) ∼=R hk
(
Sn, Sn \ {N}

)
(Proposition 3.1.4)

??! hk
(
Sn \ (Sn \ {N}), (Sn \ {N}) \ (Sn \ {N})

)
(excision is not applicable!)

∼=R hk
(
{N}, ∅

)

∼=R hk(•).

Corollary 3.2.8 shows that ordinary homology theories with non-trivial
coefficients discover the n-dimensional spherical “hole” in the n-sphere. In
contrast to homotopy groups, ordinary homology theories cannot detect the
“exotic” higher-dimensional spherical holes in spheres (such as the non-trivial
elements of π3(S2, e1)), but homology can also detect non-spherical holes (as
can be seen from the homology of the torus; Exercise). We will come back to
this point of view in the construction of singular homology.

A first application of the computation in Corollary 3.2.8 is a refined version
of invariance of dimension (under the hypothesis that an ordinary homology
theory does exist):

Corollary 3.2.10 (invariance of dimension, II). If there exists an ordinary ho-
mology theory

(
(hk)k∈Z, (∂k)k∈Z

)
on Top2 with values in ZMod and coeffi-

cients (isomorphic to) Z, then:
If n,m ∈ N and U ⊂ Rn, V ⊂ Rm are open and non-empty with U ∼=Top V ,

then n = m.

Proof. Using excision and homotopy invariance, we can reduce the claim to
the computation of the homology of spheres:

Without loss of generality, we may assume that n,m > 0. Let x ∈ U , let
f : U −→ V be a homeomorphism, and let y := f(x). Because U is open, there
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exists an ε ∈ R>0 such that the open ε-ball Uε(x) around x is contained in U .
Removing everything outside of this standard neighbourhood via excision, we
obtain for all k ∈ N>0 that

hk
(
U,U \ {x}

) ∼=Z hk
(
U \ (U \ Uε(x)), (U \ {x}) \ (U \ Uε(x))

)
(excision; applicable!)

= hk
(
Uε(x), Uε(x) \ {x}

)

∼=Z hk
(
Rn,Rn \ {0}

)
(homeomorphism invariance)

∼=Z hk−1

(
Rn \ {0}, {e1}

)
(long exact triple sequence, contractibility of Rn, n, k > 0)

∼=Z hk−1

(
Sn−1, {e1}

)
; (homotopy invariance)

and, analogously, hk
(
V, V \{y}

) ∼=Z hk−1

(
Sm−1, {e1}

)
. Because f is a home-

omorphism, we have (U,U \ {x}) ∼=Top2 (V, V \ {y}). Therefore,

hn−1(Sn−1) ∼=Z hn−1

(
Sn−1, {e1}

)
⊕ hn−1(•) (Proposition 3.1.6)

∼=Z hn
(
U,U \ {x}

)
⊕ hn−1(•) (calculation above)

∼=Z hn
(
V, V \ {y}

)
⊕ hn−1(•) (f is a homeomorphism)

∼=Z hn−1

(
Sm−1, {e1}

)
⊕ hn−1(•) (calculation above)

∼=Z hn−1(Sm−1). (Proposition 3.1.6)

Applying Corollary 3.2.8, we thus obtain n− 1 = m− 1 (check!).

In particular, this version of invariance of dimension nicely demonstrates
the effect of the dimension axiom (which only involves the homology of a
single point!) on the homology of higher-dimensional objects.

3.2.3 Mapping Degrees of Self-Maps of Spheres

As next step, we determine mapping degrees of self-maps of spheres with
respect to ordinary homology theories with Z-coefficients. These computa-
tions will also play an important role when describing the homology of cell
complexes.

Corollary 3.2.11 (mapping degrees on spheres). Let
(
(hk)k∈Z, (∂k)k∈Z

)
be an

ordinary homology theory. Then:

1. If n ∈ N>0 and j ∈ {1, . . . , n+ 1}, then

hn(r
(n)
j ) = − idhn(Sn),

where r
(n)
j is the reflection defined in Theorem 1.3.22.

2. For d ∈ Z, we write
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fd : S1 −→ S1

[t] 7−→ [d · t mod 1].

Then h1(fd) = d · idh1(S1) .

3. For all n ∈ N>0 and all d ∈ Z, we have (under the canonical homeo-
morphism Σn−1S1 ∼=Top S

n; Example 3.2.4)

hn(Σn−1fd) = d · idhn(Sn) .

In particular: If
(
(hk)k∈Z, (∂k)k∈Z

)
is an ordinary homology theory with val-

ues in ZMod and coefficients (isomorphic to) Z, then we obtain for the map-
ping degree (Proposition 1.3.29):

• For all n ∈ N>0 and all j ∈ {1, . . . , n}, we have

deghn
r

(n)
j = −1.

• For all n ∈ N>0 and all d ∈ Z, we have

deghn
Σn−1fd = d.

Thus, the map deghn
: [Sn, Sn] −→ Z is surjective.

The proof is based on the following observation on the addition of maps on
spheres, which is related to the cogroup object structure of spheres in Top*h.
This lemma explains how geometric addition of maps translates into purely
algebraic addition:

Lemma 3.2.12 (homology of “addition” of maps defined on spheres). Let(
(hk)k∈Z, (∂k)k∈Z

)
be an ordinary homology theory and let n ∈ N>0. For d ∈

N, we sloppily write
∨d

Sn for the topological space underlying the d-fold

wedge
∨d

(Sn, e1); moreover, let (ij : Sn −→ ∨d
Sn)j∈{1,...,d} be the canonical

inclusions of the wedge summands and let (pj :
∨d

Sn −→ Sn)j∈{1,...,n} be
the canonical collapse maps that are the identity on one summand and the
constant map on all other summands. Then:

1. The inclusions (ij)j∈{1,...,d} and the collapse maps (pj)j∈{1,...,d} induce
for every k ∈ Z \ {0} an isomorphism

hk

( d∨
Sn
)
∼=R

d⊕
hk(Sn).

2. Let
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x

αx

3

1

2

3

1

2

S2
cS2 ∨2

S2

Figure 3.6.: The pinching map cSn : Sn −→ ∨2
Sn.

cSn : Sn −→
2∨
Sn

αx(t) 7−→
{
i1
(
αx(2 · t)

)
if t ∈ [0, 1/2]

i2
(
αx(2 · t− 1)

)
if t ∈ [1/2, 1]

be the pinching map (Figure 3.6). Here, for x ∈ Sn−1 × {0} \ {e1},
we denote by αx : [0, 1] −→ Sn the uniquely determined circle (with
constant speed, starting in e1 in direction of en+1 that contains x and
e1 as diametral points and that lies in the plane through x, e1, and
e1 + en+1. Then cSn is well-defined and continuous (check!).

Then: For every topological space X and all maps f, g ∈ map(Sn, X)
with f(e1) = g(e1), we have

hn
(
(f ∨ g) ◦ cSn

)
= hn(f) + hn(g),

where f ∨g :
∨2

Sn −→ X is the unique continuous map with the prop-
erty that (f ∨ g) ◦ i1 = f and (f ∨ g) ◦ i2 = g.

Proof of Lemma 3.2.12. The first part follows inductively via excision (where
suitable subsets can be constructed as in Example 2.2.14; check!); a conve-
nient framework for such computations will be introduced in Chapter 3.3.
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Because p1 ◦ cSn ' idSn ' p2 ◦ cSn (check!) and i1 ◦ p2 and i2 ◦ p1 are con-
stant maps, we obtain from homotopy invariance and the first part that

hn
(
(f ∨ g) ◦ cSn

)
= hn(f ∨ g) ◦ hn(i1) ◦ hn(p1) ◦ hn(cSn)

+ hn(f ∨ g) ◦ hn(i2) ◦ hn(p2) ◦ hn(cSn)

+ hn(f ∨ g) ◦ hn(i1) ◦ hn(p2) ◦ hn(cSn)

+ hn(f ∨ g) ◦ hn(i2) ◦ hn(p1) ◦ hn(cSn) (first part)

= hn
(
(f ∨ g) ◦ i1

)
◦ hn(p1 ◦ cSn)

+ hn
(
(f ∨ g) ◦ i2

)
◦ hn(p2 ◦ cSn)

+ hn(f ∨ g) ◦ hn(i1 ◦ p2) ◦ hn(cSn)

+ hn(f ∨ g) ◦ hn(i2 ◦ p1) ◦ hn(cSn)

= hn
(
(f ∨ g) ◦ i1

)
◦ idhn(Sn)

+ hn
(
(f ∨ g) ◦ i2

)
◦ idhn(Sn) (because pj ◦ cSn ' idSn)

+ 0 (hn(i1 ◦ p2) and hn(i2 ◦ p1) factor over hn(•) ∼= 0)

= hn(f) + hn(g), (definition of f ∨ g)

as desired.

Remark 3.2.13 (Hurewicz homomorphism). Let
(
(hk)k∈Z, (∂k)k∈Z

)
be an ordi-

nary homology theory on Top2 with values in ZMod and coefficients (isomor-
phic to) Z. Let n ∈ N>0 and let [Sn] ∈ hn(Sn) ∼=Z Z be a generator. Then, for
every pointed space (X,x0), we obtain a well-defined homomorphism (check!
this follows as in the previous lemma)

πn(X,x0) −→ hn(X)

[f ]∗ 7−→ hn(f)
(
[Sn]

)

from the n-th homotopy group into homology in degree n, the Hurewicz
homomorphism in degree n. This leads to a natural transformation πn =⇒
hn ◦ F , where F : Top* −→ Top2 is the functor that replaces the basepoint
with the empty subspace.

Proof of Corollary 3.2.11. Ad 1. We proceed in the following steps:

À Reduction to r
(n)
2 . The reflection r

(n)
j is a conjugation of r

(n)
2 : Let

gj : Sn −→ Sn

x 7−→ (x1, xj , x3, . . . , xj−1, x2, xj+1, . . . , xn+1)

be the homeomorphism swapping the second and the j-th coordinate.

Then r
(n)
j = gj ◦ r(n)

2 ◦ g−1
j . Therefore, if hn(r

(n)
2 ) = − idhn(Sn), then

also hn(r
(n)
k ) = − idhn(Sn) (check!).
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Á Computation for r
(1)
2 . The composition (idS1 ∨r(1)

2 ) ◦ cS1 is null-homo-

topic (check!) and thus factors over •. Therefore, h1(idS1 ∨r(1)
2 ◦ cS1)

factors over h1(•) ∼=R 0. Hence, by Lemma 3.2.12,

0 = h1

(
(idS1 ∨r(1)

2 ) ◦ cS1

)

= h1(idS1) + h1(r
(1)
2 ), (Lemma 3.2.12)

which implies h1(r
(1)
2 ) = −h1(idS1) = − idh1(S1).

Â Computation for r
(n)
2 in dimensions n > 1. By induction, it suffices

to compute hn(r
(n)
2 ) from hn−1(r

(n−1)
2 ). To this end, we apply suspen-

sion: By construction, under the canonical suspension homeomorphism,

Σr
(n−1)
2 corresponds to r

(n)
2 and r

(n)
2 (e1) = e1. Hence, the commutative

diagram

hn−1(Sn−1) // //

hn−1(r
(n−1)
2 )

��

hn−1(Sn−1, e1)
Σ
∼=R

//

hn−1(r
(n−1)
2 )

��

hn(Sn, e1)

hn(r
(n)
2 )

��

hn(Sn)
∼=Roo

hn(r
(n)
2 )

��

hn−1(Sn−1) // // hn−1(Sn−1, e1)
Σ

∼=R // hn(Sn, e1) hn(Sn)∼=R

oo

shows that hn(r
(n)
2 ) = − idhn(Sn). The left surjections and the right

horizontal R-isomorphisms stem from Proposition 3.1.6; the middle iso-
morphisms are the suspension isomorphisms (Theorem 3.2.5). The three
squares are commutative because these isomorphisms are natural.

Ad 2. We distinguish the following three cases:

• If d = 0, then fd : S1 −→ S1 is constant; hence, h1(f0) factors
over h1(•) ∼=R 0. Therefore, h1(f0) = 0.

• If d ∈ Z<0, then fd = r
(1)
2 ◦f|d|. In view of the first part, we then obtain

h1(fd) = h1(r
(1)
2 ) ◦ h1(f|d|) = −h1(f|d|).

• Thus, it suffices to consider the case d ∈ N>0: We have (check!)

fd ' (fd−1 ∨ idS1) ◦ cS1 .

Therefore, applying Lemma 3.2.12 yields

h1(fd) = h1(fd−1) + h1(idS1) = h1(fd−1) + idh1(S1);

inductively, we obtain h1(fd) = d · idh1(S1).

Ad 3. This follows inductively from the second part, using the naturality
of the suspension isomorphism (Theorem 3.2.5) and Example 3.2.4.
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Using mapping degrees, one can also prove the fundamental theorem of
algebra (similar to the proof via the fundamental group).

Moreover, homology theories provide a means to prove Theorem 1.3.22:

Corollary 3.2.14 (existence of
”
interesting“ homotopy invariant functors).

If
(
(hk)k∈Z, (∂k)k∈Z

)
is an ordinary homology theory on Top2 with values

in ZMod and coefficients (isomorphic to) Z, then the corresponding reduced
homology functors (Remark 3.1.7)

h̃0, h̃1, . . . : Top −→ Ab

are functors with the properties in Theorem 1.3.22.

Proof. This follows from our previous calculations (Proposition 3.1.6, Corol-
lary 3.2.11) and a straightforward calculation in degree 0 (check!).

Therefore, it is one of the main goals of this course to construct such
homology theories. We will do this in Chapter 4 and Chapter 5.

3.3 Glueings: The Mayer–Vietoris Sequence

We derive a version of excision that allows us to compute homology of glueings
in a convenient way. More precisely, we will see how to express the homology
of a space X = U ∪ V in terms of the homology of U , V , and U ∩ V (Fig-
ure 3.7) via the Mayer–Vietoris sequence (Vietoris was an Austrian math-
ematician; 1891–2002(!)). This long exact sequence encodes a homological
inclusion/exclusion principle.

U

U ∩ V

V

hk(U ∩ V )

hk(U) hk(V )

hk(X)

Figure 3.7.: The setup for the Mayer–Vietoris sequence

In particular, we will apply the Mayer–Vietoris sequence to mapping cones.
On the one hand, this will give access to realisation results for homology
groups; on the other hand, this will enable us to interpret relative homology
as absolute homology (of mapping cones).
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Setup 3.3.1. In the following, let R be a ring with unit, let
(
(hk)k∈Z, (∂k)k∈Z

)

be a homology theory on Top2 with values in RMod.

Theorem 3.3.2 (Mayer–Vietoris sequence). Let X be a topological space and let
U , V ⊂ X subspaces of X with the property that the closure of U\V (in U∪V )
lies in the interior of U (in U ∪ V ). Moreover, let A ⊂ X with A ⊂ U ∩ V .

1. If U ∪ V = X, then the sequence

· · · ∆k+1
// hk(U ∩ V ,A)

(hk(iU ),−hk(iV ))
// hk(U,A)⊕ hk(V ,A)

hk(jU )⊕hk(jV )
// hk(X,A)

∆k // hk−1(U ∩ V ,A) // · · ·

in RMod is exact. Here, iU : (U ∩ V,A) −→ (U,A), iV : (U ∩ V,A) −→
(V,A), jU : (U,A) −→ (X,A), and jV : (V,A) −→ (X,A) are the in-
clusions. For k ∈ Z we write ∆k for the composition (where unmarked
arrows are induced by inclusions)

hk(X,A) //

∆k

,,

hk(X,U) hk(V,U ∩ V )
∼=

excision
oo

∂
(V,U∩V,A)
k

// hk−1(U ∩ V,A).

2. Moreover, the sequence

· · · ∆k+1
// hk(X,U ∩ V )

(hk(iU ),−hk(iV ))
// hk(X,U)⊕ hk(X,V )

hk(jU )⊕hk(jV )
// hk(X,U ∪ V )

∆k // hk−1(X,U ∩ V ) // · · ·

in RMod is exact. Here, iU : (X,U ∩V ) −→ (X,U), iV : (X,U ∩V ) −→
(X,V ), jU : (X,U) −→ (X,U ∪ V ), and jV : (X,V ) −→ (X,U ∪ V )
are the inclusions. For k ∈ Z we write ∆k for the composition (where
unmarked arrows are induced by inclusions)

hk(X,U ∪ V )
∂

(X,U∪V,U)
k

//

∆k

--

hk−1(U ∪ V,U) hk−1(V,U ∩ V )
∼=

excision
oo // hk−1(X,U ∩ V ).

Study note. Instead of memorising the connecting homomorphisms of the
Mayer–Vietoris sequences as in the statement of the theorem, it is much more
efficient (and much more useful) to remember how to prove the existence
of such sequences; the proof, in particular, also shows how to define these
connecting homomorphisms.

Proof. The proof is based on the algebraic Mayer–Vietoris sequence (Propo-
sition A.6.8):

Ad 1. We consider the following ladder in RMod (where all unmarked
arrows are induced by inclusions):
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b

b

a a

Torus T

b

b

a a

U ' ∨2
S1

b

b

a a

V ' •

x0

b

b

a a

U ∩ V ' S1

Figure 3.8.: Decomposing a torus

· · · // hk(U ∩ V,A) //

��

hk(V,A) //

��

hk(V,U ∩ V )

∼=
��

∂
(V,U∩V,A)
k // hk−1(U ∩ V,A) //

��

· · ·

· · · // hk(U,A) // hk(X,A) // hk(X,U)
∂

(X,U,A)
k

// hk−1(U,A) // · · ·

⊕

The rows are the long exact triple sequences of the triples (V,U ∩ V,A) and
(X,U,A), respectively; the squares are commutative (by functoriality and
naturality of the connecting homomorphisms; check!). Moreover, the middle
vertical homomorphism is an isomorphism (by excision; which is applicable!).

Hence, we can apply the algebraic Mayer–Vietoris sequence (Proposi-
tion A.6.8) to conclude that the sequence from the theorem is exact.

Ad 2. Analogously, we apply Proposition A.6.8 to the commutative ladder
whose rows are the long exact triple sequences of the triples (X,V, U ∩ V )
and (X,U ∪ V,U), respectively.

Example 3.3.3 (homology of the torus). Let
(
(hk)k∈Z, (∂k)k∈Z

)
be an ordinary

homology theory on Top2 with values in ZMod and coefficients (isomorphic
to) Z. We compute the homology of the torus T := S1 × S1 with help of
the Mayer–Vietoris sequence (Theorem 3.3.2). To this end, we consider the
decomposition in Figure 3.8 (the vertical and horizontal edges are identified as
specified); then the Mayer–Vietoris sequence is applicable (check!) and gives
(for the subspace A = {x0}) the following long exact sequence (in ZMod):

· · · ∆k+1
// hk(U ∩ V,A) // hk(U,A)⊕ hk(V,A) // hk(T,A)

∆k // hk−1(U ∩ V,A) // · · ·

Using the homotopy equivalence U ∩V ' S1, the homotopy equivalence U '∨2
S1, and the fact that V is contractible (check!), we obtain the following
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commutative diagram in ZMod, whose top row is exact.

· · · ∆k+1
// hk(U ∩ V,A) // hk(U,A)⊕ hk(V,A) // hk(T,A)

∆k // hk−1(U ∩ V,A) // · · ·

hk(S1, {e1})
0
//

∼=

OO

hk(
∨2

S1, {e1})⊕ 0

∼=

OO

hk−1(S1, {e1})
0
//

∼=

OO

· · ·

Why is the dashed homomorphism trivial? In view of the calculation of ho-
mology of spheres, it suffices to consider the case of h1 (in all other degrees,
the modules are already trivial). We use the following geometric input to
compute this map in degree 1: The inclusion U ∩ V ↪→ U corresponds to the
following map S1 −→ ∨2

S1:

• walk through the first circle,

• then walk through the second circle in reverse direction,

• then walk through the first circle in reverse direction,

• then walk through the second circle.

The computation of mapping degrees of self-maps of spheres (Corollary 3.2.11)
and Lemma 3.2.12 show that this map induces the trivial homomorphism
in h1 (check! it is a good exercise to write this down on your own in explicit
formulae; there is no point in reading such formulae).

Therefore, the above long exact sequence leads to short exact sequences
in ZMod of the form

0 // hk(
∨2

S1, {e1}) // hk(T, {x0}) // hk−1(S1, {e1}) // 0

and we obtain for all k ∈ Z

hk
(
T, {x0}

) ∼=Z





h1

(
S1, {e1}

) ∼=Z Z if k = 2

h1

(∨2
S1, {e1}

) ∼=Z Z⊕ Z if k = 1

0 if k ∈ Z \ {1, 2}

and (Proposition 3.1.6)

hk(T ) ∼=Z





Z if k = 0

Z⊕ Z if k = 1

Z if k = 2

0 if k ∈ Z \ {0, 1, 2}.

It should be noted that this computation also shows that the homology of
the torus in degree 1 is inherited from S1 × {e1} ∪ {e1} × S1 ∼=Top

∨2
S1.
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X

Cone(X)

f

Y

Figure 3.9.: Mapping cone, schematically

Analogously, one can compute the ordinary homology of RP 2, of the Klein
bottle, and all other compact surfaces (Exercise).

Another application of the Mayer–Vietoris sequence is the mapping cone
trick, which translates questions about maps into questions about spaces.
Mapping cones are constructed from continuous maps by attaching a cone
over the domain (via the given map) to the target space (Figure 3.9).

Definition 3.3.4 (mapping cone). Let X be a topological space.

• The cone over X is defined as

Cone(X) := X × [0, 1]
/
X × {0}

if X 6= ∅. (It is sometimes convenient to set Cone(∅) := •; whenever
possible, we will try to avoid considering this case.)

• If f : X −→ Y is a continuous map, then the mapping cone of f is the
topological space Cone(f) defined by the pushout in Top, where the left
map is the inclusion X ↪→ X × {1} ↪→ Cone(X):

X
f

//

��

Y

��

Cone(X) // Cone(f)

Example 3.3.5 (mapping cones).

• If X is a (non-empty) topological space, then Cone(X) is contractible.

• If X is a topological space, then Cone(idX) ∼=Top Cone(X).

• If X is a (non-empty) topological space and f : X −→ • is the constant
map, then Cone(f) ∼=Top ΣX.
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• If f : X −→ Y is a homotopy equivalence between non-empty spaces,
then Cone(f) is contractible (Exercise). The converse does not hold in
general (but examples are not that easy to construct).

• We have
Cone(f2) ∼=Top RP 2,

where f2 : S1 −→ S1 wraps twice around S1 (as in Corollary 3.2.11).

Via the Mayer–Vietoris sequence, we obtain the following long exact se-
quence for mapping cones:

Theorem 3.3.6 (long exact sequence of mapping cones). Let f : X −→ Y be a
continuous map with X 6= ∅. Then there are (natural) long exact sequences

· · · // h̃k(X)
h̃k(f)

// h̃k(Y )

h̃k(Y ↪→Cone(f))

// h̃k
(
Cone(f)

)
// h̃k−1(X)

h̃k−1(f)
// · · ·

and

· · · // hk(X)
hk(f)

// hk(Y )

hk(Y ↪→Cone(f))

// h̃k
(
Cone(f)

)
// hk−1(X)

hk−1(f)
// · · ·

in RMod.

Proof. Because X is non-empty, we can choose a point x0 ∈ X. Then we con-
sider the decomposition of the mapping cone of f as depicted in Figure 3.10.
Therefore, we obtain the corresponding Mayer–Vietoris sequence:

· · · // hk(U ∩ V,A) // hk(U,A)⊕ hk(V,A) //

∼=R

��

hk
(
Cone(f), A

)
//

∼=R

��

hk−1(U ∩ V,A) // · · ·

hk(X, {x0})
hk(f)

//

∼=R

OO

hk(Y, {f(x0)})⊕ 0
hk(incl)

// hk(Cone(f), {f(x0)}) hk−1(X, {x0})

∼=R

OO

// · · ·

h̃k(X)
h̃k(f)

//

∼=R

OO

h̃k(Y )
h̃k(incl)

//

∼=R

OO

h̃k(Cone(f))

∼=R

OO

h̃k−1(X)

∼=R

OO

// · · ·

Here, A := {[x0, 1/2]} ⊂ U∩V . The lower vertical homomorphisms are the R-
isomorphisms from Remark 3.1.7. The upper outer vertical homomorphism
is induced by the inclusion (to the layer at 1/2), the left middle vertical
homomorphism is induced by the flattening map U −→ Y , and the right
middle homomorphism is given by flattening the lower half of Cone(X); these
are all R-isomorphisms (by Proposition 3.1.4). Moreover, the rectangles all
are commutative (check!).

The lowest row proves the existence of the first (natural) long exact se-
quence in the theorem.
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X

Cone(X)

f
Y

U

X

Cone(X)

f
Y

V

X

Cone(X)

f
Y

U ∩ V

Figure 3.10.: Decomposing mapping cones

For the second sequence, we argue as follows: Adding (via ⊕) the long
exact sequence

· · · // hk
(
{x0}

)hk(f |{x0})

∼=R

// hk
(
{f(x0)}

)
// 0 // hk−1

(
{x0}

)hk(f |{x0})

∼=R

// · · ·

to the middle row, leads (with help of Proposition 3.1.6) to the second (nat-
ural) long exact sequence in the theorem.

In particular, mapping cones give us the following characterisation of ho-
mology isomorphisms:

Corollary 3.3.7 (mapping cone trick). Let f : X −→ Y be a continuous map,
where X is non-empty. Then the following are equivalent:

1. For all k ∈ Z, the induced map hk(f) : hk(X) −→ hk(Y ) is an R-iso-
morphism.

2. For all k ∈ Z, we have h̃k(Cone(f)) ∼=R 0.

3. For all k ∈ Z, the induced map h̃k(f) : h̃k(X) −→ h̃k(Y ) is an R-iso-
morphism.

Proof. This follows through elementary calculus of exact sequences from The-
orem 3.3.6 (check!).

Outlook 3.3.8 (realisation of modules as homology of spaces). Mapping cones
can also be used to prove realisation results for homology theories (Exercise);
this leads to so-called Moore spaces. For example: If

(
(hk)k∈Z, (∂k)k∈Z

)
is

an ordinary homology theory on Top2 with values in ZMod and coefficients
(isomorphic to) Z, then for every finitely generated Abelian group A and
every k ∈ N>0, there exists a topological space X with

hk(X) ∼=Z A and ∀`∈N>0\{k} h`(X) ∼=Z 0.

If carried out carefully, this can be turned into a functor to Toph.
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excision long exact sequence of pairs

=⇒

long exact sequence of triples

︸ ︷︷ ︸

=⇒

(reduced) Mayer–Vietoris sequence

Figure 3.11.: Properties of sequences of functors on Top2
h

Moreover, we can use mapping cones to replace relative homology by ab-
solute (reduced) homology; under this replacement, the long exact homology
sequence of the pair then corresponds to the long exact sequence for the
mapping cone.

Proposition 3.3.9 (relative homology via mapping cones). Let (X,A) be a pair
of spaces with A 6= ∅ and let i : A −→ X be the inclusion. Then the inclusions

(X,A) −→
(
Cone(i),Cone(A)

)
←−

(
Cone(i), cone tip

)

induce for every k ∈ Z a (natural) R-isomorphism

hk(X,A) ∼=R h̃k
(
Cone(i)

)
.

Proof. Let k ∈ Z. Excision (cutting out “1/2 · Cone(A)”) and homotopy
invariance show that the inclusion (X,A) −→ (Cone(i),Cone(A)) induces a
natural R-isomorphism

hk(X,A) ∼=R hk
(
Cone(i),Cone(A)

)
.

Moreover, Proposition 3.1.4 (and Cone(A) ' •) and the expression of
reduced homology as homology relative to a point (Remark 3.1.7) show that
the inclusion (Cone(i), cone tip) −→ (Cone(i),Cone(A)) induces a natural
R-isomorphism

hk
(
Cone(i),Cone(A)

) ∼=R h̃k
(
Cone(i)

)
.

Combining both isomorphisms proves the claim.

Alternatively, one could compare the long exact sequence of the pair (X,A)
with the mapping cone sequence for the mapping cone of i.
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(reduced) Mayer–Vietoris sequence
=⇒ =⇒

long exact sequence

for mapping cones

=⇒

long exact sequence of pairs

for the extension to Top2
h

excision

for the extension to Top2
h

Figure 3.12.: Properties of sequences of functors on Toph

Remark 3.3.10 (Mayer–Vietoris vs. excision). In this way, we obtain the de-
pendency graph for properties of Z-indexed sequences of functors on Top2

h

in Figure 3.11. Conversely, for Z-indexed functors on Toph, we have the de-
pendencies in Figure 3.12. These observations show that one can formulate
the Eilenberg–Steenrod axioms also for homology theories on Toph instead
of Top2

h.

3.4 Classification of Homology Theories

Before starting with the construction of concrete examples of homology the-
ories, we briefly survey the overall situation:

Existence of homology theories:

• Examples of ordinary homology theories:

– singular homology on Top2 (Chapter 4)

– cellular homology on the category of relative CW-complexes (Chap-
ter 5)

– simplicial homology on the category of simplicial complexes (or
the category of triangulated/triangulable topological spaces) [54]

– measure homology on Top2 [25, 71, 37]

– . . .

• Examples of homology theories that are not ordinary:

– bordism [68, Chapter 21]

– K-homology (a homological version of topological K-theory [66,
Chapter 11])
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– . . .

Uniqueness of homology theories:

• Uniqueness of ordinary homology theories on CW-complexes (Corol-
lary 5.2.18)

• Comparison theorem for homology theories on manifolds

• Also the Atiyah-Hirzebruch spectral sequence leads to uniqueness prop-
erties of homology theories [66, Theorem 15.7].

Classification of homology theories: Stable homotopy theory allows to classify
all homology theories via so-called spectra [66, Chapters 8, 9].
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Singular Homology

We construct ordinary homology theories with given coefficients, namely so-
called singular homology. Geometrically, the idea of singular homology is
to detect holes in spaces by engulfing them in arrangements of simplices.
Algebraically, the construction relies on chain complexes and their homology.

After describing the construction, we prove that singular homology indeed
satisfies the Eilenberg–Steenrod axioms.

Finally, we give applications of singular homology: For example, we prove
the Jordan curve/separation theorem and discuss additional geometric struc-
ture that is visible on singular homology.

In Chapter 5, we will construct cellular homology, which often leads to
smaller chain complexes and easier computations.

Overview of this chapter.

4.1 Construction 134
4.2 Homotopy Invariance 144
4.3 Excision 149
4.4 Applications 157
4.5 Singular Homology and Homotopy Groups 171

Running example. again: simplices, spheres, tori
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4.1 Construction

Singular homology attempts to understand topological space in terms of sim-
ple building blocks, the singular simplices; these simplices are “singular” in
the sense that we only ask them to be continuous maps, without requiring
any analytic or geometric regularity.

Definition 4.1.1 (singular simplex). Let X be a topological space, let k ∈ N.
A singular k-simplex is a continuous map ∆k −→ X, where ∆k denotes the
k-dimensional standard simplex (Definition 1.1.1). We write

Sk(X) := map(∆k, X)

for the set of all singular k-simplices in X.

4.1.1 Geometric Idea

The key idea is to detect “holes” in topological spaces by engulfing them
with singular simplices. More precisely (the rigorous definition will be given
in Chapter 4.1.2):

• Because single singular simplices, in general, will not be sufficient to
catch “holes”, we will form so-called chains of singular simplices (Fig-
ure 4.1).

• Candidates for chains that detect a “hole” are chains that have “no
boundary”, so-called cycles (Figure 4.2).

• Cycles only detect a “proper hole” if they are not the boundary of a
higher-dimensional chain (Figure 4.3).

Hence, if X is a topological space and k ∈ N, we will set

singular homology of X in degree k :=
singular k-cycles of X

boundaries of singular (k + 1)-chains
.

In order to make this construction precise, we use the language of chain
complexes and basic homological algebra (Appendix A.6.2). Historically, the
terminology in basic homological algebra goes back to topological construc-
tions of this type (such as simplicial homology).

It should be noted that (non-pathological) spaces admit uncountably many
singular simplices in each dimension; therefore, the singular chain complex
tends to be huge. While this might be bad for concrete calculations, this
chain complex is flexible enough to allow for straightforward functoriality
with respect to all continuous maps and for proving homotopy invariance.
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hole

Figure 4.1.: Singular chains

hole hole

Figure 4.2.: Singular cycle; the chain on the left cannot surround a “hole”,
the chain on the right does surround a “hole”.

hole

Figure 4.3.: Singular boundary; the cycle on the left is the boundary of a
singular chain and hence cannot detect a “hole”; the cycle on
the right is not the boundary of a singular chain (because the
“hole” is in the way).

4.1.2 Singular Homology

Setup 4.1.2. Let R be a ring with unit and let Z be a left R-module.

Singular chains are modelled algebraically as R-linear combinations of sin-
gular simplices (which we will describe through the free generation functor);
their boundaries are given by the following alternating sums of their facets:

Proposition and Definition 4.1.3 (singular chain complex).

1. Let X be a topological space and let k ∈ Z. Then we write
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σ
−
∂1,1σ

+

∂1,0σ 0 1

2

σ

+

∂2,2σ

−∂2,1σ + ∂2,0σ

Figure 4.4.: The singular boundary operator in low degrees

Ck(X) :=

{⊕
map(∆k,X) Z = F

(
map(∆k, X)

)
if k ≥ 0

0 if k < 0,

where F : Set −→ ZMod is the free generation functor (Example 1.2.16).
Moreover, we define

∂k :=

{∑k
j=0(−1)j · ∂k,j if k > 0

0 if k ≤ 0
: Ck(X) −→ Ck−1(X),

where for k ∈ N>0 and j ∈ {0, . . . , k}

ik,j : ∆k−1 −→ ∆k

(t0, . . . , tk−1) 7−→ (t0, . . . , tj−1, 0, tj , . . . , tk−1)

denotes the inclusion of the j-th face of ∆k and where (Figure 4.4)

∂k,j := F
(
map(ik,j , X)

)
: Ck(X) −→ Ck−1(X)

Sk(X) 3 σ 7−→ σ ◦ ik,j .

Then C(X) :=
(
C∗(X), ∂∗

)
is a chain complex of Z-modules (Defini-

tion A.6.9), the singular chain complex of X.

2. Let f : X −→ Y be a continuous map between topological spaces. For k ∈
N, we set

Ck(f) := F
(
map(∆k, f)

)
: Ck(X) −→ Ck(Y )

Sk(X) 3 σ 7−→ f ◦ σ

and for k ∈ Z<0, we set Ck(f) := 0. Then C(f) :=
(
Ck(f)

)
k∈Z is a

chain map C(X) −→ C(Y ) (Definition A.6.13).

3. This defines a functor Top −→ ZCh.
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Proof. Ad 1. Let k ∈ Z. We need to show that ∂k ◦ ∂k+1 = 0. Without
loss of generatliy, we may assume that k > 0. Moreover, as Sk+1(X) is a
Z-basis of Ck+1(X), it suffices to show that ∂k ◦∂k+1(σ) = 0 holds for all σ ∈
map(∆k+1, X). Using the fact that

ik+1,j ◦ ik,r = ik+1,r ◦ ik,j−1.

holds for all j ∈ {0, . . . , k + 1}, r ∈ {0, . . . , j − 1} (check!), we obtain

∂k ◦ ∂k+1(σ) = ∂k

(k+1∑

j=0

(−1)j · σ ◦ ik+1,j

)

=

k+1∑

j=0

k∑

r=0

(−1)j+r · σ ◦ ik+1,j ◦ ik,r

=

k+1∑

j=0

j−1∑

r=0

(−1)j+r · σ ◦ ik+1,j ◦ ik,r (“r < j”)

+

k+1∑

j=0

k∑

r=j

(−1)j+r · σ ◦ ik+1,j ◦ ik,r (“r ≥ j”)

=

k+1∑

j=0

j−1∑

r=0

(−1)j+r · σ ◦ ik+1,r ◦ ik,j−1 (identity above)

+

k+1∑

j=0

k∑

r=j

(−1)j+r · σ ◦ ik+1,j ◦ ik,r

=

k+1∑

r=0

k+1∑

j=r+1

(−1)j+r · σ ◦ ik+1,r ◦ ik,j−1 (reorder)

+

k+1∑

j=0

k∑

r=j

(−1)j+r · σ ◦ ik+1,j ◦ ik,r;

as both summands only differ by their sign, this implies ∂k ◦ ∂k+1(σ) = 0.

Ad 2. Again, we only need to consider positive degrees and we only need to
show the compatibilitiy of the boundary operator with C(f) on the basis of
singular simplices. Let k ∈ N>0 and let σ ∈ map(∆k, X). Then, by definition,

Ck−1(f)
(
∂k(σ)

)
= Ck−1(f)

( k∑

j=0

(−1)j · σ ◦ ik,j
)

=

k∑

j=0

(−1)j · f ◦ σ ◦ ik,j = ∂k(f ◦ σ) = ∂k
(
Ck(f)(σ)

)
.

Ad 3. This is a straightforward calculation (check!).
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Outlook 4.1.4 (singular chain complex via simplicial sets). The construction of
the singular chain complex in Proposition 4.1.3 coincides with the following
construction: Let ∆ be the simplex category (Definition 1.2.10). We consider
the functor

∆op × Top
∆op

Top×idTop
// Topop×Top

map( · , · )
// Set

F // ZMod,

where ∆Top : ∆ −→ Top translates abstract simplices and monotonic maps
into standard simplices and their corresponding affine linear maps. The com-
position above then induces a functor Top −→ ∆(ZMod) to simplicial Z-
modules and thus a functor

Top // ∆(ZMod)
C // ZCh

(Example A.6.17). This is the same as the singular chain complex functor
from Proposition 4.1.3.

Outlook 4.1.5 (simplices vs. cubes). In principle, similar constructions can
also be carried out with other combinatorial models of balls than the standard
simplex. For example, one could use singular cubes (thus obtaining the cubical
singular chain complex and cubical singular homology) [52].

• Simplices have the advantage that the number of vertices and facets
is linear in the dimension; this allows for efficient notation. However,
products of simplices in general are not simplices again. Therefore, in
the context of products, additional combinatorial overhead occurs.

• Cubes have more vertices/facets than simplices. But products of cubes
are cubes again. Therefore, for instance, proving homotopy invariance
of cubical singular homology is slightly easier than proving homotopy
invariance of classical singular homology.

We could now define singular homology as algebraic homology of this chain
complex. However, we prefer to first generalise the whole setting to pairs of
spaces and general (constant) coefficients, using tensor products of modules
with chain complexes (Example A.6.16).

Definition 4.1.6 (singular chain complex with (constant) coefficients).

• If (X,A) is a pair of spaces, we define

C(X,A;Z) := Z ⊗Z C(X)
/

im(Z ⊗Z C(A ↪→ X)) ∈ Ob(RCh),

where the boundary operator is the one induced from the boundary
operator on C(X) (this is well-defined; check!). This is the singular
chain complex of (X,A) with Z-coefficients. We abbreviate C(X;Z) :=
C(X, ∅;Z).
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• If f : (X,A) −→ (Y,B) is a continuous map of pairs, then we define
C(f ;Z) = (Ck(f ;Z))k∈Z via

Ck(f ;Z) : Ck(X,A;Z) −→ Ck(Y,B;Z)

[c] 7−→
[
(Z ⊗Z Ck(f))(c)

]

for all k ∈ Z (this is a well-defined chain map; check!).

This defines a functor C( · , · ;Z) : Top2 −→ RCh (check!).

In more hands-on terms: Chains in C(X,A;Z) can be viewed as formal
linear combinations of singular simplices in X with coefficients in Z, where
we ignore all terms that live on the subspace A. Elements in the image of the
boundary operator are called singular boundaries and elements in the kernel
of the boundary operator are called singular cycles.

Example 4.1.7 (singular chains with coefficients).

• We consider S1: Let

σ : ∆1 −→ S1

(1− t, t) 7−→ [t]

be the singular simplex wrapping once around S1. Then the singular
chain 1⊗ σ ∈ C1(S1;Z) is a cycle, because

∂1σ = σ ◦ i1,0 − σ ◦ i1,1
= σ ◦ const(0,1)−σ ◦ const(1,0)

= 0 in C0(S1).

In this case, we also briefly write 1 · σ or σ instead of 1⊗ σ in order to
unclutter the notation. By the same argument, also 1/2 ·σ ∈ C1(S1;Q)
is a cycle.

• We consider (D1, S0): Let

σ : ∆1 −→ D1

(1− t, t) 7−→ 2 · t− 1

be the singular simplex dissecting D2 “horizontally”. Then 1 ⊗ σ ∈
C1(D1, ∅;Z) is not a cycle (check!), but 1 ⊗ σ represents a cycle
in C1(D1, S0;Z), because

∂1σ = σ ◦ i1,0 − σ ◦ i1,1
= const1− const−1

∈ im
(
Z⊗Z C0(S0 ↪→ D1)

)
.
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Definition 4.1.8 (singular homology with (constant) coefficients). For k ∈ Z,
we define the k-th singular homology with coefficients in Z as the composition

Hk( · , · ;Z) := Hk ◦
(
C( · , · ;Z)

)
: Top2 −→ RMod

of functors. Here, Hk on the right hand side denotes the homology func-
tor RCh −→ RMod of R-chain complexes (Definition A.6.18 and Proposi-
tion A.6.21). More explicitly, if (X,A) is a pair of spaces, then

Hk(X,A;Z) =
ker
(
∂k : Ck(X,A;Z)→ Ck−1(X,A;Z)

im
(
∂k+1 : Ck+1(X,A;Z)→ Ck(X,A;Z)

.

IfX is a topological space, then we also abbreviateH∗(X;Z) := H∗(X, ∅;Z) =(
Hk(X, ∅;Z)

)
k∈Z.

The construction of singular homology is not only functorial in pairs of
spaces but also in the coefficient module.

4.1.3 First Steps

Setup 4.1.9. Let R be a ring with unit and let Z be a left R-module.

Example 4.1.10 (singular homology of the empty set). By definition, Ck(∅;Z) ∼=R

0 for all k ∈ Z. Therefore, for all k ∈ Z, we obtain

Hk(∅;Z) ∼=R 0.

Remark 4.1.11 (singular homology in negative degrees). Let (X,A) be a pair
of spaces. Then, by construction, we have Ck(X,A;Z) ∼=R 0 for all k ∈ Z<0.
Therefore,

Hk(X,A;Z) ∼=R 0.

for all k ∈ Z<0.

Example 4.1.12 (singular homology of the point). The singular chain com-
plex C(•;Z) of the point • with Z-coeffcients looks as follows (check!):

degree 2 1 0 −1

· · ·
idZ

// Z
0
// Z

idZ

// Z
0
// Z

0
// 0

0
// 0

0
// · · ·

Therefore, we obtain

∀k∈Z Hk(•;Z) ∼=R

{
Z if k = 0

0 if k ∈ Z \ 0.
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0 1

2

τ

+

σ

−f2 ◦ σ + σ

Figure 4.5.: The 2-simplex τ from Example 4.1.13, schematically

Example 4.1.13 (algebraic vs. geometric multiples). Let

σ : ∆1 −→ S1

(1− t, t) 7−→ [t]

(Example 4.1.7). Then σ ∈ C1(S1;Z) is a cycle and the chain 1·τ ∈ C2(S1;Z)
(Figure 4.5) with

τ : ∆2 −→ S1

(t0, t1, t2) 7−→ [t2 − t0 mod 1]

satisfies

∂2τ = τ ◦ i2,0 − τ ◦ i2,1 + τ ◦ i2,2
=
(
(t0, t1) 7→ [t1]

)
−
(
(t0, t1) 7→ [t1 − t0 mod 1]

)
+
(
(t0, t1) 7→ [−t0 mod 1]

)

=
(
(t0, t1) 7→ [t1]

)

−
(
(t0, t1) 7→ [t1 − (1− t1) mod 1]

)
(convex coordinates!)

+
(
(t0, t1) 7→ [−(1− t1) mod 1]

)
(convex coordinates!)

= σ −
(
(t0, t1) 7→ [2 · t1 mod 1]

)
+ σ

= 2 · σ − f2 ◦ σ.

Therefore,
2 · [σ] =

[
f2 ◦ σ

]
= H1(f2;Z)

(
[σ]
)

in H1(S1;Z); here, f2 : S1 −→ S1 is defined as in Corollary 3.2.11. Similarly,
we also obtain d · [σ] = [fd ◦ σ] for all d ∈ Z.

Singular homology satisfies the following strong version of additivity; here,
“strong” refers to the fact that, in general, path-connected components are
neither closed nor open (and hence, in general, topological spaces do not
carry the disjoint union topology of their path-connected components).

Proposition 4.1.14 (strong additivity of singular homology). Let X be a topo-
logical space and let (Xi)i∈I be the family of the path-connected components



142 4. Singular Homology

of X. Then the inclusions (Xi ↪→ X)i∈I induce for every k ∈ Z an R-iso-
morphism ⊕

i∈I
Hk(Xi;Z) −→ Hk(X;Z).

Proof. We only need to consider the case k ∈ N. Clearly, ∆k is path-
connected; hence, the inclusions (Xi ↪→ X)i∈I induce a bijection

⊔

i∈I
map(∆k, Xi) −→ map(∆k, X).

Thus, these inclusions (Xi ↪→ X)i∈I induce an isomorphism

⊕

i∈I
C(Xi;Z) −→ C(X;Z)

in RCh (the direct sum of chain complexes is defined as degree-wise direct sum
of the chain modules and boundary operators). Because homology of chain
complexes is compatible with direct sums (check!), the claim follows.

Theorem 4.1.15 (singular homology in degree 0).

1. If X is a path-connected, non-empty topological space, then the constant
map c : X −→ • induces an R-isomorphism

H0(c;Z) : H0(X;Z) −→ H0(•;Z).

2. Therefore, H0( · ;Z) : Top −→ RMod is naturally isomorphic to

Z ⊗Z (F ◦ π+
0 ) : Top −→ RMod,

where F : Set −→ ZMod is the free generation functor (Example 1.2.16)
and

π+
0 := [•, · ] : Top −→ Set

is the path-component functor.

Proof. The second part immediately follows from the first part and strong
additivity of singular homology (Proposition 4.1.14).

Therefore, it suffices to prove the first part: Let x0 ∈ X and let i : • −→
{x0} ↪→ X be the inclusion. Because of c ◦ i = id•, functoriality of H0( · ;Z)
shows that

• H0(c;Z) is surjective and that

• H0(c;Z) is injective provided that H0(i;Z) is surjective.

We prove that H0(i;Z) is surjective: Let z =
∑m
j=1 aj · xj ∈ C0(X;Z) be

a 0-cycle with a1, . . . , am ∈ Z and x1, . . . , xm ∈ X; here, we denote singular
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γj

x0

xj

Figure 4.6.: Connecting singular 0-simplices in a path-connected space by a
singular 1-simplex

0-simplices just by the corresponding points in the space. Because X is path-
connected, for each j ∈ {1, . . . ,m}, there is a path γj : ∆1 −→ X with

∂1,0(γj) = xj and ∂1,1(γj) = x0

(Figure 4.6). Then, we obtain in H1(X;Z):

[z] =

[
z − ∂1

( m∑

j=1

aj · γj
)]

=

[ m∑

j=1

aj · x0

]
∈ imH0(i;Z).

Therefore, H0(i;Z) is surjective, as claimed.

In particular, singular homology (with suitable coefficients) is able to de-
tect the number of path-connected components of topological spaces. For
example, we will use this when proving the Jordan curve theorem (Theo-
rem 4.4.5).

4.1.4 The Long Exact Sequence of Pairs

Theorem 4.1.16 (long exact sequence of pairs in singular homology). Let R be
a ring with unit and let Z be a left R-module. Let (X,A) be a pair of spaces
and let i : A ↪→ X and j : (X, ∅) ↪→ (X,A) be the inclusions. Then

· · · ∂k+1
// Hk(A;Z)

Hk(i;Z)
// Hk(X;Z)

Hk(j;Z)
// Hk(X,A;Z)

∂k // Hk−1(A;Z) // · · ·

is a natural long exact sequence in RMod, where for k ∈ N>0 the connecting
homomorphism has the explicit description

∂k : Hk(X,A;Z) −→ Hk−1(A;Z)
[
(c∈ Ck(X;Z)) + Z ⊗Z imCk(i)

]
7−→

[
∂k(c)

]
.
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The naturality refers to both naturality in pairs of spaces and in the coeffi-
cients.

In particular, for every k ∈ Z, we have natural transformations

∂k : Hk( · , · ;Z) =⇒ Hk−1( · , · ;Z) ◦ U,

where U : Top2 −→ Top2 is the subspace functor (Definition 3.1.1).

Proof. We will derive the claim from the algebraic long exact homology se-
quence associated with degree-wise short exact sequences of chain complexes
(Proposition A.6.23). To this end, we consider the (natural) sequence

0 // C(A;Z)
C(i;Z)

// C(X;Z)
projection

// C(X,A;Z) // 0

in RCh.
We explain why this sequence is degree-wise exact: Exactness at C(X,A;Z)

and C(X;Z) is immediate from the construction. What about exactness
at C(A;Z) ? The injection C(i) : C(A) −→ C(X) is split injective (because it
is induced on the standard bases by the injection mapping singular simplices
of A to singular simplices of X via the inclusion A −→ X); therefore, also
Z⊗ZC(i) is split injective, and so the sequence above is also exact at C(A;Z).

Applying the algebraic long exact homology sequence (Proposition A.6.23,
including the construction of the connecting homomorphism) finishes the
proof.

Our next goal is to prove that

((
Hk( · , · ;Z)

)
k∈Z, (∂k)k∈Z

)

is an additive ordinary homology theory on Top2 with values in RMod and
coefficients (isomorphic to) Z. As we have already shown that

• we have a long exact sequence of pairs (Theorem 4.1.16), that

• singular homology of the point • is concentrated in degree 0 and iso-
morphic to Z (Theorem 4.1.15), and that

• singular homology ist strongly additive (Proposition 4.1.14),

it remains to prove homotopy invariance and exicision.

4.2 Homotopy Invariance

We prove that singular homology is homotopy invariant; the key idea is to
realise that the singular chain maps of homotopic continuous maps satisfy
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∆1

[0, 1]
τ1,0

0

1 2

τ1,1

0 1

2

Figure 4.7.: Triangulating the prism ∆1 × [0, 1]

an algebraic version of being homotopic, namely being chain homotopic (Ap-
pendix A.6.3). Then a simple algebraic argument shows that the induced
maps on homology coincide.

Theorem 4.2.1 (homotopy invariance of singular homology). Let R be a be a
ring with unit and let Z ∈ Ob(RMod). Let (X,A), (Y,B) be pairs of spaces
and let f, g : (X,A) −→ (Y,B) be continuous maps of pairs with f 'A,B g.

1. Then
C(f ;Z) '

RCh C(g;Z) : C(X,A;Z) −→ C(Y,B;Z).

2. In particular: For all k ∈ Z, we have

Hk(f ;Z) = Hk(g;Z) : Hk(X,A;Z) −→ Hk(Y,B;Z).

I.e., Hk( · , · ;Z) : Top2 −→ RMod is a homotopy invariant functor.

4.2.1 Geometric Idea

In order to prove the first part of Theorem 4.2.1, we first establish the claim
in the model case, i.e., for the inclusions X −→ X × [0, 1] of bottom and
top into the cylinder X × [0, 1]. Using functoriality and a homotopy between
the given maps f and g, we can then easily derive the general case from this
special case.

The main, technical, difficulty is that, for k ∈ N>0, the prism ∆k × [0, 1]
with its combinatorial structure as a polyhedron is not a simplex. Therefore,
we decompose such prisms systematically into (k + 1)-simplices.

4.2.2 Decomposition of Prisms

Lemma 4.2.2 (decomposition of prisms). Let X be a topological space. Then
the sequence (hX,k)k∈Z with
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2 1

0

2 1

0

∆2 × [0, 1]

2 1

0

2 1

0

τ2,0

2 1

0

2 1

0

τ2,1

2 1

0

2 1

0

τ2,2

Figure 4.8.: Triangulating the prism ∆2 × [0, 1]

hX,k : Ck(X) −→ Ck+1

(
X × [0, 1]

)

map(∆k, X) 3 σ 7−→
k∑

j=0

(−1)j · (σ × id[0,1]) ◦ τk,j

for all k ∈ N and hX,k := 0 for k ∈ Z<0 is a chain homotopy in ZCh from
C(i0) to C(i1). Here, i0, i1 : X ↪→ X × [0, 1] denote the inclusions of the
bottom and the top of the cylinder X × [0, 1], respectively, and for all k ∈ N
and j ∈ {0, . . . , k}, we set (Figure 4.7, Figure 4.8)

τk,j : ∆k+1 −→ ∆k × [0, 1]

(t0, . . . , tk+1) 7−→
(
(t0, . . . , tj−1, tj + tj+1, tj+2, . . . , tk+1), tj+1 + · · ·+ tk+1

)
.

This chain homotopy is natural in the following sense: For all continuous
maps f : X −→ Y and all k ∈ Z, we have

Ck+1(f × id[0,1]) ◦ hX,k = hY,k ◦ Ck(f).

Proof. Let k ∈ N and σ ∈ map(∆k, X). Then, by construction,

∂k+1 ◦ hX,k(σ) =

k+1∑

r=0

k∑

j=0

(−1)j+r · (σ × id[0,1]) ◦ τk,j ◦ ik+1,r

= (σ × id[0,1]) ◦ τk,0 ◦ ik+1,0 (index: (0, 0))

+
∑

“inner” faces (index: (j + 1, j), (j + 1, j + 1))

+
∑

“outer” faces (index: (r, j) with j 6∈ {r, r − 1})
+ (−1)k+k+1 · (σ × id[0,1]) ◦ τk,k ◦ ik+1,k+1. (index: (k + 1, k))
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We show that the sum of the “inner” faces is 0 and that the sum of the
“outer” faces equals −hX,k−1 ◦ ∂k(σ):

• The sum of the “inner” faces is

∑
“inner” faces =

k−1∑

j=0

(−1)j+j+1 · (σ × id[0,1]) ◦ τk,j ◦ ik+1,j+1

+

k−1∑

j=0

(−1)j+1+j+1 · (σ × id[0,1]) ◦ τk,j+1 ◦ ik+1,j+1.

By construction, τk,j ◦ ik+1,j+1 = τk,j+1 ◦ ik+1,j+1 for all j ∈ {0, . . . , k−
1}. Hence, every “inner” face occurs exactly twice and with opposite
signs. In particular,

∑
“inner” faces = 0.

• The sum of the “outer” faces is

∑
“outer” faces =

k+1∑

r=0

r−2∑

j=0

(−1)j+r · (σ × id[0,1]) ◦ τk,j ◦ ik+1,r

+

k+1∑

r=0

k∑

j=r+1

(−1)j+r · (σ × id[0,1]) ◦ τk,j ◦ ik+1,r

=

k+1∑

r=0

r−2∑

j=0

(−1)j+r ·
(
(σ ◦ ik,r−1)× id[0,1]

)
◦ τk−1,j

+

k+1∑

r=0

k∑

j=r+1

(−1)j+r ·
(
(σ ◦ ik,r)× id[0,1]

)
◦ τk−1,j−1

=

k−1∑

r=0

k∑

j=0

(−1)j+r+1 ·
(
(σ ◦ ik,j)× id[0,1]

)
◦ τk−1,r

= −hX,k−1

(
∂k(σ)

)
.

Moreover,

(σ × id[0,1]) ◦ τk,0 ◦ ik+1,0 = i1 ◦ σ (“top” of the prism)

(σ × id[0,1]) ◦ τk,k ◦ ik+1,k+1 = i0 ◦ σ. (“bottom” of the prism)

Therefore, we obtain

∂k+1 ◦ hX,k = Ck(i1)− hX,k−1 ◦ ∂k − Ck(i0),

as desired.
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Naturality follows from the construction: This chain homotopy is con-
structed via composition from the right and the chain maps induced from
continuous maps are constructed via composition from the left.

Study note. How can one use the prism decomposition in dimension 2 (Fig-
ure 4.8) to compute the volume of pyramids with triangular base (assuming
Cavalieri’s principle)?

Caveat 4.2.3. Let X be a topological space and let k ∈ N. If c =
∑m
j=1 aj ·σj

and c′ =
∑m
j=1 aj · σ′j ∈ Ck(X) are singular cycles with

∀j∈{1,...,m} σj 'Top σ
′
j ,

then, in general, we cannot conclude that [c] = [c′] ∈ Hk(X;Z). The cor-
responding homotopies of the singular simplices are, in general, on ∂∆k

not compatible; therefore, the prism decomposition does not provide a
chain b ∈ Ck+1(X) with ∂k+1(b) = c− c′.

This fact is essential for the construction of singular homology: Because
∆k is contractible, all continuous maps ∆k −→ X are homotopic (if X is
path-connected) . . . .

If in the situation above, there exist homotopies between the singular sim-
plices that are “compatible on the boundary”, then one can indeed construct
such a boundary ∂k+1(b) (Exercise). This is, for example, useful

• when comparing smooth singular chains in smooth manifolds with or-
dinary singular chains [36, proof of Theorem 16.6],

• when proving weak homotopy invariance of singular homology [68,
Chapter 9.5], or

• when proving the Hurewicz theorem (Theorem 4.5.6).

4.2.3 Proving Homotopy Invariance

Proof of Theorem 4.2.1. In view of homotopy invariance of homology of chain
complexes (which is a purely algebraic fact; Proposition A.6.35), it suffices
to prove the first part.

Let h : (X,A) × [0, 1] −→ (Y,B) be a homotopy in Top2 from f to g. In
particular, h ◦ i0 = f and h ◦ i1 = g, where i0, i1 : X −→ X × [0, 1] are
the inclusion of the bottom and the top, respectively; thus, we can apply
the model case of Lemma 4.2.2: Using Lemma 4.2.2 (and a little calculation;
check!), it follows that

(
Ck+1(h) ◦ hX,k : Ck(X) −→ Ck+1(Y )

)
k∈Z
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is a chain homotopy in ZCh from

C(h) ◦ C(i0) = C(h ◦ i0) = C(f)

to
C(h) ◦ C(i1) = C(h ◦ i1) = C(g).

Furthermore, the naturality of the construction in Lemma 4.2.2 shows that

im
(
Ck+1(h) ◦ hX,k ◦ Ck(A ↪→ X)

)
⊂ im

(
Ck+1(B ↪→ Y )

)

for all k ∈ Z. Therefore, taking the tensor product Z ⊗Z · and the quotient
by the singular chains living on the subspaces, leads to a well-defined chain
homotopy

C(f ;Z) '
RCh C(g;Z) : C(X,A;Z) −→ C(Y,B;Z)

in RCh.

4.3 Excision

It remains to prove that singular homology satisfies excision:

Theorem 4.3.1 (excision in singular homology). Let R be a ring with unit, let
Z be a left R-module, and let k ∈ Z. Let (X,A) be a pair of spaces and let
B ⊂ X with B ⊂ A◦. Then the inclusion (X \ B,A \ B) −→ (X,A) induces
an R-isomorphism

Hk(X \B,A \B;Z) −→ Hk(X,A;Z).

4.3.1 Geometric Idea

The main, technical, difficulty in the proof of Theorem 4.3.1 is that singular
simplices in X need not lie in X \ B or A (Figure 4.9). Therefore, as in
the proof of the Seifert and van Kampen theorem (Theorem 2.2.6), we will
subdivide singular simplices into “small” simplices, which lie in X \B or A.

This subdivision will be achieved via iterated barycentric subdivision (Fig-
ure 4.10), a systematic way of subdividing simplices.
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A

∆2 −→ X

B  

A

∆2 −→ X

B

Figure 4.9.: A singular simplex in X that lies neither in X \B nor in A; and
a subdivision into “small” simplices

4.3.2 Barycentric Subdivision

The barycentric subdivision of a simplex is obtained by inductively coning
off lower dimensional simplices with the barycentre as new cone point (Fig-
ure 4.10). We start by subdividing simplices in convex spaces.

Definition 4.3.2 (barycentric subdivision). Let R∞ :=
⊕

N R (with the topol-
ogy induced by the Euclidean metric, i.e., the `2-distance).

• The barycentre of a singular simplex σ : ∆k −→ R∞ is given by

β(σ) :=
1

k + 1
·
k∑

j=0

σ(ej+1) ∈ R∞.

• Let v ∈ R∞. Then the cone operator for v is defined by

v ∗ · : Ck(R∞) −→ Ck+1(R∞)

map(∆k,R∞) 3 σ 7−→
(

∆k+1 −→ R∞

(t0, . . . , tk+1) 7−→ t0 · v + (1− t0) · σ
(

t1
1−t0 , . . . ,

tk+1

1−t0

)
)

for all k ∈ N (and by v ∗ · := 0 for k ∈ Z<0).

• The barycentric subdivision B : C(R∞) −→ C(R∞) is defined induc-
tively as follows:

– For all k ∈ Z<0, let Bk := 0.

– Let B0 := idC0(R∞).

– For all k ∈ N>0,

Bk : Ck(R∞) −→ Ck(R∞)

map(∆k,R∞) 3 σ 7−→ β(σ) ∗
(
Bk−1(∂kσ)

)
.
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dimension 0  

dimension 1 σ
 

∂1σ
 

B0(∂1σ)
 

β(σ)

dimension 2

σ

 

∂2σ

 

B1(∂2σ)

 β(σ)

Figure 4.10.: barycentric subdivision

• Moreover, we define (Hk : Ck(R∞) −→ Ck+1(R∞))k∈Z inductively by:

– For all k ∈ Z≤0, let Hk := 0.

– For all k ∈ N>0, let

Hk : Ck(R∞) −→ Ck+1(R∞)

map(∆k,R∞) 3 σ 7−→ β(σ) ∗
(
Bk(σ)− σ −Hk−1(∂kσ)

)

Remark 4.3.3. Let ∆ ⊂ R∞ be a convex subset and let k ∈ N. If σ ∈
map(∆k,∆), then Bk(σ) ∈ Ck(∆) and Hk(σ) ∈ Ck+1(∆). In particular,
looking at the convex subset ∆k of R∞, we obtain

Bk(id∆k) ∈ Ck(∆k) and Hk(id∆k) ∈ Ck+1(∆k).

As next step, we lift this model case to all spaces, by requiring naturality:

Definition 4.3.4 (barycentric subdivision in topological spaces). Let X be a
topological space.

• We define BX : C(X) −→ C(X) as follows: For all k ∈ Z<0, we
setBX,k := 0; for all k ∈ N, we set (by Remark 4.3.3, we haveBk(id∆k) ∈
Ck(∆k)!)

BX,k : Ck(X) −→ Ck(X)

map(∆k, X) 3 σ 7−→ Ck(σ) ◦Bk(id∆k).
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• For k ∈ Z<0, we set HX,k := 0: Ck(X) −→ Ck+1(X). For all k ∈ N, we
set (by Remark 4.3.3, we have Hk(id∆k) ∈ Ck+1(∆k)!)

HX,k : Ck(X) −→ Ck+1(X)

map(∆k, X) 3 σ 7−→ Ck+1(σ) ◦Hk(id∆k).

Proposition 4.3.5 (algebraic properties of barycentric subdivision). Let X be a
topological space.

1. Then BX : C(X) −→ C(X) is a chain map in ZCh.

2. The family (HX,k)k∈Z is a chain homotopy BX 'ZCh idC(X).

3. If f : X −→ Y is continuous, then

C(f) ◦BX = BY ◦ C(f), and

Ck+1(f) ◦HX,k = HY,k ◦ Ck(f)

for all k ∈ Z.

The proof is based on the corresponding properties in the convex case:

Lemma 4.3.6 (algebraic properties of barycentric subdivision, convex case).

0. For all v ∈ R∞, all k ∈ N, and all σ ∈ map(∆k,R∞), we have

∂k+1(v ∗ σ) =

{
σ − constv if k = 0

σ − v ∗ ∂k(σ) if k > 0.

If f : R∞ −→ R∞ is affine linear, then we also have

f ◦ (v ∗ σ) = f(v) ∗ (f ◦ σ).

1. The map B : C(R∞) −→ C(R∞) is a chain map in ZCh.

2. The family (Hk)k∈Z is a chain homotopy B 'ZCh idC(R∞).

3. For all k ∈ N and all affine linear maps σ : ∆k −→ R∞, we have

Bk(σ) = Ck(σ) ◦Bk(id∆k), and

Hk(σ) = Ck+1(σ) ◦Hk(id∆k).

Proof of Lemma 4.3.6. Ad 0. This is a straightforward calculation (check!).

Ad 1. This follows inductively from part 0. Let k ∈ N>0 and let σ ∈
map(∆k,R∞). Then
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∂k
(
Bk(σ)

)
= ∂k

(
β(σ) ∗Bk−1(∂k(σ))

)

= Bk−1

(
∂k(σ)

)
− β(σ) ∗ ∂k−1Bk−1(∂kσ) (by part 0)

= Bk−1

(
∂k(σ)

)
− β(σ) ∗Bk−2 ◦ ∂k−1 ◦ ∂k(σ) (by induction)

= Bk−1

(
∂k(σ)

)
. (because ∂k−1 ◦ ∂k = 0)

Ad 2. This follows inductively from part 0 and part 1; indeed, the defini-
tion of (Hk)k∈Z is motivated by trying to inductively (over the dimension)
construct a chain homotopy between barycentric subdivision and the iden-
tity. More precisely: By construction, we have ∂k+1 ◦ Hk − Hk−1 ◦ ∂k =
0 = Bk − idCk(R∞)) for all k ∈ N≤0 (check!). Let k ∈ N>0 and let

σ ∈ map(∆k,R∞). Then

∂k+1

(
Hk(σ)

)
= ∂k+1

(
β(σ) ∗ (Bk(σ)− σ −Hk−1(∂kσ))

)

= Bk(σ)− σ −Hk−1(∂kσ)

− β(σ) ∗
(
∂kBk(σ)− ∂kσ − ∂kHk−1(∂kσ)

)
. (by part 0)

Assuming inductively that the chain homotopy equation is satisfied, we obtain

∂k+1

(
Hk(σ)

)
= Bk(σ)− σ −Hk−1(∂kσ)

− β(σ) ∗
(
Bk−1(∂kσ)− ∂kσ

+Hk−2(∂k−1∂kσ)−Bk−1(∂kσ) + ∂k(σ)
)

(by part 1 and induction)

= Bk(σ)− σ −Hk−1(∂kσ)

− β(σ) ∗
(
0 +Hk−1(0)

)
(because ∂k−1 ◦ ∂k = 0)

= Bk(σ)− σ −Hk−1(∂kσ).

Ad 3. This follows inductively from part 0 (check!), using the fact that

β(σ) = σ
(
β(id∆k)

)

holds for all affine linear maps σ : ∆k −→ R∞.

Proof of Proposition 4.3.5. Ad 1. Let k ∈ N and σ ∈ map(∆k, X). Because
C(σ) and B are chain maps, we obtain

∂k ◦BX,k(σ) = ∂k ◦ Ck(σ) ◦Bk(id∆k) (definition of BX)

= Ck−1(σ) ◦Bk−1(∂k id∆k) (C(σ) is a chain map)

=

k∑

j=0

(−1)j · Ck−1(σ) ◦Bk−1(ik,j) (linearity of BX , definition of ∂k).

As ik,j : ∆k−1 −→ ∆k is affine linear for every j ∈ {0, . . . , k}, the third part
of Lemma 4.3.6 can be applied, showing that



154 4. Singular Homology

∂k ◦BX,k(σ) =

k∑

j=0

(−1)j · Ck−1(σ) ◦ Ck−1(ik,j) ◦Bk−1(id∆k−1)

=

k∑

j=0

(−1)j · Ck−1(σ ◦ ik,j) ◦Bk−1(id∆k−1)

= BX,k−1 ◦ ∂k(σ).

Ad 2. This can be shown in a similar fashion.
Ad 3. This is clear from the construction.

4.3.3 Proving Excision

Using barycentric subdivision, we first show that singular homology can be
computed in terms of “small” simplices. We then derive the excision theorem
from this fact.

Setup 4.3.7. In the following, let R be a ring with unit and let Z be a left
R-module.

Definition 4.3.8 (small simplices). Let X be a topological space and let U =
(Ui)i∈I be a strong cover of X; i.e., for every i ∈ I, we have Ui ⊂ X, and⋃
i∈I U

◦
i = X.

• The chain complex CU (X) of U -small singular simplices in X is defined
by

CUk (X) :=

{
0 falls k < 0

F (
⋃
i∈I map(∆k, Ui)) =

⊕⋃
i∈I map(∆k,Ui)

Z falls k ≥ 0,

together with the restriction of the boundary operator of C(X) (which
is well-defined!).

• If A ⊂ X, then we set

CU (X,A;Z) := Z⊗RCU (X)
/

im(Z⊗R (CU∩A(A) ↪→ CU (X))) ∈ RCh

(where U ∩A := (Ui ∩A)i∈I) and

HU
k (X,A;Z) := Hk

(
CU (X,A;Z)

)
,

as well as CU (X;Z) := CU (X, ∅;Z) and HU
k (X;Z) := HU

k (X, ∅;Z).

Theorem 4.3.9 (small simplices compute singular homology). Let X be a topo-
logical space, let U be a strong cover of X, and let j : CU (X) −→ C(X) be
the inclusion. Then, for every k ∈ Z, the induced homomorphism
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Hk(Z ⊗Z j) : HU
k (X;Z) −→ Hk(X;Z)

is an R-isomorphism.

Remark 4.3.10. The map Z ⊗Z j is even a chain homotopy equivalence with
an explicit chain homotopy inverse. However, the proof of this fact is tech-
nically a little bit more demanding (and we will not need it for the proof of
excision) [13, Corollary III.7.4][26, p. 123f].

As in the case of the Seifert and van Kampen theorem, we argue via the
Lebesgue lemma. In order to apply the Lebesgue lemma successfully, we show
that successive barycentric subdivision effectively shrinks simplices:

Proposition 4.3.11 (barycentric subdivision shrinks simplices). Let k ∈ N.

1. If σ : ∆k −→ R∞ is affine linear, then every summand τ ∈ map(∆k,R∞)
in the definition of Bk(σ) ∈ Ck(R∞) (Definition 4.3.2), satisfies (with
respect to the Euclidean metric on R∞)

diam
(
τ(∆k)

)
≤ k

k + 1
· diam

(
σ(∆k)

)
.

2. In particular: For every ε ∈ R>0, there exists an n ∈ N such that for
all summands τ in the n-fold barycentric subdivision of id∆k , we have

diam
(
τ(∆k)

)
< ε.

Proof. The first part is a straightforward inductive calculation (Exercise).
The second part follows from the first part (check!).

Corollary 4.3.12. Let X be a topological space, let U be a strong cover of X,
let k ∈ N, and let σ ∈ map(∆k, X). Then there exists an n ∈ N (which might
depend on σ!) with

(BX,k)n(σ) ∈ CUk (X).

Proof. The pulled back family (σ−1(V ))V ∈U is a strong cover of ∆k. Because
∆k is a compact metric space (with respect to the Euclidean metric), we
can apply the Lebesgue lemma (Lemma 2.2.7) to the corresponding cover Uσ

of ∆k by the interiors.
Then Proposition 4.3.11 provides us with an n ∈ N such that the n-fold

barycentric subdivision of id∆k is Uσ-small. Therefore, the naturality of the
barycentric subdivision (Proposition 4.3.5) shows that the n-fold barycentric
subdivision of σ is U -small (and thus lies in CUk (X)).

Using barycentric subdivision, we prove that small singular simplices com-
pute singular homology:
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Proof of Theorem 4.3.9. As in the construction of the long exact sequence of
pairs for singular homology (proof of Theorem 4.1.16) it follows that

Z ⊗Z j : CU (X;Z) −→ C(X;Z)

is degree-wise injective. In this way, we can view CU (X;Z) as a subcomplex
of C(X;Z).

Let k ∈ Z, without loss of generality, k ≥ 0.

• The map Hk(Z ⊗Z j) is surjective: Let c ∈ Ck(X;Z) be a cycle, say
of the form c =

∑m
j=1 aj · σj with a1, . . . , am ∈ Z and σ1, . . . , σm ∈

map(∆k, X). Because this sum is finite, Corollary 4.3.12 shows that
there exists an n ∈ N with

∀j∈{1,...,m} BnX,k(σj) ∈ CUk (X),

and so
(Z ⊗Z (BX,k)n)(c) ∈ CUk (X;Z).

Moreover, we have Z ⊗Z (BX)n '
RCh idC(X;Z) (Proposition 4.3.5 and

Proposition A.6.33). Therefore, in Hk(X;Z), we obtain that

[c] =
[
(Z ⊗Z (BX,k)n)(c)

]
∈ imHk(Z ⊗Z j).

• Injectivity of Hk(Z⊗Z j) can be proved in the same way as surjectivity:
We barycentrically subdivide (k+1)-chains in C(X;Z) sufficiently often
and use that Z ⊗ BX |CU (X;Z) is R-chain homotopic to idCU (X;Z) (be-
cause barycentric subdivision and the corresponding chain homotopies
are natural by Proposition 4.3.5).

Corollary 4.3.13 (small simplices compute singular homology, relative case).
Let (X,A) be a pair of spaces, let U be a strong cover of X, and let k ∈ Z.
Then the canonical chain map CU (X,A;Z) −→ C(X,A;Z) induces an R-
isomorphism

HU
k (X,A;Z) −→ Hk(X,A;Z).

Proof. This is a classical case of generalising a statement on absolute homol-
ogy to relative homology via long exact sequences and the five lemma: We
consider the commutative diagram

0 // CU∩A(A;Z) //

��

CU (X;Z) //

��

CU (X,A;Z) //

��

0

0 // C(A;Z) // C(X;Z) // C(X,A;Z) // 0

in RCh (where all chain maps are the canonical chain maps). The lower row is
degree-wise exact (Proof of Theorem 4.1.16); in the same way, one can show
that also the upper row is degree-wise exact.
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Applying the algebraic long exact homology sequence (Proposition A.6.23)
and the five lemma (Proposition A.6.7), shows that the claim for the relative
terms follows from the absolute case (Theorem 4.3.9).

We can now prove that singular homology satisfies excision by applying
the previous corollary to a suitable strong cover:

Proof of Theorem 4.3.1. Let U := (X \B,A); then U is a strong cover of X
(because B ⊂ A◦). We then have an RCh-isomorphism

CU (X,A;Z) =
Z ⊗Z CU (X)

Z ⊗Z im(CU∩A(A) ↪→ CU (X))

=
Z ⊗Z

(
C(X \B) + C(A)

)

Z ⊗Z im(C(A \B) + C(A) ↪→ C(X \B) + C(A))

∼=RCh
Z ⊗Z C(X \B)

Z ⊗Z im(C(A \B) ↪→ C(X \B))

= C(X \B,A \B;Z),

where the inverse of this isomorphism in RCh is induced by the inclusion;
moreover, we used that C(A) ∩ C(X \B) = C(A \B) (check!).

As U -small simplices compute singular homology (Corollary 4.3.13), we
obtain that the maps

Hk(X \B,A \B;Z) −→ HU
k (X,A;Z) −→ Hk(X,A;Z)

induced by the inclusions are R-isomorphisms.

4.4 Applications

Finally, we have established that singular homology indeed is an ordinary ho-
mology theory (Theorem 4.4.1). In particular, we thus completed the proof of
all the applications that depended on the theorem on existence of “interest-
ing” homotopy invariant functors or on the existence of (ordinary) homology
theories. Moreover, we will discuss further applications of singular homology
such as the Jordan curve theorem and its relatives.

4.4.1 Singular Homology as Homology Theory

We can summarise the results of the previous sections as follows:

Theorem 4.4.1 (singular homology as ordinary homology theory). Let R be a
ring and let Z ∈ Ob(RMod). Then, singular homology
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(
Hk( · , · ;Z) : Top2 −→ RMod

)
k∈Z,

together with the connecting homomorphisms

(
∂k : Hk( · , · ;Z) =⇒ Hk−1( · , · ;Z) ◦ U

)
k∈Z

from Theorem 4.1.16 (where U is the subspace functor of Definition 3.1.1),
is an additive ordinary homology theory on Top2 with values in RMod and
whose coefficients are (isomorphic to) Z.

Proof. We have already proved all the necessary steps:

• Functoriality: (Proposition and) Definition 4.1.3, 4.1.6, 4.1.8

• Construction and naturality of the connecting homomorphisms: Theo-
rem 4.1.16

• Homotopy invariance: Theorem 4.2.1

• Long exact sequence of pairs: Theorem 4.1.16

• Excision: Theorem 4.3.1

• Dimension axiom and computation of the coefficients: Example 4.1.12

• Additivity: Proposition 4.1.14.

Corollary 4.4.2 (summary of loose ends). In particular, we completed the
proofs of the following results:

• For each choice of ring and coefficients, there exists an additive ordinary
homology theory with these coefficients.

• Computation of singular homology of spheres and mapping degrees for
self-maps of spheres (Corollary 3.2.8 and 3.2.11); we will return to this
in Example 4.4.3.

• In particular, spheres are not contractible.

• Existence of “interesting” homotopy invariant functors (Theorem 1.3.22,
Corollary 3.2.14)

• Invariance of dimension I and II (Corollary 1.3.24, Corollary 3.2.10)

• In particular: The dimension of non-empty (connected) topological man-
ifolds is well-defined and can be checked locally.

• Hedgehog theorem (Theorem 1.3.30)

• Fundamental theorem of algebra (Exercise)
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0

2

1+

∂2 id∆2

− +

σ

Figure 4.11.: The 1-cycle ∂2 id∆2 detects the hole in ∂∆2; the 1-cycle σ detects
the hole in S1 ∼=Top ∂∆2.

• Brouwer fixed point theorem (Corollary 1.3.25)

• Existence of Nash equilibria (Exercise)

• All consequences of the Eilenberg–Steenrod axioms apply to singular
homology (e.g., the Mayer–Vietoris sequence, . . . ) (Chapter 3).

Moreover, we can confirm now that our original idea for the construction
of singular homology (Chapter 4.1.1) was carried out correctly:

Example 4.4.3 (singular homology of spheres, explicitly). Let R be a ring with
unit.

• A careful inductive analysis and the computations in (the proof of)
Corollary 3.2.8 show (Exercise):

– Let n ∈ N>0. The relative homology class of (∆n, ∂∆n) ∼=Top2

(Dn, Sn−1) represented by the singular chain 1 · id∆n ∈ Cn(∆n;R)
generates the R-module

Hn(∆n, ∂∆n;R) ∼=R Hn(Dn, Sn−1;R) ∼=R R.

– Let n ∈ N>1. The homology class in Hn−1(∂∆n;R) represented
by the singular cycle 1 · ∂n id∆n ∈ Cn−1(∂∆n;R) (Figure 4.11)
generates the R-module

Hn−1(∂∆n;R) ∼=R Hn−1(Sn−1;R) ∼=R R.

• In particular, this leads to explicit generators of Hn−1(Sn−1;R) and
Hn(Dn, Sn−1;R) (Exercise).

• Let

σ : ∆1 −→ S1

(1− t, t) 7−→ [t].
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τ0

0

1 2

τ1

0 1

2

b σb

b

a a σa

Figure 4.12.: singular homology of the torus, explicitly (using the standard
identification of the edges of the square; Figure 1.6)

Then [1·σ] generates the homology H1(S1;R) ∼=R R, because a straight-
forward construction provides a singular 2-chain b ∈ C2(S1;R) with
∂2b = σ − “∂2 id∆2 ” (check!).

Example 4.4.4 (singular homology of the torus, explictly). Going through the
calculation of ordinary homology of the torus S1 × S1 with Z-coefficients
(Example 3.3.3) shows in combination with the previous Example 4.4.3 (using
the notation from Figure 4.12):

• The classes [σa] and [σb] in H1(S1 × S1;Z) form a Z-basis of H1(S1 ×
S1;Z) ∼= Z⊕ Z.

• The singular chain τ0 − τ1 ∈ C2(S1 × S1) is a cycle whose homology
class [τ0 − τ1] generates the Z-module H2(S1 × S1;Z) ∼= Z.

4.4.2 The Jordan Curve Theorem

Our next goal is to derive the following version of the Jordan curve theorem:

Theorem 4.4.5 (Jordan curve theorem). Let n ∈ N>1.

1. If f : Dn −→ Rn is continuous and injective, then Rn \ f(Dn) is path-
connected.

1’. If D ⊂ Rn is homeomorphic to Dn, then Rn \D is path-connected.

2. If f : Sn−1 −→ Rn is continuous and injective, then Rn \ f(Sn−1) has
exactly two path-connected components.

2’. If S ⊂ Rn is homeomorphic to Sn−1, then Rn \S has exactly two path-
connected components.
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Figure 4.13.: Subspaces of R2 that are homeomorphic to S1

http://en.wikipedia.org/wiki/File:Alexander horned sphere.png

Figure 4.14.: Alexander horned sphere

The case of continuous injective maps S1 −→ R2 is the classical Jordan
curve theorem. At first, the theorem might look “obvious”; however, one
should keep in mind that subsets of R2 that are homeomorphic to S1 can be
rather “wild” (Figure 4.13).

Remark 4.4.6. With slightly more effort, one can improve the Jordan curve
theorem to the following version [52, Proposition VIII.6.5]: If n ∈ N>1 and
if S ⊂ Rn is homeomorphic to Sn−1, then one of the path-connected com-
ponents of Rn \ S is bounded, one of them is unbounded, and S equals the
boundary of both components.

Caveat 4.4.7 (Alexander horned sphere). If n ∈ N>2 and D ⊂ Rn is homeo-
morphic to Dn, then Rn \ D, in general, is not homeomorphic to Rn \ Dn;
an example of this in R3 is the Alexander horned sphere (Figure 4.14) [26,
Example 2.B.2]. However, the corresponding statement in dimension 2 does
hold by the Jordan–Schönflies theorem [35].

In order to prove the Jordan curve theorem, we make use of the fact that
H0( · ;Z) (and the reduced version H̃0( · ;Z); Remark 3.1.7) determines the

http://en.wikipedia.org/wiki/File:Alexander_horned_sphere.png
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number of path-connected components (Theorem 4.1.15). Therefore, we first
carry out the following computation in singular homology (for the sake of
simplicity, we only state it for Z-coefficients).

Lemma 4.4.8. Let n,m ∈ N.

1. If f : Dm −→ Sn is continuous and injective, then, for all k ∈ Z,

H̃k

(
Sn \ f(Dm);Z

) ∼=Z 0.

2. If m < n and if f : Sm −→ Sn is continuous and injective, then, for
all k ∈ Z,

H̃k

(
Sn \ f(Sm);Z

) ∼=Z H̃k(Sn−m−1;Z) ∼=Z

{
Z if k = n−m− 1

0 otherwise.

Proof of Lemma 4.4.8. Ad 1. We proceed by induction on m ∈ N. Moreover,
in order to keep notation simple, we will sometimes use the cube Im :=
[0, 1]m ∼=Top D

m instead of the round ball Dm.

• The case m = 0: Because Dm is just a single point, we have (using the
stereographic projection)

Sn \ f(D0) ∼=Top Rn 'Top •.

Hence, H̃k(Sn \ f(Dm);Z) ∼=Z H̃k(•;Z) ∼=Z 0.

• Induction step. Let m ∈ N>0 and let us suppose that the claim holds
for m− 1. Then the claim also holds for m:

Let f : Im −→ Sn be continuous and injective and let k ∈ Z. Assume
for a contradiction that there exists an α ∈ H̃k(Sn \ f(Im);Z) \ {0};
in particular, k ≥ 0. The idea is to use a Mayer–Vietoris argument to
bring the induction hypothesis into play. To this end, we consider the
complements

U := Sn \ f
(
Im−1 × [0, 1/2]

)

V := Sn \ f
(
Im−1 × [1/2, 1]

)
.

of the lower and the upper half of the embedded cube, respectively.

Then U ∩ V = Sn \ f(Im) and U ∪ V = Sn \ f(Im−1 × {1/2}) and
the hypotheses for the Mayer–Vietoris sequences (Theorem 3.3.2) are
satisfied. Because f is injective and Im 6∼=Top S

n, the intersection U ∩
V is non-empty (by the compact-Hausdorff trick); thus, we obtain a
corresponding Mayer–Vietoris sequence for reduced singular homology:

H̃k+1(U ∪ V ;Z)
∆k+1

// H̃k(U ∩ V ;Z) // H̃k(U ;Z)⊕ H̃k(V ;Z) // H̃k(U ∪ V ;Z)
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By the induction hypothesis, the outer terms are the trivial module 0.
Therefore, by exactness,

– the image of α in H̃k(U ;Z) is non-zero, or

– the image of α in H̃k(V ;Z) is non-zero.

In this way, inductively, we obtain a sequence [0, 1] = I0 ⊃ I1 ⊃ I2 ⊃ · · ·
of nested intervals whose intersection consists of a single point t and
such that for all j ∈ N, the image of α in H̃k(Sn\f(Im−1×Ij);Z) (under
the homomorphism induced by the inclusion) is non-zero. However,

⋃

j∈N
Sn \ f(Im−1 × Ij) = Sn \ f

(
Im−1 × {t}

)

and, by induction,

H̃k(Sn \ f(Im−1 × {t});Z) ∼=Z 0.

This contradicts the compatibility of singular homology with ascending
unions (Proposition 4.4.9). Therefore, we have H̃k(Sn \f(Im);Z) ∼=Z 0.

Ad 2: Again, we proceed by induction on m ∈ {0, . . . , n − 1}, using a
Mayer–Vietoris argument and the first part:

• The case m = 0 < n. Again, using stereographic projection, we obtain

Sn \ f(S0) ∼=Top Rn \ {0} ' Sn−1

(and thus the desired result on the level of singular homology).

• Induction step. Let m ∈ {1, . . . , n−1} and let us suppose that the claim
holds for m− 1. Then the claim also holds for m:

We consider the decomposition

Sm = Dm
+ ∪Dm

−

into the upper and lower hemisphere, respectively; it should be noted
that Dm

+
∼=Top D

m ∼=Top D
m
− holds (via the “vertical” projection) and

that Dm
+ ∩Dm

− = Sm−1. Let

U := Sn \ f(Dm
+ )

V := Sn \ f(Dm
− ).

Then U ∩ V = Sn \ f(Sm) and U ∪ V = Sn \ f(Sm−1); because f is
injective, m < n, and Sm 6∼=Top S

n, we have U ∩ V 6= ∅. The Mayer–
Vietoris sequence (Theorem 3.3.2) for reduced singular homology and
the first part (applied to U and V ) shows that
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H̃k

(
Sn \ f(Sm);Z

)
= H̃k(U ∩ V ;Z)

∼=Z H̃k+1(U ∪ V ;Z)

= H̃k+1

(
Sn \ f(Sm−1);Z

)

holds for all k ∈ Z. We can now apply the induction hypothesis to
obtain the desired result.

During this proof we used that (reduced) singular homology is compatible
with ascending unions:

Proposition 4.4.9 (singular homology and ascending unions). Let R be a ring
with unit, let Z ∈ Ob(RMod), and let k ∈ Z. Let X be a topological space and
let (Xn)n∈N be an ascending sequence of subspaces of X with

⋃
n∈NX

◦
n = X.

Then the inclusions (Xn ↪→ X)n∈N induce an R-isomorphism

colim
n∈N

Hk(Xn;Z) −→ Hk(X;Z).

Here,

colim
n∈N

Hk(Xn;Z) :=
(⊕

n∈N
Hk(Xn;Z)

)/
∼,

where “∼” denotes the equivalence relation generated by

∀n∈N ∀m∈N≥n
∀α∈Hk(Xn;Z) α ∼ Hk(in,m)(α) ∈ Hk(Xm;Z)

(in,m : Xn −→ Xm is the corresponding inclusion).

Proof. Because the standard simplices ∆k and ∆k+1 are compact and singu-
lar chains are finite sums, we can prove this in the same way as the corre-
sponding statement for homotopy groups (Proposition 2.2.20) (check!).

Proof of the Jordan curve theorem (Theorem 4.4.5). Clearly, parts 1’ and 2’
are just reformulations of parts 1 and 2, respectively. Therefore, we will only
prove 1 and 2.

Ad 1. Let f : Dn −→ Rn be continuous and injective. Then also the com-
position

f := i ◦ f : Dn −→ Sn

of f with the inverse i : Rn −→ Sn \ {en+1} of the stereographic projection
is continuous and injective.

Because f(Dn) ⊂ Rn is compact, the complements Rn \ f(Dn) and Sn \
f(Dn) have the same number of path-connected components (check!)

Using the fact that singular homology in degree 0 detects the number of
path-connected components (Theorem 4.1.15) and the homological compu-
tation from Lemma 4.4.8, we see that Rn \ f(Dn) has exactly

rkZH0

(
Sn \ f(Dn);Z

)
= rkZ H̃0

(
Sn \ f(Dn);Z

)
+ 1 = 0 + 1 = 1
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path-connected components (by construction, Sn\f(Dn) is non-empty; there-
fore, Remark 3.1.7 and Proposition 3.1.6 can be applied).

Ad 2. We can use the same type of argument and the fact that (by
Lemma 4.4.8)

rkZ H̃0

(
Sn \ f(Sn−1);Z

)
= 1

holds for all continuous injective maps f : Sn−1 −→ Sn.

Outlook 4.4.10 (graph theory). The Jordan curve theorem in the plane (and
its strengthengings) is used often (at least implicitly!) in graph theory; for
example, proving non-planarity results for graphs and colouring results for
planar graphs usually requires this topological input (Exercise).

Outlook 4.4.11 (Slitherlink). Slitherlink is a combinatorial puzzle developed
by the Japanese publisher nikoli. A Slitherlink puzzle consists of a square
grid; some of the squares have numbers. The goal is to produce a closed loop
out of the edges of the grid that is compatible with the given numbers in the
following sense:

SL 1 Neighbouring grid points are joined by vertical or horizontal edges in
such a way that we obtain a closed loop.

SL 2 The numbers indicate how many of the edges of a given square belong
to the loop. For empty squares, the number of edges in the loop is not
specified.

SL 3 The loop does not have any self-intersections or branches.

The Jordan curve theorem can be used to prove global strategies for solving
Slitherlink puzzles (Exercise) [45, Kapitel 7].

4.4.3 Invariance of Domain and Non-Embeddability

For example, we can use the Jordan curve theorem (Theorem 4.4.5) to prove
various non-embeddability results.

Corollary 4.4.12 (non-embeddability I). Let n ∈ N.

1. There is no continuous injective map Sn −→ Rn.

2. If m ∈ N>n, then there is no continuous and injective map Rm −→ Rn.

Proof. The second part follows from the first part, using that Sn ⊂ Rn+1.
We now prove the first part: Without loss of generality, we may assume

that n > 0. Assume for a contradiction that there exists a continuous injective
map f : Sn −→ Rn. Then also the composition
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f : Sn −→ Rn+1

x 7−→
(
f(x), 0

)

is continuous and injective. By the Jordan curve theorem (Theorem 4.4.5),
the complement Rn+1 \ f(Sn) has exactly two path-connected components.

However, by construction, the complement Rn+1\f(Sn) is path-connected
(use the extra dimension!). This contradiction shows that such a map cannot
exist.

Corollary 4.4.13 (invariance of domain). Let n ∈ N, let U ⊂ Rn be open, and
let f : U −→ Rn be continuous and injective. Then f(U) ⊂ Rn is open.

Proof. Let us first treat the pathological cases: Clearly, the statement holds
if n = 0 or if n = 1 (by the intermediate value theorem; check!). Therefore,
in the following, we assume that n ≥ 2.

We apply the Jordan curve theorem to a suitable local situation: Let x ∈ U .
It suffices to show that f(U) contains an open neighbourhood of f(x).

Because U is open, there exists a closed ball D ⊂ U around x (with non-
zero radius). We show that f(D \ ∂D) is an open neighbourhood of f(x): By
the Jordan curve theorem (Theorem 4.4.5), the complement Rn \ f(∂D) has
exactly two path-connected components. Because

Rn \ f(∂D) = f(D \ ∂D) ∪
(
Rn \ f(D)

)

is a disjoint union and both sets are path-connected (the first as continuous
image of a path-connected set, the second by the Jordan curve theorem), we
obtain that f(D \ ∂D) and Rn \ f(D) are those two path-connected compo-
nents.

We first show that f(D \ ∂D) is open in Rn \ f(∂D): The set Rn \ f(∂D)
is open in Rn, as complement of a compact (whence closed) set. Because Rn
is locally path-connected, also the open subspace Rn \ f(∂D) is locally path-
connected. Therefore, the path-connected component f(D\∂D) of Rn\f(∂D)
is open in Rn \ f(∂D).

Because Rn \ f(∂D) is open in Rn, we also obtain that f(D \ ∂D) is open
in Rn.

Corollary 4.4.14 (non-embeddability II). Let n ∈ N.

1. Let n ∈ N, let M be a compact, non-empty (topological) manifold of
dimension n, let N be connected (topological) manifold of dimension n,
and let f : M −→ N be continuous and injective. Then f is surjective.

2. If n ∈ N≥2, then there is no continuous injective map RPn −→ Sn.

Proof. We first briefly recall the notion of topological manifold: A topological
space M is a topological manifold of dimension n if M is a second countable
Hausdorff space such that every point in M has an open neighbourhood that
is homeomorphic to Rn.
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Ad 1. Using compactness, one can show that f has closed image. Invari-
ance of domain (Corollary 4.4.13) shows that the image of f is open in N
(Exercise). By connectedness of N , we have f(M) = N (Exercise).

Ad 2. Assume for a contradiction that there exists a continuous injec-
tive map f : RPn −→ Sn. By the first part, f is surjective. Therefore, the
compact-Hausdorff trick (Proposition 1.1.15) shows that f is a homeomor-
phism.

Then, for x0 ∈ RPn, the homeomorphism f induces an isomorphism

π1(RPn, x0) ∼=Group π1(Sn, x0).

However, because of n ≥ 2, the group on the left hand side is non-trivial
(Example 2.3.41) and the group on the right hand side is trivial (Exam-
ple 2.2.11), which is a contradiction. Therefore, such a continuous injective
map f cannot exist.

Study note. Again, compactness plays the role of a finiteness condition. What
are analogues of the first part of Corollary 4.4.14 in set theory or (linear)
algebra?

4.4.4 Commutative Division Algebras

The topological applications of the previous section also allow to prove alge-
braic results of the following type:

Theorem 4.4.15 (Hopf theorem for division algebras). Let A be a finite-
dimensional (not necessarily associative) commutative R-algebra that is a
division algebra. Then A is (as R-algebra) isomorphic to R or to C.

Recall that a commutative (not necessarily associative) R-algebra A is a
division algebra, if 1 6= 0 and if for all x, a ∈ A with x 6= 0, there exists a
unique y ∈ A with x · y = a. In particular, A has no zero-divisors (check!).

Proof. Let n := dimRA; hence, as R-vector space, A ∼=R Rn. Without loss of
generality, we may assume that the underlying vector space of A equals Rn.
Let · : A × A −→ A be the algebra multiplication on A. Because A is an
R-algebra, this map is R-bilinear and thus (in view of finite-dimensionality)
continuous with respect to the standard topology on Rn.

Assume for a contradiction that n > 2. We then consider the map

f : Sn−1 −→ Sn−1

x 7−→ 1

‖x · x‖2
· x · x;

as multiplication with R-scalars is associative (by R-bilinearity), we do not
need additional parentheses. We proceed in the following steps:
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• The map f is well-defined and continuous: Let x ∈ Sn−1. Then x 6= 0.
Because A is a division algebra, we have x · x 6= 0. Hence, f(x) is a
well-defined point in Sn−1. Because multiplication on A is continuous,
also f is continuous.

• The map f induces a well-defined continuous map

f : RPn−1 −→ Sn−1

[x] 7−→ f(x),

because: Let x ∈ Sn−1. Then

(−x) · (−x) = (−1)2 · x · x = x · x,

and so f(−x) = f(x). Hence, f is well-defined. Moreover, because
RPn−1 carries the quotient topology of the antipodal action of Z/2
on Sn−1, the map f is continuous.

• The map f is injective: Let x, y ∈ Sn−1 with f(x) = f(y). We write

α :=
1√
‖x · x‖2

and β :=
1√
‖y · y‖2

.

Then

(α · x+ β · y) · (α · x− β · y) = α2 · x · x− β2 · y · y (Binomi III)

= f(x)− f(y)

= 0.

Because A is a division algebra, A has no zero-divisors. Hence, α · x =
−β · y or α ·x = β · y. Therefore, x and y are points in Sn−1 that lie on
the same line through the origin. Thus, y = x or y = −x. This shows
that f is injective.

However, by Corollary 4.4.14, we know that there is no continuous injective
map RPn−1 −→ Sn−1. This contradiction shows that n ≤ 2.

We thus are left with the following cases:

• Because the unit of A is non-zero, we have n 6= 0.

• If n = 1, then clearly A is isomorphic to the R-algebra R (check!).

• If n = 2, then the following, purely algebraic, argument shows that the
R-algebra A is isomorphic to C: Let us first try to find a root of −1
in A: Let j ∈ A \ R · 1. Then (1, j) is a basis of A. In particular, there
exist a, b ∈ R with

j2 = a+ b · j.
Then the element J := j − b/2 satisfies
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J2 =
(
j − b

2

)2

= j2 − j · b+
b2

4
= a+

b2

4
∈ R · 1.

Because j (whence J) is not in R ·1 and because A is a division algebra,
J2 is a negative multiple of 1. Let

I :=
1√

−a− b2/4
· J.

Then I2 = −1 and

C −→ A

z 7−→ Re z + Im z · I

is an isomorphism of R-algebras (check!).

Study note. Where in the previous proof that the dimension of A is at most 2
did we use that A is commutative?!

Outlook 4.4.16 (more division algebras). Hopf’s theorem Theorem 4.4.15 is
concerned with not necessarily associated commutative R-algebras. If one
adds the hypothesis that the algebra has to be associative, then the cor-
responding result (the Frobenius theorem) can be proved by elementary
means [15, Satz 8.2.2].

The general case of finite-dimensional division algebras over R can also be
handled by (more advanced) topological means [15, Chapter 11]: Every finite-
dimensional (not necessarily associative) division algebra over R is isomorphic
to R, C, H (the quaternions), or O (the octonions).

4.4.5 Rigidity in Geometry

We briefly discuss an additional structure on singular homology that has
applications in geometry: The singular chain complex is equipped with a
canonical basis; hence, we can consider the `1-norm associated with this ba-
sis, which describes “how many” simplices are needed to represent a given
homology class.

Definition 4.4.17 (`1-semi-norm on singular homology). Let X be a topological
space and let k ∈ N. Let | · |1 be the `1-norm on Ck(X;R) with respect to the
R-basis of Ck(X;R) that consists of all singular k-simplices of X. We then
define the `1-semi-norm ‖ · ‖1 : Hk(X;R) −→ R≥0 by

‖α‖1 := inf
{
|c|1

∣∣ c ∈ Ck(X;R), ∂kc = 0, [c] = α ∈ Hk(X;R)
}

for all α ∈ Hk(X;R).
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Proposition 4.4.18 (functoriality of the `1-semi-norm). Let X be a topological
space and let k ∈ N.

1. Then ‖ · ‖1 : Hk(X;R) −→ R≥0 is a semi-norm on Hk(X;R).

2. If f : X −→ Y is a continuous map, then

∀α∈Hk(X;R)

∥∥Hk(f ;R)(α)
∥∥

1
≤ ‖α‖1.

3. If f : X −→ Y is a homotopy equivalence, then

∀α∈Hk(X;R)

∥∥Hk(f ;R)(α)
∥∥

1
= ‖α‖1.

Proof. The first two parts follow from straightforward calculations (Exercise).
The second part is a direct consequence of the first part (Exercise).

Example 4.4.19. Let n ∈ N>0 and let α ∈ Hn(Sn;R). Then ‖α‖1 = 0, as
can be seen from explicit, geometric, constructions or by using functoriality
(Exercise). In other words, α is a rather “small” homology class.

What is the benefit of this semi-norm on singular homology? On the one
hand, the `1-semi-norm on singular homology is homotopy invariant (Propo-
sition 4.4.18). On the other hand, the `1-semi-norm is sometimes related to
geometric invariants. We outline one instance of this phenomenon:

If M is an oriented closed connected manifold of dimension n, then there
exists a canonical(!) homology class [M ]R ∈ Hn(M ;R), the R-fundamental
class of M [68, Chapters 16.3, 16.4]. Roughly speaking, the fundamental class
can be viewed as a singular generalisation of triangulations: If M admits a
triangulation, then an appropriate parametrisation of the simplices in such
a triangulation is a singular cycle that represents the R-fundamental cycle
of M [47, Remark 3.6].

Definition 4.4.20 (simplicial volume). The simplicial volume of an oriented
closed connected n-manifold M is defined by

‖M‖ :=
∥∥[M ]R

∥∥
1
∈ R≥0.

In other words, the simplicial volume “counts the minimal, R-weighted
number of singular simplices needed to reconstruct the manifold”.

Example 4.4.21 (simplicial volume of spheres and tori). Let n ∈ N>0. Then
‖Sn‖ = 0 (Example 4.4.19). Similar arguments show that ‖(S1)n‖ = 0.

One can use Proposition 4.4.18 to show that the simplicial volume of ori-
ented closed connected manifolds indeed is a homotopy invariant [24, 38].

We now come to the geometric side: A Riemannian manifold is hyperbolic
if its Riemannian universal covering is isometric to hyperbolic space (of the
same dimension); this is equivalent to the existence of a Riemannian metric
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of constant sectional curvature −1. For hyperbolic manifolds, simplicial vol-
ume coincides (up to a factor that only depends on the dimension) with the
Riemannian volume [24][67, Chapter 6][4, Theorem C.4.2]:

Theorem 4.4.22 (simplicial volume of hyperbolic manifolds). Let n ∈ N and
let M be an oriented closed connected hyperbolic manifold of dimension n.
Then

‖M‖ =
volM

vn
,

where vn is the volume of the ideal regular geodesic n-simplex in the n-
dimensional hyperbolic space.

As a consequence, we obtain the following rigidity result: The Riemannian
volume of oriented closed connected hyperbolic manifolds is a homotopy in-
variant (!). For example, this is a key step in Gromov’s alternative proof of
Mostow rigidity [53].

Further information on simplicial volume and related invariants can be
found in the literature [24, 38, 22]. One example of a current theme in re-
search on simplicial volume is the relationship between simplicial volumes
and gradient invariants of groups and spaces (Outlook 2.3.51) [20, 47, 23, 17,
6, 40, 41, 42, 46].

While there are many constructions of ordinary homology theories and
while many of them are considered to be more “modern” (using the full
power of modern homotopy theory), this additional semi-normed structure is
most transparent in singular homology. This explains my personal preference
for this approach to homology.

4.5 Singular Homology and Homotopy Groups

So far, we introduced two different types of homotopy invariants: Homotopy
groups and homology. We indicate how these invariants are related. The key
ingredient is the Hurewicz homomorphism (Remark 3.2.13). We first give a
concrete description of the Hurewicz homomorphism for singular homology:

Remark 4.5.1 (Hurewicz homomorphism for singular homology). Let n ∈ N>0

and let [Sn] ∈ Hn(Sn;Z) be the generator that corresponds to ∂n+1(id∆n+1)
under the canonical homeomorphism ∂∆n+1 ∼=Top S

n (Example 4.4.3). Let
(X,x0) be a pointed space. Then the Hurewicz homomorphism in degree n
is given by

h(X,x0),n : πn(X,x0) −→ Hn(X;Z)

[f ]∗ 7−→ Hn(f ;Z)
(
[Sn]

)
=
[
Cn(f ;Z)(∂n+1 id∆n+1)

]
.

The obvious question is now: To which extent is the Hurewicz homomor-
phism an isomorphism?



172 4. Singular Homology

Example 4.5.2 (Hurewicz homomorphism in degree 1). Clearly, the Hurewicz
homomorphism in degree 1, in general, cannot be an isomorphism: fundamen-
tal groups can be non-Abelian, while homology groups are always Abelian
groups. A concrete example of this type is the wedge of two circles: the
fundamental group is free of rank 2 (in particular, it is non-Abelian) and
the first homology (with Z-coefficients) is isomorphic to Z2 (Example 2.2.14,
Lemma 3.2.12).

Example 4.5.3 (Hurewicz homomorphism in degree 2). Also in degree 2, the
Hurewicz homomorphism, in general, cannot be an isomorphism: We know
already that π2(S1 × S1, (e1, e1)) ∼=Z 0, but H2(S1 × S2;Z) ∼=Z Z (Exam-
ple 2.3.26 and Example 3.3.3).

The problem in degree 1 will be solved by passing to the abelianisation.
The problem in higher degrees will be circumvented by looking at highly
connected spaces and homotopy/homology in low enough degree.

4.5.1 Abelianisation of Groups

In order to understand the Hurewicz isomorphism in degree 1, we first review
the abelianisation of groups:

Proposition and Definition 4.5.4 (abelianisation). The abelianisation func-
tor · ab : Group −→ ZMod is defined as follows:

• on objects: If G is a group, then we write

Gab := G/[G,G]

for the abelianisation of G. Here, [G,G] denotes the commutator sub-
group of G, i.e., the subgroup of G generated by the set of alle commu-
tators in G.

• on morphisms: If f : G −→ H is a group homomorphism, then we define

fab : Gab −→ Hab

[g] 7−→
[
f(g)

]
.

This construction has the following properties:

1. Then · ab : Group −→ ZMod indeed is a well-defined functor.

2. Let G be a group. Then the canonical projection π : G −→ Gab has the
following universal property: If A is an Abelian group and f : G −→ A
is a group homomorphism, then there exists exactly one group homo-
morphism f : Gab −→ A with f ◦ π = f .
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Proof. Ad 1. Let G be a group. A straightforward computation shows that
[G,G] is a normal subgroup of G and that Gab is an Abelian group (whence
can be viewed in a canonical way as a Z-module) (Proposition III.1.3.20).

Let f : G −→ H be a group homomorphism. As group homomorphisms
map commutators to commutators, fab is a well-defined map; this map is
clearly a homomorphism. Moreover, a simple calculation shows that this con-
struction is functorial (check!).

Ad 2. This follows from the universal property of quotient groups and the
definition of the commutator subgroup (check!).

Example 4.5.5 (Abelianisation).

• If G is an Abelian group, then the canonical projection G −→ Gab is
an isomorphism (because the commutator subgroup [G,G] is trivial).

• If F is a free group of rank r ∈ N, then Fab
∼=Z Zr: For example, this can

be shown by comparing the the universal properties of “abelianisations
of free groups” and of “free Abelian groups” (check!).

• If n ∈ N≥2, then (Sn)ab
∼=Z Z/2, where Sn denotes the symmetric group

on n elements (check! Satz III.1.3.13, proof of Satz III.1.3.24).

Study note. Why did we introduce the commutator subgroup in the algebra
course?

4.5.2 The Hurewicz Theorem

Theorem 4.5.6 (Hurewicz theorem). Let n ∈ N>0, let X be an (n − 1)-con-
nected space, and let x0 ∈ X.

1. If n = 1, then the Hurewicz homomorphism h(X,x0),1 : π1(X,x0) −→
H1(X;Z) induces a (natural) isomorphism

π1(X,x0)ab
∼=Z H1(X;Z).

2. If n > 1, then
∀k∈{1,...,n−1} Hk(X;Z) ∼=Z 0

and h(X,x0),n : πn(X,x0) −→ Hn(X;Z) is a (natural) isomorphism.

There are many ways to prove the Hurewicz theorem in different levels
of generality, both regarding the category of spaces as well as the homology
theories. We will sketch a proof that is based on the manipulation of singular
chains. This proof has the disadvantage that it does not generalise to other
homology theories; however, it does have the advantage that it is based on
a technique that is useful in the context of simplicial volume and related
invariants (Chapter 4.4.5).
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The geometric idea is rather simple: If σ : ∆n −→ X is a singular sim-
plex with σ(t) = x0 for all t ∈ ∂∆n, then σ can be viewed as an element
of πn(X,x0) via the canonical homeomorphism ∆n/∂∆n ∼=Top Sn. Using
the (n − 1)-connectedness of X, we can indeed pretend that all singular n-
simplices of X are of this type . . .

Sketch of proof. As a first step, we replace the singular chain complex C(X)
by a subcomplex Cx0,n(X) generated by special singular simplices: For k ∈ N,
we set

Sk :=
{
σ ∈ map(∆k, X)

∣∣ for all faces ∆ ⊂ ∆k of dimension ≤ n− 1

we have σ|∆ = constx0

}
.

Let Cx0,n(X) ⊂ C(X) be the subcomplex that in degree k ∈ N is generated
by Sk (instead of map(∆k, X)). This indeed defines a subcomplex as the
sequence (Sk)k∈N is closed under taking faces.

The proof then consists of the following two parts:

À We show that the inclusion Cx0,n(X) −→ C(X) is a chain homotopy
equivalence (this uses the connectedness condition on X).

Á We show that the theorem holds for the homology of Cx0,n(X).

In order to deal with À, we will make use of an instance of the in-
ductive/compatible homotopy principle (Lemma 4.5.7 below): Because X is
(n − 1)-connected, an inductive argument shows that the sequence (Sk)k∈N
defined above satisfies the hypotheses of Lemma 4.5.7 [68, Theorem 9.5.1];
when carrying out this proof in detail, it is useful to know that the inclu-
sion ∂∆k −→ ∆k of the boundary of the standard simplex is a so-called cofi-
bration [68, Chapter 5.1] (Chapter A.7.3). Hence, the inclusion Cx0,n(X) −→
C(X) is a chain homotopy equivalence. In particular, the induced maps

Hk

(
Cx0,n(X)

)
−→ Hk(X;Z)

in homology are isomorphisms for every k ∈ Z.
Therefore, it remains to take care of Á: By construction, Cx0,n(X) coin-

cides with C({x0}) up to degree n− 1.

• In particular, we obtain: For every k ∈ {1, . . . , n− 1}, we have (check!)

Hk(X;Z) ∼=Z Hk

(
Cx0,n(X)

)
= Hk

(
{x0};Z

) ∼=Z 0.

• Thus, it suffices to show that

h(X,x0),n,ab : πn(X,x0)ab −→ Hn(X;Z)

is an isomorphism (here, we implicitly use that the higher homotopy
groups are Abelian, which enables us to encode all cases in a single
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argument): More precisely, we will construct an inverse homomorphism

ϕ : Hn

(
Cx0,n(X)

)
−→ πn(X,x0)ab

as follows: We start with

ϕ : Sn −→ πn(X,x0)

σ 7−→ [fσ]∗,

where fσ : (Sn, e1) −→ (X,x0) corresponds under the canonical home-
omorphism Sn ∼=Top ∂∆n+1 to the continuous map that is σ on the
0-face and constantly x0 on all other faces; this indeed gives a well-
defined continuous map (by the glueing principle; Proposition A.1.17),
because the singular simplex σ ∈ Sn is constantly x0 on ∂∆n.

In view of the universal property of free generation and the fact that
the target πn(X,x0)ab is Abelian, the map ϕ induces a homomorphism

ϕ̃ : Cx0,n
n (X) −→ πn(X,x0)ab.

In order to pass to homology, we need to verify that this map behaves
well with respect to the boundary operator on Cx0,n(X): For all σ ∈
Sn+1, we have

n+1∑

j=0

(−1)j · [fσ◦in+1,j
]∗,ab = 0 in πn(X,x0)ab;

this can be shown by hand by a tedious computation or using Corol-
lary 3.2.11 and Lemma 3.2.12 (check!). Therefore, ϕ̃ induces a well-
defined homomorphism

ϕ : Hn

(
Cx0,n(X)

)
−→ πn(X,x0)ab.

Now straightforward steps show that h(X,x0),n indeed is an isomor-
phism:

– By construction, for all σ ∈ Sn, we have (check!)

h(X,x0),n

(
[fσ]∗

)
=
[
σ + (1 + (−1)n) · constx0

]
.

If c =
∑m
j=1 aj · σj ∈ Cx0,n

n (X) is a cycle, then
∑m
j=1 aj · constx0

is a null-homologous cycle (as can be seen from the constant
map X −→ {x0} and functoriality on the chain level). Therefore,
we obtain
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h(X,x0),n ◦ ϕ
(
[c]
)

=

[ m∑

j=1

aj · σj
]

+
(
1 + (−1)n

)
·
[ m∑

j=1

aj · constx0

]

= [c] + 0.

– Conversely, we start on πn(X,x0). Let σ ∈ map∗((S
n, e1), (X,x0))

and let τ : (∆n, ∂∆n) −→ (X,x0) be the composition of the canon-
ical wrap-around-map ∆n −→ Sn and σ. Then, [σ]∗ = [σ∆]∗ ∈
πn(X,x0) and, by construction, we obtain in πn(X,x0)ab:

ϕ ◦ h(X,x0),n

(
[σ]∗

)
= ϕ ◦ h(X,x0),n

(
[σ∆]∗

)

=

n+1∑

j=1

(−1)j · [fσ∆◦in+1,j
]∗

= [σ∆]∗ + 0

= [σ]∗

Lemma 4.5.7 (compatible homotopies). Let X be a topological space, let (Sk ⊂
map(∆k, X))k∈N be a family of simplices, and let (hσ)k∈N,σ∈map(∆k,X) be a
family of homotopies with the following properties:

1. For each k ∈ N and each σ ∈ map(∆k, X), the map hσ : ∆k× [0, 1] −→
X is a homotopy from σ to an element of Sk.

2. For all k ∈ N, all σ ∈ map(∆k, X), and all j ∈ {0, . . . , k}, we have

hσ◦ik,j
= hσ ◦ (ik,j × id[0,1]).

3. For all k ∈ N and all σ ∈ Sk, the homotopy hσ satisfies

∀x∈∆k ∀t∈[0,1] hσ(x, t) = σ(x).

Let CS(X) ⊂ C(X) be the subcomplex of the singular chain complex generated
in each degree k ∈ N by Sk instead of map(∆k, X).

Then the inclusion CS(X) −→ C(X) is a chain homotopy equivalence
in ZCh (and thus induces an isomorphism in homology).

Proof. This can be shown by an inductive procedure, using prism decom-
positions and careful bookkeeping, similar to the proof of Theorem 4.2.1
(Exercise).

Remark 4.5.8 (Hurewicz and the `1-semi-norm). Let (X,x0) be a pointed space
and let n ∈ N>0. Every class α ∈ Hn(X;R) that is in the image of the
composition

πn(X,x0) −→ Hn(X;Z) −→ Hn(X;R)
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of the Hurewicz homomorphism and the natural transformationHn( · ;Z) =⇒
Hn( · ;R) induced by the inclusion Z −→ R satisfies ‖α‖1 = 0 (by Proposi-
tion 4.4.18 and Example 4.4.19).

Example 4.5.9 (existence of finite coverings). Let X be a path-connected,
locally path-connected, semi-locally simply connected, non-empty topologi-
cal space such that H1(X;Z) is finitely generated with rkZH1(X;Z) ≥ 1.
Combining the Hurewicz theorem (Theorem 4.5.6) with the classification of
coverings (Theorem 2.3.43) shows that: Then, for every d ∈ N>0, there exists
a connected d-sheeted covering of X.

4.5.3 Some Homotopy Groups

Using the Hurewicz theorem, we can compute the lower-dimensional homo-
topy groups of spheres and wedges of spheres:

Corollary 4.5.10 (homotopy groups from homology). Let (X,x0) be a simply
connected pointed space and let n ∈ N>1 with

∀k∈{1,...,n−1} Hk(X;Z) ∼= 0.

Then X is (n− 1)-connected and the Hurewicz homomorphism

h(X,x0),n : πn(X,x0) −→ Hn(X;Z)

is an isomorphism.

Proof. Let
N := min

{
k ∈ N

∣∣ πk(X,x0) 6∼= 0
}
∈ N ∪ {∞}

(alternatively, in order to avoid basepoint issues: N := 1 + max{k ∈ N |
∀x0∈X πk(X,x0) ∼= 0}). As X is simply connected, we have N > 1. Applying
the Hurewicz theorem (Theorem 4.5.6) in degree N proves the claim.

For example, we can use these results to compute the lower homotopy
groups of spheres via homology:

Example 4.5.11 (lower homotopy groups of (wedges of) spheres). Let n ∈ N>1.

• Because Sn is simply connected (Example 2.2.11), the computation of
the homology H∗(Sn;Z) and Corollary 4.5.10 show that

πk(Sn, e1) ∼=Z

{
0 if k ∈ {1, . . . , n− 1}
Z if k = n.
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• More generally: If I is a set, then the same argument shows that

πk

(∨

I

(Sn, e1)
)
∼=Z

{
0 if k ∈ {1, . . . , n− 1}⊕

I Z if k = n.

Caveat 4.5.12. In Corollary 4.5.10, simple connectedness is important: For
example, the Poincaré homology sphere P is an oriented closed connected
3-manifold with [30]

∀k∈Z Hk(P ;Z) ∼=Z Hk(S3;Z) ∼=Z

{
Z if k ∈ {0, 3}
0 otherwise.

However, P is not simply connected (indeed its fundamental group is the
so-called binary icosahedral group, a group of 120 elements, which is related
to A5). In view of the Hurewicz theorem (Theorem 4.5.6), the fundamental
group of P is a perfect group, i.e., a group with trivial abelianisation.

In fact, the Poincaré homology sphere plays an interesting role in manifold
topology and in the history of the Poincaré conjecture [12, p. 34f].



5

Cellular Homology

In this final chapter, we will construct cellular homology from singular ho-
mology. Usually, singular chain complexes are huge and thus they are not
suited for concrete calculations. We therefore want to find “smaller” chain
complexes that compute singular/ordinary homology. Classical examples are

• simplicial homology for simplicial complexes (which is very rigid, but
easy to implement on computers),

• cellular homology for CW-complexes (which is more flexible and thus
better suited for computations by hand).

We first introduce CW-complexes, we then construct cellular homology and
compare it to ordinary homology. Moreover, we give sample calculations and
applications to the Euler characteristic.

Overview of this chapter.

5.1 The Category of CW-Complexes 180
5.2 Cellular Homology 186
5.3 The Euler Characteristic 203

Running example. again: spheres, tori, projective spaces
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5.1 The Category of CW-Complexes

As first step we introduce a suitable category of topological spaces, built
inductively from simple, flexible, cells:

Definition 5.1.1 ((relative) CW-complex).

• Let (X,A) be a pair of spaces. A relative CW-structure on (X,A) is a
sequence

A =: X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ X
of subspaces of X with the following properties:

– We have X =
⋃
n∈NXn.

– The topology on X coincides with the colimit topology of the
system A = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ; i.e., a subset U ⊂ X is open
if and only if for every n ∈ N ∪ {−1}, the intersection U ∩Xn is
open in Xn.

– For every n ∈ N, the space Xn is obtained from Xn−1 by attaching
n-dimensional cells, i.e., there exists a set In and a pushout of the
form ⊔

In
Sn−1 //

inclusion
��

Xn−1

inclusion
��⊔

In
Dn // Xn

in Top; here, we use the convention S−1 := ∅. Then, Xn is the
n-skeleton of X. The number |In| equals the number of path-
connected components of Xn \ Xn−1, but the choice of pushouts
is not part of the data!

• A relative CW-complex is a pair (X,A) of spaces together with a
relative CW-structure on (X,A). If A = ∅, then X, together with
this CW-structure, is a CW-complex. Usually, we will leave the fil-
tration of the CW-structure implicit and say things like “a relative
CW-complex (X,A)” if the underlying CW-structure is clear from the
context or irrelevant (Caveat 5.1.2).

• If (X,A) is a relative CW-complex and n ∈ N, then the path-connected
components of Xn \Xn−1 are homeomorphic to Dn◦ (check!) and are
called open n-cells of (X,A).

• If (X,A) is a relative CW-complex, then the dimension of (X,A) is
defined as dim(X,A) := min

{
n ∈ N

∣∣ ∀m∈N≥n
Xm = Xn

}
∈ N∪ {∞}.
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• A (relative) CW-complex is finite, if it consists of finitely many open
cells. A (relative) CW-complex is of finite type, if in each dimension, it
has only finitely many open cells.

The prefix “CW” refers to the “closure finiteness” condition on cells (which
can be derived from the definition above) and the “weak topology” (i.e., the
colimit topology).

Caveat 5.1.2 (existence and uniqueness of CW-structures?!).

• Not every topological space is homotopy equivalent to a CW-complex.
For example, the Warsaw circle (Figure 2.20) is not homotopy equiva-
lent to a CW-complex (proving this fact requires more homotopy theory
than we have currently available; Example A.7.4).

• Every closed topological manifold is homotopy equivalent to a finite
CW-complex; this is far from simple: By a result of Milnor [34], every
closed topological manifold M is homotopy equivalent to a countable
CW-complex. One can then, for example, use the work of Kirby and
Siebenmann [31, 32] to improve this to the homotopy type of a finite
CW-complex.

• In the notation, we usually do not mention the chosen CW-structure
explicitly. This is just laziness and is not justified by any kind of unique-
ness. However, the fact that CW-structures, in general, are not unique
is not a bug but a feature: One should always try to find CW-structures
that are well adapted to the problem at hand. For example, depend-
ing on the problem it might be good to choose a CW-structure with
few cells or a very symmetric CW-structure. Whenever the choice of
CW-structure is relevant, we will mention it explicitly.

Example 5.1.3 (a relative CW-structure on (Dn, Sn−1)). We start with the
model case of CW-complexes, namely the standard cell: Let n ∈ N. Then

Xn−1 := Xn−2 := · · · := X−1 := Sn−1

∀k∈N≥n
Xk := Dn

is a relative CW-structure on (Dn, Sn−1). A pushout for the passage from
the (n−1)-skeleton to the n-skeleton is, for example, (where all vertical maps
are the inclusions)

Sn−1
idSn−1
//

��

Xn−1 = Sn−1

��

Dn

idDn

// Xn = Dn.

Example 5.1.4 (CW-structures). Examples of CW-structures on the circle, on
the sphere S2, on the torus S1×S1, and on RP 2 are indicated in Figure 5.1.
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0-skeleton 1-skeleton 2-skeleton total space

S1

one 0-cell one 1-cell no 2-cells

S1

two 0-cells two 1-cells no 2-cells
(North-/South-arc)

S2

oe 0-cell no 1-cells one 2-cell

S2

two 0-cells two 1-cells two 2-cells
(North-/South-hemisphere)

S1 × S1

one 0-cell two 1-cells one 2-cell

RP 2

one 0-cell one 1-cell one 2-cell

Figure 5.1.: Examples of CW-structures

182
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Example 5.1.5 (one-dimensional complexes). The one-dimensional complexes
alluded to in the proof of the Nielsen–Schreier theorem (Theorem 2.3.52)
are CW-complexes of dimension 1. We will return to this point of view in
Corollary 5.3.13.

Remark 5.1.6 (the point-set topology of CW-complexes). It turns out that
the point-set topology of CW-complexes is rather tame. More information
about these properties can, for example, be found in the book by Lundell
and Weingram [48].

As next step, we introduce a suitable notion of structure preserving mor-
phisms for CW-complexes:

Definition 5.1.7 (cellular map). Let (X,A) and (Y,B) be relative CW-com-
plexes. A cellular map (X,A) −→ (Y,B) is a continuous map f : X −→ Y
satisfying

∀n∈N∪{−1} f(Xn) ⊂ Yn
(where (Xn)n∈N∪{−1} and (Yn)n∈N∪{−1} denote the relative CW-structures
on (X,A) and (Y,B), respectively).

Example 5.1.8 (cellular maps on the circle). We consier S1 with the first two
CW-structures in Figure 5.1.

• The reflection S1 −→ S1 at the horizontal axis is a cellular map if we
take the first CW-structure on domain and target or if we take the
second CW-structure on domain and target.

• The reflection S1 −→ S1 at the vertical axes is not cellular if we take
the first CW-structure on domain and target but it is cellular with
respect to the second one.

Example 5.1.9 (generic cellular maps).

• If (X,A) is a relative CW-complex, then idX : X −→ X is a cellular
map from this relative CW-complex to itself (we take the same CW-
structure on domain and target because the CW-structure is part of
the data of a relative CW-complex!).

• The composition of cellular maps is cellular (check!).

Definition 5.1.10 (categories of CW-complexes).

• The category CW of CW-complexes consists of:

– objects: The class of objects is the class of all CW-complexes.

– morphisms: The set of morphisms between two CW-complexes is
the set of cellular maps.

– compositions: The compositions are given by ordinary composition
of maps.
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Figure 5.2.: a CW-structure on [0, 1]

• The category CW2 of relative CW-complexes consists of:

– objects: The class of objects is the class of all relative CW-
complexes.

– morphisms: The set of morphisms between two relative CW-
complexes is the set of cellular maps.

– compositions: The compositions are given by ordinary composition
of maps.

Moreover, we introduce a cellular version of homotopy. To this end, we
first fix cellular models of intervals and cylinders:

Example 5.1.11 (a CW-structure on the unit interval). In the following, we
will use the CW-structure

∅ ⊂ {0, 1} ⊂ [0, 1] ⊂ [0, 1] ⊂ · · · ⊂ [0, 1]

on [0, 1] (Figure 5.2, Example 5.1.3).

Proposition 5.1.12 (a CW-structure on cylinders). Let (X,A) be a relative
CW-complex with CW-structure (Xn)n∈N∪{−1}. Then (Zn)n∈N∪{−1}, given
by

Z−1 := A× [0, 1]

∀n∈N Zn :=
(
Xn × {0, 1}

)
∪
(
Xn−1 × [0, 1]

)
,

is a relative CW-structure on (X,A)× [0, 1].

Proof. Clearly,
⋃
n∈N∪{−1} Zn = X × [0, 1]. Moreover, X × [0, 1] carries the

colimit topology with respect to this filtration (check!). It remains to take
care of the pushout condition: For each n ∈ N, we choose a pushout

⊔
In
Sn−1 ϕn //

inclusion
��

Xn−1

inclusion
��⊔

In
Dn

Φn

// Xn

in Top. Using the fact that products of balls with [0, 1] are balls in the sense
that

(
Dn−1 × [0, 1], Sn−2 × [0, 1]) ∪ (Dn−1 × {0, 1})

) ∼=Top2 (Dn, Sn−1)
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holds for all n ∈ N (check!), we can use the pushouts above to construct
pushouts of the form

⊔
In−1

Sn−1 t⊔In
(
Sn−1 × {0, 1}

)“Φn−1 × id[0,1] |”tϕn×id{0,1}
//

inclusion
��

Zn−1

inclusion
��⊔

In−1
Dn t⊔In

(
Dn × {0, 1}

)
“Φn−1 × id[0,1]”tΦn×id{0,1}

// Zn

Pulling [0, 1] through the universal property of the pushout works because
[0, 1] is compact [13, Lemma V.2.13].

Caveat 5.1.13 (products of CW-complexes). Let X and Y be CW-complexes
and let (Zn)n∈N∪{−1} be given by Z−1 := ∅ and

∀n∈N Zn :=
⋃

k∈{0,...,n}
Xk × Yn−k.

Then, in general, (Zn)n∈N∪{−1} is no CW-structure on X × Y [14] (and the
question of when this happens is rather delicate [7]). Therefore, when working
with products of (infinite) CW-complexes, it is sometimes convenient to pass
to the category of compactly generated spaces [64].

The CW-structure from Proposition 5.1.12 allows us to define cellular
homotopy and the cellular homotopy categories:

Definition 5.1.14 (cellular homotopy). Let (X,A) and (Y,B) be relative CW-
complexes and let f, g : (X,A) −→ (Y,B) be cellular maps. Then f and g are
cellularly homotopic, if there exists a cellular map h : (X,A)×[0, 1] −→ (Y,B)
with

h ◦ i0 = f and h ◦ i1 = g;

here, the cylinder (X,A) × [0, 1] carries the CW-structure from Proposi-
tion 5.1.12 and i0, i1 : (X,A) −→ (X,A)× [0, 1] are the inclusions of bottom
and top into the cylinder (which are cellular!).

This notion of homotopy satisfies the usual inheritance properties (as in
Proposition 1.3.13; check!). Hence, the following definition makes sense:

Definition 5.1.15 (homotopy categories of CW-complexes).

• The category CWh consists of:

– objects: We let Ob(CWh) := Ob(CW) be the class of all CW-
complexes.

– morphisms: The set of morphisms between CW-complexes is the
set of cellular homotopy classes of cellular maps between these
CW-complexes.
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– compositions: The compositions are given by ordinary composition
of representatives.

• The category CW2
h consists of:

– objects: We let Ob(CW2
h) := Ob(CW2) be the class of all relative

CW-complexes.

– morphisms: The set of morphisms between relative CW-complexes
is the set of cellular homotopy classes of cellular maps between
these relative CW-complexes.

– compositions: The compositions are given by ordinary composition
of representatives.

5.2 Cellular Homology

We want to use CW-structures to compute (ordinary) homology. We will
therefore introduce cellular homology and compare cellular homology with
(ordinary) homology:

5.2.1 Geometric Idea

As first step, we will explain the geometric idea behind the construction of
cellular homology; for simplicity, we restrict to the base ring Z: Let X be a
CW-complex. In each dimension n, we choose a pushout

⊔
In
Sn−1 ϕn //

inclusion
��

Xn−1

inclusion
��⊔

In
Dn

Φn

// Xn

in Top. Then we define

Cn :=
⊕

In

Z

(i.e., every n-cell corresponds to a standard basis element in Cn). In order to
define the boundary operator ∂n : Cn −→ Cn−1, for each i ∈ In and j ∈ In−1,
we determine the “degree” of ϕn restricted to the i-th sphere Sn−1 on the
j-th cell Dn−1 in Xn−1. Finally, cellular homology of X is defined as the
homology of this chain complex (C∗, ∂∗).

• If a CW-structure and corresponding pushouts are known well enough,
then computing cellular homology is easy; if the CW-complex is finite,
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the cellular chain complex is finite and computing its homology is al-
gorithmically solvable (Remark A.6.20).

• However, the construction above suffers from the ambiguity in the
choice of the pushouts. Therefore, it is desirable to find a more in-
trinsic description of the cellular chain complex. The key observation
in this context is that

Hn(Xn, Xn−1;Z) ∼=Z Hn

(⊔

n∈N
(Dn, Sn−1);Z

)
∼=Z
⊕

In

Z

and it turns out that the cellular chain complex and cellular homology
can be constructed in a streamlined fashion using such relative homol-
ogy groups.

5.2.2 The Construction

We now give the precise definition of the cellular chain complex/homology
associated with a given ordinary homology theory. Moreover, we explain why
this construction coincides with the geometric description above and compute
some examples.

Setup 5.2.1. In the following, let R be a ring with unit and let h :=(
(hk)k∈Z, (∂k)k∈Z

)
be an ordinary homology theory on Top2 with values

in RMod, and Z := h0(•).
Proposition and Definition 5.2.2 (cellular chain complex). The cellular chain
complex functor Ch : CW2 −→ RCh is defined as follows:

1. On objects: Let (X,A) be a relative CW-complex with relative CW-
structure (Xn)n∈N∪{−1}. For n ∈ N, we set

Chn(X,A) := hn(Xn, Xn−1),

and for all n ∈ Z<0, we set Chn(X,A) := 0. Moreover, for n ∈ N>0, we

define ∂
h,(X,A)
n by

Chn(X,A)

∂h,(X,A)
n

��

hn(Xn, Xn−1)

∂
(Xn,Xn−1,Xn−2)
n

��

∂
(Xn,Xn−1)
n

**

hn−1(Xn−1)

hn−1(inclusion)tt

Chn−1(X,A) hn−1(Xn−1, Xn−2)

Then Ch(X,A) :=
(
(Chn(X,A))n∈Z, (∂

h,(X,A)
n )n∈Z

)
is a chain complex

in RCh, the cellular chain complex of (X,A) with respect to h.
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2. On morphisms: If f : (X,A) −→ (Y,B) is a cellular map of relative
CW-complexes, then we define

Chn(f) := hn(f |Xn
) : Chn(X,A) = hn(Xn, Xn−1) −→ hn(Yn, Yn−1) = Chn(Y,B)

for all n ∈ N; moreover, for n ∈ Z<0, we set Chn(f) := 0. Then,
Ch(f) :=

(
Chn(f)

)
n∈Z is a chain map Ch(X,A) −→ Ch(Y,B).

Proof. Ad 1. If n ∈ N>0, then

∂h,(X,A)
n ◦ ∂h,(X,A)

n+1 = 0,

because this composition contains (by construction of the connecting homo-
morphisms for triples) two subsequent terms of the long exact sequence of
the pair (Xn, Xn−1).

Ad 2. Because f is cellular, we can view f |Xn
as a map (Xn, Xn−1) −→

(Yn, Yn−1). Moreover, the connecting homomorphisms of triple sequences are
natural (Proposition 3.1.8). Hence, Ch(f) is a chain map.

By construction, Ch : CW2 −→ RCh is a functor (check!).

Taking homology of the cellular chain complex results in cellular homology:

Definition 5.2.3 (cellular homology). Let n ∈ Z. Then cellular homology with
respect to h, in degree n, is defined as the composition

Hh
n := Hn ◦ Ch : CW2 −→ RMod .

As indicated in Chapter 5.2.1, the cellular chain complex has a more ex-
plicit description, once we choose pushouts. As first step, have a closer look
at the effect on homology of attaching cells:

Remark 5.2.4 (homology of attached cells). Let n ∈ N and let (Y,X) be a
pair of spaces that admits a pushout of the form

⊔
I S

n−1 ϕ
//

��

X

��⊔
I D

n

Φ
// Y

in Top (where the vertical maps are the inclusions). If the homology theory h
is not additive, then we add the hypothesis that I is finite.

1. a) If n ∈ N>0 and k ∈ Z, then the following composition is an iso-
morphism in RMod:

hk(Y,X) hk

(⊔
I D

n,
⊔
I S

n−1
)

hk(Φ)

∼=Roo
⊕

I hk(Dn, Sn−1)
∼=R⊕

I hk(incl)
oo

∼=R //
⊕

I hk−1

(
Sn−1, {e1}

) ⊕
I hk−n(•)

∼=Roo
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The first isomorphism is a consequence of excision (after thick-
ening up X), the second isomorphism follows from excision and
additivity, the third isomorphism is obtained from the long exact
sequence of the triple (Dn, Sn−1, {e1}), and the last isomorphism
is an iterated suspension isomorphism (Corollary 3.2.8).

b) If n = 0 and k ∈ Z, then the analogous composition is an isomor-
phism in RMod:

hk(Y,X) hk

(⊔
I D

n,
⊔
I S

n−1
)

hk(Φ)

∼=Roo
⊕

I hk(Dn, Sn−1)
∼=R⊕

I hk(incl)
oo

∼=R //
⊕

I hk
(
•, ∅
) ⊕

I hk−n(•)
∼=Roo

2. a) Let n ∈ N>0 and let X 6= ∅. Then, the canonical homeomor-
phism Dn/Sn−1 ∼=Top Sn induces (together with the pushout
above) a homeomorphism (check!)

(Y/X,X/X) ∼=Top*

∨

I

(Sn, e1).

Then, for each k ∈ Z, the corresponding composition

hk(Y,X)
hk(proj)

// hk(Y/X,X/X)
∼=R

hk(see above)
// hk

(∨I
Sn, {e1}

) ∼=R //
⊕

I hk
(
Sn, {e1}

) ⊕
I hk−n(•)

∼=Roo

coincides with the isomorphism in 1a) (check!).

b) If n = 0, then the maps D0 −→ {−1} ⊂ S0 and X −→ {1} ⊂ S0

induce a continuous map Y/X −→ ∨I
S0. If X 6= ∅, then this map

is a homeomorphism.

Proposition 5.2.5 (cellular chain complex, explicitly). Let (X,A) be a relative
CW-complex with CW-structure (Xn)n∈N∪{−1}; if h is not additive, then we
assume additionally that the CW-complex (X,A) is of finite type. For ev-
ery n ∈ N, we choose a pushout

⊔
In
Sn−1
ϕ(n)=

⊔
i∈In ϕ

(n)
i
//

��

Xn−1

��⊔
In
Dn

Φ(n)=
⊔

i∈In Φ
(n)
i

// Xn

in Top (where the vertical maps are the inclusions).

1. The chain modules: For each n ∈ N, the maps from Remark 5.2.4 yield
an isomorphism

Chn(X,A) ∼=R

⊕

In

Z;

moreover, for each k ∈ Z \ {n}, we have hk(Xn, Xn−1) ∼=R 0.
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2. The boundary operator: Let n ∈ N>0. For i ∈ In and j ∈ In−1, we

write f
(n)
i,j for the composition

Sn−1
ϕ

(n)
i // Xn−1

proj
// Xn−1/Xn−2

//
∨In−1 Sn−1 // Sn−1

where the penultimate map is defined as in Remark 5.2.4, and where
the last map is the projection onto the j-th summand.

a) Let n ∈ N>1. Under the isomorphism from the first part, the

map ∂
h,(X,A)
n : Chn(X,A) −→ Chn−1(X,A) corresponds to the “ma-

trix”

Fn :=
(
(σn−1)−1 ◦ hn−1(f

(n)
i,j ) ◦ σn−1

)
j∈In−1,i∈In

∈MIn−1×In
(
HomR(Z,Z)

)
,

where σn−1 : Z = h0(•) −→ hn−1(Sn−1, {e1}) ∼= hn−1(Sn−1) de-
notes the iterated suspension isomorphism (Corollary 3.2.8).

In particular, if Z ∼=RMod R, then we can view Fn as a matrix
in MIn−1×In(R); the entries of this matrix are called incidence
numbers.

b) Analogously, the boundary operator ∂
h,(X,A)
1 corresponds to the

matrix
F1 :=

(
d

(1)
i,j · idZ

)
j∈I0,i∈I1

where, for all i ∈ In, j ∈ In−1:

d
(1)
i,j :=





0 if f
(1)
i,j (1) = f

(1)
i,j (−1)

1 if f
(1)
i,j (1) = −1 6= f

(1)
i,j (−1)

−1 if f
(1)
i,j (1) = 1 6= f

(1)
i,j (−1)

Proof. The first part is an immediate consequence of the computation of the
effect of attaching cells in homology (Remark 5.2.4).

We will now prove the second part in the case n ∈ N>1 (the descrip-

tion for ∂
h,(X,A)
1 can be obtained in a similar fashion). To this end, we con-

sider the diagram in Figure 5.3. This diagram is commutative (check!) and
the lower/upper rows coincide with the isomorphisms in the first part (Re-

mark 5.2.4). This gives the desired description of ∂
h,(X,A)
n .

Recipe for the computation of cellular homology. In view of Proposi-
tion 5.2.5, we can compute cellular chain complexes (whence, cellular ho-
mology) as follows:

• Choose pushouts in each dimension,

• determine the number of cells in each dimension, and

• study how the attaching maps glue to the lower-dimensional cells.
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Figure 5.3.: the boundary operator of the cellular chain complex, in dimen-
sion bigger than 1
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Example 5.2.6 (cellular homology of spheres). Let n ∈ N; for simplicity, we
assume n ≥ 2. On Sn, we consider the CW-structure

∅ ⊂ {e1} = {e1} = · · · = {e1} ⊂ Sn = Sn = · · · ,

which consists of a single 0-cell and a single n-cell (in analogy with the third
example in Figure 5.1). Applying Proposition 5.2.5, we obtain that Ch(Sn)
is isomorphic (in RCh) to the following chain complex:

degree n+ 1 n n− 1 · · · 1 0 −1

· · ·
0
// 0 // Z // 0 // · · · // 0 // Z // 0 // · · ·

Because of n ≥ 2, all the boundary operators of Ch(Sn) are trivial (because
the domain or target is a trivial module). Therefore, we obtain, for all k ∈ Z,

Hh
k (Sn) ∼=R

{
Z if k ∈ {0, n}
0 if k ∈ Z \ {0, n}

∼=R hk(Sn).

Example 5.2.7 (cellular homology of the unit interval). Let Z = R = Z. On
the unit interval [0, 1], we consider the CW-structure ∅ ⊂ {0, 1} ⊂ [0, 1].
(Example 5.1.11). This CW-structure consists of two 0-cells and one 1-cell.
Applying Proposition 5.2.5 shows that the cellular chain complex Ch([0, 1])
is (in ZCh) isomorphic to the chain complex I of Definition A.6.25 (check!):

degree 2 1 0 −1

· · ·
0
// 0

0
// 0

0
// Z // Z⊕ Z

0
// 0

0
// 0

0
// · · ·

x � // (−x, x)

Therefore, for all k ∈ Z, we obtain

Hh
k

(
[0, 1]

) ∼=Z

{
0 if k 6= 0

Z if k = 0
∼=Z Hk

(
[0, 1];Z).

Remark 5.2.8 (cellular homotopy invariance). Cellular homology is homo-
topy invariant in the sense that it factors over the homotopy classes func-
tor CW2 −→ CW2

h. More precisely, cellularly homotopic cellular maps in-
duce chain homotopic chain maps between the cellular chain complexes:
In view of functoriality with respect to cellular maps, it suffices to con-
sider the model case of the inclusions i0, i1 of top and bottom into the
cylinder X × [0, 1] (with the CW-structure of Proposition 5.1.12) of a CW-
complex X. Using Example 5.2.7 and a straightforward computation shows
that Ch(X × [0, 1]) ∼=RCh C

h(X) ⊗Z I and the discussion in Remark A.6.30
yields Ch(i0) 'R Ch(i1) (check!).
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D2

S1

ϕ

X0 = X−1 = A

X1 1-cell a 1-cell b

Ch2 (X,A)

Ch1 (X,A)

∼=

∼=

Z

Z⊕ Z
a b

∂
h,(X,A)
2 1 7→ (2,−1)

Figure 5.4.: a cellular chain complex

Example 5.2.9 (a more complicated cell attachment). An example for the com-
putation of cellular homology (with respect to an ordinary homology theory h
with Z-coefficients) of a CW-complex with a more interesting cell attachment
is illustrated in Figure 5.4.

Example 5.2.10 (cellular homology of real projective spaces). Let n ∈ N>1. A
straightforward induction shows that

∅ ⊂ RP 0 ⊂ RP 1 ⊂ RP 2 ⊂ · · · ⊂ RPn = RPn = · · ·

is a CW-structure on RPn; the key step is to verify that

Sn−1 //

��

RPn−1

��

Dn // RPn

is a pushout in Top (where the vertical maps are the inclusions, the upper
horizontal map is the canonical projection, and the lower horizontal map is
the inclusion Dn ⊂ Sn as Northern hemisphere, followed by the canonical
projection Sn −→ RPn; Exercise). In particular, this CW-structure has in
each of the dimensions 0, . . . , n exactly one cell (and no higher-dimensional
cells).

Let Z ∼=R R. Applying Proposition 5.2.5 shows that the cellular chain
complex Ch(RPn) is isomorphic (in RCh) to the following chain complex:

degree n n− 1 2 1 0 −1

· · · // 0 // R
∂n // R

∂n−1
// · · · // R

∂2 // R
∂1 // R // 0 // · · ·



194 5. Cellular Homology

Sk−1
proj

// RP k−1
proj

// RP k−1/RP k−2 canoncial homeo // Sk−1

Sk−1

induced by cSk−1

// (
∨2

Sk−1)
/

(∀x∈Sk−1 i1(x) ∼ i2(x))
induced by id∨ − id

// Sk−1

Figure 5.5.: determining the incidence numbers for RPn

We determine the boundary operators ∂1, . . . , ∂n via the corresponding
incidence numbers:

Because the CW-structure has only a single 0-cell, we have ∂1 = 0. Let
k ∈ {2, . . . , n}. Then the diagram in Figure 5.5 is commutative up to homo-
topy; this can be proved by tracing points on the Northern and the Southern
hemisphere of Sk−1 (check!). After applying hk−1, this map induces the ho-
momorphism (Lemma 3.2.12 and Corollary 3.2.11)

(
1 + (−1)k

)
· idhk−1(Sk−1).

Therefore, Ch(RPn, ∅) is isomorphic (in RCh) to the chain complex

degre n n− 1 2 1 0 −1

· · · // 0 // R
1+(−1)n

// R // · · · 0 // R
2 // R

0 // R // 0 // · · ·

Hence, for all k ∈ Z, we obtain

Hh
k (RPn) ∼=R





R if k = 0

R/(2) if k ∈ {1, . . . , n− 1} is odd

{x ∈ R | 2 · x = 0} if k ∈ {2, . . . , n} is even

R if k = n is odd

0 otherwise.

For example, this results in the following table:

Hh
k (RPn)

R k ∈ {1, . . . , n− 1} k ∈ {2, . . . , n} if k = n
odd even odd

Z Z/2 0 Z
Z/2 Z/2 Z/2 Z/2
Q 0 0 Q

The relation between the results for different coefficients is explained by
the universal coefficient theorems [13, VI.7.8] (that involve the relevant Tor-
terms).
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Remark 5.2.11 (incidence numbers). Let n ∈ N>1. One can prove that

[Sn−1, Sn−1] −→ Z
[f ] 7−→ degHn−1( · ;Z) f

is a bijection: By Example 4.5.11, the pointed version of this statement holds.
As every continuous map Sn−1 −→ Sn−1 is homotopic to a pointed continu-
ous map (Sn−1, e1) −→ (Sn, e1), we obtain a commutative diagram (in Set)
of the form

[Sn−1, Sn−1]
degHn−1( · ;Z)

// Z

πn(Sn−1, e1)
degHn−1( · ;Z)

//

proj

OO

Z

whose left vertical arrow is surjective and whose lower horizontal arrow is
bijective. Therefore, also the upper horizontal arrow is bijective.

Moreover, Corollary 3.2.8 and Corollary 3.2.11 give us explicit represen-
tatives for each class in [Sn−1, Sn−1], which are independent of the cho-
sen ordinary homology theory. Thus, under the canonical ring homomor-
phism Z −→ R, the incidence numbers can be viewed as integers and can be
computed uniformly via Hn−1( · ;Z).

These considerations show that cellular homology should be independent
of the input (ordinary) homology theory.

5.2.3 Comparison of Homology Theories

We will now compare homology theories on CW-complexes. As first step, we
show that cellular homology indeed computes (ordinary) homology:

Setup 5.2.12. Let R be a ring with unit and let h :=
(
(hk)k∈Z, (∂k)k∈Z

)
be

a homology theory on Top2 with values in RMod.

In the following, we will write CW2
fin for the category of finite relative

CW-complexes (and cellular maps).

Theorem 5.2.13 (cellular homology vs. ordinary homology). Let h be an ordi-
nary homology theory and let n ∈ Z. Then the functors

Hh
n : CW2

fin −→ RMod and

hn : CW2
fin −→ RMod

are naturally isomorphic. More precisely: Let (X,A) be a finite relative CW-
complex.
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1. If n < 0, then Hh
n(X,A) ∼=R 0 ∼=R hn(X,A).

2. If n ≥ 0, then the homomorphisms

Chn(X,A) = hn(Xn, Xn−1)←− hn(Xn, A) −→ hn(X,A)

induced by the inclusions induce an R-isomorphism Hh
n(X,A) ∼=R

hn(X,A).

Remark 5.2.14. If h is additive, then the analogous statement holds for the
category CW2 of all relative CW-complexes. In the case of singular homology
this follows from a compactness argument (similar to Proposition 4.4.9); for
the general case, a more general (homotopy) colimit argument is needed.

Example 5.2.15. In particular, singular homology of finite CW-complexes
can be computed via the corresponding cellular homology. Therefore, Exam-
ple 5.2.10 computes singular homology of the real projective spaces RPn.

Proof of Theorem 5.2.13. Let (X,A) be a finite relative CW-complex with
relative CW-structure (Xn)n∈N∪{−1}. We start with some preparations con-
cerning the relative homology groups that will appear in the proof, the key
observation being (A) (everything else is just bookkeeping):

(A). By Remark 5.2.4, we have (because h is an ordinary homology theory)

∀n∈N ∀k∈Z\{n} hk(Xn, Xn−1) ∼=R 0.

(B). Inductively, we obtain from (A) and the long exact sequence of the
triple (Xn+1, Xn, A) that

∀n∈N ∀k∈Z\{0,...,n} hk(Xn, A) ∼=R 0

(C). and (using the long exact triple sequence of (XN , Xn, Xn−1))

∀n∈N∪{−1} ∀N∈N≥n
∀k∈Z≤n

hk(XN , Xn) ∼=R 0.

Because (X,A) is a finite relative CW-complex, there is an N ∈ N with

XN = X.

We will now distinguish two cases:

1. Let n < 0. From (B) and the definition of cellular homology, we obtain
that

hn(X,A) = hn(XN , A) ∼=R 0 ∼=R H
h
n(X,A).

2. Let n ∈ N. We then consider the following diagram in RMod with exact
rows (the unmarked arrows are induced by the inclusions):
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Chn+1(X,A)
∂
h,(X,A)
n+1

// ker ∂
h,(X,A)
n

proj
// Hh

n(X,A)
0 // 0

hn+1(Xn+1, Xn)
∂

(Xn+1,Xn,A)

n+1

// hn(Xn, A) //

��

��

À

OO

hn(Xn+1, A)
��

Â

Áww

// hn(Xn+1, Xn) ∼=R 0
��

∼=R

hn(X,A)

The homomorphism Á is an R-isomorphism (by (C) and the long exact
sequence of the triple (X = XN , Xn+1, A), where we increase N , if
necessary).

How is the homomorphism À constructed? The long exact sequence of
the triple (Xn, Xn−1, A) and (B) show that the inclusion induces an
R-isomorphism

hn(Xn, A) ∼=R ker ∂(Xn,Xn−1,A)
n .

Moreover, from the long exact sequence of the triple (Xn−1, Xn−2, A)
and (B), we can derive that

ker ∂(Xn,Xn−1,A)
n = ker ∂h,(X,A)

n

This yields the R-isomorphism À.

Because the left square in the diagram above is commutative, the iso-
morphism À induces a well-defined R-homomorphism Â. Moreover, by
the five lemma (Proposition A.6.7; adding a zero column on the right),
the homomorphism Â is an R-isomorphism.

Therefore, the R-isomorphisms Á and Â lead to the desired (natural)
R-isomorphism Hh

n(X,A) ∼= hn(X,A).

Corollary 5.2.16 (finiteness/vanishing results for orindary homology theories).
Let h be an ordinary homology theory and let (X,A) be a finite relative CW-
complex of dimension N .

1. Then, for all k ∈ Z \ {0, . . . , N}, we have

hk(X,A) ∼=R H
h
k (X,A) ∼=R 0.

2. If R is noetherian (e.g, Z or a field) and if h0(•) ∼=R R, then: For
all k ∈ {0, . . . , N} the R-module hk(X,A) ∼=R Hh

k (X,A) is finitely
generated.

Proof. From Theorem 5.2.13, we obtain hk(X,A) ∼=R Hh
k (X,A) for all k ∈

Z. Therefore, it suffices to prove the corresponding statements for cellular
homology.
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The explicit description of the cellular chain complex shows that Ch(X,A)
is concentrated in the degrees 0, . . . , N and that all chain modules are finitely
generated (Proposition 5.2.5).

Therefore, the first part directly follows from the definition of cellular
homology.

For the second part, we only need to recall that Hh
k (X,A) = Hk(Ch(X,A))

is a quotient of a submodule of the finitely generated R-module Chk (X,A).
Because R is noetherian, this module is also finitely generated (Proposi-
tion IV.4.1.9).

Example 5.2.17 (ordinary homology of manifolds). Let M be a closed topo-
logical manifold. Then M is homotopy equivalent to a finite CW-complex
(Caveat 5.1.2), say of dimension N . Therefore, for every commutative ring R
with unit,

• we have Hk(M ;R) ∼=R 0 for all k ∈ Z \ {0, . . . , N},

• and Hk(M ;R) is finitely generated for each k ∈ Z (if R is noetherian).

In fact, Poincaré duality allows to prove the first part to vanishing above the
topological dimension of M [68, Chapter 16.3, Chapter 18.3].

Corollary 5.2.18 (uniqueness of ordinary homology theories on CW2
fin). Let h

be an ordinary homology theory and let n ∈ Z.

1. If k is an ordinary homology theory on Top2 with values in RMod and
if k0(•) ∼=R h0(•), then hn and kn are naturally isomorphic as func-
tors CW2

fin −→ RMod.

2. In particular, hn und Hn( · ;h0(•)) are naturally isomorphic as functors
CW2

fin −→ RMod.

(If the homology theories in question are additive, then the corresponding
statements also hold for CW2 instead of CW2

fin.)

Proof. The second part is a consequence of the first part and the fact that
singular homology is an ordinary homology theory (Theorem 4.4.1).

We will now prove the first part: The explicit description of the cellular
chain complex in terms of incidence numbers (Remark 5.2.11) shows that
the cellular chain complexes Ch and Ck are naturally isomorphic as func-
tors CW2

fin −→ RCh. Therefore, also

Hh
n = Hn ◦ Ch : CW2

fin −→ RMod

Hk
n = Hn ◦ Ck : CW2

fin −→ RMod

are naturally isomorphic functors. We then apply Theorem 5.2.13.
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Figure 5.6.: pages of a spectral sequence

Caveat 5.2.19. There exist ordinary homology theories h on Top2 with val-
ues in RMod and coefficients (isomorphic to) R such that there exist (wild)
topological spaces X and n ∈ N with

hn(X) 6∼=R Hn(X;R);

an example is measure homology [71].

Caveat 5.2.20. If h is a non-ordinary homology theory on Top2, then the
cellular homology assoociated with h is not isomorphic to h (as can be seen
from the one-point space).

By construction, cellular homology of a CW-structure (Xn)n∈N∪{−1} only
keeps the information of the form hn(Xn, Xn−1) (and assembles this data in a
smart way). For general homology theories, the homology of (Xn, Xn−1) will,
in general, not be concentrated in degree n. Taking all homology modules
of (Xn, Xn−1) into account and organising this data into a so-called spectral
sequence, allows to reconstruct the homology of the original space:

Theorem 5.2.21 (Atiyah-Hirzebruch spectral sequence [70, Chapter XIII.6]).
Let R be a ring with unit and let h be a homology theory on Top2 with values
in RMod. If (X,A) is a finite relative CW-complex, then there is a (in (X,A)
and h) natural, converging, spectral sequence

E1
pq = hp+q(Xp, Xp−1) =⇒ hp+q(X,A)

E2
pq = Hp

(
X,A;hq(•)

)
=⇒ hp+q(X,A).

Outlook 5.2.22 (What are spectral sequences?). Spectral sequences are a gen-
eralisation of long exact sequences and consist of a sequence (Er, dr)r∈N≥1

of bigraded chain complexes (the pages of the spectral sequence), where the
boundary operator dr has the bidegree (−r, r − 1) and Er+1 is obtained
from Er via homology with respect to dr (Figure 5.6).
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For example, in the Atiyah-Hirzebruch spectral sequence, the row of E1

that belongs to “q = 0” is nothing but the cellular chain complex Ch(X,A)
with respect to h.

In good cases, this process stabilises and yields the so-called ∞-page E∞

of the spectral sequence. If convergence

E1
pq =⇒ Bp+q

holds, then this means that E∞ gives an approximation of B; more pre-
cisely, the sequence (E∞p,n−p)p∈Z is an approximation of Bn. In general, this
“limit” B cannot be computed directly from E∞, but it can only be deter-
mined up to so-called extension problems.

Moreover, the boundary operators in the higher pages of spectral se-
quences, usually cannot be computed explicitly. Nevertheless, spectral se-
quences and the associated toolbox allow to deduce meaningful results about
the limit [69, Chapter 5].

In particular, homology theories on CW-complexes that coincide on the
point and that are comparable via a natural transformation (that is an iso-
morphism on the point) are isomorphic. This result admits a more elementary
direct formulation and proof:

Definition 5.2.23 (subcomplex, CW-pair). Let X be a CW-complex with CW-
structure (Xn)n∈N∪{−1} and let A ⊂ X.

• Then, A is a subcomplex of X, if for every open cell e ⊂ X with e∩A 6= ∅,
we have e ⊂ A (in this case, (A∩Xn)n∈N∪{−1} is a CW-structure on A
and (X,A) is a relative CW-complex).

• If A is a subcomplex of X, then (X,A) is a CW-pair.

Example 5.2.24 (subcomplexes).

• Skeleta of CW-complexes are subcomplexes.

• The inclusion of a subcomplex of a CW-complex is a cellular map.

• We consider the CW-structure ∅ ⊂ {0, 1} ⊂ [0, 1] on [0, 1]. Then [0, 1)
and [0, 1/2] are no subcomplexes (check!), but {0} and {0, 1} are sub-
complexes.

Definition 5.2.25 (category of CW-pairs). The category CWÁ of CW-pairs
consists of:

• objects: The class of objects consists of all CW-pairs.

• morphisms: If (X,A) and (Y,B) are CW-pairs, then we set

MorCWÁ

(
(X,A), (Y,B)

)
:=
{
f ∈ MorCW(X,Y )

∣∣ f(A) ⊂ B
}
.
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• compositions: The compositions are given by ordinary composition of
maps.

Definition 5.2.26 (homotopy category of CW-pairs).

• Let (X,A) and (Y,B) be CW-pairs and let f, g : (X,A) −→ (Y,B)
be morphisms of CW-pairs. Then f and g are cellularly homotopic as
maps of CW-pairs (abbreviated as f 'CWÁ g, if there exists an h ∈
MorCWÁ((X,A)× [0, 1], (Y,B)) with

h( · , 0) = f and h( · , 1) = g.

Here, X × [0, 1] carries the CW-structure of Proposition 5.1.12.

• The homotopy category CWÁ
h of CW-pairs consists of:

– objects: Let Ob(CWÁ
h ) := Ob(CWÁ).

– morphisms: If (X,A) and (Y,B) are CW-pairs, then

MorCWÁ
h

(
(X,A), (Y,B)

)
:= MorCWÁ

(
(X,A), (Y,B)

) /
'CWÁ .

– compositions: The compositions are given by ordinary composition
of representatives.

Using CW-pairs, we can define a notion of homology theories on CW-pairs.
There are two points that need some attention:

• A straightforward formulation of the long exact sequence for pairs re-
quires that we can apply the homology theory to the subspace in ques-
tion. Therefore, it is convenient to work with CW-pairs instead of rel-
ative CW-complexes. (Alternatively, one could avoid this by involving
mapping cones).

• Complements of subcomplexes, in general, do not carry a canonical
CW-structure. Therefore, the excision axiom needs to be reformulated.

Definition 5.2.27 (homology theories on CW-pairs). Let R be a ring with unit.
A homology theory on CWÁ with values in RMod is a pair

(
(hk)k∈Z, (∂k)k∈Z

)
,

consisting of

• a sequence (hk)k∈Z of functors CWÁ −→ RMod and

• a sequence (∂k)k∈Z of natural transformations

∂k : hk =⇒ hk−1 ◦ UCW,

where UCW : CWÁ −→ CWÁ is the subcomplex functor,

with the following properties:
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• Homotopy invariance. For every k ∈ Z, the functor hk : CWÁ −→ RMod
factors over the homotopy classes functor CWÁ −→ CWÁ

h .

• Long exact sequences of pairs. For every CW-pair (X,A), the sequence

· · · ∂k+1
// hk(A, ∅) hk(i)

// hk(X, ∅) hk(j)
// hk(X,A)

∂k // hk−1(A, ∅) hk−1(i)
// · · ·

is exact, where i : (A, ∅) −→ (X, ∅) and j : (X, ∅) −→ (X,A) are the
inclusion maps.

• Excision. For every CW-pair (X,A) and every subcomplex C ⊂ X, the
homomorphisms

hk(C,C ∩A) −→ hk(X,A)

induced by the inclusion (C,C ∩A) −→ (X,A) are R-isomoprhisms for
every k ∈ Z.

Example 5.2.28 (homology theories on CW-pairs). For example, the restriction
of a homology theory on Top2 to CWÁ is a homology theory on CWÁ. On the
other hand, also cellular homology (associated with some ordinary homology
theory on Top2) defines a homology theory on CWÁ (check!).

As last ingredient, we need the ability to compare homology theories:

Definition 5.2.29 (natural transformations of homology theories). Let R be a
ring with unit and let h :=

(
(hk)k∈Z, (∂k)k∈Z

)
and h′ :=

(
(h′k)k∈Z, (∂k)k∈Z

)

be homology theories on CWÁ with values in RMod. A natural transforma-
tion h =⇒ h′ of homology theories on CWÁ

h is a sequence (Tk : hk =⇒ h′k)k∈Z
of natural transformations that satisfy

Tk−1(A, ∅) ◦ ∂(X,A)
k = ∂′k

(X,A) ◦ Tk(X,A)

for all CW-pairs (X,A).

Finally, we are able to formulate (and prove) the comparison for homology
theories on (finite) CW-complexes:

Theorem 5.2.30 (comparison theorem for homology theories). Let R be a ring
with unit, let h and h′ be homology theories on CWÁ with values in RMod,
and let (Tk)k∈Z be a natural transformation h −→ h′ of homology theories
on CWÁ with the property that, for each k ∈ Z, the homomorphism

Tk(•) : hk(•) −→ h′k(•)

is an R-isomorphism. Then, for every finite CW-pair (X,A), and every k ∈
Z, the homomorphism

Tk(X,A) : hk(X,A) −→ h′k(X,A)

is an isomorphism in RMod.
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Proof. This follows from a straightforward induction over the skeleta (check!),
using the axiomatic computation of homology of spheres from the homology
of the point (Corollary 3.2.8).

Caveat 5.2.31. Let R be a ring with unit and let h and h′ be homology
theories on CWÁ with values in RMod that satisfy

hk(•) ∼=R h
′
k(•)

for all k ∈ Z. Then, in general, we cannot conclude that h and h′ are isomor-
phic on all finite CW-pairs. In the comparison theorem (Theorem 5.2.30),
it is essential that the given isomorphism on the homology of the point is
induced by a natural transformation between the homology theories. Con-
crete examples can be constructed by comparing bordism with a concoction
of ordinary homology theories that have the same coefficients as bordism.

Moreover, homology of CW-complexes plays an important role in the ho-
motopy theory of CW-complexes (Appendix A.7; Corollary A.7.3).

5.3 The Euler Characteristic

We conclude this course with a short treatment of one of the oldest and
most intriguing topological invariants: the Euler characteristic. The Euler
characteristic is a homotopy invariant that can be directly computed from
a CW-structure; however, it is just a number and thus has no functoriality
properties.

After giving a geometric definition of the Euler characteristic, we will ex-
plain a homological interpretation (which also establishes homotopy invari-
ance). Finally, we will give a sample application of the Euler characteristic
in group theory.

5.3.1 Geometric Definition of the Euler Characteristik

The Euler characteristic of a finite CW-complex is nothing but the alternating
sum of its numbers of cells in each dimension:

Definition 5.3.1 (Euler characteristic of a finite CW-complex). Let X be a
finite CW-complex. For each n ∈ N, we denote by cn(X) the number of open
n-cells of X. The Euler characteristic of X is defined as the (finite!) sum

χ(X) :=
∑

n∈N
(−1)n · cn(X) ∈ Z.
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space CW-structure Euler characteristic

• 1

[0, 1] 2− 1 = 1

S1 1− 1 = 0

S1 2− 2 = 0

S2 1− 0 + 1 = 2

S2 2− 2 + 2 = 2

S2 8− 12 + 6 = 2

Figure 5.7.: first examples of Euler characteristic calculations

Example 5.3.2 (Euler characteristic). Some basic examples of Euler charac-
teristic computations are collected in Figure 5.7.

The Euler characteristic was first introduced by Euler (Figure 5.8). Clearly,
to Euler the terminology of CW-complexes (and homology, homotopy invari-
ance) was not yet available. Originally, Euler introduced the Euler character-
istic for (convex) polyhedra (Example 5.3.7, Corollary 5.3.8). At the dawn of
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Figure 5.8.: topological characters (Euler (picture by Emanuel Handmann),
Poincaré (picture by Eugéne Pirou), Blorx)

topology, Poincaré established parts of the terminology of classical Algebraic
Topology and and proved homotopy invariance of the Euler characteristic.

5.3.2 A Homological Description

The little topological miracle that the Euler characteristic is independent
of the chosen CW-structure was discovered by Poincaré (Theorem 5.3.5).
In order to formulate this result, we introduce the classical notion of Betti
numbers:

Definition 5.3.3 (Betti numbers). Let X be a finite CW-complex and let R
be a noetherian ring with unit that admits a suitable notion rkR of rank
for finitely generated R-modules (i.e, rkR(Rn) = n for all n ∈ N and rkR is
additive for all short exact sequences of finitely generated R-modules; such a
notion of rank exists for principal ideal domains/fields). For n ∈ N, the n-th
Betti number of X with R-coefficients is defined as

bn(X;R) := rkRHn(X;R) ∈ N.

We also abbreviate the n-th Betti number of X by

bn(X) := bn(X;Z).

Example 5.3.4 (Betti numbers of real projective spaces). For instance, we have
(Example 5.2.10, Theorem 5.2.13)

b2(RP 2;Z) = 0 6= 1 = b2(RP 2;Z/2).

Even though Betti numbers for different coefficients can be different, their
alternating sum always leads to the Euler characteristic:
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Theorem 5.3.5 (homotopy invariance of the Euler characteristic). Let X be
a finite CW-complex and let R be a noetherian ring with unit that admits a
suitable notion rkR of rank (Definition 5.3.3). Let X be a finite CW-complex.

1. Then, (and this sum is finite in view of Corollary 5.2.16)

χ(X) =
∑

n∈N
(−1)n · bn(X;R).

2. In particular: If Y is a finite CW-complex with X 'Top Y , then

χ(X) = χ(Y ).

Therefore, the Euler characteristic is independent of the chosen (finite)
CW-structure(!).

Proof. The second part follows from the first part (because singular homology
and thus also Betti numbers are homotopy invariant).

The first part is an exercise in linear algebra: We have (where we abbreviate
singular homology with R-coefficients by h)

χ(X) =
∑

n∈N
(−1)n · cn(X)

=
∑

n∈N
(−1)n · rkR Chn(X) (Proposition 5.2.5)

=
∑

n∈N
(−1)n · rkRHn

(
Chn(X)

)
(dimension formula/additivity of rkR)

=
∑

n∈N
(−1)n · rkRHn(X;R) (Theorem 5.2.13)

=
∑

n∈N
(−1)n · bn(X;R),

as claimed.

Example 5.3.6 (Euler characteristic of spheres and projective spaces). Spheres
and real projective spaces admit finite CW-structures (Example 5.1.4, Ex-
ample 5.2.10). We can compute their Euler characteristic, for instance, via
the integral Betti numbers. Hence, for all n ∈ N, we have

χ(Sn) =

{
0 if n is odd

2 if n is even,

χ(RPn) =

{
0 if n is odd

1 if n is even.
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K3,3 K5

Figure 5.9.: the (non-planar) graphs K3,3 and K5

Example 5.3.7 (Euler’s formula for CW-structures). By Theorem 5.3.5, for each
(finite, 2-dimensional) CW-structure on S2 with v vertices (0-cells), e edges
(1-cells), and f faces (2-cells), we have

v − e+ f = χ(S2) = 2.

Classical examples of applications of this formula (which is also the origin of
the more general Euler characteristic) are:

• The classification of Platonic solids (Corollary 5.3.8).

• Non-planarity results for certain graphs, e.g., for K5 and K3,3 (Fig-
ure 5.9) [11, Chapter 4.2].

• Colouring theorems for planar graphs [11, Chapter 5.1].

Corollary 5.3.8 (combinatorics of regular polyhedra). Let P ⊂ R3 be a convex,
regular, 3-dimensional polyhedron with v vertices, e edges, and f facets. Then
(v, e, f) is one of the following triples:

v e f has the combinatorics of

4 6 4 tetrahedron
6 12 8 octahedron
8 12 6 hexahedron (cube!)

20 30 12 dodecahedron
12 30 20 icosahedron

Proof. Elementary geometry shows that ∂P ∼=Top S
2 and that the structure of

vertices, edges, and facets defines a CW-structure on S2 (check!). Therefore,
by Example 5.3.7,

v − e+ f = χ(S2) = 2.

Because P is regular, there exist m,n ∈ N≥3 with the following properties:

• Each facet of P has exactly m vertices/edges.

• At each vertex of P exactly n edges/facets meet.
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As every edge is the edge of exactly two facets and as every edge connects
exactly two vertices, we obtain

m · f
2

= k and
n · e

2
= k.

Thus, 2 = e− k + f = 2 · k/n− k + 2 · k/m, and so

1

2
<

1

k
+

1

2
=

1

n
+

1

m
.

In particular, (m,n) has to be one of the following pairs:

(3, 3), (3, 4), (4, 3), (3, 5), (5, 3).

These choices result in the listed possibilities for (e, k, f).

Moreover, Euclidean geometry shows that each of these combinatorial
types is realised only by the regular polyhedron listed above.

Outlook 5.3.9 (classification of surfaces). The Euler characteristic can be used
to distinguish the different homotopy types/homeomorphism types/diffeo-
morphism types of oriented closed connected surfaces [51, Chapter I.8].

Outlook 5.3.10 (1, 2, 3, . . . ,∞-category). The Euler characteristic offers the
opportunity to explain a general abstraction scheme:

• Level 0: A numerical invariant (Euler characteristic).

• Level 1: An algebraic description of this numerical invariant (Euler
characteristic via Betti numbers).

• Level 2: A description in terms of a homotopy invariant functor (Euler
characteristic via singular homology).

• Level 3: A description in terms of a functor with refined homotopy
invariance properties (Euler characteristic via a chain complex- or
spectra-valued homology theory).

...

• Level ω: A description in terms of a homotopy invariant functor in
the realm of ∞-categories (which organise the overall bookkeeping of
homotopies between homotopies between homotopies . . . ).

Outlook 5.3.11 (alternating sums). The fact that alternating sums (as in
the definition of the Euler characteristic) tend to have better topological
properties than the corresponding unsigned sums is a general principle in
topology. For example, this also occurs in the Lefschetz number and index
theorems.
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5.3.3 Divide and Conquer

When computing Euler characteristics, the following inheritance properties
turn out to be useful.

Proposition 5.3.12 (Euler characteristic, inheritance properties).

1. If X and Y are finite CW-complexes, then

χ(X × Y ) = χ(X) · χ(Y ).

2. Let

A
f
//

i

��

B

j

��

X
g
// Y

be a pushout in Top, where A, B, and X are finite CW-complexes,
where i : A −→ X is the inclusion as a subcomplex and f : A −→ B is
a cellular map. Then,

χ(Y ) = χ(X) + χ(B)− χ(A)

3. Let X be a finite CW-complex and p : Y −→ X be a finite covering with
d ∈ N sheets. Then,

χ(Y ) = d · χ(X).

Proof. In each case, we first have to establish that the spaces in question
admit a (finite) CW-structure. Then, carefully counting the open cells in
these CW-structures and simple computations finish the proof.

Ad 1. Because X and Y are finite CW-complexes, the filtration

( n⋃

k=0

Xk × Yn−k
)
n∈N

is a finite CW-structure on X × Y (check!). Therefore,

cn(X × Y ) =

n∑

k=0

ck(X) · cn−k(Y )

for all n ∈ N (check!), and so a straightforward calculation shows that

χ(X × Y ) = χ(X) · χ(Y ).
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Ad 2. The filtration
(
g(Xn)∪ j(Bn)

)
n∈N is a CW-structure on Y (check!).

Therefore, we obtain cn(Y ) = cn(X) + cn(B)− cn(A) for all n ∈ N (check!).
In particular, χ(Y ) = χ(X) + χ(B)− χ(A).

Ad 3. In this case, the filtration
(
p−1(Xn)

)
n∈N is a finite CW-structure

on Y (Exercise) and cn(Y ) = d · cn(X) for all n ∈ N (check!). Hence, χ(Y ) =
d · χ(X).

5.3.4 Application: Nielsen–Schreier, Quantitatively

We conclude with a refined version of the Nielsen–Schreier theorem (Theo-
rem 2.3.52):

Corollary 5.3.13 (Nielsen–Schreier theorem, quantitative version). Let F be a
free group of finite rank n ∈ N and let G ⊂ F be a subgroup of finite index.
Then G is free of rank

[F : G] · (n− 1) + 1.

Proof. We proceed as in the topological proof of the Nielsen–Schreier theorem
(Theorem 2.3.52) and relate the ranks of the free groups in question to the
Euler characteristic of one-dimensional complexes.

Let S ⊂ F be a free generating set of F . We consider

(X,x0) :=
∨

S

(S1, 1)

with the obvious CW-structure (having a single 0-cell and |S| open 1-cells).
Then π1(X,x0) ∼=Group F (Example 2.2.14).

By the classification theorem of coverings (Theorem 2.3.43), there exists
a connected covering p : (Y, y0) −→ (X,x0) associated with the subgroup
of π1(X,x0) that corresponds toG ⊂ F . In particular, we have π1(Y, y0) ∼=Group

G and the covering p is [F : G]-sheeted.
We now relate the ranks to the Euler characteristic: Because |S| = rkF =

n is finite, X is a finite CW-complex and

χ(X) = 1− n = 1− rkF.

Then also Y is a finite CW-complex (Proposition 5.3.12) and

χ(Y ) = [F : G] · χ(X) = [F : G] · (1− n).

Moreover, χ(Y ) = 1−m, where m is the rank of G (this can be seen by con-
tracting a spanning tree of Y (Example A.7.12) or by inductively computing
the Euler charcteristic and the fundamental group of (Y, y0)). Therefore,

(1−m) = [F : G] · (1− n)

(which is the formula to remember!) and so m = [F : G] · (n− 1) + 1.
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A.2 A. Appendix

A.1 Point-Set Topology

We collect basic notions and facts from point-set topology, as taught in intro-
ductory courses. Detailed explanations, proofs, and examples can be found
in all books on point-set topology [28, 29, 55, 63].

A.1.1 Topological Spaces

The category of topological spaces consists of topological spaces and contin-
uous maps between them. The main idea of topological spaces is to express
“being close” not by distances but by a system of subsets, the so-called open
subsets.

Definition A.1.1 (topological space, topology, open, closed). A topological
space is a pair (X,T ) consisting of a set X and a topology T on X, i.e.,
T is a subset of the power set P (X) of X with the following properties:

• We have ∅ ∈ T and X ∈ T .

• If U ⊂ T , then
⋃
U ∈ T (i.e., T is closed with respect to taking unions).

• If U ⊂ T is finite, then
⋂
U ∈ T (i.e., T is closed with respect to taking

finite intersections).

The elements of T are called open sets (with respect to T ); if A ⊂ X and
X \A ∈ T , then A is closed (with respect to T ).

Convention A.1.2. In Algebraic Topology, whenever the topology T on a
set X is clear from the context, we will abuse notation and also speak of the
“topological space X” instead of the “topological space (X,T )”. This slight
imprecision will save us from a lot of notational clutter.

That the axioms for open sets do make sense can be easily seen in the case
of topologies induced by a metric:

Proposition A.1.3 (topology induced by a metric). Let (X, d) be a metric
space. Then

T :=
{
U ⊂ X

∣∣ ∀x∈U ∃ε∈R>0
U(x, ε) ⊂ U

}

is a topology on X, the metric topology induced by d. Here, for x ∈ X
and ε ∈ R>0, we write

U(x, ε) :=
{
y ∈ X

∣∣ d(y, x) < ε
}

for the open ε-ball around x in (X, d).
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Remark A.1.4.

• For Rn, the notion of open sets with respect to the topology induced by
the Euclidean metric, coincides with the standard notion of open sets
(as considered in the Analysis courses). We will call this topology the
standard topology on Rn.

• Moreover: If (X, d) is a metric space and A ⊂ X, then A is closed (with
respect to the metric topology) if and only if it is sequentially closed.

Caveat A.1.5. Not every topological space is metrisable! (Corollary A.1.31).

Example A.1.6 (extremal topologies). Let X be a set. Then there are two
extremal topologies on X:

• The set P (X) is a topology on X, the discrete topology.

• The set {∅, X} is a topology on X, the trivial topology (or indiscrete
topology).

Remark A.1.7 (exotic topological spaces). In Algebraic Topology, we will usu-
ally only work with “nice” topological spaces (that are built from balls,
spheres, etc.) and only consider situations where the point-set topology is
tame. In contrast, topological spaces that arise naturally in Algebraic Geom-
etry usually are more exotic (e.g., the Zariski topology on SpecZ).

Moreover, we will use the following generalisations of the corresponding
notions for metric spaces:

Definition A.1.8 ((open) neighbourhood). Let (X,T ) be a topological space
and let x ∈ X.

• A subset U ⊂ X is an open neighbourhood of x, if U is open and x ∈ U .

• A subset U ⊂ X is a neighbourhood of x if there exists an open neigh-
bourhood V ⊂ X of x with V ⊂ U .

Definition A.1.9 (closure, interior, boundary). Let (X,T ) be a topological
space and let Y ⊂ X.

• The interior of Y is

Y ◦ :=
⋃
{U | U ∈ T and U ⊂ Y },

i.e., Y ◦ is the largest (with respect to inclusion) open subset of X that
is contained in Y .

• The closure of Y is

Y :=
⋂
{A | X \A ∈ T and Y ⊂ A},

i.e., Y is the smallest (with respect to inclusion) closed subset of X that
contains Y .
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XU ∩ Y
Y

U

XUX x

Y

UY
y X × YU

Figure A.1.: The subspace topology/product topology, schematically

• The boundary of Y is

∂Y := Y ∩ (X \ Y ).

Caveat A.1.10 (∂). The symbol ∂ is heavily overloaded in Algebraic Topol-
ogy. Most uses relate to some underlying geometric notion of boundary, but
one should always make sure to understand what the actual meaning of ∂ is
in the given context.

Two elementary constructions of topological spaces are subspaces and
products; these constructions are illustrated in Figure A.1:

Remark A.1.11 (subspace topology). Let (X,T ) be a topological space and
let Y ⊂ X be a subset. Then

{U ∩ Y | U ∈ T}

is a topology on Y , the subspace topology on Y . If T on X is induced by a
metric d, then the subspace topology on Y is the topology induced by the
restriction of the metric d to Y .

Remark A.1.12 (product topology). Let (X,TX) and (Y, TY ) be topological
spaces. Then

{U ⊂ X × Y | ∀(x,y)∈U ∃UX∈TX
∃UY ∈TY

(x, y) ∈ UX × UY ⊂ U}

is a topology on X×Y , the product topology. The standard topology on R2 =
R × R coincides with the product topology of the standard topology on R
(on both factors). Moreover, the product topology satisfies (together with the
canonical projections onto the factors) the universal property of the product
in the category of topological spaces (Remark 1.1.4).

Remark A.1.13 (general products). Let (Xi, Ti)i∈I be a family of topological
spaces and let X :=

∏
i∈I Xi. Then the product topology on X is the coarsest
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topology that makes the canonical projections (X −→ Xi)i∈I continuous.
More explicitly: A subset U ⊂ X is open if and only if for every x ∈ U there
exists a finite set J ⊂ I and open subsets Uj ⊂ Xj for every j ∈ J with

x ∈
∏

j∈J
Uj ×

∏

i∈I\J
Xi ⊂ U.

This product topology satisfies (together with the canonical projections onto
the factors) the universal property of the product in the category of topolog-
ical spaces.

A.1.2 Continuous Maps

Continuous maps are structure preserving maps in the world of topological
spaces.

Definition A.1.14 (continuous). Let (X,TX) and (Y, TY ) be topological spaces.
A map f : X −→ Y is continuous (with respect to TX and TY ), if

∀U∈TY
f−1(U) ∈ TX ,

i.e., if preimages of open sets are open.

Remark A.1.15.

• For metric spaces, continuity with respect to the topology induced by
the metric coincides with the ε-δ-notion of continuity.

• If X is a set and T , T ′ are topologies on X, then the identity
map idX : X −→ X is continuous as a map from (X,T ) to (X,T ′)
if and only if T ′ ⊂ T (i.e., if T ′ is coarser than T ).

• The maps +, ·,− : R2 −→ R and / : R× (R \ {0}) −→ R are continuous
with respect to the standard topology.

• If (X,T ) is a topological space and Y ⊂ X, then the inclusion Y ↪→ X
is continuous with respect to the subspace topology on Y .

• Constant maps are continuous.

Proposition A.1.16 (inheritance properties of continuous maps). Let (X,TX),
(Y, TY ), and (Z, TZ) be topological spaces and let f : X −→ Y , g : Y −→ Z
be maps.

1. If f and g are continuous, then also g ◦ f : X −→ Z is continuous.

2. If f is continuous and A ⊂ X, then the restriction f |A : A −→ Y is
continuous (with respect to the subspace topology on A).
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3. The map f : X −→ Y is continuous if and only if f : X −→ f(X) is
continuous (with respect to the subspace topology on f(X)).

Proposition A.1.17 (glueing principle for continuous maps). Let (X,TX) and
(Y, TY ) be topological spaces, let A,B ⊂ X be closed subsets with A∪B = X,
and let f : A −→ Y and g : B −→ Y be continuous maps (with respect to the
subspace topology on A and B) with f |A∩B = g|A∩B. Then the map

f ∪A∩B g : X −→ Y

x 7−→
{
f(x) if x ∈ A,
g(x) if x ∈ B

is well-defined and continuous.

Isomorphisms in the category of topological spaces are called homeomor-
phisms:

Definition A.1.18 (homeomorphism). Let (X,TX) and (T, TY ) be topological
spaces. A continuous map f : X −→ Y is a homeomorphism if there exists a
continuous map g : Y −→ X such that

g ◦ f = idX and f ◦ g = idY .

If there exists a homeomorphism X −→ Y , then X and Y are homeomorphic,
in symbols: X ∼=Top Y .

Caveat A.1.19. In general, not every bijective continuous map is a homeo-
morphism!

Intuitively, topological spaces are homeomorphic if and only if they can
be deformed into each other without “tearing” or “glueing”.

A.1.3 (Path-)Connectedness

An important property of continuous functions [0, 1] −→ R is the intermedi-
ate value theorem. More generally, in the context of topological spaces, this
phenomenon can be described in terms of path-connectedness and connect-
edness.

Definition A.1.20 (path, path-connected). Let (X,T ) be a topological space.

• A path in X is a continuous map γ : [0, 1] −→ X (with respect to the
standard topology on [0, 1] ⊂ R). Then γ(0) is the start point and γ(1)
is the end point of γ. The path γ is closed if γ(0) = γ(1).

• The space X is path-connected, if for all x, y ∈ X there exists a
path γ : [0, 1] −→ X with γ(0) = x and γ(1) = y.
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Remark A.1.21.

• The unit interval [0, 1] is path-connected.

• For every n ∈ N, the space Rn is path-connected (with respect to the
standard topology).

• If X is a set with |X| ≥ 2, then X is not path-connected with respect
to the discrete topology.

Proposition A.1.22 (continuity preserves path-connectedness). Let (X,TX)
and (Y, TY ) be topological spaces.

1. Let f : X −→ Y be a continuous map. If X is path-connected, then also
f(X) is path-connected (with respect to the subspace topology inherited
from Y ).

2. In particular, path-connectedness is a homeomorphism invariant: If X
and Y are homeomorphic, then X is path-connected if and only if Y is
path-connected.

Example A.1.23. Let n ∈ N. We can use Proposition A.1.22 (and a little trick,
involving the removal of a single point) to show that R is homeomorphic to Rn
if and only if n = 1 (Example 1.1.18).

A meaningful weaker version of path-connectedness is connectedness. A
topological space is connected, if the only way to partition X into open sets
is the trivial way.

Definition A.1.24 (connected). A topological space (X,TX) is connected, if
for all U, V ∈ TX with U ∪ V = X and U ∩ V = ∅ we have U = ∅ or V = ∅.
Remark A.1.25. The unit interval [0, 1] is connected. If n ∈ N and U ⊂ Rn
is open, then U is path-connected if and only if U is connected.

Proposition A.1.26 (path-connectedness implies connectedness). Every path-
connected topological space is connected.

Caveat A.1.27. There exist topological spaces that are connected but not
path-connected: The standard example is the wild sinus

{
(x, sin 1/x)

∣∣ x ∈ (0, 1]
}
∪ {0} × [−1, 1] ⊂ R2

(with the subspace topology of R2).

The generalisation of the intermediate value theorem then reads as follows:

Proposition A.1.28 (continuity preserves connectedness). Let (X,TX) and
(Y, TY ) be topological spaces.

1. Let f : X −→ Y be a continuous map. If X is connected, then also f(X)
is connected (with respect to the subspace topology inherited from Y ).
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2. In particular, connectedness is a homeomorphism invariant: If X and
Y are homeomorphic, then X is connected if and only if Y is connected.

In Algebraic Topology, one also studies higher connectedness properties
(in the context of higher homotopy groups).

A.1.4 Hausdorff Spaces

It is easy to construct weird and unintuitive topological spaces; it is much
harder to ensure with simple properties that topological spaces are reasonably
well-behaved. A key example is the folllowing separation property:

Definition A.1.29 (Hausdorff). A topological space (X,TX) is Hausdorff, if
every two points can be separated by open sets, i.e., if for all x, y ∈ X
with x 6= y, there exist open subsets U, V ⊂ X such that

x ∈ U, y ∈ V and U ∩ V = ∅.

Proposition A.1.30 (metric spaces are Hausdorff). Let (X, d) be a metric
space. Then the metric topology on X is Hausdorff.

Corollary A.1.31. If X is a set with |X| ≥ 2, then the trivial topology on X
is not induced by a metric on X.

Proposition A.1.32. Being Hausdorff is a homeomorphism invariant: If two
topological spaces are homeomorphic, then one of them is Hausdorff if and
only if they are both Hausdorff.

There is a zoo of further separation properties of topological spaces [63].
Whenever possible, we will avoid these pitfalls.

A.1.5 Compactness

Roughly speaking, compactness is a finiteness property of topological spaces,
defined in terms of open covers.

Definition A.1.33 (compact). A topological space (X,T ) is compact, if every
open cover of X contains a finite subcover. More precisely: The topological
space (X,T ) is compact, if for every family (Ui)i∈I of open subsets of X
with X =

⋃
i∈I Ui there exists a finite subset J ⊂ I with X =

⋃
i∈J Ui.

Caveat A.1.34 (cover/Überdeckung). Sometimes, also the term “covering”
is used instead of “cover”. We will always use “cover” (German: Überdeck-
ung; family of subsets of a spaces whose union is the given space) in order
to distinguish it from the “covering” notion in covering theory (German:
Überlagerung; a map with special properties).
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Remark A.1.35. Let X be a set.

• Then X is compact with respect to the trivial topology.

• Moreover, X is compact with respect to the discrete topology if and
only if X is finite.

The unit interval [0, 1] is compact with respect to the standard topology;
this implies that every continuous map [0, 1] −→ R has a minimum and a
maximum. More generally, we have:

Proposition A.1.36 (generalised maximum principle). Let (X,TX) and (Y, TY )
be topological spaces.

1. Let f : X −→ Y be a continuous map. If X is compact, then f(X) is
compact (with respect to the subspace topology of Y ).

2. In particular, compactness is a homeomorphism invariant: If X and Y
are homeomorphic, then X is compact if and only if Y is compact.

In Euclidean spaces, we have a simple characterisation of compact sets:

Theorem A.1.37 (Heine-Borel). Let n ∈ N and let A ⊂ Rn (endowed with
the subspace topology of the standard topology on Rn). Then the following are
equivalent:

1. The space A is compact.

2. The set A is closed and bounded with respect to the Euclidean metric
on Rn.

3. The set A is sequentially compact with respect to the Euclidean metric
on Rn (i.e., every sequence in A has a subsequence that converges to a
limit in A).

Caveat A.1.38. In fact, every compact subspace of a metric space is closed
and bounded. However, in general, the converse is not true in general metric
spaces! For example, infinite sets are closed and bounded with respect to the
discrete metric, but not compact.

More generally, we have the following relationship between closedness and
compactness (which leads to a highly useful sufficient homeomorphism crite-
rion).

Proposition A.1.39 (closed vs. compact). Let (X,T ) be a topological space
and let Y ⊂ X.

1. If X is compact and Y is closed in X, then Y is also compact (with
respect to the subspace topology).

2. If X is Hausdorff and Y is compact (with respect to the subspace topol-
ogy), then Y is closed in X.
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Corollary A.1.40 (compact-Hausdorff trick). Let (X,TX) be a compact topo-
logical space, let (Y, TY ) be a Hausdorff topological space, and let f : X −→ Y
be continuous and bijective. Then f is a homeomorphism(!).

Proof. Because f is bijective, it admits a set-theoretic inverse g : Y −→ X.
It suffices to show that g is continuous (i.e., that g-preimages of open/closed
sets are open/closed). Equivalently, it suffices to show that f -images of closed
subsets of X are closed in Y .

Let A ⊂ X be a closed subset. Because X is compact, also A is compact
(Proposition A.1.39). Hence, f(A) is compact by the generalised maximum
principle (Proposition A.1.36). As Y is Hausdorff, this implies that f(A) is
closed in Y (Proposition A.1.39), as desired.

Finally, we briefly discuss the preservation of compactness under taking
products:

Proposition A.1.41 (product of two compact spaces). Let (X,TX) and (Y, TY )
be compact topological spaces. Then the product X×Y is compact with respect
to the product topology.

Caveat A.1.42 (the Tychonoff Theorem). The Tychonoff Theorem

Every product (including infinite products!) of compact spaces is com-
pact.

is equivalent to the Axiom of Choice(!) (whence also to Zorn’s Lemma and
the Well-Ordering Theorem) [27, Chapter 4.8].
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A.2 Homotopy Flipbooks

We can illustrate homotopies using flipbooks. The following two pages contain
two such examples.



The unloopy loop

A homotopy

0 1 2

3 4 5 6

7 8 9 10

11 12 13 14

15 16 17 18

19 20 21 22

23 24 25 26

27 28 29 30



The unstraight line

A homotopy

0 1 2

3 4 5 6

7 8 9 10

11 12 13 14

15 16 17 18

19 20 21 22

23 24 25 26

27 28 29 30
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A.3 Cogroup Objects and Group Structures

In the following, we briefly sketch a more conceptual approach to the group
structure on π1, using the category theoretic concept of a cogroup object. The
key observation is that the proof that concatenation of representing loops in-
duces a group structure on π1 (Proposition 2.1.3) only uses the corresponding
properties of (S1, e1). More precisely, (S1, e1) is a cogroup object in Top*h.
We explain these terms in more detail:

In the language of category theory, a “group structure on π1” is a fac-
torisation of the functor π1 : Top*h −→ Set over the category Group and the
forgetful functor Group −→ Set:

Group

forget
��

Top*h π1

//

?
::

Set

Such a factorisation corresponds to a cogroup object structure on (S1, e1). We
obtain the notion of a cogroup object by first formulating the definition of the
notion of a group only through morphisms (instead of individual elements)
and then dualising everything (Figure A.2).

Definition A.3.3 (cogroup object). Let C be a category that contains an ob-
ject ∗ that is both initial and terminal. A cogroup object in C is a triple (G, c, i)
consisting of an object in G (with the property that the coproducts G t G
and GtGtG exist in C) and morphisms c ∈ MorC(G,GtG) (the comultipli-
cation) and i ∈ MorC(G,G) satisfying the following properties (Figure A.3):

• We have (idG t e) ◦ c = idG = (e t idG) ◦ c, where e ∈ MorC(G,G)
denotes the unique morphism that factors through ∗.

• We have (idG t i) ◦ c = e = (i t idG) ◦ c.

• Coassociativity. We have (c t idG) ◦ c = (idG tc) ◦ c.
(The morphisms involving “t” are the ones given by the universal properties
of the corresponding coproducts.)

Cogroup objects correspond in the following sense to group structures on
the corresponding represented functors:

Theorem A.3.4 (cogroup objects and functorial group structures). Let C be
a category that contains an object that is both intial and terminal and let
G be an object in C for which the coproducts G t G and G t G t G exist
in C. Then the functor MorC(G, · ) : C −→ Set factors over the forgetful
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Definition A.3.1 (group). A group is a pair (G,n), where G is a set and
m : G×G −→ G is a map with the following properties:

• There exists an e ∈ G with

∀g∈G m(g, e) = g = m(e, g).

(This property uniquely determines e.)

• For every g ∈ G there exists an i(g) ∈ G with

m
(
g, i(g)

)
= e = m

(
i(g), g

)
.

(In combination with associativity, we obtain tha i(g) is determined
uniquely by this property.)

• (Associativity). For all g, h, k ∈ G, we have

m
(
m(g, h), k

)
= m

(
g,m(h, k)

)
.

In other words, we have the following equations:

m ◦ (idG, e) = idG = m ◦ (e, idG)

m ◦ (idG, i) = e = m ◦ (i, idG)

m ◦ (m× idG) = m ◦ (idG×m).

Definition A.3.2 (group object). Let C be a category that contains an ob-
ject ∗ that is both initial and terminal (i.e., for every X ∈ Ob(C), the
sets MorC(X, ∗) and MorC(∗, X) both contain only a single element). A group
object in C is a triple (G,m, i) consisting of an object G in C (with the prop-
erty that the products G × G and G × G × G exist in C) and morphisms
m ∈ MorC(G × G,G) and i ∈ MorC(G,G) satisfying the following proper-
ties:

• We have m ◦ (idG, e) = idG = m ◦ (e, idG), where e ∈ MorC(G,G)
denotes the unique morphism that factors through ∗.

• We have m ◦ (idG, i) = e = m ◦ (i, idG).

• Associativity. We have m ◦ (m× idG) = m ◦ (idG×m).

(The morphisms involving “( · , · )” or “×” are the ones given by the universal
properties of the corresponding products.) I.e., the following diagrams are
commutative:

G×G
m

##
G

idG

//

(idG,e)
;;

(e,idG) ##

G

G×G
m

;;

G×G
m

##
G

e
//

(idG,i)
;;

(i,idG) ##

G

G×G
m

;;

G×G
m

""
G×G×G

m×idG

<<

idG×m ""

G

G×G
m

<<

Figure A.2.: Groups and group objects

A.15
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G tG
idG te

##
G

idG

//

c

;;

c
##

G

G tG
etidG

;;

G tG
idG ti

##
G

e
//

c

;;

c
##

G

G tG
itidG

;;

G tG
idG tc

##
G

c

;;

c
##

G tG tG

G tG
ctidG

;;

Figure A.3.: Commutative diagrams encoding the axioms for cogroup objects

functor Group −→ Set if and only if G admits a cogroup object structure
in C.

Sketch of proof. If MorC(G, · ) factors over Group, then the morphisms

mGtG(i1, i2) ∈ MorC(G,G tG)

iG ∈ MorC(G,G)

turn G into a cogroup object in C; here, i1, i2 : G −→ G t G denote the
structure morphisms of the coproduct G t G, the map mGtG is the group
multiplication on MorC(G,G t G) given by the factorisation over Group,
and iG is the inversion map on MorC(G,G t G) given by the factorisation
over Group.

Conversely, if (G, c, i) is a cogroup object in C, then for all X ∈ Ob(C)
the set MorC(G,X) is a group with respect to the multiplication

MorC(G,X)×MorC(G,X) −→ MorC(G,X)

(g, h) 7−→ (g t h) ◦ c

(and the morphisms in C induce group homomorphisms). This results in the
desired factorisation of MorC(G, · ) over the forgetful functor Group −→
Set.

We apply these general concepts to π1:

Proposition A.3.5 ((S1, e1) as cogroup object in Top*h). Let i1, i2 : (S1, e1) −→
(S1, e1) ∨ (S1, e1) be the canonical inclusions into the one-point union, let

c : (S1, e1) −→ (S1, e1) ∨ (S1, e1)

[t] 7−→
{
i1([2 · t]) if t ∈ [0, 1/2]

i2([2 · t− 1]) if t ∈ [1/2, 1],

and let
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i : (S1, e1) −→ (S1, e1)

[t] 7−→ [1− t].

Then c and i are well-defined pointed continuous maps and (S1, [c]∗, [i]∗) is
a cogroup object in Top*h.

Sketch of proof. The coproduct in the category Top*h is given by the one-
point union (and the pointed homotopy classes of the canonical inclusions).
In particular, all coproducts exist in Top*h.

Let e : (S1, e1) −→ (S1, e1) be the constant pointed map. Then

(id(S1,e1) ∨e) ◦ c '∗ id(S1,e1) '∗ (e ∨ id(S1,e1)) ◦ c,
(id(S1,e1) ∨i) ◦ c '∗ e '∗ (i ∨ id(S1,e1)) ◦ c,

(id(S1,e1) ∨c) ◦ c '∗ (c ∨ id(S1,e1)) ◦ c;

corresponding homotopies can be written down explicitly.

Corollary A.3.6 (fundamental group). Hence, the functor

π1 = [(S1, e1), · ]∗ : Top*h −→ Set

factors over the forgetful functor Group −→ Set.
The resulting functor Top*h −→ Group is also denoted by π1. The group

structures from Proposition 2.1.3 and Proposition A.3.5 coincide.

Translating the cogroup object structure on (S1, e1) in Top*h via π1

into the language of group theory shows that the cogroup object structure
on (S1, e1) is essentially unique [1, Theorem 7.3]. Similar arguments also show
that S1 does not admit a cogroup object structure in Toph.
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A.4 Amalgamated Free Products

We briefly review some concepts from group theory that allow us to construct
coproducts and pushouts of groups explicitly.

A.4.1 The Free Group of Rank 2

We start with an explicit description of the free group of rank 2, using reduced
words [39, Chapter 3.3, Chapter 2.2]. Roughly speaking, this group is the
group generated by two different elements with the least possible relations
between these elements.

Definition A.4.1 (group of reduced words). Let a, b, â, b̂ four distinct elements.

Let W be the set of words (i.e., finite sequences) over S := {a, b, â, b̂}.

• Let n ∈ N and let x1, . . . , xn ∈ S. The word x1 . . . xn ∈W is reduced if

xj+1 6= x̂j and x̂j+1 6= xj

holds for all j ∈ {1, . . . , n − 1}. In particular, the empty word ε is
reduced.

• We write F (a, b) for the set of all reduced words over S.

• On F (a, b), we define a composition by concatenation and reduction:

· : F (a, b)× F (a, b) −→ F (a, b)

(x1 . . . xn, xn+1 . . . xm) 7−→ x1 . . . xn−rxn+1+r . . . xn+m.

Here,

r := max
{
k ∈ {0, . . . ,min(n,m− 1)}

∣∣ ∀j∈{0,...,k−1} xn−j = x̂n+1+j

∨ x̂n−j = xn+1+j

}
.

Example A.4.2. In the situation of the previous definition, the word abâb̂ is
reduced; the word baâb is not reduced. The elements a and â are inverse to
each other with respect to “·”; analogously, also b and b̂ are inverse to each
other. Hence, one usually writes a−1 and b−1 instead of â and b̂, respectively.

Proposition A.4.3 (free group of rank 2).

1. The set F (a, b) is a group with respect to the composition specified in
the previous definition.
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2. The set {a, b} is a free generating set of F (a, b), i.e., the following
universal property is satisfied:

For every group H and every map f : {a, b} −→ H, there exists a unique
group homomorphism f : F (a, b) −→ H with f |{a,b} = f .

{a, b} f

map
//

incl

��

H

F (a, b)

∃!f hom

<<

3. In other words,
1 //

��

Z

1 7→b
��

Z
17→a

// F (a, b)

is a pushout in Group.

Proof. The first part follows from a straightforward computation (associativ-
ity is not obvious!) [39, Chapter 3.3].

The second part (and the third part) can be verified directly by hand
(check!).

A.4.2 Free Products of Groups

More generally, we can consider the free product of a family of groups. Again,
we are looking for a group generated by the given groups with as few relations
between them as possible.

Definition A.4.4 (free product of groups). Let (Gi)i∈I be a family of groups;
for g ∈ ⊔i∈I(Gi \ {1}) let i(g) ∈ I be the unique index with g ∈ Gi(g).

• A finite (possibly empty) sequence (s1, . . . , sn) with n ∈ N of non-trivial
elements of

⊔
i∈I Gi is a reduced word (over the family (Gi)i∈I), if

∀j∈{1,...,n−1} i(sj) 6= i(sj+1).

• We write Fi∈IGi for the set of all reduced words over the fam-
ily (Gi)i∈I .

• On Fi∈IGi, we define a composition by concatenation/reduction:

· : Fi∈IGi ×Fi∈IGi −→Fi∈IGi

(
s = (s1, . . . , sn), t = (t1, . . . , tm)

)
7−→

{
(s1, . . . , sn−k(s,t), tk(s,t)+1, . . . , tm) À

(s1, . . . , sn−k(s,t) · tk(s,t)+1, . . . , tm) Á
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Here, k(s, t) ∈ {0, . . . ,min(n,m)} is the biggest k ∈ {0, . . . ,min(n,m)}
satisfying

∀j∈{1,...,k} i(sn−j+1) = i(tj) ∧ sn−j+1 = t−1
j .

Case À occurs if i(sn−k(s,t)) 6= i(tk(s,t)+1); case Á occurs if i(sn−k(s,t)) =
i(tk(s,t)+1).

• We call Fi∈IGi, together with this composition, the free product of the
family (Gi)i∈I .

The free product G :=Fi∈IGi of a family (Gi)i∈I indeed is a group (again,
associativity is non-trivial!) and the canonical inclusions Gi −→ G are group
homomorphisms.

Free products are an explicit model of coproducts of groups:

Proposition A.4.5 (coproduct of groups). Let (Gi)i∈I be a family of groups.
Then Fi∈IGi, together with the canonical inclusions (Gi −→Fj∈IGj)i∈I , is
the coproduct of the family (Gi)i∈I in the category Group.

Proof. This can be shown by verifying the universal property (check!).

A.4.3 Amalgamated Free Products of Groups

“Glueing” groups along another group leads to the amalgamated free product:

Definition A.4.6 (amalgamated free product). Let G0, G1, and G2 be groups
and let i1 : G0 −→ G1 as well as i2 : G0 −→ G2 be group homomorphisms.
The associated amalgamated free product of G1 and G2 over G0 is defined by

G1 ∗G0
G2 := (G1 ∗G2)/N,

whereN ⊂ G1∗G2 is the smallest (with respect to inclusion) normal subgroup
of G1 ∗G2 that contains the set {i1(g) · i2(g)−1 | g ∈ G0}.

Caveat A.4.7. In group theory, usually only the case where the homomor-
phisms i1 and i2 both are injective is given the name “amalgamated free
product”. This case is special, because it admits a nice structure and normal
form theory [61].

Proposition A.4.8 (pushouts of groups). Let G0, G1, and G2 be groups and
let i1 : G0 −→ G1 as well as i2 : G0 −→ G2 be group homomorphisms. Let
j1 : G1 −→ G1 ∗G0

G2 and j2 : G2 −→ G1 ∗G0
G2 be the homomorphisms

induced by the canonical inclusions G1 −→ G1 ∗ G2 and G2 −→ G1 ∗ G2,
respectively. Then
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G0
i1 //

i2

��

G1

j1

��

G2
j2
// G1 ∗G0 G2

is a pushout in Group.

Proof. This can be shown by the same argument as in the construction of
the pushout of topological spaces (Proposition 1.1.14), using the universal
property of the free product and of quotient groups.

A.4.4 Free Groups

A related generalisation of F (a, b) are general free groups; the universal prop-
erty of free groups/free generating sets is a group-theoretic version of the
universal property of bases of vector spaces.

Definition A.4.9 (free generating set, free group, rank of a free group).

• Let G be a group. A subset S ⊂ G is a free generating set of G if the
following universal property is satisfied: The group G is generated by S
and for every group H and every map f : S −→ H there exists a unique
group homomorphism f : G −→ H with f |S = f .

• A free group is a group that contains a free generating set; the cardi-
nality of such a free generating set is the rank of the free group.

Caveat A.4.10. Not every group has a free generating set! For example, the
groups Z/2 and Z2 are not free (check!).

Comparing the corresponding universal properties establishes existence of
free groups of arbitrary rank:

Proposition A.4.11 (existence of free groups). Let S be a set, let G := FSZ
be the associated free product and for every s ∈ S let is : Z −→ G be the
inclusion of the s-th summand. Then {is(1) | s ∈ S} is a free generating set
of G.

Proof. We can translate the universal property of coproducts into the uni-
versal property of free generating sets (because the building blocks are the
groups Z, which are free of rank 1) (check!).

Proposition A.4.12 (invariance of rank of free groups). Let G and G′ be free
groups with free generating sets S and S′, respectively. Then G and G′ are
isomorphic if and only if |S| = |S′|.
Proof. This can be shown, for example, by looking at homomorphisms to Z/2
and a cardinality argument [39, Exercise 2.E.12].
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A.5 Group Actions

We briefly recall basic terminology of group actions (of discrete groups).
Group actions are a generalisation of the notion of symmetry:

Definition A.5.1 (group action). Let C be a category, let X be an object in C,
and let G be a group.

• The automorphism group of X in C is the group(!) AutC(X) (with
respect to composition in C) of all isomorphisms from X to X in C.

• A group action of G on X in C is a group homomorphism

G −→ AutC(X).

We also (sloppily) denote such an action by Gy X.

• A right action of G on X in C is a group anti-homomorphism

ϕ : G −→ AutC(X),

i.e., for all g, h ∈ G we have ϕ(g · h) = ϕ(h) ◦ϕ(g). We also denote this
by X x G.

Remark A.5.2 (group actions in Set and Top). Let G be a group and let X
be a set [a topological space]. A map ϕ : Gy X is a group action of G on X
in Set [in Top] if and only if the map

G×X −→ X

(g, x) 7−→ g · x :=
(
ϕ(g)

)
(x)

has the following properties:

• For every g ∈ G, the map g · · : X −→ X is a map of sets [a continuous
map]

• For all x ∈ X, we have e · x = x.

• For all x ∈ X and all g, h ∈ G, we have

(g · h) · x = g · (h · x).

[Group actions in Top are also called continuous actions.]

Elementary examples of group actions have been covered in the Algebra
course (Chapter III.1.2).
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Definition A.5.3 (free action, stabiliser, orbit, orbit space, transitive). Let Gy
X be a group action of G on X in Set [in Top].

• The action is free, if the following holds: For all x ∈ X and all g ∈
G \ {e}, we have g · x 6= x.

• Let x ∈ X. The stabiliser of the action at x is the subgroup

Gx := {g ∈ G | g · x = x} ⊂ G.

• For x ∈ X, we write

G · x := {g · x | g ∈ G} ⊂ X

for the orbit of x.

• The quotient space

G \X := {G · x | x ∈ X}

is the orbit space of this action. . [For actions in Top, we endow the
orbit space G \X with the quotient topology induced by the canonical
projection X −→ G \X.]

• The action is transitive, if |G \X| = 1, i.e., if all points in X lie in the
same orbit.

Analogously, we introduce the corresponding terms for right actions. The
orbit space of a right action X x G is denoted by X/G.

Caveat A.5.4. The quotient topology on the orbit space of a continuous
action can be terrible even if the group and the space acted upon are “nice”.
In order to have a “nice” quotient space, the action needs to have good
properties.
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A.6 Basic Homological Algebra

We collect basic notions and facts from homological algebra. Homological
algebra is the algebraic theory of [non-]exact sequences and functors that [do
not] preserve exactness.

For simplicity, we will only consider homological algebra in module cate-
gories (instead of general Abelian categories); in view of the Freyd–Mitchell
embedding theorem, this is not a substantial limitation.

Setup A.6.1. In the following, R will always be a (not necessarily commuta-
tive) ring with unit.

A.6.1 Exact Sequences

We briefly recall exact sequences; we will stick to left modules (but clearly
the analogous statements for right modules also hold).

Definition A.6.2 ((short) exact sequence).

• A sequence A
f
// B

g
// C of morphisms in RMod ist exact (at

the middle position B), if im f = ker g.

• A sequence

0 // A
f
// B

g
// C // 0

in RMod is a short exact sequence in RMod, if the sequence is exact at
all positions (i.e., f is injective, g is surjective, and im f = ker g).

• An N-indexed or Z-indexed sequence

· · · // Ak
fk // Ak−1

fk−1
// Ak−1

fk−1
// Ak−2

// · · ·

in RMod is exact, if it is exact at all positions.

Example A.6.3 (exact sequences). The sequences

x
� // (x, 0)

0 // Z // Z⊕ Z/2 // Z/2 // 0

(x, y)
� // y

and
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x � // 2 · x
0 // Z // Z // Z/2 // 0

x � // [x]

in ZMod are exact; it should be noted that the middle modules are not iso-
morphic even though the outer terms are isomorphic. The sequence

x
� // x

0 // Z // Z // Z // 0

x � // x

is not exact.

Caveat A.6.4. If S is a ring with unit, then additive functors RMod −→ SMod
in general do not map exact sequences to exact sequences. For example, tensor
product functors, in general, do not preserve exactness!

Remark A.6.5 (flatness). A right R-module M is flat, if the tensor product
functor M ⊗R · : RMod −→ ZMod is exact, i.e., it maps exact sequences to
exact sequences (Definition IV.3.2.15, Beispiel IV.3.2.16, Beispiel IV.3.2.18,
Lemma IV.3.4.7, Korollar IV.5.2.5, Satz IV.3.2.14). For example:

• The R-module R is flat.

• Direct sums of flat modules are flat. Therefore, all free modules are flat.
In particular: If R is a field, then every R-module is flat.

• Direct summands of flat modules are flat. Therefore, all projective mod-
ules are flat.

• Localisations are flat; e.g., Q is a flat Z-module.

• The Z-module Z/2 is not flat.

Particularly well-behaved exact sequences are the split short exact se-
quences:

Proposition A.6.6 (split exact sequence). Let

0 // A
i // B

p
// C // 0

be a short exact sequence in RMod. Then the following are equivalent:

1. There exists an R-module homomorphism r : C −→ B with p ◦ r = idC .

2. There exists an R-module homomorphism s : B −→ A with s ◦ i = idA.
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If these conditions hold, then the sequence above is a split exact sequence
in RMod, and

A⊕ C −→ B

(a, c) 7−→ i(a) + r(c)

B −→ A⊕ C
b 7−→

(
s(b), p(b)

)

are isomorphisms in RMod.

Proof. We first show the implication 2 =⇒ 1: Let s : B −→ A be an R-
homomorphism with s ◦ i = idA. We then consider the R-homomorphism

r̃ : B −→ B

b 7−→ b− i ◦ s(b).

We have ker p ⊂ ker r̃, because: Let b ∈ ker p. In view of exactness, there is
an a ∈ A with i(a) = b; thus,

r̃(b) = i(a)− i ◦ s(i(a)) = i(a)− i(idA(a)) = 0.

By the universal property of the quotient module, r̃ induces an R-homo-
morphism r : C ∼=R B/ ker p −→ B, which, by construction, satisfies p ◦ r =
idC .

Similarly, one can show the implication 1 =⇒ 2.
If the statements 1 and 2 are satisfied, then a straightforward calculation

shows that the given R-homomorphisms between B and A⊕ C are bijective
(check!), whence isomorphisms.

When comparing exact sequences, the five lemma is very useful:

Proposition A.6.7 (five lemma). Let

A
a //

fA
��

B
b //

fB
��

C
c //

fC
��

D
d //

fD
��

E

fE
��

A′
a′
// B′

b′
// C ′

c′
// D′

d′
// E′

be a commutative diagram in RMod with exact rows. Then the following holds:

1. If fB, fD are injective and fA is surjective, then fC is injective.

2. If fB, fD are surjective and fE is injective, then fC is surjective.

3. In particular: If fA, fB, fD, fE are isomorphisms, then fC is an iso-
morphism.
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A B C D E

A′ B′ C ′ D′ E′

x

0 0

0

A B C D E

A′ B′ C ′ D′ E′

x

0 0

0y

A B C D E

A′ B′ C ′ D′ E′

x

0 0

0y

•z′

A B C D E

A′ B′ C ′ D′ E′

x

0 0

0y

•z′

z

A B C D E

A′ B′ C ′ D′ E′

x

0 0

0y

•z′

z

Figure A.4.: The diagram chase in the proof of the five lemma

A.28
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Proof. We prove the first part via a so-called diagram chase (many statements
in homological algebra are established in this way). The second part can be
proved in a similar way; the third part is a direct consequence of the first two
parts.

Ad 1. Let fB and fD be injective and let fA be surjective. Let x ∈ C
with fC(x) = 0. Then we have x = 0, because (Figure A.4):

• Because of fD ◦ c(x) = c′ ◦ fC(x) = c′(0) = 0 and the injectivity of fD,
we obtain c(x) = 0.

• In view of im b = ker c, there exists a y ∈ B with b(y) = x.

• As b′ ◦fB(y) = fC ◦b(y) = fC(x) = 0 and im a′ = ker b′, we have: There
exists a z′ ∈ A′ with a′(z′) = fB(y).

• Because fA is surjective, there is a z ∈ A with fA(z) = z′.

• Then a(z) = y, because: We have fB
(
a(z)

)
= a′ ◦ fA(z) = a′(z′) =

fB(y) and fB is injective.

• Thus (because im a ⊂ ker b)

x = b(y) = b ◦ a(z) = 0,

as desired.

For the proof of the Mayer–Vietoris sequence (Theorem 3.3.2) we will need
the following construction of long exact sequences:

Proposition A.6.8 (algebraic Mayer–Vietoris sequence). Let

· · · ck+1
// Ak

ak //

fA,k

��

Bk
bk //

fB,k

��

Ck
ck //

fC,k

��

Ak−1

ak−1
//

fA,k−1

��

· · ·

· · ·
c′k+1

// A′k a′k

// B′k b′k

// C ′k c′k

// A′k−1 a′k−1

// · · ·

be a (Z-indexed) commutative ladder in RMod with exact rows. Moreover, for
every k ∈ Z, let fC,k : Ck −→ C ′k be an isomorphism and let

∆k := ck ◦ f−1
C,k ◦ b′k : B′k −→ Ak−1.

Then the following sequence in RMod is exact:

· · · ∆k+1
// Ak

(fA,k,−ak)
// A′k ⊕Bk

a′k⊕fB,k
// B′k

∆k // Ak−1
// · · ·

Proof. This follows from a diagram chase (Exercise).



A.30 A. Appendix

A.6.2 Chain Complexes and Homology

Chain complexes are a generalisation of exact sequences. The non-exactness
of chain complexes is measured in terms of homology.

Definition A.6.9 (chain complex). An R-chain complex is a pair C = (C∗, ∂∗),
consisting of

• a sequence C∗ = (Ck)k∈Z of left R-modules (the chain modules), and

• a sequence ∂∗ = (∂k : Ck −→ Ck−1)k∈Z of R-homomorphisms (the
boundary operators or differentials) with

∀k∈Z ∂k ◦ ∂k+1 = 0.

Let k ∈ Z.

• The elements of Ck are the k-chains,

• the elements of ZkC := ker ∂k ⊂ Ck are the k-cycles,

• the elements of BkC := im ∂k+1 ⊂ Ck are the k-boundaries.

In the same way, one can also define chain complexes that are indexed over N
instead of Z. In this case, one defines Z0C := C0.

Example A.6.10 (chain complexes).

• Every long exact sequence is a chain complex.

• The sequence

· · · idZ // Z idZ // Z idZ // · · ·
is no chain complex of Z-modules, because the composition of successive
homomorphisms is not the zero map.

Example A.6.11 (a geometric example). The terms cycle, boundary, chain,
. . . originate from Algebraic Topology. This can be seen in the construction
of singular homology (Chapter 4); moreover, we illustrate this at a related,
but slightly simpler, geometric, example (Figure A.5):

We consider the following chain complexes C = (C∗, ∂∗) and C ′ = (C ′∗, ∂
′
∗)

of Z-modules: We set

C0 := Z3, C1 := Z3, ∀k∈Z\{0,1} Ck := 0

and we let the non-trivial boundary operator be defined by
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2

0 12

01

2

0 12

01

Figure A.5.: The boundary of a triangle and a triangle; degree 0 is red, de-
gree 1 is blue, degree 2 is purple.

∂1 : C1 = Z3 −→ Z3 = C0

e0 7−→ e2 − e1

e1 7−→ e2 − e0

e2 7−→ e1 − e0;

this clearly defines a chain complex. Moreover, let

C ′0 := Z3, C ′1 := Z3, C ′2 := Z, ∀k∈Z\{0,1,2} C ′k := 0,

and

∂′1 := ∂1

∂′2 : C ′2 −→ C ′1
1 7−→ e0 − e1 + e2;

then ∂′1 ◦ ∂′2 = 0 (check!); thus, also C ′ is a chain complex.

These chain complexes can be viewed as simple (simplicial!) algebraic mod-
els of the boundary of the 2-simplex and the 2-simplex: The vertices corre-
spond to the standard basis of C0 = C ′0, the edges to the standard basis
of C1 = C ′1 and the filled triangle to 1 in C ′2. Moreover, the boundary oper-
ators resemble the geometric boundaries.

The 1-chain z := e0 − e1 + e2 is a 1-cycle of C (and C ′), because

∂1(z) = ∂1(e0 − e1 + e2) = 0.

This also corresponds to the geometric intuition behind cycles. The com-
plex C is not exact: We have z ∈ ker ∂1, but z 6∈ {0} = im ∂2. Therefore, z is
not a boundary in C (which fits with the geometry).

Howevere, z is a boundary in C ′, because ∂′2(1) = z (as expected from the
geometric version).
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Remark A.6.12 (Co). Reversing the direction of arrows in the definition
of chain complexes, leads to cochain complexes (and cochains, cocycles,
coboundaries, coboundary operators, cochain maps, cohomology, . . . ). Usu-
ally, one denotes coboundary operators in cochain complexes with δ (instead
of ∂) and indices are denoted as superscripts (instead of subscripts).

Such objects naturally arise in the study of smooth manifolds and differ-
ential forms: the de Rham cochain complex and de Rham cohomology.

In order to obtain a category of chain complexes, we introduce chain maps
as structure-preserving maps between chain complexes:

Definition A.6.13 (chain map). Let C = (C∗, ∂∗) and (C ′∗, ∂
′
∗) be R-chain

complexes. An R-chain map C −→ C ′ is a sequence (fk ∈ RHom(Ck, C
′
k))k∈Z

with
∀k∈Z fk ◦ ∂k+1 = ∂′k+1 ◦ fk+1.

· · · // Ck+1

∂k+1
//

fk+1

��

Cn

fk

��

// · · ·

· · · // C ′k+1 ∂′k+1

// C ′k // · · ·

Example A.6.14 (a chain map). Let C be the chain complex from Exam-
ple A.6.11. Then the homomorphisms

C0 7−→ C0

x 7−→ (x1, x0, x2)

C1 7−→ C1

x 7−→ (x1, x0,−x2)

(together with the zero maps) form a chain map C −→ C (check!). Geo-
metrically, this map is an algebraic model of reflection of the triangle from
Figure A.5 at the vertical axis.

Definition A.6.15 (category of chain complexes). The category RCh of R-chain
complexes consists of:

• objects: the class of all R-chain complexes

• morphisms: R-chain maps

• compositions: degree-wise ordinary composition of maps.

Example A.6.16 (tensor product of a module and a chain complex). Let Z be
a right(!) R-module and let C = (C∗, ∂∗) ∈ Ob(RCh). Then

Z ⊗R C :=
(
(Z ⊗R Ck)k∈Z, (idZ ⊗R∂k)k∈Z

)
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is a Z-chain complex (check!). If R is non-commutative, then Z ⊗R C, in
general, will not be an R-chain complex (for this, we need a bimodule struc-
ture on Z). Moreover, it should be noted that, in general, homology is not
compatible with taking tensor products!

Taking the degree-wise tensor product with idZ turns this construction
into a functor (check!)

Z ⊗R · : RCh −→ ZCh .

Example A.6.17 (chain complexes of simplicial modules). Let S : ∆op −→
RMod be a functor (a so-called simplicial left R-module); here, ∆op is the
dual of the simplex category (obtained from ∆ by reversing morphisms).
For k ∈ Z, we define

Ck(S) :=

{
S
(
∆(k)

)
if k ≥ 0

0 if k < 0,

∂k :=

{∑k
j=0(−1)j · S(dkj ) if k > 0

0 if k ≤ 0;

here, dkj ∈ Mor∆(∆(k−1),∆(k)) is the morphism, whose image is {0, . . . , k}\
{j}. We write

C(S) :=
(
(Ck(S))k∈Z, (∂k)k∈Z

)
.

Then C(S) is an R-chain complex (check!). This is one of the key construc-
tions that underlies many homology theories.

This construction can also be extended to a functor

C : ∆(RMod) −→ RCh .

Here, ∆(RMod) is the category whose objects are functors ∆op −→ RMod
and whose morphisms are natural transformations between such functors.

The (non-)exactness of chain complexes is measured in terms of homology:

Definition A.6.18 (homology). Let C = (C∗, ∂∗) be an R-chain complex. For
k ∈ Z, the k-th homology of C is defined as

Hk(C) :=
Zk(C)

Bk(C)
=

ker(∂k : Ck → Ck−1)

im(∂k+1 : Ck+1 → Ck)
∈ Ob(RMod).

Example A.6.19 (homology).

• A chain complex C ∈ Ob(RCh) is an exact sequence if and only if
Hk(C) ∼=R 0 for all k ∈ Z.

• For the chain complexes C and C ′ from Example A.6.11, we obtain
(check!)
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H1(C) ∼=Z ker ∂1/ im ∂2 = ker ∂1/{0} ∼=Z Z, (generated by [z])

H1(C ′) ∼=Z ker ∂′1/ im ∂′2 ∼=Z 0. (z is a boundary in C ′)

The homology in degree 1 hence detects the “hole”. This basic obser-
vation is also the foundation for singular homology (Chapter 4).

Remark A.6.20 (computation of homology). Algorithmically, homology of
(sufficiently finite) chain complexes can be computed with the tools developed
in Linear Algebra (over fields: Gaussian elimination (Satz I.5.2.8); over Eu-
clidean domains/principal ideal domains: Smith normal form (Satz II.2.5.6)).

Proposition A.6.21 (homology as functor). Let k ∈ Z.

1. Let C,C ′ ∈ Ob(RCh), let f : C −→ C ′ be an R-chain map. Then

Hk(f) : Hk(C) −→ Hk(C ′)

[z] 7−→
[
fk(z)

]

is a well-defined R-homomorphism.

2. In this way, Hk becomes a functor RCh −→ RMod.

Proof. Ad 1. The map Hk(f) is well-defined: Because f is a chain map,
fk maps cycles to cycles (check!). Let z, z′ ∈ Zk(C) with z − z′ ∈ Bk(C);
let b ∈ Ck+1 such that ∂k+1b = z − z′. Then we obtain in Hk(C ′):

[
fk(z)

]
−
[
fk(z′)

]
=
[
fk(z)− fk(z′)

]

=
[
fk(z − z′)

]

=
[
fk(∂k+1b)

]
(choice of b)

=
[
∂′kfk+1(b)

]
(f is a chain map)

= 0. (definition of Hk(C ′))

Hence, Hk(f) is well-defined. By construction, Hk(f) is R-linear (because fk
is R-linear).

Ad 2. This is a straightforward computation (check!).

Example A.6.22 (an induced map in homology). Let f : C −→ C be the chain
map from Example A.6.14. As [z] forms a basis of H1(C) (Example A.6.19),
it suffices to determine H1(f)([z]). By definition of f , we have

H1(f)
(
[z]
)

=
[
f1(z)

]
=
[
f1(e0 − e1 + e2)

]
= [e1 − e0 − e2] = −[z],

and so H1(f) = − idH1(C).

When computing homology, inheritance results and computational tricks
can save a lot of time and space. One key tool is the long exact homology
sequence:



A.6. Basic Homological Algebra A.35

Proposition A.6.23 (algebraic long exact homology sequence). Let

0 // A
i // B

p
// C // 0

be a short exact sequence in RCh (i.e., in every degree, the corresponding
sequence in RCh is exact). Then there is a (natural) long exact sequence

· · · ∂k+1
// Hk(A)

Hk(i)
// Hk(B)

Hk(p)
// Hk(C)

∂k // Hk−1(A) // · · ·

This sequence is natural in the following sense: If

0 // A
i //

fA
��

B
p
//

fB
��

C //

fC
��

0

0 // A′
i′
// B′

p′
// C ′ // 0

is a commutative diagram in RCh with exact rows, then the corresponding
ladder

· · · ∂k+1
// Hk(A)

Hk(i)
//

Hk(fA)

��

Hk(B)
Hk(p)

//

Hk(fB)

��

Hk(C)
∂k //

Hk(fC)

��

Hk−1(A) //

Hk−1(fA)

��

· · ·

· · ·
∂k+1

// Hk(A′)
Hk(i′)

// Hk(B′)
Hk(p′)

// Hk(C ′)
∂k

// Hk−1(A′) // · · ·

is commutative and has exact rows.

Proof. Let k ∈ Z. We construct the connecting homomorphism

∂k : Hk(C) −→ Hk−1(A)

as follows: Let γ ∈ Hk(C); let c ∈ Ck be a cycle representing γ. Because
pk : Bk −→ Ck is surjective, there is a b ∈ Bk with

pk(b) = c.

As p is a chain map, we obtain pk−1 ◦ ∂Bk (b) = ∂Ck ◦ pk(b) = ∂Ck (c) = 0; then
exactness in degree k shows that there exists an a ∈ Ak−1 with

ik−1(a) = ∂Bk (b).

In this situation, we call (a, b, c) a compatible triple for γ and we define

∂k(γ) := [a] ∈ Hk−1(A).

Straightforward diagram chases then show (check!):
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• If (a, b, c) is a compatible triple for γ, then a ∈ Ak−1 is a cycle (and so
indeed defines a class in Hk−1(A)).

• If (a, b, c) and (a′, b′, c′) are compatible triples for γ, then [a] = [a′]
in Hk−1(A).

These observations show that ∂k is an R-homomorphism and that ∂k is nat-
ural (check!).

Further diagram chases then show that the resulting long sequence is exact
(even more to check . . . ).

Combining the five lemma and the algebraic long exact sequence gives us:

Example A.6.24 (drie halen, twee betalen). Let

0 // A
i //

fA
��

B
p
//

fB
��

C //

fC
��

0

0 // A′
i′
// B′

p′
// C ′ // 0

be a commutative diagram in RCh with exact rows. Then: If two of the three
sequences (Hk(fA))k∈Z, (Hk(fB))k∈Z, (Hk(fC))k∈Z consist of isomorphisms,
then so does the third. This can be seen as follows:

The long exact homology sequences of the rows lead to a commutative
ladder with exact rows (Proposition A.6.23). We can then apply the five
lemma (Proposition A.6.7) to five successive rungs (where we put the mystery
homomorphism into the middle).

A.6.3 Homotopy Invariance

A key property of homology of chain complexes is homotopy invariance. This
algebraic homotopy invariance is the source of homotopy invariance of many
functors in geometry and topology; moreover, algebraic homotopy invariance
often simplifies the computation of homology.

We briefly explain how topological considerations naturally lead to the
notion of chain homotopy (Definition A.6.31):

In Top, homotopy is defined as follows: Continuous maps f, g : X −→ Y
are homotopic, if there exists a continuous map h : X × [0, 1] −→ Y with

h ◦ i0 = f and h ◦ i1 = g;

here, i0 : X ↪→ X×{0} ↪→ X×[0, 1] and i1 : X ↪→ X×{1} ↪→ X×[0, 1] denote
the canonical inclusions of the bottom and the top into the cylinder X× [0, 1]
over X, respectively.

We model this situation in the category RCh: As first step, we model the
unit interval [0, 1] by a suitable chain complex (Figure A.6).
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0 1

degree 1 degree 0

Z Z⊕ Z
x (−x, x)

Figure A.6.: an algebraic model of [0, 1]

Definition A.6.25 (algebraic model [0, 1]). Let I ∈ Ob(ZCh) be the chain
complex

degree 2 1 0 −1

. . .
0
// 0

0
// 0

0
// Z // Z⊕ Z

0
// 0

0
// 0

0
// . . .

x � // (−x, x)

As analogy of the product of topological spaces, we consider the tensor
product of chain complexes; the basic idea is that chain modules of the prod-
uct in degree k should contain information on k-dimensional phenomena and
thus the degree of the tensor factors should add up to k. Geometrically, one
can show that cellular chain complexes of products of finite CW-complexes
(with respect to the product cell structure) are isomorphic to the tensor prod-
uct of the cellular chain complexes of the factors [13, V.3.9]. More generally,
the Eilenberg–Zilber theorem shows that the singular chain complex of a
product of two spaces is chain homotopy equivalent to the tensor product of
the singular chain complexes of the factors [13, Chapter VI.12].

Definition A.6.26 (tensor product of chain complexes). Let C ∈ Ob(RCh) and
D ∈ Ob(ZCh). Then we define C ⊗Z D ∈ Ob(RCh) by

(C ⊗R D)k :=
⊕

j∈Z
Cj ⊗R Dk−j

and the boundary operators

(C ⊗R D)k −→ (C ⊗R D)k−1

Cj ⊗R Dk−j 3 c⊗ d 7−→ ∂Cj c⊗ d+ (−1)j · c⊗ ∂Dk−jd

for all k ∈ Z. (This indeed defines a chain complex!)

Study note. This definition generalises the tensor product of a module and
a chain complex (Example A.6.16). Do you see why/how?

More generally, if C is an (S,R)-bimodule chain complex and D is a left
R-chain complex, then one can also define the left S-chain complex C ⊗RD.
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Remark A.6.27 (sign convention). We use the following convention for the
choice of signs: If a boundary operator is “moved past” an element, then we
introduce the sign

(−1)degree of that element.

It should be noted that different authours use different sign conventions.
Therefore, for all formulae in the literature concerning products of chain
complexes or products on (co)homology, one has to carefully check the sign
conventions used in that source.

Remark A.6.28 (functoriality of the tensor product). Let C,C ′ ∈ Ob(RCh), let
D,D′ ∈ Ob(ZCh), and let f ∈ Mor

RCh(C,C ′) und g ∈ MorZCh(D,D′). Then

f ⊗R g : C ⊗Z D −→ C ′ ⊗Z D
′

c⊗ d 7−→ f(c)⊗ g(d)

yields a well-defined chain map in RCh.

As next step, we model the inclusions of the bottom and the top of cylin-
ders in the algebraic setting.

Definition A.6.29 (algebraic model of inclusion of top/bottom of cylinders).
Let C ∈ Ob(RCh). Then, we define the R-chain maps (check!)

i0 : C −→ C ⊗Z I

Ck 3 c 7−→ (c, 0, 0) ∈ Ck ⊕ Ck−1 ⊕ Ck ∼=R (C ⊗Z I)k

i1 : C −→ C ⊗Z I

Ck 3 c 7−→ (0, 0, c) ∈ Ck ⊕ Ck−1 ⊕ Ck ∼=R (C ⊗Z I)k.

Under the correspondence indicated in Figure A.6, these chain maps are an
algebraic version of the geometric inclusions of bottom and top, respectively.

Remark A.6.30. Let C,D ∈ Ob(RCh) and let f, g ∈ Mor
RCh(C,D). A chain

map h : C ⊗Z I −→ D in RCh with h ◦ i0 = f and h ◦ i1 = g corresponds to
a family (h̃k ∈ Mor

RMod(Ck, Dk+1))k∈Z satisfying

∂Dk+1 ◦ h̃k = h̃k−1 ◦ ∂Ck + (−1)k · gk − (−1)k · fk

(Figure A.7) for all k ∈ Z. This last equation can be rewritten as

∂Dk+1 ◦ (−1)k · h̃k + (−1)k−1 · h̃k−1 ◦ ∂Ck = gk − fk.

Therefore, one defines the notion of chain homotopy (and related terms)
as follows:

Definition A.6.31 (chain homotopy, null-homotopic, contractible). Let C,D ∈
Ob(RCh).
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(C ⊗Z I)k+1 =

Ck+1

⊕
Ck

⊕
Ck+1

= (C ⊗Z I)k

Ck

⊕
Ck−1

⊕
Ck

Dk+1 Dk

∂Ck+1

∂Ck+1

∂Ck+1

−(−1)k

(−1)k

∂Dk+1

fk+1 ⊕ h̃k ⊕ gk+1 fk ⊕ h̃k−1 ⊕ gk

Figure A.7.: discovering the notion of chain homotopy

• Chain maps f, g ∈ Mor
RCh(C,D) are chain homotopic (in RCh), if there

exists a sequence h = (hk ∈ Mor
RMod(Ck, Dk+1))k∈Z with

∂Dk+1 ◦ hk + hk−1 ◦ ∂Ck = gk − fk

for all k ∈ Z. In this case, h is a chain homotopy from f to g (in RCh),
and we write f '

RCh g.

• A chain map f ∈ Mor
RCh(C,D) is a chain homotopy equivalence

(in RCh), if there exists a chain map g ∈ Mor
RCh(D,C) with

g ◦ f '
RCh idC and f ◦ g '

RCh idD .

We then write C '
RCh D.

• Chain maps that are (in RCh) chain homotopic to the zero map are
null-homotopic (in RCh).

• The chain complex C ist contractible (in RCh), if idC is null-homotopic
in RCh (equivalently, if C is chain homotopic to the zero chain complex).
Homotopies in RCh from idC to the zero map are also called chain
contractions (in RCh).

Example A.6.32. Let C ∈ Ob(RCh). Then i0 'RCh i1 : C −→ C⊗ZI (check!).
Moreover, we consider the chain map

p : C ⊗Z I −→ C

Ck ⊕ Ck−1 ⊕ Ck 3 (c0, c, c1) 7−→ c0 + c1 ∈ Ck
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in RCh. Then p ◦ i0 = idC and i0 ◦ p 'RCh idC⊗RI . Hence, C '
RCh C ⊗Z I, as

we would expect from topology.

Proposition A.6.33 (basic properties of chain homotopy).

1. Let C,D ∈ Ob(RCh) and let f, f ′, g, g′ ∈ Mor(RCh) with f '
RCh f

′ and
g '

RCh g
′. Then, we have

a · f + b · g '
RCh a · f ′ + b · g′

for all a, b ∈ R.

2. Let C,D ∈ Ob(RCh). Then “'
RCh” is an equivalence relation on the

morphism set Mor
RCh(C,D).

3. Let C,D,E ∈ Ob(RCh), let f, f ′ ∈ Mor
RCh(C,D) and let g, g′ ∈

Mor
RCh(D,E) with f '

RCh f
′ and g '

RCh g
′. Then, we have

g ◦ f '
RCh g

′ ◦ f ′.

4. Let C,D ∈ Ob(ZCh), let Z ∈ Ob(RMod), and let f, f ′ ∈ MorZCh(C,D)
mit f 'ZCh f

′. Then,

Z ⊗Z f 'RCh Z ⊗Z f
′.

5. Let C,C ′ ∈ Ob(RCh), D,D′ ∈ Ob(ZCh), and let f, f ′ ∈ Mor
RCh(C,C ′),

g, g′ ∈ MorZCh(D,D′) with f '
RCh f

′ and g 'ZCh g
′. Then

f ⊗Z g 'RCh f
′ ⊗Z g

′.

Proof. All these properties follow via straightforward calculations directly
from the definitions (check!).

In particular, we can pass to the corresponding homotopy category:

Definition A.6.34 (homotopy category of chain complexes). The homotopy cat-
egory of left R-chain complexes is the category RChh consisting of:

• objects: Let Ob(RChh) := Ob(RCh).

• morphisms: For all left R-chain complexes C, D, we set

[C,D] := Mor
RChh

(C,D) := Mor
RCh(C,D)

/
'

RCh .

• compositions: The compositions of morphisms are defined by ordinary
(degree-wise) composition of representatives.

As mentioned before, a key property of homology of chain complexes is
homotopy invariance in the following sense:
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Proposition A.6.35 (homotopy invariance of homology of chain complexes).
Let k ∈ Z. Then the functor Hk : RCh −→ RMod factors over RChh. More
explicitly: Let C,C ′ ∈ Ob(RCh) and let f, g : C −→ C ′ be R-chain maps
with f '

RCh g. Then,
Hk(f) = Hk(g).

Proof. Let h be a chain homotopy from f to g in RCh. Moreover, let z ∈
Zk(C) be a k-cycle. Then, we obtain in Hk(C ′):

Hk(f)
(
[z]
)
−Hk(g)

(
[z]
)

=
[
fk(z)− gk(z)

]

=
[
∂′k+1 ◦ hk(z) + hk−1 ◦ ∂k(z)

]
(h is a chain homotopy)

=
[
∂′k+1 ◦ hk(z) + 0

]
(z is a cycle)

= [0] (definition of Hk(C ′))

Hence, Hk(f) = Hk(g).
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A.7 Homotopy Theory of CW-Complexes

For the sake of completeness, we collect some important features of the ho-
motopy theory of CW-complexes: the Whitehead theorem, cellullar approxi-
mation, and the cofibration property.

A.7.1 Whitehead Theorem

For CW-complexes, homotopy equivalences can be characterised in the fol-
lowing way:

Theorem A.7.1 (Whitehead theorem). Let X and Y be CW-complexes and
let f : X −→ Y be a continuous map. Then the following are equivalent:

1. The map f : X −→ Y is a homotopy equivalence (in Top).

2. The map f : X −→ Y is a weak equivalence, i.e., for every x0 ∈ X
and every n ∈ N the induced map πn(f) : πn(X,x0) −→ πn(Y, f(x0)) is
bijective.

3. For every CW-complex Z, the map

[Z, f ] : [Z,X] −→ [Z, Y ]

[g] 7−→ [f ◦ g]

bijective.

Sketch of proof. Ad 1 =⇒ 2. Let n ∈ N. Then, by construction, πn : Top* −→
Set is a homotopy invariant functor. Moreover, one can show that πn
also translates unpointed homotopy equivalences to bijections [68, Propo-
sition 6.2.4].

Ad 2 =⇒ 3. Because CW-complexes are built up from cells, one can prove
this implication by a careful induction [70, Chapter IV.7, Chapter V.3].

Ad 1 =⇒ 2. If 2. holds, then [ · , f ] is a natural isomorphism [ · , X] =⇒
[ · , Y ]. Then, the Yoneda lemma (Proposition 1.2.23) shows that X ' Y .

Caveat A.7.2.

• The notion of “weak equivalence” is not an equivalence relation on the
class of topological spaces; in general, symmetry is not satisfied [70,
p. 221].

However, the Whitehead theorem shows that on the class of CW-
complexes, weak equivalence coincides with homotopy equivalence and
thus is an equivalence relation on CW-complexes.
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• Abstract isomorphisms between homotopy groups of CW-complexes are
not sufficient to conclude that the given CW-complexes are homotopy
equivalent. It is essential that these isomorphisms are induced by a
continuous map.

For example, the spaces RP 2 × S3 and S2 ×RP 3 (which both admit a
CW-structure) have isomorphic homotopy groups (because they have
the common covering space S2×S3; Corollary 2.3.25), but they are not
homotopy equivalent (as can be seen from the (cellular) homology in
degree 5; check!).

In particular, in the simply connected case, the Whitehead theorem shows
that ordinary homology with Z-coefficients is a rather powerful tool.

Corollary A.7.3 (Whitehead theorem, simply connected case). Let X be a sim-
ply connected CW-complex. Then the following are equivalent:

1. The space X is contractible (in Top).

2. For each x0 ∈ X and each n ∈ N, we have
∣∣πn(X,x0)

∣∣ = 1.

3. For each n ∈ N, we have Hn(X;Z) ∼=Z Hn(•;Z).

Proof. Applying the Whitehead theorem (Theorem A.7.1) to the constant
map X −→ • shows that 1. and 2. are equivalent.

Moreover, because X is simply connected, the equivalence of 2. and 3. is
a consequence of the Hurewicz theorem (Corollary 4.5.10).

Example A.7.4. The Warsaw circle is not homotopy equivalent to a CW-
complex: On the one hand, all homotopy groups of the Warsaw circle are
trivial (this can be shown as in the case of the fundamental group; Exercise);
in particular, the Warsaw circle is weakly equivalent to a contractible CW-
complex. On the other hand, the Warsaw circle is not contractible [70, p. 220].
In combination with Corollary A.7.3, we obtain that the Warsaw circle is not
homotopy equivalent to a CW-complex.

A.7.2 Cellular Approximation

While not every topological space has the homotopy type of a CW-complex
(Example A.7.4), it at least has the weak homotopy type of CW-complex (as
can be seen from suitable inductive constructions):

Theorem A.7.5 (cellular approximation of maps [26, Chapter 8.5]). Let X and
Y be CW-complexes.

1. If f : X −→ Y is a continuous map, then there exists a cellular
map f ′ : X −→ Y with

f 'Top f
′.
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2. If f, g : X −→ Y are cellular maps with f 'Top g, then also f 'CW g.

Theorem A.7.6 (cellular approximation of spaces [26, Chapter 8.6]). Let X, X ′

be topological spaces.

1. Then there exists a CW-complex Y and a weak homotopy equiva-
lence f : Y −→ X. We then call (Y, f) a cellular approximation of X.

2. If g : X −→ X ′ is a continuous map and if (Y, f) and (Y ′, f ′) are
cellular approximations of X and X ′, respectively, then there exists a
cellular map g̃ : Y −→ Y ′ (which is unique up to cellular homotopy)
with

g ◦ f 'Top f
′ ◦ g̃.

Remark A.7.7 (singular homology and cellular approximation). Singular homol-
ogy is invariant under weak equivalences (this can be shown by an argument
similar to the proof of the Hurewicz theorem [68, Theorem 9.5.3]). Therefore,
by cellular approximation, from the point of view of singular homology, there
is not much of a difference between Toph and CWh.

A.7.3 Subcomplexes and Cofibrations

The inclusions of subcomplexes of CW-complexes into the ambient complex
have the following convenient property:

Definition A.7.8 (cofibration). A continuous map i : A −→ X is a cofibration
if it has the homotopy extension property, i.e., if for every topological space Y
and every map f : X −→ Y and every continuous map h : A × [0, 1] −→ Y
with h( · , 0) = f ◦ i, there exists a continuous map H : X × [0, 1] −→ Y with

H( · , 0) = f and H ◦ (i× id[0,1]) = h.

A× [0, 1]
h //

i×id[0,1]

��

Y

X × [0, 1]

H

;;

X

f

OO

i0
oo

Inclusions of (closed) subspaces that are cofibrations are the “right” kind
of subspace inclusions in the sense of homotopy theory:

Proposition A.7.9 (quotients of cofibrations). Let i : A −→ X be an injective
continuous map that is a cofibration. If A is contractible, then the canonical
projection X −→ X/A is a homotopy equivalence.

Proof. Using the homotopy extension property, one can construct a homo-
topy inverse of the canonical projection from a contracting homotopy of the
identity on A [26, Proposition 0.17].
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Example A.7.10 (cofibrations).

• Not every injective continuous map is a cofibration. For example, the
inclusion [0, 1) −→ [0, 1] is not a cofibration (check!).

• Let n ∈ N>0. Then the inclusion Sn−1 −→ Dn is a cofibration (check!).
In the same way, also the inclusion ∂∆n −→ ∆n is a cofibration.

• If f : X −→ Y is a continuous map and M(f) :=
(
(X × [0, 1]) u Y

) /
(
(x, 1) ∼ f(x)

)
is the mapping cylinder of f , then the inclusion

X −→M(f)

x 7−→ [x, 0]

is a cofibration (check!). Moreover, the canonical continuous map Y −→
M(f) is a homotopy equivalence (check!). In this way, in homotopy
theory, every continuous map can be “replaced” by a cofibration.

Proposition A.7.11 (subcomplexes yield cofibrations [26, Proposition 0.16]).
Let (X,A) be a relative CW-complex. Then the inclusion A −→ X is a cofi-
bration.

Sketch of proof. Roughly speaking, the proof relies on the following facts:

• If n ∈ N>0, then the inclusion Sn−1 −→ Dn is a cofibration (Exam-
ple A.7.10).

• Cofibrations are stable under pushouts.

As (relative) CW-complexes are constructed inductively by attaching cells,
it follows that A −→ X is a cofibration.

Example A.7.12 (one-dimensional CW-complexes). Let X be a connected one-
dimensional CW-complex and let A ⊂ X be a spanning tree (i.e., a connected
subcomplex of X whose 0-cells and 1-cells have the combinatorics of a tree);
via Zorn’s lemma one can show that such a spanning tree indeed exists. Then
A is contractible (check!) and the inclusion A −→ X is a cofibration (because
(X,A) is easily seen to be a relative CW-complex). Because A is a spanning

tree, we have X/A ' ∨I S1, where I is the set of open 1-cells of X that are
not contained in X. Therefore, Proposition A.7.9 shows that

X ' X/A '
I∨
S1.

Moreover, the inheritance properties of cofibrations and exact sequences
associated with cofibrations are also used in other fields in order to mimic
parts of homotopy theory in different contexts.
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Algebraic Topology: Exercises

Prof. Dr. C. Löh/M. Uschold/J. Witzig Sheet 1, October 19, 2021

Exercise 1 (product topology). Let X and Y be topological spaces. Which of
the following statements are true? Justify your answer with a suitable proof or
counterexample.

1. If B ⊂ X and C ⊂ Y are closed subsets, then B × C ⊂ X × Y is closed.

2. If A ⊂ X × Y is closed, then there are closed sets B ⊂ X and C ⊂ Y
with A = B × C.

Exercise 2 (TOPOLOGY). Classify the following six subspaces of R2 up to ho-
meomorphism and prove this classification result.

Hints. Some of the homeomorphisms might be hard to write down explicitly;
in these cases, it is sufficient to give an outline on how to construct them and
to indicate clearly that a proper formal argument would require more details.

Exercise 3 (stereographic projection). Let n ∈ N>0 and N := (0, . . . , 0, 1) ∈ Sn;
i.e., N is the North Pole of Sn. The map

sn : Sn \ {N} −→ Rn

(x1, . . . , xn+1) 7−→ 1

1− xn+1
· (x1, . . . , xn)

is called stereographic projection. Give a geometric interpretation of this map
and prove that it is a homeomorphism. Illustrate your arguments graphically!

Exercise 4 (balls, spheres, simplices). Let n ∈ N>0. Solve one of the following
problems:

1. Prove that ∆n is homeomorphic to Dn and that ∂∆n is homeomorphic
to Sn−1.

Hints. Find the centre and inflate!

2. Prove that Dn/Sn−1 is homeomorphic to Sn.

Hints. Quotient spaces will be introduced in the second lecture.

Illustrate your arguments graphically!
Hints. The compact-Hausdorff trick might be useful.

Bonus problem (Peano curves). Show that there exist surjective continuous
maps [0, 1] −→ [0, 1]× [0, 1]. Can such a map be injective?

Submission before October 26, 2021, 8:30, via GRIPS

(Solutions may be submitted in English or German.)
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Prof. Dr. C. Löh/M. Uschold/J. Witzig Sheet 2, October 26, 2021

Exercise 1 (relative topology). Let (X,A) and (Y,B) be pairs of topological
spaces. Which of the following statements are true? Justify your answer with a
suitable proof or counterexample.

1. If (X,A) ∼=Top2 (Y,B), then A ∼=Top B and X ∼=Top Y .

2. If X/A ∼=Top Y/B, then (X,A) ∼=Top2 (Y,B).

Exercise 2 (suspension/Einhängung). For a topological space X, we define the
suspension of X as

ΣX :=
(
X × [−1, 1]

) /
∼

(endowed with the quotient topology of the product toplogy), where “∼” is the
equivalence relation generated by

∀x,x′∈X (x, 1) ∼ (x′, 1)

∀x,x′∈X (x,−1) ∼ (x′,−1).

X

[−1]

[0]

[1]

X

[−1]

[0]

[1]

X × [−1, 1]
/
∼ = ΣX

1. Let f : X −→ Y be a continuous map. Show that the map Σf is well-
defined and continuous:

Σf : ΣX −→ ΣY

[x, t] 7−→
[
f(x), t

]

2. Let n ∈ N. Show that the following map is a well-defined homeomorphism:

ΣSn −→ Sn+1

[x, t] 7−→
(
cos(π/2 · t) · x, sin(π/2 · t)

)

Exercise 3 (projective plane via glueings). Prove that there are pushout diagrams
of topological spaces of the following type:

S0 //

��

RP 0

��

D1 // RP 1

S1 //

��

RP 1

��

D2 // RP 2

In particular, describe all of the maps in these diagrams explicitly and illustrate
your arguments graphically.

Please turn over



Exercise 4 (morphisms in the simplex category). For n ∈ N>0 and j ∈ {0, . . . , n}
we define

dnj : ∆(n− 1) −→ ∆(n)

k 7−→
{
k if k < j

k + 1 if k ≥ j;

for n ∈ N and j ∈ {0, . . . , n} we define

snj : ∆(n+ 1) −→ ∆(n)

k 7−→
{
k if k ≤ j
k − 1 if k > j.

Clearly, all of these maps are morphisms in the simplex category ∆.

1. Prove that every morphism in ∆ is a composition of finitely many of the
morphisms above.

2. Let n ∈ N. Prove that for all j, k ∈ {0, . . . , n+ 1} with j < k we have

dn+1
k ◦ dnj = dn+1

j ◦ dnk−1.

Bonus problem (Asteroids).

1. Explain how one could design a version of the computer game classic
Asteroids on RP 2 (instead of the 2-torus). Of course, screens are still
assumed to be of rectangular shape; thus, it is necessary to first explain
how to glue a rectangle into RP 2. Moreover, special attention should be
paid to the specification of controls (there is a subtlety that one needs to
overcome).

2. Implement RP 2-Asteroids. If you deploy it as a web application, then all
participants of the course can enjoy it . . .
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Exercise 1 (point-removal trick for homotopy equivalence?). Let X and Y be
topological spaces and let x ∈ X, y ∈ Y . Which of the following statements are
true? Justify your answer with a suitable proof or counterexample.

1. If X ' Y , then X \ {x} ' Y \ {y}.

2. If X \ {x} ' Y \ {y}, then X ' Y .

Exercise 2 (homotopy equivalence and path-connectedness).

1. Show that a space X is path-connected if and only if all continuous
maps [0, 1] −→ X are homotopic to each other.

2. Conclude that path-connectedness is preserved under homotopy equiva-
lences.

Exercise 3 (OOOOOO). We consider the folowing three subspaces of R2. State
and prove the classification of these spaces up to homotopy equivalence.

Exercise 4 (mapping cones/Abbildungskegel). Let X and Y be topological spaces
and let f ∈ map(X,Y ). The mapping cone of f is defined by the pushout

X
f

//

i

��

Y

��

Cone(X) // Cone(f)

where Cone(X) := (X× [0, 1])/(X×{0}) denotes the cone over X and i : X −→
Cone(X), x 7−→ [x, 1] is the canonical map to the base of the cone. Prove the
following statements (and illustrate your arguments graphically), provided that
X is non-empty:

1. The cone Cone(X) is contractible.

2. If f : X −→ Y is a homotopy equivalence, then the mapping cone Cone(f)
is contractible.

Bonus problem (four-point-circle). Let X := {1, 2, 3, 4}. We equip X with the
topology generated by

{
{1}, {3}, {1, 2, 3}, {1, 3, 4}

}
. In this exercise, you may

use that S1 is not contractible (which we will prove later in this course).

1. Show that there exists a surjective continuous map S1 −→ X.

2. Show that S1 and X are not homotopy equivalent.

3. Bonus bonus problem. Show that X is not contractible.
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Exercise 1 (spheres and πn). Let n ∈ N. Which of the following statements are
true? Justify your answer with a suitable proof or counterexample.

1. If πn(Sn, e1) consists of a single element, then for every pointed topological
space (X,x0) also πn(X,x0) consists of a single element.

2. If πn(Sn, e1) is infinite, then for every pointed space (X,x0) also πn(Sn×
X, (e1, x0)) is infinite.

Exercise 2 (product in Toph). Let (Xi)i∈I be a family of topological spaces. Show
that

∏
i∈I Xi together with the homotopy classes of the canonical projections

onto the factors satisfies the universal property of the product of (Xi)i∈I in the
homotopy category Toph.

Exercise 3 (invariance of the boundary). In this exercise, you may assume that
the theorem on existence of “interesting” homotopy invariant functors holds.

Let n ∈ N>0 and let Hn := {x ∈ Rn | xn ≥ 0} be the upper half-space (with
respect to the subspace topology of Rn). Prove invariance of the boundary, i.e.,
show that there is no open neighbourhood of 0 in Hn that is homeomorphic to
the open unit ball (Dn)◦ in Rn.
Hints. As first step, prove the following: If U ⊂ Hn is an open neighbourhood
of 0 in Hn, then U \ {0} ' U .

Exercise 4 (the Möbius strip is not boring). In this exercise, you may assume that
the theorem on existence of “interesting” homotopy invariant functors holds.

1. Show that the Möbius strip is not homeomorphic to S1 × [0, 1].

Hints. Use Exercise 3.

2. Is the Möbius strip homotopy equivalent to S1 × [0, 1] ? Justify!

Bonus problem (Warsaw circle/Warschauer Kreis). The topological space

W :=
{

(x, sin(2 · π/x))
∣∣ x ∈ (0, 1]

}

∪
(
{1} × [−2, 0]

)
∪
(
[0, 1]× {−2}

)
∪
(
{0} × [−2, 1]

)

(endowed with the subspace topology of R2) is called Warsaw circle. Prove that
for every basepoint w0 ∈W the fundamental group π1(W,w0) is trivial.
Hints. Show first that no loop in W can cross the “gap.”

Bonus problem (Nash equilibria). Look up the notion of Nash equilibria in Game
Theory. Prove the existence of Nash equilibria using the Brouwer fixed point
theorem.
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Hints. When writing up your solutions, for each problem, first briefly explain
the underlying idea and then carry out the arguments in detail.

Hints. You may use that the following map is a group isomorphism:

Z −→ π1(S1, e1)

d 7−→
[
[t] 7→ [d · t mod 1]

]
∗

Exercise 1 (injectivity/surjectivity and π1). Let f : (X,x0) −→ (Y, y0) be a poin-
ted continuous map between pointed spaces. Which of the following statements
are true? Justify your answer with a suitable proof or counterexample.

1. If f is injective, then π1(f) : π1(X,x0) −→ π1(Y, y0) is injective.

2. If f is surjective, then π1(f) : π1(X,x0) −→ π1(Y, y0) is surjective.

Exercise 2 (π0 and path-connected components). Look up the definition of path-
connected components of topological spaces. Let (X,x0) be a pointed space
and let PC(X) be the set of path-connected components of X. Prove that the
following map is a well-defined bijection:

π0(X,x0) −→ PC(X)

[γ]∗ 7−→ [γ(−1)]

Exercise 3 (π1 and contractibility). Let X be a topological space.

1. Let γ : S1 −→ X be a null-homotopic map and let x0 := γ(1). Show that
then [γ]∗ is trivial in π1(X,x0). Illustrate your argument in a suitable way!

2. Conclude: If X is contractible (but not necessarily pointedly contractible!)
and x0 ∈ X, then π1(X,x0) is the trivial group.

Exercise 4 (fundamental theorem of algebra). Use π1(S1, e1) to prove that every
non-constant polynomial in C[X] has at least one root in C.
Hints. Show that a non-constant polynomial p ∈ C[X] without roots in C
would yield a map S1 −→ S1 that is both null-homotopic and homotopic to the
map S1 −→ S1, [t] 7→ [deg p · t mod 1], . . .

Bonus problem (group structure on πn). Let n ∈ N≥2 and let the composition
maps +1, . . . ,+n : πn(X,x0) × πn(X,x0) −→ πn(X,x0) be defined as in Out-
look 2.1.6.

1. Prove that +j = +1 for all j ∈ {1, . . . , n}.
2. Prove that πn(X,x0) is an Abelian group with respect to +1.

Hints. Eckmann and Hilton might help!

γ η

γ η

γ
η

+1

+2
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Hints. You may use that the following map is a group isomorphism:

Z −→ π1(S1, e1)

d 7−→
[
[t] 7→ [d · t mod 1]

]
∗

Exercise 1 (bLORX!). We consider the following five subspaces of R2, with the
indicated basepoints:

Which of the following statements are true? Justify your answer with a suitable
proof or counterexample (also, explain what your maps do).

1. These spaces consist of exactly four homeomorphism types.

2. These spaces consist of exactly four pointed homotopy types.

Exercise 2 (pushouts of groups). We consider pushout diagrams in Group of the
following type:

1

��

// Z

��

Z // F

A
f
//

g ∼=
��

B

��

C // G

(where A, B, C, F , G are groups, f : A −→ B is a group homomorphism, and
g : A −→ C is a group isomorphism). Prove the following statements via the
universal property of pushouts:

1. The group F is not Abelian.

2. The group G is isomorphic to B.

Exercise 3 (fundamental group of the real projective plane). Use the theorem
of Seifert and van Kampen to prove that π1(RP 2, [e1]) ∼= Z/2 and describe a
generating loop explicitly.

Exercise 4 (Houdini?). A rubber ring and a steel ring are entangled in R3 as
illustrated below. Moreover, you may assume that the rubber ring is fixed at
one point at all times.

Can these two rings be unlinked in R3 by deforming the rubber ring (without
cutting it)?

1. Model the situation above, using appropriate topological terms.

2. Answer the question above (with a full proof) with respect to your model.

3. Bonus. What changes if we look at the same rings in R4 instead of R3 ?

Illustrate your arguments in a suitable way!

Please turn over



Bonus problem (Hawaiian earring). We consider the following subspace H of R2

with the subspace topology, the so-called Hawaiian earring :

H :=
⋃
n∈N>0

{
x ∈ R2

∣∣ d
(
x, (1/n, 0)

)
= 1/n

}

Prove that π1(H, 0) is uncountable; illustrate your arguments in a suitable way.
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Hints. You may use that the following map is a group isomorphism:

Z −→ π1(S1, e1)

d 7−→
[
[t] 7→ [d · t mod 1]

]
∗

Exercise 1 (coverings). Let X, Y , Z be topological spaces and let p : X −→ Y ,
q : Y −→ Z be continuous maps. Which of the following statements are true?
Justify your answer with a suitable proof or counterexample.

1. If q ◦ p is a covering map, then also q is a covering map.

2. If q ◦ p is a covering map, then also p is a covering map.

Exercise 2 (Klein bottle/Kleinsche Flasche). Let K be the Klein bottle, i.e., the
quotient space K = ([0, 1]× [0, 1])/∼ defined by the following glueing relation:

 

1. Show that the fundamental group of K (at the basepoint ([0], [0])) is non-
Abelian.

2. Show that there exists a 2-sheeted covering S1 × S1 −→ K. Draw it!

Exercise 3 (pretzel coverings). Let (B, b) := (S1, e1) ∨ (S1, e1). Solve one of the
following:

1. Construct (and draw) two connected 2-sheeted coverings of (B, b) that are
not isomorphic in Cov(B,b) (and prove that they are not isomorphic).

2. Construct (and draw) a connected 3-sheeted covering of (B, b) whose deck
transformation group does not act transitively on the fibres (and prove
this fact).

Exercise 4 (coverings of wild spaces). Solve one of the following:

1. Show that the Warsaw circle (Bonus problem of Sheet 4) admits a non-
trivial covering. Draw it!

Hints. Warsaw helix!

2. Show that the Hawaiian earring (Bonus problem of Sheet 6) admits no
covering with simply connected (non-empty) total space.

Please turn over



Bonus problem (one-dimensional complexes I). A one-dimensional complex is a
pair (X,X0), consisting of a topological space X and a discrete subspace X0

with the following property: There exists a set I and a pushout (in Top) of the
form ∐

I S
0 //

��

X0

��∐
I D

1 // X

where the left vertical arrow is the canonical inclusion and the right vertical
arrow is the inclusion of X0 into X. I.e., one-dimensional complexes can be
obtained by glueing intervals at their end-points.

Such a one-dimensional complex is finite if both X0 and I are finite.

1. Let (X,X0) be a one-dimensional complex and let x0 ∈ X0. What does
the spread of infectious deseases have to do with π0(X,x0) ?

Hints. Take X0 as a set of people, take
∐
I D

1 and the glueing maps as
. . .

2. Find an algorithm that given a finite one-dimensional complex (X,X0)
determines whether X is path-connected or not. In particular, explain
how you represent (X,X0) by finite data, why your algorithm terminates
and why your algorithm produces the correct result.

Nikolaus problem (Haus des Nikolaus, all covered). The traditional Haus des
Nikolaus is the following subspace of R2:

The new edition of this house will be built by the Blorx Building Trust (which
won this contract in a transparent, corruption-free procedure).

Given n ∈ N, the Blorx Building Trust will construct a path-connected n-
sheeted covering space of the Haus des Nikolaus. Write a LATEX macro \nikolaus
with one argument such that \nikolaus{n} draws a beautiful path-connected
n-sheeted covering of the Haus des Nikolaus. Execute \nikolaus{8}.
Hints. If you have never seen the Haus des Nikolaus:
http://www.mathematische-basteleien.de/house.html
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Hints. You may use that the following map is a group isomorphism:

Z −→ π1(S1, e1)

d 7−→
[
[t] 7→ [d · t mod 1]

]
∗

Exercise 1 (coverings). Which of the following statements are true? Justify your
answer with a suitable proof or counterexample.

1. There exists a covering map RP 2 −→ S1 × S1.

2. There exists a covering map C \ {0, 1} −→ C \ {0}.
Exercise 2 (counting sheets). Let X := S2020 × RP 2021 × RP 2022. Use the π1-
action on the fibers of covering maps to show that there are no path-connected
coverings of X that have

1. infinitely many sheets; or

2. exactly three sheets.

Exercise 3 (The Borsuk-Ulam theorem in dimension 2). A map f : S2 −→ S1 is
antipodal if f(−x) = −f(x) holds for all x ∈ S2.

1. Show that there is no continuous antipodal map S2 −→ S1.

Hints. Try to use RP 2 and consider a path in S2 from e1 to −e1.

2. Prove the Borsuk-Ulam theorem in dimension 2: If f : S2 −→ R2 is conti-
nuous, then there exists x ∈ S2 with f(x) = f(−x).

Exercise 4 (large homotopy groups). Let (X,x0) := (S2, e1) ∨ (S1, e1).

1. Give a simple geometric description of the universal covering of X and
prove that this indeed is a universal covering of X.

2. Let k ∈ N≥2 with the property that πk(S2, e21) is non-trivial. Prove that
then πk(X,x0) is not finitely generated (as Abelian group).

Bonus problem (one-dimensional complexes II). We consider one-dimensional
complexes as in the Bonus problem on Sheet 7.

1. Let (X,X0) be a one-dimensional complex and let x0 ∈ X0. Show that
π1(X,x0) is a free group.

Hints. You may restrict to the finite case.

2. Let (X,X0) be a one-dimensional complex and let p : Y −→ X be a cover-
ing map. Show that then also (Y, p−1(X0)) is a one-dimensional complex.
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Exercise 1 (regular coverings?). Which of the following statements are true?
Justify your answer with a suitable proof or counterexample.

1. All path-connected coverings of RP 2021 × RP 2022 are regular.

2. All path-connected coverings of (RP 2021, [e1])∨ (RP 2022, [e1]) are regular.

Exercise 2 (no finite coverings). Show that there exists a path-connected, local-
ly path-connected, semi-locally simply connected, non-empty topological space
that is not simply connected and does not admit a finite-sheeted non-trivial
covering.
Hints. Don’t be irrational!

Exercise 3 (residually finite groups/residuell endliche Gruppen). A group G is re-
sidually finite if the following holds: For every g ∈ G \ {e} there exists a finite
group F and a group homomorphism ϕ : G −→ F with ϕ(g) 6= e.

1. Let (X,x0) be a pointed space that admits a universal covering. Give an
equivalent characterisation of residual finiteness of π1(X,x0) in terms of
coverings of (X,x0) and (lifts of) paths.

2. Illustrate these concepts for the circle (S1, 1).

?

Exercise 4 (the Heisenberg manifold). We consider the Heisenberg group

H :=








1 x z
0 1 y
0 0 1



∣∣∣∣∣∣
x, y, z ∈ Z



 ⊂ HR :=








1 x z
0 1 y
0 0 1



∣∣∣∣∣∣
x, y, z ∈ R



 ⊂ SL3(R)

and the Heisenberg manifold M := H \ HR, where H acts on HR by matrix
multiplication. Solve two of the following questions and give detailed proofs for
your answers:

1. What is the fundamental group of M ?

2. Is there a covering of the 3-torus by M ?

3. Is there a covering of M by the 3-torus ?

4. Does M admit a path-connected regular covering whose deck transforma-
tion group is isomorphic to Z2 ?

Please turn over



Bonus problem (classifying spaces of torsion-free groups). Let G be a group and
let Pfin(G) denote the set of all finite subsets of G. For S ∈ Pfin(G) we write

∆G(S) :=
{
f : G −→ [0, 1]

∣∣∣ f |G\S = 0 and
∑

s∈S
f(s) = 1

}
.

We write ∆(G) :=
⋃
S∈Pfin(G) ∆G(S) with the corresponding colimit topology

(i.e., a subset of ∆(G) is closed if and only if the intersection with ∆G(S) is closed
for all S ∈ Pfin(G), where ∆G(S) carries the Euclidean topology). Furthermore,
we consider the continuous left action

G×∆(G) −→ ∆(G)

(g, f) 7−→
(
h 7→ f(g−1 · h)

)

of G on ∆(G). Solve two of the following:

1. Show that ∆(G) is pointedly contractible with respect to every basepoint.

2. Determine the fundamental group of the quotient G \ ∆(G) in the case
that the group G is torsion-free.

3. Extend this construction to an interesting functor Group −→ Top.
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Hints. Let • = {∅} denote “the” one-point space, let R be a ring with unit and
let
(
(hk)k∈Z, (∂k)k∈Z

)
be a homology theory on Top2 with values in RMod.

Exercise 1 (more homology theories?). Which of the following statements are
true? Justify your answer with a suitable proof or counterexample (a brief ex-
planation is enough!).

1. Then ((hk+2022)k∈Z, (∂k+2022)k∈Z) is a homology theory on Top2 with va-
lues in RMod.

2. If R is an integral domain and Q is the quotient field of R, then also the
pair ((Q ⊗R hk)k∈Z, (idQ⊗R∂k)k∈Z) is a homology theory on Top2 with
values in QMod.

Exercise 2 (reduced homology). If X is a topological space and k ∈ Z, then we
define the k-th reduced homology of X with respect to

(
(hk)k∈Z, (∂k)k∈Z

)
by

h̃k(X) := ker
(
hX(cX) : hk(X)→ hk(•)

)
⊂ hk(X),

where cX : X −→ • is the constant map.

1. Show that for all topological spaces X, for all x0 ∈ X, and for all k ∈ Z
the composition

h̃k(X) −→ hk(X) −→ hk(X, {x0})

of the inclusion and the homomorphism induced by the inclusion is an
R-isomorphism.

2. Compute the reduced homology of contractible spaces.

Exercise 3 (knots). An embedded knot is a smooth embedding S1 −→ R3. The
knot complement of an embedded knot K : S1 −→ R3 is R3 \K(S1).

1. Does it make sense to study embedded knots up to homotopy of maps?

2. Does it make sense to study embedded knots by considering ordinary
homology of knot complements?

Hints. You may use the following tubular neighbourhood theorem: If K
is an embedded knot, then there exists a compact subset N ⊂ R3 and a
homeomorphism f : S1 ×D2 −→ N with f(S1 × {0}) = K(S1).

Please turn over



Exercise 4 (homology of the torus). Calculate the homology of the two-dimen-
sional torus T := S1×S1 via the following strategy and illustrate your arguments
in suitable way! Let U ⊂ S1 be an appropriate open neighbourhood of e1 ∈ S1

and let S := S1 × U ⊂ T . Solve two of the following:

1. Use the long exact sequence of the pair and a topological argument to prove
the following: For all k ∈ Z the inclusions (T, ∅) ↪→ (T, S) and S ↪→ T
induce an R-isomorphism hk(T ) ∼= hk(S)⊕ hk(T, S).

2. Use excision to show that for all k ∈ Z we have R-isomorphisms

hk(T, S) ∼= hk
(
S1 × [0, 1], S1 × {0, 1}

)
.

3. Use the long exact triple sequence and excision to express the homology
hk
(
S1 × [0, 1], S1 × {0, 1}

)
for all k ∈ Z in terms of the homology of S1.

Bonus problem (tweet). Write a tweet (no more than 140 characters) stating
the Seifert and van Kampen theorem, without using mathematical symbols.

Bonus problem (poster). Design a poster that advertises the classification theo-
rem for coverings. Use colours!

Bonus problem (Klein tic-tac-toe). Write instructions on how to play tic-tac-toe
on a Klein bottle. Illustrate your instructions with pictures.

Bonus problem (poetry).

And for the classically oriented mind:
don’t leave the Brouwer fixed point theorem behind!

Theorem and proof need a formulation,
using rhymes as decoration.
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Hints. In the following, let
(
(hk)k∈Z, (∂k)k∈Z

)
be an ordinary homology theory

on Top2 with values in ZMod and h0(•) ∼=Z Z.

Exercise 1 (surjectivity on homology). Which of the following statements are
true for all continuous maps f : X −→ Y of spaces? Justify your answer with a
suitable proof or counterexample.

1. If f is surjective, then also h2022(f) : h2022(X) −→ h2022(Y ) is surjective.

2. If h2022(f) : h2022(X) −→ h2022(Y ) is surjective, then f is surjective.

Exercise 2 (homology of the real projective plane/the Klein bottle). Let K be the
Klein bottle (Sheet 7, Exercise 2).

1. Compute (hk(RP 2))k∈Z or (hk(K))k∈Z.

2. What changes if the coefficients of
(
(hk)k∈Z, (∂k)k∈Z

)
are isomorphic to Z/2

instead of Z ?

Illustrate your arguments in a suitable way!

Exercise 3 (homology vs. homotopy equivalence). Give examples of topological
spaces X and Y such that hk(X) ∼=Z hk(Y ) holds for all k ∈ Z, but X 6' Y .
Hints. Dimension 2 is sufficient.

Exercise 4 (algebraic Mayer-Vietoris sequence). Let R be a ring with unit and let

· · · ck+1
// Ak

ak //

fA,k

��

Bk
bk //

fB,k

��

Ck
ck //

fC,k

��

Ak−1

ak−1
//

fA,k−1

��

· · ·

· · ·
c′k+1

// A′k a′k

// B′k b′k

// C ′k c′k

// A′k−1 a′k−1

// · · ·

be a (Z-indexed) commutative ladder in RMod with exact rows. Moreover, for
every k ∈ Z, let fC,k : Ck −→ C ′k be an isomorphism and let

∆k := ck ◦ f−1
C,k ◦ b′k : B′k −→ Ak−1.

Show (via a diagram chase) that then the sequence

· · · ∆k+1
// Ak

(fA,k,−ak)
// A′k ⊕Bk

a′k⊕fB,k
// B′k

∆k // Ak−1
// · · ·

in RMod is exact.

Bonus problem (Abelian categories).

1. Look up the term Abelian category in the literature.

2. Give an example for an additive category that is not Abelian.

3. How can exact sequences be defined in Abelian categories?

4. What does the Freyd–Mitchell embedding theorem say?
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Exercise 1 (small singular cycles). Let X be a topological space, let k ∈ N>0.
Which of the following statements are in this situation always true? Justify your
answer with a suitable proof or counterexample.

1. If σ ∈ map(∆k, X) ⊂ Ck(X) is a singular cycle of X, then k is odd.

2. If σ, τ ∈ map(∆k, X) and σ + τ is a singular cycle of X, then k is odd.

Exercise 2 (algebraic Euler characteristic). Let R be a ring with unit that admits
a nice notion rkR of rank for finitely generated R-modules (e.g., fields, principal
ideal rings, . . . ). A chain complex C ∈ Ob(RCh) is finite if for every k ∈ Z the
R-module Ck is finitely generated and {k ∈ Z | Ck 6∼=R 0} is finite. The Euler
characteristic of a finite chain complex C ∈ Ob(RCh) is defined by

χ(C) :=
∑

k∈Z
(−1)k · rkR Ck.

Show that χ(C) =
∑
k∈Z(−1)k ·rkR

(
Hk(C)

)
and explain which properties of rkR

you used in your arguments.

Exercise 3 (the `1-semi-norm on singular homology). Let X be a topological space
and let k ∈ N. Let | · |1 be the `1-norm on Ck(X;R) with respect to the R-basis
of Ck(X;R) that consists of all singular k-simplices of X. We then define the
`1-semi-norm ‖ · ‖1 : Hk(X;R) −→ R≥0 by

‖α‖1 := inf
{
|c|1

∣∣ c ∈ Ck(X;R), ∂kc = 0, [c] = α ∈ Hk(X;R)
}

for all α ∈ Hk(X;R).

1. Show that ‖ · ‖1 is a semi-norm on Hk(X;R).

2. Let f : X −→ Y be a continuous map. Show that
∥∥Hk(f ;R)(α)

∥∥
1
≤ ‖α‖1

holds for all α ∈ Hk(X;R).

Exercise 4 (singular homology in degree 1). Let X be a path-connected, non-
empty topological space. Let α ∈ H1(X;Z). Show that there exists a continuous
map f : S1 −→ X with α ∈ imH1(f ;Z). Illustrate!

Bonus problem (realisation of homology groups). Let k ∈ N>0. Construct a
functor

Rk : ZModfin −→ Toph

with hk ◦ Rk ∼= IdZModfin and h` ◦ Rk ∼= 0 for all ` ∈ N>0 \ {k}. Here, ZModfin

denotes the category of all finitely generated Z-modules.
Hints. Use spheres and mapping cones!
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Exercise 1 (chain homotopy equivalence). Let R be a principal ideal domain and
let C,D ∈ Ob(RCh). Which of the following statements are true? Justify your
answer with a suitable proof or counterexample.

1. If C is finite and C '
RCh D, then also D is finite.

2. If C and D are finite with C '
RCh D, then χ(C) = χ(D).

Hints. Finite chain complexes and the algebraic Euler characteristic were in-
troduced in Exercise 2 on Sheet 12.

Exercise 2 (diameter of affine simplices). Let k ∈ N and let σ : ∆k −→ R∞ be
an affine linear simplex. Show that every summand τ in the definition of the
barycentric subdivision Bk(σ) satisfies

diam
(
τ(∆k)

)
≤ k

k + 1
· diam

(
σ(∆k)

)
.

Hints. For A ⊂ R∞, we write diamA := supx,y∈A ‖x − y‖2. How can the
diameter of affine linear simplices be expressed in terms of the vertices?

Exercise 3 (concrete cycles). Give an example of a singular cycle in C2(S2;Z)
that represents a non-trivial class in H2(S2;Z) and prove that this cycle indeed
has this property. Illustrate!

Exercise 4 (compatible homotopies). Let X be a topological space, let (Sk ⊂
map(∆k, X))k∈N be a family of simplices, and let (hσ)k∈N,σ∈map(∆k,X) be a
family of homotopies with the following properties:

1. For each k ∈ N and each σ ∈ map(∆k, X), the map hσ : ∆k × [0, 1] −→ X
is a homotopy from σ to an element of Sk.

2. For all k ∈ N, all σ ∈ map(∆k, X), and all j ∈ {0, . . . , k}, we have

hσ◦ik,j
= hσ ◦ (ik,j × id[0,1]).

3. For all k ∈ N and all σ ∈ Sk, the homotopy hσ satisfies

∀x∈∆k ∀t∈[0,1] hσ(x, t) = σ(x).

Let CS(X) ⊂ C(X) be the subcomplex of the singular chain complex generated
in each degree k ∈ N by Sk instead of map(∆k, X).

Show that the inclusion CS(X) −→ C(X) is a chain homotopy equivalence
in ZCh (and thus induces an isomorphism in homology).

Bonus problem (barycentric subdivision). Write a LATEX-macro that draws the
barycentric subdivision of affine 2-simplices (specified by their vertices):
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Exercise 1 (separation theorems?). Which of the following statements are true?
Justify your answer with a suitable proof or counterexample.

1. If f : S1 −→ S1 × S1 is continuous and injective, then (S1 × S1) \ f(S1)
has exactly two path-connected components.

2. If f : S1 −→ R2022 is continuous and injective, then R2022 \ f(S1) is path-
connected.

Exercise 2 (Slitherlink). A Slitherlink puzzle consists of a square grid; some of
the squares have numbers. The goal is to produce a closed loop out of the edges
of the grid that is compatible with the given numbers in the following sense:

SL 1 Neighbouring grid points are joined by vertical or horizontal edges in such
a way that we obtain a closed loop.

SL 2 The numbers indicate how many of the edges of a given square belong
to the loop. For empty squares, the number of edges in the loop is not
specified.

SL 3 The loop does not have any self-intersections or branches.

Solve the following Slitherlink puzzle:

2

3

33331

1

1

13

33333

2

1

23

3

11

3

3

1

2

Exercise 3 (Slitherlink and JCT). How can the Jordan curve theorem be used to
establish global strategies for solving Slitherlink puzzles (see Exercise 2)? Give
an example that illustrates this strategy.

Exercise 4 (non-planarity of the torus).

1. Let n ∈ N, let M be a compact, non-empty topological manifold of dimen-
sion n, let N be a connected topological manifold of dimension n, and let
f : M −→ N be continuous and injective. Show that f is surjective.

2. Conclude that there is no continuous injective map S1 × S1 −→ R2.

Bonus problem (the five colour theorem).

1. Choose a book on graph theory from the library that contains a proof of
the five colour theorem.

2. Where does the proof use (relatives of) the Jordan curve theorem? Is this
made explicit?
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Prof. Dr. C. Löh/M. Uschold/J. Witzig Sheet 15, February 8, 2022

The case of Lord Polygoto. Detective Blorx is called to investigate the murder
of Lord Polygoto at the Polygoto Mansion. Blorx quickly figures out that there
are only four possible suspects (in alphabetic order):

• the butler

• the cook

• the gardener

• the librarian

Thorough questioning of the suspects revealed that, at the time of the murder,
each of the suspects handled exactly one of the four suspicious items (A).

A. The four suspicious items.

• A Klein bottle.

• An ugly trophy made of steel (as depicted; the sphere on top is hollow,
the statue is massive).

• A poisoned slice of Swiss cheese (as depicted).

• A magnifying lens (see schematics (D)).

B. Statements by witnesses.

• Drinking from the Klein bottle leads to a severe loss of orientation.

• The librarian or the gardener used the suspicious item with the maximal
Euler characteristic.

• The gardener admires commutativity, especially in π1. He would never
touch anything non-commutative.

• The cook experimented with Betti spices and therefore handled an item
such that H2( · ;Q) and H3( · ;Q) have different Q-dimension.

• The butler never loses his way.

Please turn over



C. The coroner’s report.

• The murder weapon admits a connected two-sheeted covering.

• The murder weapon has cyclic H1( · ;Z).

D. Construction schematics of the magnifying lens.

• Let G ⊂ C× be the subgroup of the multiplicative group C× consisting of
all 2021-th roots of unity.

• View S3 as unit sphere in C2.

• Let C× act on S3 by scalar multiplication in C2.

• The lens is then the quotient space G \ S3.

• 80/SK 340 H361 contains further information on the assembly of lenses.

Hints. This construction is best performed during cellular Yoga while transcen-
ding projective space.

Exercise (16 credits). Using the information collected in (A)–(D), help Blorx to
answer the following questions:

1. Which item(s) is (are) the murder weapon(s)?

2. Who did it? More generally: Which suspect used which item?

Hints. The Euler characteristic of a finite CW-complex X is defined as the
alternating sum

χ(X) :=
∑

n∈N
(−1)n · number of open n-cells of X.

You may use that the Euler characteristic is homotopy invariant (among finite
CW-complexes).

Bonus problem (pasta!). During the investigation, Blorx discovered that the
cook and the librarian secretly worked on a joint book project Topologhetti : A
dictionary between pasta and (algebraic) topology. Can you imagine how such
a dictionary could look like?
Hints. Spaghetti, bucatini, fusilli, tortiglioni, penne rigate, tortellini, ravioli,
lasagne, farfalle, . . .
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Exercise 1 (basic point-set topology).

1. What is the definition of a topological space?

2. Which inheritance properties do closed sets in a topological space have?

3. How does a metric induce a topology?

4. What is the definition of a continuous map between topological spaces?

5. Why is the composition of two (composable) continuous maps continuous?

Exercise 2 (T as in Topology). We consider

T :=
{

(t, 0)
∣∣ t ∈ [−1, 1]

}
∪
{

(0, t)
∣∣ t ∈ [−1, 0]

}
⊂ R2,

endowed with the subspace topology of R2.

1. Sketch T !

2. What is the definition of compactness?

3. Is the topological space T compact? Is T \ {(0, 0)} compact?

4. What is the definition of path-connectedness?

5. Is the topological space T path-connected? Is T \{(0, 0)} path-connected?

6. Is T homeomorphic to R ? Or to S1 ?

Exercise 3 (subspaces of R3). Give explicit subspaces (as sets, in coordinates)
of R3 that are homeomorphic to the following spaces:

1. the standard 3-simplex ∆3

2. the torus S1 × S1

3. the Möbius strip

Check your formulas with a visualisation tool!

Exercise 4 (Library). Select five books on category theory and five books on
point-set topology. For both topics, compare these books:

1. Which books contain many examples?

2. Which books focus on theory?

3. In which books can you find terms/theorems quickly?

4. Which books contain useful exercises?

No submission!
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Exercise 1 (collapsing subspaces). Sketch the following quotient spaces!

1. [0, 1]/{0}
2. [0, 1]/[0, 1]

3. [0, 1]/{0, 1}
4. [0, 1]/{0, 1/2}
5. D2/S1

6. S2/S1

Exercise 2 (an exotic quotient?). We consider X := [0, 1]/(Q ∩ [0, 1]), endowed
with the quotient topology of the standard topology on [0, 1].

1. Is X compact?

2. Is X Hausdorff?

3. Is X path-connected?

4. Is X homeomorphic to S1 ?

Exercise 3 (pushouts). Determine each of the following pushout spaces and draw
corresponding pictures!

{0, 1} f
//

f

��

[0, 1]

��

[0, 1] // ?

{0, 1} f
//

g

��

[0, 1]

��

[0, 1] // ?

{0, 1} g
//

g

��

[0, 1]

��

[0, 1] // ?

Here, f and g are defined as follows:

f : {0, 1} −→ [0, 1]

x 7−→ x

g : {0, 1} −→ [0, 1]

x 7−→ 0.

Exercise 4 (summary). Write a summary of Chapter 1.1 (Topological building
blocks), keeping the following questions in mind:

1. Which construction principles for the construction of topological spaces
do you know?

2. (How) Can one construct continuous maps to/from such constructions?
Which universal properties do they have?

3. How can one model classical examples of geometric objects with these
constructions?
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Exercise 1 (functors on pairs of spaces). Give reasonable definitions of func-
tors Top2 −→ Top that deserve the following names:

1. subspace functor

2. ambient space functor

3. quotient space functor

Exercise 2 (morphisms in the simplex category). In the simplex category ∆, des-
cribe the following sets of morphisms explicitly and draw schematic pictures of
these morphisms:

1. Mor∆

(
∆(1),∆(2)

)

2. Mor∆

(
∆(0),∆(2)

)

3. Mor∆

(
∆(2),∆(1)

)

4. Mor∆

(
∆(2),∆(2)

)

Exercise 3 (homotopy). Describe for the following types of maps all possible
homotopy classes:

1. S0 −→ [0, 1]

2. S0 −→ S0

3. [0, 1] −→ S0

4. R2 −→ R2

Exercise 4 (summary). Write a summary of Chapter 1.2 (Categories and Func-
tors), keeping the following questions in mind:

1. Which examples of categories/functors did you encounter in other courses?

2. Why are categories/functors important in Algebraic Topology?

3. What properties do representable functors have?
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Exercise 1 (homotopy). Let X be a topological space and let f ∈ map(X,X).
Prove or disprove:

1. If f ' idX , then f is bijective.

2. If f ' idX , then f ◦ f ' f .

3. If f ◦ f ' f , then f ' idX .

4. If f2021 ' idX , then f is a homotopy equivalence.

Exercise 2 (homotopy invariant functors). Let F : Top −→ Ab be a homotopy
invariant functor. Prove or disprove:

1. F (D2021) ∼=Ab F (R2022).

2. F (S2021) 6∼=Ab Z2021.

3. F (RP 2021) ∼=Ab F (R× RP 2021).

4. If X is contractible, then F (X) ∼=Ab {0}.

5. If F (RP 2021) ∼=Ab Z, then F (S2021) 6∼=Ab Z.

Hints. Recall that all of these problems are easy!

Exercise 3 (classification problem). In this exercise, you may assume that the
theorem on existence of “interesting” homotopy invariant functors holds. Clas-
sify the following spaces up to homeomorphism/homotopy equivalence.

1. R2021

2. R2022

3. S2021

4. D2022

5. S0 × S2021

6. S0 × S2022

Exercise 4 (summary). Write a summary of Chapter 1.3 (Homotopy and Homo-
topy Invariance), keeping the following questions in mind:

1. What is homotopy/homotopy equivalence?

2. What are basic examples?

3. What is homotopy invariance?

4. How can homotopy invariance be used?
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Exercise 1 (concatenation of loops). Let γ := idS1 : (S1, e1) −→ (S1, e1). Draw
pictures of the following loops:

γ, γ ∗ γ, γ ∗ (γ ∗ γ), γ ∗ γ, (γ ∗ γ) ∗ γ

Exercise 2 (loops in spheres).

1. Let γ : (S1, e1) −→ (S2, e1) be the inclusion as equator. Show that [γ]∗ is
trivial in π1(S2, e1).

2. Let

γ : (S1, e1) −→
(
S1 × S1, (e1, e1)

)

[t] 7−→
(
[t], [2 · t]

)
,

and let p1, p2 : S1 × S1 −→ S1 be the canonical projections. Compu-
te π1(p1)([γ]∗) and π1(p2)([γ]∗) and draw the corresponding pictures!

Exercise 3 (pushouts).

1. Let X be a topological space, let X1, X2 be subspaces of X with X = X◦
1 ∪

X◦
2 , and let X0 := X1 ∩X2. Show that X (together with the inclusions)

is a pushout in Top of the diagram

X0
inclusion//

inclusion
��

X2

X1

2. Let X1 := S2 \ {e2}, X2 := S2 \ {−e2} and X0 := X1 ∩X2. Is (S2, e1) a
pushout of

(X0, e1)
[inclusion]∗

//

[inclusion]∗
��

(X2, e1)

(X1, e1)

in Top*h (provided that (S2, e1) is not pointedly contractible)?!

Exercise 4 (summary). Write a summary of Chapter 2.1 (The Fundamental
Group), keeping the following questions in mind:

1. How are the functors πn defined?

2. What is the geometric idea behind πn ?

3. How is the group structure on π1 defined?

4. Why/How is the basepoint relevant?
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Exercise 1 (homotopyc). Let (X,x0) and (Y, y0) be pointed spaces and let f, g ∈
map∗((X,x0), (Y, y0)). Find the correct bijection!

X ' Y . . . and . . . are pointedly homotopic
(X,x0) '∗ (Y, y0) . . . and . . . are homotopic
f ' g . . . and . . . are pointedly homotopy equivalent
f ∈ [g]∗ . . . and . . . are homotopy equivalent

Exercise 2 (induced homomorphisms on π1). Illustrate the effect on π1 of the
homomorphisms induced by the following maps (S1, e1) −→ (S1, e1):

1. [t] 7−→ [t]

2. [t] 7−→ [2 · t mod 1]

3. [t] 7−→ [−t mod 1]

4. [t] 7−→ [t2 mod 1]

Hints. You may use that the following map is a group isomorphism:

Z −→ π1(S1, e1)

d 7−→
[
[t] 7→ [d · t mod 1]

]
∗

Exercise 3 (Seifert and van Kampen). For which of the following topological
spaces X and subspaces X1, X2 are the hypotheses of the theorem of Seifert
and van Kampen satisfied?

X X1 X2

R R {2021}
R (−∞, 0) (0,∞)
R (−∞, 0] [0,∞)
R R \ {0} (−1, 1)
R (−∞, 1] [−1,∞)
R2 R2 \ {0} D2

R2 R2 S1

Exercise 4 (pushouts of groups). Do there exist pushout diagrams in Group of
the following shapes? If yes, determine one way to define the appropriate maps.

1 //

��

Z

��

Z // Z2

1 //

��

Z/2

��

Z/2 // Z/4

Z 2 //

��

Z

��

1 // Z/2

Z //

��

1

��

1 // Z

Z 5 //

��

Z

��

Z // Z/5

Z/2 //

��

S3

��

1 // 1
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Exercise 1 (coverings of the circle). Find three pairwise non-isomorphic 3-sheeted
coverings of S1 and illustrate these coverings in a suitable way!

Exercise 2 (covering maps?). Illustrate the following maps in a suitable way!
Which of them are covering maps and how many sheets do they have?

1. R −→ R≥0, x 7−→ x2

2. R \ {0} −→ R>0, x 7−→ x2

3. C \ {0} −→ C \ {0}, z 7−→ z2021

4. S1 × R −→ S1 × S1, ([x], y) 7−→ ([x], [y])

Exercise 3 (covering maps from group actions?). Which of the following group ac-
tions are properly discontinuous? Determine the corresponding quotient spaces!

1. the action of GL2(R) on R2 by matrix multiplication

2. the action of SL2(Z) on the upper half-plane by Möbius transformations

3. the action of Z/2021 on S1, where [1] ∈ Z/2021 acts via

S1 −→ S1

[x] 7−→ [x+ 1/2021 mod 1]

4. the action of Z/2 on S1 × S1, where [1] ∈ Z/2 acts via

S1 × S1 −→ S1 × S1

([x], [y]) 7−→ ([y], [x])

5. the action of Z/2 on S1 × S1, where [1] ∈ Z/2 acts via

S1 × S1 −→ S1 × S1

([x], [y]) 7−→ ([x+ 1/2 mod 1], [y])

6. the action of Z/2 on S1 × S1, where [1] ∈ Z/2 acts via

S1 × S1 −→ S1 × S1

([x], [y]) 7−→ ([1− x mod 1], [y])

Exercise 4 (summary). Write a summary of Chapter 2.2 (Divide and Conquer),
keeping the following questions in mind:

1. Which types of constructions of spaces are compatible with π1 ?

2. Which of the results carry over easily to higher homotopy groups?

3. What are the main ideas of the corresponding proofs?

4. What are the main examples?

5. What are the limits of computability of fundamental groups?
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Exercise 1 (lifts of loops). We consider the following covering maps

p : R −→ S1

t 7−→ [t mod 1]

q : S1 −→ S1

[t] 7−→ [2 · t mod 1]

r : S1 −→ S1

[t] 7−→ [3 · t mod 1]

and the (pointed) loop

γ : (S1, e1) −→ (S1, e1)

[t] 7−→ [t].

Which of the following loops admit a p-lift, a q-lift, or an r-lift?

γ, γ ∗ γ, γ ∗ γ, γ∗2020, γ∗2021, γ∗2022

Exercise 2 (deck transformations). Give examples of non-trivial deck transfor-
mations of the following covering maps!

1. R −→ S1, t 7−→ [t mod 1]

2. S1 −→ S1, [t] 7−→ [2 · t mod 1]

3. S2 −→ RP 2, x 7−→ {x,−x}

Exercise 3 (non-coverings). Why are there no coverings of the following types?

1. S1 −→ R

2. RP 2 −→ S2

3. S2 −→ S1

4. R2 \ {−e1, e1} −→ R2 \ {0}

Exercise 4 (SchnüffelTron3000).

1. The Blorxian Space Agency launched the satellite SchnüffelTron3000 that
constantly monitors the location of all cars on the surface of Earth (i.e.,
their longitude and latitude, but no height information). Which informa-
tion on the actual location of a car on a circular car park ramp can be
derived from such information? How does this relate to covering theory?

2. How does this relate to the branches of the logarithm function in complex
analysis?
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Exercise 1 (classification of coverings). Apply the classification theorem of co-
verings to the following spaces and give geometric description of each class of
coverings:

1. RP 2021

2. S1 × RP 2021

Exercise 2 (non-trivial coverings). Which of the following spaces admit non-
trivial coverings?

1. R2 \ {0}

2. R2021 \ {0}

3. S2021 \ {e1,−e1}

4. R2 \ {e1,−e1}

Exercise 3 (“random” coverings). Let (T, t0) := (S1, e1)× (S1, e1).

1. Roll four dice; let a, b, c, d be the results and let

H := SpanZ

{(
a− 1
b− 1

)
,

(
c− 1
d− 1

)}
⊂ Z2.

2. Choose an isomorphism π1(T, t0) ∼=Group Z2 and consider the subgroup H ′

corresponding to H under this isomorphism.

3. Draw the path-connected, pointed, covering of (T, t0) associated with H ′.

4. Iterate!

5. What is the probability that the resulting total space is homeomorphic
to R2 ?

Exercise 4 (exact sequences). Refresh your memory of the following algebraic
terms (Appendix A.6.1):

1. (short) exact sequence

2. split exact sequence

3. five lemma

4. flat module
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Exercise 1 (exact sequences). Which of the following sequences of Z-modules are
exact?

1. Z 2021 // Z 2021 // Z

2. Z 0 // Z 0 // Z

3. Z 0 // Z 2021 // Z

4. Z 2021 // Z 0 // Z

Exercise 2 (long exact sequences). Let
(
(hk)k∈Z, (∂k)k∈Z

)
be an ordinary homo-

logy theory on Top2 and let (X,A) be a pair of spaces.

1. Write down the long exact sequence of this pair with respect to the homo-
logy theory

(
(hk)k∈Z, (∂k)k∈Z

)
. What can you conclude from this sequence

if X is contractible? What if A is contractible?

2. Apply this to ({0}, {0}).
3. Apply this to (R2,R2 \ S1).

4. Apply this to (S1, {e1}).
Exercise 3 (excision). Which of the following pairs of spaces are related by ex-
cision (as in the excision axiom)?

1. (R2021, {0}) and (R2021 \ {0}, ∅)
2. (R2, S1) and (R2 \ {0}, ∅)
3. (R2,R2 \ {0}) and ([0, 1]× [0, 1], ([0, 1]× [0, 1]) \ {0})
4. (R2,R2 \ {2 · e1}) and (R2 \D2,R2 \ (D2 ∪ {2 · e1}))
5. (R2,R2 \ {e1}) and (R2 \D2,R2 \D2)

6. (R2,R2 \ {0, 2 · e1}) and (D2, D2 \ {0})
Exercise 4 (summary). Write a summary of Chapter 2.3 (Covering Theory) and
Chapter 2.4 (Applications), keeping the following questions in mind:

1. What are important examples of (non-trivial) coverings?

2. Which lifting properties do coverings have? Why?

3. Why are coverings compatible with homotopy groups?

4. How can coverings be classified?

5. How can covering theory be used to compute fundamental groups?

6. Which applications do fundamental groups and covering theory have?

No submission!
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Exercise. Before you start: Recall the Eilenberg–Steenrod axioms for homology
theories!

Let
(
(hk)k∈Z, (∂k)k∈Z

)
be a homology theory on Top2 with values in ZMod and

h0(•) ∼=Z Z [alternatively: h0(•) ∼=Z Z/2 or h0(•) ∼=Z Q].

Exercise 1 (suspension). Draw the suspensions of the following spaces and com-
pute their (ordinary) homology:

1. {0, 1, 2} ⊂ R

2. D2

3. S1 t S1

4. (S1, e1) ∨ (S1, e1)

Exercise 2 (chain complexes and their homology). Recall the notion of chain
complexes, chain maps, and their homology (Appendix A.6.2):

1. What is the definition of chain complexes and chain maps?

2. What are typical examples?

3. What is the homology of a chain complex?

4. How can homology be computed?

5. How does all this relate to exactness?

6. Why did we introduce chain complexes in Commutative Algebra?

Exercise 3 (summary). Write a summary of Chapter 3.1 (The Eilenberg–Steenrod
Axioms), keeping the following questions in mind:

1. What do the axioms mean geometrically?

2. How can the axioms be used in computations?

Exercise 4 (summary). Write a summary of Chapter 3.2 (Homology of Spheres
and Suspensions) keeping the following questions in mind:

1. How can the homology of spheres/suspensions be computed?

2. What can you say about mapping degrees for self-maps of spheres (in
ordinary homology)?

No submission!
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Let
(
(hk)k∈Z, (∂k)k∈Z

)
be a homology theory on Top2 with values in ZMod and

h0(•) ∼=Z Z [alternatively: h0(•) ∼=Z Z/2 or h0(•) ∼=Z Q].

Exercise 1 (Mayer–Vietoris). Let k ∈ Z.

1. Compute hk(S2) via a suitable Mayer–Vietoris sequence from hk(S1).

2. Compute hk(S1 × S1) via a Mayer–Vietoris sequence associated with the
decomposition of the torus S1 × S1 into two cylinders.

Exercise 2 (mapping cones). Let

f3 : S1 −→ S1

[t] 7−→ [3 · t mod 1]

and let k ∈ Z.

1. Compute hk(Cone(f3)).

2. Compute hk(Σ Cone(f3)).

Exercise 3 (chain complexes and their homology). Recall the notion of chain
complexes, chain maps, and their homology (Appendix A.6.2):

1. What is the definition of chain complexes and chain maps?

2. What are typical examples?

3. What is the homology of a chain complex?

4. How can homology be computed?

5. How does all this relate to exactness?

6. Why did we introduce chain complexes in Commutative Algebra?

Exercise 4 (summary). Write a summary of Chapter 3.3 (Glueings: The Mayer–
Vietoris Sequence), keeping the following questions in mind:

1. How can the Mayer-Vietoris sequence be used to compute homology of
glueings?

2. What is the mapping cone trick?

3. How can relative homology be viewed as absolute homology?

No submission!
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Exercise 1 (singular chains on the torus). We consider the usual description of the
torus T as quotient of the unit square [0, 1]×[0, 1] (Figure 1.6). In the unit square,
we use the following notation for singular 2-simplices: If v0, v1, v2 ∈ [0, 1]× [0, 1],
then we consider the associated affine linear 2-simplex

[v0, v1, v2] : ∆2 −→ [0, 1]× [0, 1]

(t0, t1, t2) 7−→ t0 · v0 + t1 · v1 + t2 · v2.

Which of the following singular chains are cycles in C2([0, 1]× [0, 1];Z) ? Which
of them describe cycles in C2(T ;Z) ? In C2(T ;Z/2) ? Illustrate!

1. 1 · [(0, 0), (0, 1), (1, 1)]

2. 1 · [(0, 0), (0, 1), (1, 1)] + 1 · [(0, 0), (1, 0), (1, 1)]

3. 1 · [(0, 0), (0, 1), (1, 1)]− 1 · [(0, 0), (1, 0), (1, 1)]

4. 1 · [(0, 0), (0, 1), (1, 1)] + 1 · [(0, 0), (1, 1), (1, 0)]

Exercise 2 (singular homology classes on the circle). Show that the following
singular 1-cycles on S1 all represent the same class in H1(S1;Z) (where all the
paths are parametrised at constant speed).

1 1

1

−1

1

11

1 1

Exercise 3 (homology of chain complexes). Compute the homology of the follo-
wing chain complexes of Z-modules:

1. · · · // 0 // Z 0 // Z2 0 // Z // 0 // · · ·

2. · · · // 0 // Z 2 // Z 0 // Z // 0 // · · ·

3. · · · // 0 // Q 2 // Q 0 // Q // 0 // · · ·

4. · · · // 0 // Z/2022
3 // Z/2022

674 // Z/2022 // 0 // · · ·

Exercise 4 (summary). Write a summary of Chapter 4.1 (Construction), keeping
the following questions in mind:

1. What is the geometric idea behind singular homology?

2. Which algebraic objects are used to implement this geometric idea?

3. How can one manipulate singular chains/cycles/boundaries?

No submission!
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Exercise 1 (barycentric subdivision). Draw the barycentric subdivision of the
following singular chains (assuming that everything is parametrised affinely and
that every singular simplex has coefficient 1)!

0

1

0 1

0

1

1-chain

0 1

2
0

1

2

01

2
0

1

2

2-chain

0 1

2

3

3-chain

Exercise 2 (Jordan curve theorem, low dimensions).

1. Does the Jordan curve theorem hold in dimension 0 ?

2. Does the Jordan curve theorem hold in dimension 1 ?

3. Is there a Jordan curve theorem for continuous injective maps S1 −→ D2 ?

Exercise 3 (Jordan curve theorem, crayon version). Which of the following sub-
spaces of R2 are homeomorphic to S1 ? Why?

Exercise 4 (summary). Write a summary of Chapter 4.2 (Homotopy Invariance)
and Chapter 4.3 (Excision), keeping the following questions in mind:

1. What are the geometric ideas behind these proofs?

2. How are these geometric ideas translated into algebra?

3. How do these proofs compare to the proofs of the corresponding results
for π1 ?
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Exercise 1 (topological embeddings). For which of the following types do there
exist continuous and injective maps?

1. R2022 −→ S2022

2. R2022 −→ S2021

3. S2022 −→ RP 2022

4. S2022 × S2022 −→ S2022

Exercise 2 (homotopy vs. homology). Does there exist a path-connected pointed
space (X,x0) with the following properties?

1. π1(X,x0) ∼=Group Z/2, H1(X;Z) ∼=Z Z/2

2. π1(X,x0) ∼=Group Z/2, H1(X;Z) ∼=Z Z

3. π1(X,x0) ∼=Group S3, H1(X;Z) ∼=Z Z/3

4. π1(X,x0) ∼=Group 1, π2(X,x0) ∼=Group Z/2, H1(X;Z) ∼=Z Z/2

Exercise 3 (exam). You are abducted by aliens, transported to planet Blorxifold,
and end up as examiner in an oral exam on Algebraic Topology.

1. Which questions will you ask on basic notions?

2. Which questions will you ask on homotopy groups?

3. Which questions will you ask on homology?

4. Which questions will you ask on applications?

5. Which questions will you ask on recurring themes/techniques?

6. Which examples will you discuss during the exam?

Try out your questions on Commander Blorx your fellow students!

Exercise 4 (summary). Write a summary of Chapter 4.4 (Applications) and
Chapter 4.5 (Singular Homology and Homotopy Groups), keeping the following
questions in mind:

1. What did we achieve by constructing singular homology?

2. What is the key idea of the proof of the Jordan curve theorem?

3. How can the Jordan curve theorem be used to obtain applications in geo-
metry and topology?

4. How can our knowledge on homotopy groups and homology be combined?
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Exercise 1 (CW-complexes). Are the following filtrations CW-structures on the
unit interval [0, 1] ? If so, compute the cellular chain complex (with respect
to H∗( · ;Z)), the cellular homology, and the Euler characteristic.

1. ∅ ⊂ {0} ⊂ [0, 1] 4. ∅ ⊂ [0, 1) ⊂ [0, 1]

2. ∅ ⊂ {0, 1/2, 1} ⊂ [0, 1] 5. ∅ ⊂ [0, 1] \ {1/2} ⊂ [0, 1]

3. ∅ ⊂ [0, 1/2] ⊂ [0, 1] 6. ∅ ⊂ {1/n | n ∈ N>0} ⊂ [0, 1]

Exercise 2 (cellular homology). Choose two different CW-structures on S1×S1.
In the following, we will consider cellular chain complexes and cellular homology
with respect to singular homology with Z-coefficients.

1. Compute the corresponding cellular chain complexes explicitly.

2. Compute the corresponding cellular homology.

Exercise 3 (Yeti vs. Jedi). We consider the following two subspaces of R2:

1. Are these spaces homeomorphic? Which connected components of YeTI
are homeomorphic to which connected components of JEdI?

2. Are YeTI and JEdI homotopy equivalent?

3. Compute all homotopy groups of all connected components.

4. Compute Hn( · ;Z) of these spaces for all n ∈ Z.

5. Compute the Euler characteristic of these spaces.

6. Which connected components admit a 2022-sheeted connected covering?

Exercise 4 (summary). Write a summary of Chapter 5 (Cellular Homology),
keeping the following questions in mind:

1. What are typical examples of CW-complexes and cellular maps?

2. What is the geometric idea of cellular homology? What is the definition?

3. How can cellular homology be computed?

4. How can homology theories on CW-complexes be compared?

5. What consequences does this have for practical computations?

6. What is the Euler characteristic?

7. How can the Euler characteristic be computed?

8. What are typical applications of the Euler characteristic?
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Homepage. Information and news concerning the lectures, exercise classes, of-
fice hours, literature, as well as the exercise sheets can be found on the
course homepage and in GRIPS:

http://www.mathematik.uni-regensburg.de/loeh/teaching/topologie1 ws2122

https://elearning.uni-regensburg.de

Lectures. The lectures are on Tuesdays (8:30–10:00; M101) and on Fridays
(8:30–10:00; M101). The exact start time will be discussed in the first
lecture.

Basic lecture notes will be provided, containing an overview of the
most important topics of the course. These lecture notes can be found
on the course homepage and will be updated after each lecture. Please
note that these lectures notes are not meant to replace attending the
lectures or the exercise classes!

According to current plans (13.10.2021): This course will be taught
on campus in person. On request, this could be turned into a hybrid
format (with live zoom streaming). Please note that there will be no
recordings of the lectures. The lectures are a precious opportunity for
live interaction and I want to keep the atmosphere as casual and un-
intimidating as possible. For asynchronous self-study, lecture notes will
be made available. Please send an email to Clara Löh in case there is a
need for the hybrid option!

Exercises. Homework problems will be posted on Tuesdays (before 8:30) on the
course homepage; submission is due one week later (before 8:30, via
GRIPS).

Each exercise sheet contains four regular exercises (4 credits each)
and more challenging bonus problems (4 credits each).

It is recommended to solve the exercises in small groups; however,
solutions need to be written up individually (otherwise, no credits will
be awarded). Solutions can be submitted alone or in teams of at most
two participants; all participants must be able to present all solutions
of their team.

The first exercise sheet will appear on Tuesday, October 19. The
exercise classes start in the second week.

In addition, we will provide études that will help to train elementa-
ry techniques and terminology. These problems should ideally be easy
enough to be solved within a few minutes. Solutions are not to be sub-
mitted and will not be graded.

Registration for the exercise classes. Please register for the exercise classes via
GRIPS:

https://elearning.uni-regensburg.de



Please register before Wednesday, October 20, 2021, 10:00, choosing
your preferred option. We will try to fill the groups respecting your
preferences.

The distribution will be announced at the end of the first week via
GRIPS.

Credits/Exam. This course can be used as specified in the commented list of
courses and in the module catalogue.

• Studienleistung : Successful participation in the exercise classes:
50% of the credits (of the regular exercise), presentation of a solu-
tion in class.

• Prüfungsleistung : Oral exam (25 minutes), by individual appoint-
ment at the end of the lecture period/during the break.

You will have to register in FlexNow for the Studienleistung and the
Prüfungsleistung (if applicable). Registration will open at the end of the
lecture period.

Further information on formalities can be found at:

https://www.uni-regensburg.de/mathematik/fakultaet/studium/studierende/index.html

Contact.

• On GRIPS, you can find the link to a gather.town meeting space
for this course. Please feel free to use this to virtually meet other
participants for discussions.

• If you have questions regarding the organisation of the exercise
classes, please contact Matthias Uschold or Johannes Witzig:

matthias.uschold@ur.de
johannes.witzig@ur.de

• If you have questions regarding the exercises, please contact your
tutor.

• If you have mathematical questions regarding the lectures, please
contact your tutor or Clara Löh.

• If you have questions concerning your curriculum or the examina-
tion regulations, please contact the student counselling offices or
the exam office:

http://www.uni-regensburg.de/mathematik/fakultaet/studium/ansprechpersonen/index.html

• In many cases, also the Fachschaft can help:

https://www-app.uni-regensburg.de/Studentisches/FS MathePhysik/cmsms/

• Official information of the administration related to the COVID-19
pandemic can be found at:

https://go.ur.de/corona
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Deutsch → English

A

Abbildungsgrad mapping degree 41

Abbildungskegel mapping cone 127, B.5

Abbildungszylinder mapping cylinder A.46

Abelianisierung, Abelisierung abelianisation 172

abgeschlossene Menge closed set A.2

Abschluss closure A.3

absolute Homologie absolute homology 108

Additivitätsaxiom additivity axiom 107

algebraische Topologie algebraic topology 1

Antipodenabbildung antipodal map 43

Ausschneidung excision 106

Automorphismengruppe automorphism group A.23

B

Bahn orbit A.24

Bahnenraum orbit space A.24

Ball ball 6

baryzentrische Unterteilung barycentric subdivision 150

Basispunkt basepoint 32

Basisraum base space 71

Bettizahl Betti number 205

Blatt sheet 72

Bordismus bordism 131

Bündel bundle 71

C

CW-Komplex CW-complex 180

CW-Paar CW-pair 200



E.8 Dictionary

CW-Struktur CW-structure 180

D

dargestellter Funktor represented functor 24

darstellbarer Funktor representable functor 27

Darstellung einer Gruppe representation of a group 67
Decktransformationsgruppe deck transformation group 77

Diagrammjagd diagram chase A.29

Dimensionsaxiom dimension axiom 107
disjunkte Vereinigungstopologie disjoint union topology 10

diskrete Topologie discrete topology A.3

Divisionsalgebra division algebra 167

E

eigentlich diskontinuierlich properly discontinuous 73

einfach zusammenhängend simply connected 53

Einhängung suspension 24, 113, B.3
Einhängungsisomorphismus suspension isomorphism 114

Einpunktvereinigung wedge 64
Einschnürungsabbildung pinching map 119

Einschränkung restriction A.5

Erzeugendensystem generating set 67
Erzeuger generator 67

Eulercharakteristik Euler characteristic 203, B.18

Eulersche Polyederformel Euler’s formula 206
exakte Sequenz exact sequence A.25

Exponentialgesetz exponential law 29

F

Faser fibre 71
Faserung fibration 86

flacher Modul flat module A.26
folgenkompakt sequentially compact A.9

freie Gruppe free group 63

freie Gruppenoperation free action A.24
freier Erzeugungsfunktor free generation functor 23

freies amalgamiertes Produkt amalgamated free product 62,

A.19
freies Erzeugendensystem free generating set A.22

freies Produkt free product A.19

Fundamentalgruppe fundamental group 45
Fundamentalgruppoid fundamental groupoid 52

Fünferlemma five lemma A.27

Funktor functor 21

G

Gebietsinvarianz invariance of domain 166

gehörnte Alexander-Sphäre Alexander horned sphere 161
gerichtete Menge directed set 69
gerichtetes System directed system 69

geschlossener Weg closed path A.6



Dictionary E.9

gewöhnliche Homologietheorie ordinary homology theory 106

Gruppenobjekt group object A.15
Gruppenoperation group action A.23

Gruppenpräsentation presentation of a group 67
Gruppoid groupoid 52

H

hausdorffsch Hausdorff A.8

Hawaiianischer Ohrring Hawaiian earring 88
Homologie homology A.33

Homologietheorie homology theory 106

homologische Algebra homological algebra A.25
homöomorph homeomorphism A.6

Homöomorphismus homeomorphism A.6

homotop homotopic 28
Homotopie homotopy 28

Homotopieäquivalenz homotopy equivalence 28

Homotopiegruppe homotopy group 45
Homotopiekategorie homotopy category 36

homotopoieinvarianter Funktor homotopy invariant functor 37
Hopf-Faserung Hopf fibration 73

Hurewicz-Homomorphismus Hurewicz homomorphism 121

I

Identitätsmorphismus identity morphism 18
Igel hedgehog 16, 42

initiales Objekt initial object 87

Inneres interior A.3
Invarianz der Dimension invariance of dimension 117

Inzidenzzahl incidence number 190

Isomorphismus isomorphism 18

J

Jordanscher Kurvensatz Jordan curve theorem 160

K

Kategorie category 17
Kegel cone 127, B.5

Kegeloperator cone operator 150

Kette chain 134, A.30
Kettenabbildung chain map A.32

kettenhomotop chain homotopic A.38

Kettenhomotopie chain homotopy A.38
Kettenhomotopieäquivalenz chain homotopy equivalence A.38

Kettenkomplex chain complex A.30

Kettenkontraktion chain contraction A.39
Kettenmodul chain module A.30

Kleinsche Flasche Klein bottle B.10
Klumpentopologie trivial topology A.3
Koeffizienten einer Homologietheorie coefficients of a homology theory

106



E.10 Dictionary

Kofaserung cofibration A.45

Kogruppenobjekt cogroup object A.14
Kokettenkomplex cochain complex A.31

kompakt compact A.8
kompakt-offene Topologie compact-open topology 29

Komultiplikation comultiplication A.14

kontraktibel contractible 28
kontravarianter Funktor contravariant functor 22

kovarianter Funktor covariant functor 21

kurze exakte Sequenz short exact sequence A.25

L

lange exakte Paarsequenz long exact sequence of a pair 106
lange exakte Tripelsequenz long exact sequence of triples 111

Lebesgue-Lemma Lebesgue Lemma 56

Lift lift 76
lokal triviales Bündel locally trivial bundle 71

lokal wegzusammenhängend locally path-connected 83

Lokalisierung localisation 70
lokalkompakt locally compact 29

M

Möbiusband Möbius strip 9

Maßhomologie measure homology 131

Mayer–Vietoris-Sequenz Mayer–Vietoris sequence 124
mengentheoretische Topologie point-set topology A.2

metrische Topologie metric topology A.2

Morphismus morphism 17

N

Nash-Gleichgewicht Nash equilibrium 41
natürliche Äquivalenz natural equivalence 95

natürliche Transformation natural transformation 25

Normalisator normaliser 95
nullhomotop null-homotopic 28

O

Objekt object 17

offene Menge open set A.2

Orbit orbit A.24

P

Präsentationskomplex presentation complex 67
Prisma prism 145

Produkttopologie product topology A.4

punktierte Homotopie pointed homotopy 32
punktierter Raum pointed space 32

Pushout pushout 11

Q



Dictionary E.11

Quotiententopologie quotient topology 9

R

Rand boundary 134, A.30

Randoperator boundary operator 106

Rang rank A.22

Rationalisierung rationalisation 70

Raumpaar pair of spaces 20

Rechtsoperation right action A.23

reduzierte Homologie reduced homology 110

reduziertes Wort reduced word A.20

reell-projektiver Raum real projective space 10

reguläre Überlagerung regular covering 95

relative Homologie relative homology 108

S

Satz von Seifert und van Kampen Theorem of Seifert and van Kam-
pen 56

Schwerpunkt barycentre 150

Seeigel sea urchin 33

Selbstabbildung self-map 41

semi-lokal einfach zusammenhängend semi-locally simply connected 88

Simplex simplex 6

Simplexkategorie simplex category 21

simpliziale Homologie simplicial homology 131

simpliziale Menge simplicial set 138

simpliziale Modul simplicial module A.33

simplizialer Komplex simplicial complex 67

singuläre Homologie singular homology 131, 140

singulärer Kettenkomplex singular chain complex 136

Skelett skeleton 180

Spektralsequenz spectral sequence 112

Spektralsequenz/Spektralfolge spectral sequence 199

Spektrum spectrum 132

Sphäre sphere 6

stabile Homotopietheorie stable homotopy theory 116

Stabilisator stabiliser A.24

Standgruppe stabiliser A.24

starke Überdeckung strong cover 154

Starrheit rigidity 169

stetig continuous A.5

T

Teilraumtopologie subspace topology A.4

Topologie topology A.2

Torus torus 8

Totalraum total space 71

transitive Operation transitive action A.24

triviales Bündel trivial bundle 71

U



E.12 Dictionary

Überdeckung cover A.8

Überlagerung covering 45, 71
Umgebung neighbourhood A.3

universelle Überlagerung universal covering 87
universelle Eigenschaft universal property 8

Unterkomplex subcomplex 200

V

Verbindungshomomorphismus connecting homomorphism 106

Vergissfunktor forgetful functor 23
Verkleben glueing 9

Vorzeichenkonvention sign convention A.38

W

Warschauer Kreis Warsaw circle B.6

Wedge wedge 64
Weg path A.6

wegzusammenhängend path-connected A.6

Weylgruppe Weyl group 95
Wort word A.19

Z

Zelle cell 180

zelluläre Abbildung cellular map 183
zelluläre Homologie cellular homology 131, 188

zelluläre Homotopie celullar homotopy 185

zellulärer Kettenkomplex cellular chain complex 187
Zopf braid 112

zusammenhängend connected A.7

zusammenziehbar contractible 28
Zwischenwertsatz intermediate value theorem A.6

Zykel cycle A.30

Zykel cyle 134



Dictionary E.13

English → Deutsch

A

abelianisation Abelianisierung, Abelisierung 172

absolute homology absolute Homologie 108

additivity axiom Additivitätsaxiom 107

Alexander horned sphere gehörnte Alexander-Sphäre 161

algebraic topology algebraische Topologie 1

amalgamated free product freies amalgamiertes Produkt 62,

A.19

antipodal map Antipodenabbildung 43

automorphism group Automorphismengruppe A.23

B

ball Ball 6

barycentre Schwerpunkt 150

barycentric subdivision baryzentrische Unterteilung 150

base space Basisraum 71

basepoint Basispunkt 32

Betti number Bettizahl 205

bordism Bordismus 131

boundary Rand 134, A.30

boundary operator Randoperator 106

braid Zopf 112

bundle Bündel 71

C

category Kategorie 17

cell Zelle 180

cellular chain complex zellulärer Kettenkomplex 187

cellular homology zelluläre Homologie 131, 188



E.14 Dictionary

cellular map zelluläre Abbildung 183

celullar homotopy zelluläre Homotopie 185

chain Kette 134, A.30

chain complex Kettenkomplex A.30

chain contraction Kettenkontraktion A.39

chain homotopic kettenhomotop A.38

chain homotopy Kettenhomotopie A.38

chain homotopy equivalence Kettenhomotopieäquivalenz A.38

chain map Kettenabbildung A.32

chain module Kettenmodul A.30

closed path geschlossener Weg A.6

closed set abgeschlossene Menge A.2

closure Abschluss A.3

cochain complex Kokettenkomplex A.31

coefficients of a homology theory Koeffizienten einer Homologiethe-

orie 106

cofibration Kofaserung A.45

cogroup object Kogruppenobjekt A.14

compact kompakt A.8

compact-open topology kompakt-offene Topologie 29

comultiplication Komultiplikation A.14

cone Kegel 127, B.5

cone operator Kegeloperator 150

connected zusammenhängend A.7

connecting homomorphism Verbindungshomomorphismus106

continuous stetig A.5

contractible kontraktibel, zusammenziehbar28

contravariant functor kontravarianter Funktor 22

covariant functor kovarianter Funktor 21

cover Überdeckung A.8

covering Überlagerung 45, 71

CW-complex CW-Komplex 180

CW-pair CW-Paar 200

CW-structure CW-Struktur 180

cycle Zykel A.30

cyle Zykel 134

D

deck transformation group Decktransformationsgruppe 77

diagram chase Diagrammjagd A.29

dimension axiom Dimensionsaxiom 107

directed set gerichtete Menge 69

directed system gerichtetes System 69

discrete topology diskrete Topologie A.3

disjoint union topology disjunkte Vereinigungstopologie10

division algebra Divisionsalgebra 167

E

Euler characteristic Eulercharakteristik 203, B.18

Euler’s formula Eulersche Polyederformel 206

exact sequence exakte Sequenz A.25

excision Ausschneidung 106



Dictionary E.15

exponential law Exponentialgesetz 29

F

fibration Faserung 86

fibre Faser 71

five lemma Fünferlemma A.27
flat module flacher Modul A.26

forgetful functor Vergissfunktor 23

free action freie Gruppenoperation A.24
free generating set freies Erzeugendensystem A.22

free generation functor freier Erzeugungsfunktor 23

free group freie Gruppe 63
free product freies Produkt A.19

functor Funktor 21

fundamental group Fundamentalgruppe 45
fundamental groupoid Fundamentalgruppoid 52

G

generating set Erzeugendensystem 67
generator Erzeuger 67

glueing Verkleben 9

group action Gruppenoperation A.23
group object Gruppenobjekt A.15

groupoid Gruppoid 52

H

Hausdorff hausdorffsch A.8
Hawaiian earring Hawaiianischer Ohrring 88

hedgehog Igel 16, 42

homeomorphc homöomorph A.6
homeomorphism Homöomorphismus A.6

homological algebra homologische Algebra A.25
homology Homologie A.33

homology theory Homologietheorie 106

homotopic homotop 28
homotopy Homotopie 28

homotopy category Homotopiekategorie 36

homotopy equivalence Homotopieäquivalenz 28
homotopy group Homotopiegruppe 45

homotopy invariant functor homotopoieinvarianter Funktor37

Hopf fibration Hopf-Faserung 73
Hurewicz homomorphism Hurewicz-Homomorphismus 121

I

identity morphism Identitätsmorphismus 18

incidence number Inzidenzzahl 190
initial object initiales Objekt 87

interior Inneres A.3
intermediate value theorem Zwischenwertsatz A.6
invariance of dimension Invarianz der Dimension 117

invariance of domain Gebietsinvarianz 166



E.16 Dictionary

isomorphism Isomorphismus 18

J

Jordan curve theorem Jordanscher Kurvensatz 160

K

Klein bottle Kleinsche Flasche B.10

L

Lebesgue Lemma Lebesgue-Lemma 56

lift Lift 76

localisation Lokalisierung 70

locally compact lokalkompakt 29

locally path-connected lokal wegzusammenhängend 83

locally trivial bundle lokal triviales Bündel 71

long exact sequence of a pair lange exakte Paarsequenz 106

long exact sequence of triples lange exakte Tripelsequenz 111

M

Möbius strip Möbiusband 9

mapping cone Abbildungskegel 127, B.5

mapping cylinder Abbildungszylinder A.46

mapping degree Abbildungsgrad 41

Mayer–Vietoris sequence Mayer–Vietoris-Sequenz 124

measure homology Maßhomologie 131

metric topology metrische Topologie A.2

morphism Morphismus 17

N

Nash equilibrium Nash-Gleichgewicht 41

natural equivalence natürliche Äquivalenz 95

natural transformation natürliche Transformation 25

neighbourhood Umgebung A.3

normaliser Normalisator 95

null-homotopic nullhomotop 28

O

object Objekt 17

open set offene Menge A.2

orbit Orbit, Bahn A.24

orbit space Bahnenraum A.24

ordinary homology theory gewöhnliche Homologietheorie106

P

pair of spaces Raumpaar 20

path Weg A.6

path-connected wegzusammenhängend A.6

pinching map Einschnürungsabbildung 119



Dictionary E.17

point-set topology mengentheoretische Topologie A.2

pointed homotopy punktierte Homotopie 32

pointed space punktierter Raum 32

presentation complex Präsentationskomplex 67

presentation of a group Gruppenpräsentation 67

prism Prisma 145

product topology Produkttopologie A.4

properly discontinuous eigentlich diskontinuierlich 73

pushout Pushout 11

Q

quotient topology Quotiententopologie 9

R

rank Rang A.22

rationalisation Rationalisierung 70

real projective space reell-projektiver Raum 10

reduced homology reduzierte Homologie 110

reduced word reduziertes Wort A.19

regular covering reguläre Überlagerung 95

relative homology relative Homologie 108

representable functor darstellbarer Funktor 27

representation of a group Darstellung einer Gruppe 67

represented functor dargestellter Funktor 24

restriction Einschränkung A.5

right action Rechtsoperation A.23

rigidity Starrheit 169

S

sea urchin Seeigel 33

self-map Selbstabbildung 41

semi-locally simply connected semi-lokal einfach zusammenhängend

88

sequentially compact folgenkompakt A.9

sheet Blatt 72

short exact sequence kurze exakte Sequenz A.25

sign convention Vorzeichenkonvention A.38

simplex Simplex 6

simplex category Simplexkategorie 21

simplicial complex simplizialer Komplex 67

simplicial homology simpliziale Homologie 131

simplicial module simpliziale Modul A.33

simplicial set simpliziale Menge 138

simply connected einfach zusammenhängend 53

singular chain complex singulärer Kettenkomplex 136

singular homology singuläre Homologie 131, 140

skeleton Skelett 180

spectral sequence Spektralsequenz 112

spectral sequence Spektralsequenz/Spektralfolge199

spectrum Spektrum 132

sphere Sphäre 6



E.18 Dictionary

stabiliser Standgruppe, Stabilisator A.24

stable homotopy theory stabile Homotopietheorie 116
strong cover starke Überdeckung 154

subcomplex Unterkomplex 200
subspace topology Teilraumtopologie A.4

suspension Einhängung 24, 113, B.3

suspension isomorphism Einhängungsisomorphismus 114

T

Theorem of Seifert and van Kampen Satz von Seifert und van Kampen
56

topology Topologie A.2

torus Torus 8
total space Totalraum 71

transitive action transitive Operation A.24

trivial bundle triviales Bündel 71
trivial topology Klumpentopologie A.3

U

universal covering universelle Überlagerung 87

universal property universelle Eigenschaft 8

W

Warsaw circle Warschauer Kreis B.6
wedge Wedge, Einpunktvereinigung 64

Weyl group Weylgruppe 95

word Wort A.19



Symbols

Symbols

| · | cardinality,
[X,Y ] set of homotopy

classes of maps
from X to Y , 36

[(X,A), (Y,B)] set of
homotopy classes of
maps of pairs, 36

[(X,x0), (Y, y0)]∗ set of pointed
homotopy classes of
pointed maps, 37

[f ] homotopy class of f ,
36

[f ]A,B homotopy class of f
(in Top2), 36

[f ]∗ pointed homotopy
class of f , 37

X x G a right action of G
on X, A.23

Gy X a group action of G
on X, A.23

· walking a loop
backwards, 49

· walking a path
backwards, 52

• one-point space, 106
∩ intersection of sets,

∪ union of sets,

t disjoint union of sets,

⊂ subset relation
(equality is
permitted),

∼=C is isomorphic to (in
the category C), 18

∼=Top is homeomorphic to,
A.6

∂ boundary, A.3

', 'Top is homotopic to
(in Top), is homotopy
equivalent to (in Top),
28

'∗ is pointedly
homotopic to/is
pointedly homotopy
equivalent to, 32

'A,B is homotopic to
(in Top2), is homotopy
equivalent to
(in Top2), 31

'
RCh is homotopic to

(in RCh), is homotopy
equivalent to
(in RCh), A.38⊔
disjoint union, 10



E.20 Symbols

∗ concatenation of
loops, 47

F free product, A.20
∗ concatenation of

paths, 52
× cartesian product,
∨ wedge of pointed

spaces, 64

Numbers

1 “the” trivial group, 63

A

Ab the category of
Abelian groups, 20

· ab abelianisation, 172
AutX(X) automorphism group

of X in C, A.23

B

β barycentre, 150
bn(X) Betti number of X

with Z-coefficients,
205

bn(X;R) Betti number of X
with R-coefficients,
205

BX barycentric
subdivision operator
on X, 150, 151

C

C set of complex
numbers,

C(f) induced chain map
between singular
chain complexes, 136

Ch cellular chain complex
associated with h, 187

RCh category of (left)
R-chain complexes,
A.32

χ Euler characteristic,
203, B.18

Cone(f) mapping cone of f ,
127

Cone(X) cone over X, 127
Cov category of all

covering maps, 76
Cov* category of all pointed

coverings, 76
Cov(X,x0) category of pointed

coverings of (X,x0),
77

Cov◦(X,x0) category of pointed
coverings of (X,x0)
with path-connected
total space, 94

CovX category of coverings
of X, 77

C ⊗Z D tensor product of
chain complexes, A.37

CW category of
CW-complexes, 183

CWh homotopy category of
CW-complexes, 185

CW2 category of relative
CW-complexes, 184

CW2
fin category of finite

relative
CW-complexes, 195

CW2
h homotopy category of

relative
CW-complexes, 185

CWÁ category of CW-pairs,
200

CWÁ
h homotopy category of

CW-pairs, 201
C(X) singular chain

complex of X, 136
C(X;Z) singular chain

complex of (X, ∅) with
coefficients in Z, 138

C(X,A;Z) singular chain
complex of (X,A)
with coefficients in Z,
138
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CU (X) chain complex of
U -small singular
simplices in X, 154

D

∆ the simplex category,
21

∆(n) the set {0, . . . , n}, 21
∆n n-dimensional

standard simplex, 6
diam diameter of a subset

of a metric space, 155
∂k boundary operator,

connecting
homomorphism, 106

Dn n-dimensional ball, 6
∂Y boundary of Y in a

topological space, A.3

G

Group the category of
groups, 20

G \X orbit space of a (left)
group action, A.24

H

Hk(C) k-th homology of C,
A.33

Hk(f) induced map on
homology, A.34

Hk(f ;Z) induced (by f)
homomorphism on
singular homology
with coefficients in Z,
in degree k, 140

Hh
n cellular homology

with respect to h, in
degree n, 188

h̃k reduced homology
associated with hk,
110

Hk(X,A;Z) singular homology
of (X,A) with

coefficients in Z, in
degree k, 140

h(X,x0),n Hurewicz
homomorphism
for (X,x0) in
degree n, 171

HU
k (X;Z) homology of U -small

singular simplices
in X in degree k, 154

Hk(X;Z) singular homology
of (X, ∅) with
coefficients in Z, in
degree k, 140

I

I algebraic model
of [0, 1], A.37

id identity morphism, 18
Im imaginary part,

M

map the set of continuous
maps, 20

map∗ set of pointed maps
between pointed
spaces, 32

RMod the category of left
R-modules, 20

ModR the category of right
R-modules, 20

MorC morphisms in the
category C, 17

N

N set of natural
numbers: {0, 1, 2, . . . },

NG(H) normaliser of H in G,
95

O

Ob class of objects of a
category, 17



E.22 Symbols

P

π1 fundamental group,
45, 46, 49

πn homotopy groups, 45

Q

Q set of rational
numbers,

R

R set of real numbers,
Re real part,
R∞

⊕
N R with the

colomit topology, 150

r
(n)
j reflection at the j-th

coordinate hyperplane
in Rn+1, 38

RPn n-dimensional real
projective space, 10

S

Set the category of sets,
19

Σ suspension functor,
113

Sk(X) the set of singular
k-simplices of X, 134

Sn n-dimensional sphere,
6

[Sn] canonical generator
of Hn(Sn;Z), 171

〈S |R〉 group generated by S
with relations R, 67

SubgroupG category of subgroups
of G, 95

T

Top the category of
topological spaces, 20

Top* the category of
pointed spaces, 32

Top2 the category of pairs
of topological spaces,
20

Top2
h homotopy category of

pairs of spaces, 36
Toph homotopy category of

topological spaces, 36
Top*h homotopy category of

pointed spaces, 37

U

U(x, ε) open ε-ball around x,
A.2

V

v ∗ · cone operator with
cone tip v, 150

VectK the category of
K-vector spaces, 19

X

X/A quotient space of X
via collapsing X, 10

X/G orbit space of a right
action, A.24

Y

Y ◦ interior of Y , A.3
Y closure of Y , A.3

Z

Z set of integers,



Index

A

A1-homotopy theory, 34
Abelian category, B.17
abelianisation, 172, 173

universal property, 172
absolute homology, 108
action, A.23

continuous, A.23
free, A.24
properly discontinuous, 73
right action, A.23
transitive, A.24

additive homology theory, 107
additivity axiom, 107
Alexander horned sphere, 161
algebraic Euler characteristic, B.18
algebraic Mayer–Vietoris sequence,

B.17
Algebraic Topology, 5

Applications, 2
Why?, 2

alternating sum, 208
amalgamated free product, 62, A.21
antipodal map, 43
arcwise connected, see path-connected
ascending union, 69
Asteroids, 15, B.3

Atiyah-Hirzebruch spectral sequence,
132, 199

automorphism group, A.23
axiomatic homology theory, 105
axioms

Eilenberg–Steenrod, 106, 130

B

ball, 6, 29
Banach fixed point theorem, 41
barycentre, 150
barycentric subdivision, 150, 151,

B.19
algebraic properties, 152

base space, 71
basepoint, 32

change of, 51
belt trick, 87
Betti number, 205
Blakers-Massey theorem, 62
Blorx, B.8
Borsuk–Ulam theorem, 103, B.12
boundary, A.3

singular, 139
bounded vs. compact, A.9
Brouwer fixed point theorem, 39,

103
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constructivity?, 41
bundle

base space, 71
fibre, 71
locally trivial, 71
total bundle, 71
trivial, 71
vector bundle, 72

C

category, 17
Abelian, B.17
homotopy category, 36
isomorphism, 18
morphisms, 17
natural equivalence, 95
objects, 17
of Abelian groups, 20
of all categories, 23
of chain complexes, A.32
of coverings, 76
of CW-complexes, 183
of CW-pairs, 200
of groups, 20
of modules, 20
of pairs of spaces, 20
of relative CW-complexes, 183
of sets, 19
of topological spaces, 20
of vector spaces, 19
simplex, 21

cell, 180
cell complex, see CW-complex
cellular approximation, A.44
cellular chain complex, 187

explicitly, 189
cellular homology, 179, 186, 188

is ordinary homology, 195
of real projective spaces, 193
of spheres, 192
of the unit interval, 192
recipe, 190

cellular homotopy, 185
cellular map, 183
chain, A.30

singular, 134, 136, 139
chain complex, A.30

category, A.32
cellular, 187
Euler characteristic, B.18
finite, B.18
homology, A.33
homotopy category, A.40
of simplicial modules, A.33
singular, 135
tensor product, A.32

chain contraction, A.39
chain homotopy, A.38

basic properties, A.40
genesis, A.36

chain homotopy equivalence, A.38,
B.19

chain map, A.32
chain module, A.30
circle, 14

as cogroup object, A.16
class, 18
classification of coverings, 95
classifying space, B.13
closed

vs. compact, A.9
closed subset, A.2
closure, A.3
coassociativity, A.14
cochain complex, A.31
coefficients, 106
cofibration, 174, A.45
cogroup object, A.14
commutator subgroup, 172
compact, A.8

product, A.10
subspace of Rn, A.9
vs. bounded, A.9
vs. closed, A.9

compact-Hausdorff trick, 14, A.10
compact-open topology, 29
comparison theorem, 202
compatible homotopies, B.19
complex

CW-complex, 180
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one-dimensional, B.12
simplicial, 67

comultiplication, A.14
cone, 127, B.5

mapping, B.5
connected, A.7
connecting homomorphism, A.35

singular homology, 143
continuous, A.5

glueing principle, A.6
inheritance, A.5

continuous action, A.23
continuous vector field, 42
contractible, 28

chain complex, A.38
pointedly, 32

contravariant functor, 22
coproduct

of groups, A.21
covariant functor, 21
cover

strong, 154
covering, 71

action by π1, 80
category of, 76
classification, 95
deck transformation group, 77
finite, B.13
Galois, 95
Hawaiian earring, B.10
lift, 76
lifting properties, 77
normal, 95
pretzel, B.10
regular, 95, B.13
universal, 87
Warsaw circle, 99, B.10

currying map, 29
CW-complex, 180

category, 183
cellular map, 183
dimension, 180
Euler characteristic, 203
finite, 181
homotopy category, 185

homotopy theory, A.43
incidence number, 190, 195
of finite type, 181
relative, 180
skeleton, 180
subcomplex, 200

CW-pair, 200
category, 200
homotopy category, 201

CW-structure, 180
cycle, A.30

singular, 139

D

deck transformation group, 77, 91,
93

degree, 41, 118
de Rham cohomology, A.31
diagram chase, A.29
diameter

of affine simplices, B.19
dimension

CW-complex, 180
invariance of, 39, 117

dimension axiom, 107
directed set, 69
discrete topology, A.3
disjoint union topology, 10
divide and conquer

fundamental group, 53
homology, 123

division algebra, 167, 169
drie halen, twee betalen, A.36

E

Eckmann–Hilton trick, 50, B.7
Eilenberg–Steenrod axioms, 106, 130
Eilenberg–Zilber theorem, A.37
embedded knot, B.15
Euler characteristic, 203, B.21

algebraic, B.18
homological description, 205
homology invariance, B.18
homotopy invariance, 205
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inheritance properties, 209
Euler’s formula, 206
exact sequence, A.25

short, A.25
split, A.26

excision, 106, 116
singular homology, 149

exponential law, 29

F

fibration, 86
fibre, 71
fibre bundle, see bundle
finite chain complex, B.19
finite covering, B.13
finite CW-complex, 181
finite type, 181
five colour theorem, B.20
five lemma, A.27
flat module, A.26
flipbook, A.11
forgetful functor, 23
free action, A.24
free generation functor, 23
free group, A.19

abelianisation, 173
rank, A.22
universal property, A.19

free product of groups, A.20
Freyd–Mitchell embedding theorem,

A.25
Frobenius theorem, 169
functor, 21

abelianisation, 172
composition, 22
contravariant, 22
covariant, 21
forgetful, 23
free generation, 23
fundamental group, 45
homology, A.34
homotopy classes, 37
homotopy group, 45
homotopy invariant, 37
identity, 22

natural equivalence, 95
preserves isomorphism, 24
representable, 27
represented, 24
suspension, 24, 113
tensor product, 24

fundamental class, 170
fundamental group, 46, 47

action on fibres, 80
and lifts, 82
as automorphism group, 91
change of basepoint, 51
circle, 94
functor, 49
group structure, 47
intuitively, 46
of ascending unions, 69
of products, 54
of wedge of circles, 70
projective space, 64
sphere, 63
suspension, 64
torus, 55
wedge of circles, 65

fundamental groupoid, 52
fundamental theorem of algebra,

103, 123, B.7

G

Galois covering, see regular cover-
ing

Galois theory, 98
generalised maximum principle, A.9
glueing, 9
glueing principle for continuous maps,

A.6
graph theory, 165
group

abelianisation, 172
amalgamated free product, 62,

A.21
classifying space, B.13
commutator subgroup, 172
coproduct, A.21
free product, A.19
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Heisenberg, B.13
of deck transformations, 77
presentation, 67
pushout, 62
residually finite, B.13

group action, A.23
continuous, A.23
free, A.24
properly discontinuous, 73
right action, A.23
transitive, A.24

group object, A.15
groupoid, 52

H

hairy ball theorem, see hedgehog
theorem

Haus des Nikolaus, B.10
Hausdorff, A.8
Hawaiian earring, 88, B.8

covering, B.10
hedgehog theorem, 42
Heine-Borel (theorem), A.9
Heisenberg group, B.13
Heisenberg manifold, B.13
homeomorphism, A.6

sufficient condition, 14, A.10
homeomorphism invariant, 16
homeomorphism problem, 14, 68
homological algebra, A.25
homology

absolute, 108
algebraic homotopy equivalence,

A.41
algorithmically, A.34
cellular, 186, 188
comparison, 195
functor, A.34
of a chain complex, A.33
of real projective spaces, 193
of spheres, 116
of suspensions, 114
of the Klein bottle, B.17
of the projective plane, B.17
of the torus, B.15

on CW-pairs, 201
realisation by spaces, B.18
reduced, B.15
relative, 108
singular, 140

homology sphere, 178
homology theory, 105

additive, 107
axioms, 106
cellular, 179
classification, 131
coefficients, 106
dimension axiom, 107
excision, 106
existence, 131
homotopy invariance, 106, 108
long exact sequence of a triple,

111
long exact sequence of pairs,

106
natural transformation, 202
on CW-pairs, 201
ordinary, 106
realisation, 129
reduced, 110
singular, 133
uniqueness, 131

homotopic, 28
cellularly, 185

homotopy, 28
cellular, 185
elementary properties, 34
flipbook, A.11
generalisations, 34
of chain maps, A.38
of pairs, 31
pointed, 32
relative, 31

homotopy category
of chain complexes, A.40
of CW-complexes, 185
of CW-pairs, 201
of pairs of spaces, 36
of pointed spaces, 37
of relative CW-complexes, 185
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of spaces, 36
product, B.6

homotopy classes functor, 37
homotopy equivalence, 28

of chain complexes, A.38
of pairs, 31
pointed, 32

homotopy equivalence problem, 68
homotopy group, 45, 50, B.7

from homology, 177
large, B.12
of products, 54
of spheres, 177

homotopy invariance, A.36
of homology of chain complexes,

A.41
singular homology, 145

homotopy invariant, 38
homotopy invariant functor, 37
Hopf fibration, 73
Hopf theorem, 167
Houdini, B.8
Hurewicz homomorphism, 121, 171,

173
Hurewicz theorem, 173
hyperbolic manifold, 170

simplicial volume, 171
hyperbolic volume, 171

I

identity functor, 22
identity morphism, 18
incidence number, 190, 195
indiscrete topology, A.3
initial object, 87, A.15
interior, A.3
invariance of dimension, 39, 117
invariance of domain, 166
invariance of the boundary, B.6
invariant

homeomorphism, 16
isomorphism, 18

and functors, 24
natural, 25

J

join, 114
Jordan curve theorem, 103, 160,

B.20
Jordan-Schönflies theorem, 161

K

Klein bottle, B.21
homology, B.17

Klein tic-tac-toe, B.15
knot, B.15
knot complement, B.15

L

`1-semi-norm, 169, 170, B.18
Lebesgue lemma, 56
Lebesgue number, 56
lens space, B.21
Library, 3
lift, 76

criterion, 82
of paths, 78
uniqueness, 82

lifting properties, 77
locally compact, 29
locally path-connected, 83
locally trivial bundle, 71
locally trivial fibre bundle, see lo-

cally trivial bundle
long exact sequence

homology (algebraic), A.35
of mapping cones, 128

long exact sequence of pairs, 106
singular homology, 143

long exact sequence of triples, 111

M

manifold, 166
fundamental class, 170
Heisenberg, B.13
homology, 198
hyperbolic, 170

map, 41
cellular, 183
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continuous, A.5
currying, 29
open, 73

mapping cone, 127, B.5
homotopy equivalence, 128
long exact sequence, 128
relative homology, 130

mapping cone trick, 129
mapping cylinder, A.46
mapping degree, 41, 118
Mayer–Vietoris sequence, 123, 124

algebraic, A.29, B.17
metric topology, A.2
Möbius strip, 9, B.6
module

flat, A.26
Moore space, 129
morphism, 17

identity, 18

N

Nash equilibrium, 41, B.6
natural, 26
natural equivalence, 95
natural isomorphism, 25
natural transformation, 25

of homology theories, 202
n-connected, 53
neighbourhood, A.3
Nielsen–Schreier theorem, 101, 103

quantitative version, 210
non-embeddability, 166, B.20
non-embeddability1, 165
non-planarity, 165
normal covering, see regular cov-

ering
normaliser, 95
null-homotopic, 28

chain map, A.38
pointedly, 32

O

object, 17
cogroup object, A.14

group object, A.15
initial, 87, A.15
terminal, A.15

octonions, 169
one-dimensional complex, B.12
open cell, 180
open map, 73
open neighbourhood, A.3
open subset, A.2
ordinary homology

finiteness, 197
vanishing, 197

ordinary homology theory, 106

P

page, 199
pair of spaces, 20
pandemic, B.10
pasta, B.21
path, A.6
path-connected, A.6
path-connected component, 50
path-connected components, B.7
Peano curves, B.2
π1, see fundamental group
pinching map, 119
Platonic solid, 207
poetry, B.15
Poincaré homology sphere, 178
point-removal trick, 16, 39, A.7,

B.2
point-set topology, A.2
pointed space, 32
pointedly contractible, 32
pointedly homotopic, 32
pointedly null-homotopic, 32
poster, B.15
presentation complex, 67
presentation of a group, 67
pretzel covering, B.10
principle

mapping degree, 41
subdivision, 56, 149

product
and πn, 54
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in Toph, B.6
in Top*h, 54

product space, 8
universal property, 8

product topology, A.4
compactness, A.10

projective plane
homology, B.17
via glueings, B.3

projective space, 10
covering, 75

properly discontinuous, 73
pseudo-circle, B.5
Puppe sequence, 86
pushout

of groups, 62
of topological spaces, 11
universal property, 12

pushout diagram, 12
puzzle

Slitherlink, 165, B.20

Q

quaternions, 169
quotient space, 9

cofibration, A.45
universal property, 11

quotient topology, 9

R

rank
of a free group, A.22

rationalisation, 70
real projective space, 10

cellular homology, 193
covering, 75
Euler characteristic, 206
fundamental group, 64
singular homology, 196

reduced homology, 110, B.15
reduced word, A.20
References, 3
regular covering, 95, B.13
relative CW-complex, 180

cofibration, A.46
relative homology, 108

via mapping cones, 130
representable functor, 27

and inverse limits, 27
represented functor, 24
residually finite group, B.13
right action, A.23
rigidity, 169

S

Seifert and van Kampen theorem,
56

semi-locally simply connected, 88
sequentially compact, A.9
set

directed, 69
sheet, 72
short exact sequence, A.25

split, A.26
simplex, 6

singular, 134
small, 154

simplex category, 21
morphisms, B.3

simplicial complex, 67
simplicial module, A.33
simplicial set, 138
simplicial volume, 170, 171
simply connected, 53

semi-locally, 88
singular boundary, 139
singular chain, 139

barycentric subdivision, 151
notation, 139

singular chain complex, 135, 138
singular cycle, 139, 159, 160

of S2, B.19
singular homology, 133, 140

coefficients, 140
compatible homotopies, B.19
connecting homomorphism, 143
excision, 149
homotopy invariance, 145
Hurewicz homomorphism, 171
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in degree 0, 142
in negative degrees, 140
`1-semi-norm, 169, B.18
long exact sequence of pairs,

143
of real projective space, 196
of spheres, 159
of the empty set, 140
of the point, 140
small simplices, 154, 156
strong additivity, 141

singular simplex, 134
small, 154

skeleton, 180
Slitherlink, 165, B.20
small

simplex, 154, 156
smash, 114
space

pointed, 32
topological, A.2

spectral sequence, 112, 199
Atiyah-Hirzebruch, 199

sphere, 6
cellular homology, 192
Euler characteristic, 206
fundamental group, 63
homology, 116
homotopy group, 177
horned, 161
simplicial volume, 170
singular cycle, B.19
singular homology, 159

split exact sequence, A.26
stable homotopy theory, 116
standard simplex, 6
standard topology

on Rn, A.3
stereographic projection, B.2
strong additivity, 141
strong cover, 154
subcomplex, 200
subdivision principle, 56, 149
subspace, 6
subspace topology, A.4

suspension, 24, 64, 113, B.3
homology, 114

suspension functor, 113

T

telescope, 70
tensor product, 24

chain complex, A.32
of chain complexes, A.37

terminal object, A.15
theorem

Atiyah-Hirzebruch spectral se-
quence, 199

Banach fixed point theorem,
41

Blakers-Massey, 62
Borsuk–Ulam, 103, B.12
Brouwer fixed point, 39, 103
classification of coverings, 95
comparison of homology the-

ories, 202
Eilenberg–Zilber, A.37
existence of “interesting” ho-

motopy invariant functors,
38, 123

five colour theorem, B.20
five lemma, A.27
Freyd–Mitchell, A.25
Frobenius, 169
fundamental theorem of alge-

bra, 103, 123, B.7
hairy ball, see hedgehog the-

orem
hedgehog theorem, 42
Heine-Borel, A.9
Hopf, 167
Hurewicz, 173
invariance of dimension, 39,

117
Jordan curve theorem, 103, 160,

B.20
Jordan-Schönflies, 161
Lebesgue, 56
lifting criterion, 82
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long exact sequence of map-
ping cones, 128

Nielsen–Schreier, 101, 103, 210
Seifert and van Kampen, 56
Tychonoff, A.10
universal coefficient theorem,

194
Whitehead, A.44
with a star, 39
Yoneda, 26

thick sphere, 30, 109
topological embedding, 165
topological manifold, 166
topological space, A.2

compact, A.8
connected, A.7
disjoint union, 10
Hausdorff, A.8
locally compact, 29
non-metrisable, A.8
pair, 20
path-connected, A.6
product, 8
pushout, 11
quotient, 9
subspace, 6

topology, A.2
algebraic, 2
discrete, A.3
disjoint union, 10
indiscrete, A.3
induced by a metric, A.2
point-set, A.2
product, A.4
quotient, 9
subspace, A.4
trivial, A.3

torus, 8, 15
covering, 75
homology, B.15
simplicial volume, 170
singular homology, 160

total space, 71
transitive action, A.24
trick

compact-Hausdorff, 14, A.10
Eckmann–Hilton, 50, B.7
mapping cone, 129
point-removal, 16
removal of a point, 39, A.7,

B.2
triple sequence, 111
trivial bundle, 71
trivial topology, A.3
tweet, B.15
Tychonoff’s Theorem, A.10

U

unit interval
algebraic model, A.37
cellular homology, 192

universal coefficient theorem, 194
universal covering, 87, 90

existence, 88
non-existence, 88

universal property
abelianisation, 172
free group, A.19
of free generating sets, A.22
product space, 8
pushout, 12
quotient space, 11

unsolvability
of the homeomorphism prob-

lem, 68
of the homotopy equivalence

problem, 68

V

vector bundle, 72
vector field, 42
Vietoris, 123

W

Warsaw circle, 83, 90, 181, A.44,
B.6

covering, 99, B.10
Warsaw helix, 99, B.10
wedge, 64
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fundamental group, 70
of circles, 65

Weyl group, 95
Whitehead theorem, A.44
Why Algebraic Topology?, 2
wild sinus, A.7
word

reduced, A.20

Y

Yoneda Lemma, 26
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