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Group Cohomology
& Bounded Cohomology

An introduction for topologists



Clara Löh
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1
Group cohomology



1.1

Introduction

What is group cohomology? Group cohomology is a contravariant functor
turning groups and modules over groups into graded Abelian groups. I.e.,
on objects group cohomology looks like

Hn(G;A),

where
– the number n ∈ N is the degree in the grading of the graded Abelian

group H∗(G;A),
– the first parameter is a (discrete) group G,
– and the second (“Abelian”) parameter is a ZG-module A, the so-

called coefficients.
Similarly, group homology is a covariant functor turning groups and mod-
ules over groups into graded Abelian groups.

How can we construct group cohomology? There are three main (equiv-
alent) descriptions of group (co)homology:

– Topologically (via classifying spaces)
– Combinatorially (via the bar resolution)
– Algebraically (via derived functors).

Why is group cohomology interesting? First, group cohomology is an
interesting theory in its own right providing a beautiful link between alge-
bra and topology. Second, group (co)homology helps to solve the following
problems:

– Given two groups, what extension groups with the given “kernel”
and the given “quotient” group do there exist? (Section 1.4.4)

– How do cyclic Galois field extensions look like? (Hilbert 90) (Sec-
tion 1.4.3)

– How surjective is the Hurewicz homomorphism in degree 2? (Sec-
tion 1.6.7)

– Which (finite) groups can act freely on spheres? (Section 1.6 and 1.9)

2



1.1 Introduction 3

Overview

In the first part of the semester we will study the following topics:
– Understand and compare the three basic descriptions of group (co)ho-

mology
– First applications of group (co)homology
– Transfer
– Product structures
– Cohomology of finite groups and periodic cohomology
– The Hochschild-Serre spectral sequence

In the second part of the semester we will look at a functional analytic
variant of group cohomology, called bounded cohomology, and its applica-
tion to the simplicial volume.
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1.2
The domain categories

for group (co)homology

The basic algebraic objects in the world of group (co)homology are group
rings and modules over group rings.

Definition 1.2.1 (Group ring). Let G be a group. The (integral) group
ring of G is the ring ZG (sometimes also denoted Z[G] to avoid misunder-
standings)

– whose underlying Abelian group is the free Z-module
⊕

g∈G Z · g,
– and whose multiplication is the Z-linear extension of composition

in G, i.e.:

· : ZG× ZG −→ ZG(∑
g∈G

ag · g,
∑
g∈G

bg · g
)
7−→

∑
g∈G

∑
h∈G

ag · bg−1h · g

(where all sums are “finite”).

Example 1.2.2 (Group rings).
– We have Z[1] ∼= Z.
– The group ring Z[Z] ∼= Z[t, t−1] of the integers is nothing but the ring

of Laurent polynomials.
– For all n ∈ N>0 we have Z[Z/n] ∼= Z[t]/(tn − 1).

Group rings and modules over group rings occur, for example, naturally
in topology:

Example 1.2.3. Let X be a topological space and let G be a discrete
group that acts continuously on X.

– Let n ∈ N. Then the G-action on X induces a ZG-module structure

ZG× Cn(X; Z) −→ Cn(X; Z)

5



6 1.2 The domain categories for group (co)homology

on the chain group Cn(X; Z), given by

G×map(∆n, X) −→ map(∆n, X)

(g, σ) 7−→
(
t 7→ g · σ(t)

)
.

– It is not difficult to see that the differential of the singular chain
complex C∗(X; Z) is a ZG-morphism; hence, C∗(X; Z) is naturally a
ZG-chain complex.

Notice: if X is a CW-complex and if G acts cellularly on X, then also the
cellular chain complex Ccell

∗ (X; Z) naturally is a ZG-chain complex.
A fundamental special case is the following: If X is a connected CW-

complex (with a chosen base point in the universal covering of X), then
the singular/cellular chain complex of the universal covering of X naturally
is a free Zπ1(X)-chain complex.

Definition 1.2.4 (Invariants and coinvariants). Let G be a discrete group
and let A be a (left) ZG-module. We call the submodule

AG := {a ∈ A | ∀g∈G g · a = a}

the invariants of A. We call the quotient

AG := A/ spanZ{g · a− a | a ∈ A, g ∈ G}

the coinvariants of A.

If G is a non-Abelian group, then the ring ZG is not commutative!
Therefore, we need to distinguish between left and right modules over ZG.
In view of the following convention, we can restrict ourselves to left modules
over ZG, though.

Convention 1.2.5 (Tensor products and homomorphism modules over
group rings). Let G be a discrete group. We follow the convention that (if
not explicitly specified otherwise) all ZG-modules are left modules; this is
possible, because taking inverses in G leads to an involution on the group
ring ZG and hence we can canonically turn right ZG-modules into left
ZG-modules and vice versa.

More explicitly, we use the following conventions for the tensor product
and the group of ZG-linear homomorphisms: Let A and B be two left
ZG-modules, and let Ā be the right ZG-module obtained from A via the
canonical involution on ZG.
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– Then we write
A⊗G B := Ā⊗ZG B.

Hence, A⊗G B = (A⊗Z B)G, where G acts diagonally on A⊗Z B.
– Dually, we write

HomG(A,B) := HomZG(A,B).

Therefore, HomG(A,B) = HomZ(A,B)G, where G acts “diagonally”
on HomZ(Ā, B).

Example 1.2.6. If G is a discrete group and A is a ZG-module, then
(where G acts trivially on Z)

AG = HomG(Z, A) and AG = A⊗G Z.

Convention 1.2.7 (Differentials on compound ZG-chain complexes). Let
G be a discrete group, let (C∗, ∂∗) be a ZG-chain complex, and let A be a
ZG-module. Then

C∗ ⊗G A := (Cn ⊗G A)n∈N

is a Z-chain complex with the differential (∂n⊗G idA)n∈N. Dually, we write

HomG(C∗, A) :=
(
HomG(Cn, A)

)
n∈N

for the Z-cochain complex equipped with the differential

HomG(Cn, A) −→ HomG(Cn+1, A)

f 7−→ (−1)n+1 ·
(
c 7→ f(∂n+1(c))

)
.

As indicated in the introduction, the domain categories for group ho-
mology and group cohomology incorporate both a group parameter and an
Abelian parameter, the coefficients:

Definition 1.2.8 (GrpMod, GrpMod–). The categories GrpMod, GrpMod–

are defined as follows:
1. GrpMod: The objects of the category GrpMod are pairs (G,A),

where G is a discrete group and A is a (left) ZG-module.
The set of morphisms in GrpMod between two objects (G,A) and
(H,B) is the set of pairs (ϕ,Φ), where
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– ϕ : G −→ H is a group homomorphism, and
– Φ: A −→ ϕ∗B is a ZG-module homomorphism; here, ϕ∗B is the

ZG-module whose underlying additive group coincides with B
and whose ZG-structure is given by

G×B −→ B

(g, b) 7−→ ϕ(g) · b.

The composition of morphisms is defined by composing both compo-
nents (notice that this is well-defined in the second component).

2. GrpMod–: The category GrpMod– has the same objects as the cate-
gory GrpMod, i.e., pairs of groups and modules over the correspond-
ing group rings.
The set of morphisms in GrpMod– between two objects (G,A) and
(H,B) is the set of pairs (ϕ,Φ), where

– ϕ : G −→ H is a group homomorphism, and
– Φ: ϕ∗B −→ A is a ZG-module homomorphism.

The composition of morphisms is defined by covariant composition
in the first component and contravariant composition in the second
component.

The following, simple, example lies at the heart of group cohomology:

Example 1.2.9 (Invariants and coinvariants, functorially). It is not dif-
ficult to see that we can extend the definition of coinvariants to a func-
tor GrpMod −→ Ab and the definition of invariants to a (contravariant)
functor GrpMod– −→ Ab.



1.3

Group cohomology, topologically

Topologically, group (co)homology can be defined by applying (co)homology
with twisted coefficients to classifying spaces of groups; schematically, we
can depict this as follows:

Group homology GrpMod −→ Top −→ Ab∗
(G,A) 7−→ BG 7−→ H∗(BG;A)

Group cohomology GrpMod– −→ Top −→ Ab∗
(G,A) 7−→ BG 7−→ H∗(BG;A)

1.3.1 Classifying spaces

The key to the topological definition of group (co)homology is the homo-
topy theoretical picture of group theory provided by classifying spaces.

Definition 1.3.1 (Model of BG). Let G be a discrete group. A pointed
connected CW-complex (X, x) together with an isomorphism π1(X, x) ∼= G
(this identification is part of the structure!) is a model of (the classify-
ing space) BG if the universal covering of X is contractible (equivalently,
the universal covering of X has the integral homology of a point, or, the
homotopy groups πn(X, x) are trivial for all n ∈ N>1).

In particular, a model of BG is nothing but a polarised Eilenberg-
Mac Lane space of type (G, 1).

Theorem 1.3.2 (Existence and uniqueness of models of BG).
1. For every discrete group G there exists a model of BG.
2. Let G and H be discrete groups, and let ((X, x), ϕX) and ((Y, y), ϕY )

be models of BG and BH respectively (ϕX and ϕY are the iden-
tifications of the fundamental groups of X and Y with G and H

9
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respectively). Then[
(X, x), (Y, y)

]
• −→ Hom(G,H)

[f ] 7−→ ϕY ◦ π1(f, x) ◦ ϕ−1
X

is a natural bijection; here, [ · , · ]• denotes the set of pointed homotopy
classes of pointed maps.

3. In particular, for every discrete group G there is up to canonical
homotopy equivalence exactly one model of BG.

Proof. The third part is a direct consequence of the first two parts. The
first part can be proved by successively killing higher homotopy groups,
and the second part can be proved by inductively constructing maps and
homotopies on the skeleta [12, Section 8.8].

In view of this uniqueness result, we will sometimes abuse notation and
write just BG to denote some model of BG; moreover, the chosen base
point and the identification of the fundamental group with G are usually
omitted in the notation. If ϕ : G −→ H is a group homomorphism, we
lazily write Bϕ : BG −→ BH for some representative of the homotopy
class of maps BG −→ BH that induce ϕ on the level of fundamental
groups; as long as we are only interested in notions up to homotopy or
homology, this will not cause any problems.

Example 1.3.3 (Models of BG).
– The one point space is a model of B1.
– The circle S1 is a model of BZ.
– Let n ∈ N>0, and let Fn be the free group of rank n. Then the n-fold

wedge of circles is a model for BFn (see Figure 1.1).
– If M is an oriented, closed, connected surface of genus at least 1,

then M is a model of Bπ1(M).
– The infinite-dimensional projective space RP∞ is a model of BZ/2.
– Let G be a Lie group with only finitely many connected components

and let K be a maximal compact subgroup. Then G/K is homeo-
morphic to a Euclidean space. So, if Γ ⊂ G is a discrete torsion-free
subgroup, then Γ \G/K is a model for BΓ.

– Let G be a torsion-free discrete group and let ∆G be the (infinite-
dimensional) simplex spanned by G. Then the left translation action
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S1 ∨ S1 (S1 ∨ S1)˜
Figure 1.1: The space S1 ∨ S1 together with its universal covering

of G on G induces a continuous action of G on ∆G. Using the fact
that G is torsion-free, one can show that the quotient G \ ∆G is a
model for BG. Notice however, that this model is quite “big.”

Remark 1.3.4 (Classifying bundles). Let G be a discrete group. Then
the space BG classifies principal G-bundles: For all CW-complexes X the
pull-back of bundles provides a natural bijection [12, Chapter 14]

[X,BG] −→ Isomorphism classes of principal G-bundles over X.

In view of Theorem 1.3.2, we can define a first simple version of group
(co)homology (with trivial coefficients) from the category Grp of groups to
the category Ab∗ of graded Abelian groups:

Group homology Grp −→ Ab∗
on objects G 7−→ H∗(BG; Z)
on morphisms ϕ : G→ H 7−→ H∗(Bϕ) : H∗(BG)→ H∗(BH)

Group cohomology Grp −→ Ab∗
on objects G 7−→ H∗(BG; Z)
on morphisms ϕ : G→ H 7−→ H∗(Bϕ) : H∗(BH)→ H∗(BG)

Notice that group homology is covariant while group cohomology is con-
travariant.
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1.3.2 (Co)Homology with twisted coefficients

In order to define group (co)homology via (co)homology of the correspond-
ing classifying space, we need to incorporate the coefficient modules into
the process of forming (co)homology. Here, we do not follow the most
elegant, but a pragmatic approach towards (co)homology with twisted co-
efficients; the following convention is not a mathematical necessity, but will
prove to be quite convenient:

Convention 1.3.5 (Pointed CW-complexes). By a pointed CW-complex
we mean a CW-complex X together with a chosen base point in X as
well as a chosen base point in the universal covering X̃ lying over x. (In

particular, there is a well-defined action of π1(X, x) on X̃ and hence on the

singular/cellular chain complex of X̃).

Definition 1.3.6 ((Co)Homology with twisted coefficients). Let X be a
(pointed) connected CW-complex, let G be the fundamental group of X,

let X̃ be the universal covering of X, and let A be a (left) ZG-module.
– Homology with twisted coefficients. We write

C∗(X;A) := C∗(X̃; Z)⊗G A.

Tensoring the differential of C∗(X̃; Z) with the identity on A, we
obtain a differential on C∗(X;A) turning C∗(X;A) into chain com-
plex (Convention 1.2.7). The homology

H∗(X;A) := H∗
(
C∗(X;A)

)
of this complex is called homology of X with twisted coefficients in A.

– Cohomology with twisted coefficients. Dually,

C∗(X;A) := HomG

(
C∗(X̃; Z), A

)
is a cochain complex with respect to the dual of the differential
on C∗(X̃; Z) (see Convention 1.2.7), and we call

H∗(X;A) := H∗(C∗(X;A)
)

cohomology of X with twisted coefficients in A.
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(Co)Homology with twisted coefficients is functorial in the following
sense: Before explaining this functoriality, we first define the underlying do-
main category – similarly, to the domain category for group (co)homology.

Definition 1.3.7 (TopMod, TopMod–). The categories TopMod, TopMod–

are defined as follows:
1. TopMod: The objects of the category TopMod are pairs (X,A),

whereX is a pointed connected CW-complex and A is a (left) Zπ1(X)-
module.
The set of morphisms in TopMod between two objects (X,A) and
(Y,B) is the set of pairs (f,Φ), where

– f : X −→ Y is a pointed continuous map, and
– Φ: A −→ π1(f)∗B is a Zπ1(X)-module homomorphism.

The composition of morphisms is defined by composing both compo-
nents (notice that this well-defined in the second component).

2. TopMod–: The category TopMod– has the same objects as the cat-
egory TopMod, i.e., pairs of pointed connected CW-complexes and
modules over the fundamental group.
The set of morphisms in TopMod– between two objects (X,A) and
(Y,B) is the set of pairs (f,Φ), where

– f : X −→ Y is a pointed, continuous map, and
– Φ: π1(f)∗B −→ A is a Zπ1(X)-module homomorphism.

The composition of morphisms is defined by covariant composition
in the first component and contravariant composition in the second
component.

Remark 1.3.8 (Functoriality of (co)homology with twisted coefficients).
– Homology. Let (f,Φ): (X,A) −→ (Y,B) be a morphism in the cat-

egory TopMod, and let f̃ : X̃ −→ Ỹ be the lift of f : X −→ Y to
the universal coverings mapping the base point of X̃ to the one of Ỹ ;
such a lift exists and is unique by covering theory. We then define

C∗(f ; Φ) := C∗(f̃)⊗G Φ: C∗(X;A) −→ C∗(Y ;B),

which is a chain map. Let

H∗(f ; Φ) := H∗
(
C∗(f ; Φ)

)
: H∗(X;A) −→ H∗(Y ;B).

Clearly, this definition turns homology with twisted coefficients into
a functor TopMod −→ Ab∗.
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– Cohomology. Dually, let (f,Φ): (X,A) −→ (Y,B) be a morphism

in the category TopMod–, and let f̃ : X̃ −→ Ỹ be the base point
preserving lift of f to the universal coverings. We then define

C∗(f ; Φ) := HomG

(
C∗(f̃),Φ

)
: C∗(Y ;B) −→ C∗(X;A),

which is a cochain map. Let

H∗(f ; Φ) := H∗(C∗(f ; Φ)
)
: H∗(Y ;B) −→ H∗(X;A).

Clearly, this definition turns cohomology with twisted coefficients
into a contravariant functor TopMod– −→ Ab∗.

Because the singular chain complex and the cellular chain complex of
(the universal covering of) a CW-complex are (equivariantly) homotopy
equivalent, we can take either one of them in the above definitions without
changing the resulting (co)homology theory.

Example 1.3.9.

– On the category of connected CW-complexes, (co)homology with
twisted coefficients in the trivial module Z (i.e., the fundamental
groups act trivially on Z) coincides with ordinary (co)homology with
integral coefficients.

– If X is a connected CW-complex with fundamental group G, then

H∗(X; ZG) = H∗
(
C∗(X̃; Z)⊗G ZG

)
= H∗

(
C∗(X̃; Z)

)
= H∗

(
X̃; Z

)
.

Notice however, that the analogous statement for cohomology is
wrong in general (see the example below).

– We compute (co)homology of S1 with twisted coefficients via the
standard CW-structure of S1 consisting of one 0-cell and one 1-cell.
Then the cellular chain complex of the corresponding cell structure
on the universal covering S1 ∼= R is

dimension 1 dimension 0

Z[Z]
·(t−1)

// Z[Z]
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where t corresponds to the generator +1 in π(S1) ∼= Z. Hence,
if A is a Z[Z]-module, we see that the cellular twisted chain com-
plex Ccell

∗ (S1;A) is given by

dimension 1 dimension 0

A
(t−1)·

// A

Hence,

Hk(S
1;A) =


AZ = A/

(
(t− 1) · A

)
if k = 0

AZ = ker((t− 1)· : A→ A) if k = 1

0 for all k ∈ N>1.

Similarly,

Hk(S1;A) =


AZ = ker((t− 1)· : A→ A) if k = 0

AZ = A/
(
(t− 1) · A

)
if k = 1

0 for all k ∈ N>1.

In particular, notice that H1(S1; Zπ1(S
1)) ∼= Z 6= 0 = H1(S̃1; Z).

Geometrically, (co)homology with twisted coefficients can also be ob-
tained by considering so-called local coefficient systems [10, Chapter 5];
e.g., local coefficient systems occur naturally when considering fibrations –
the higher homotopy groups of the fibre yield local coefficient systems over
the base. The definition via local coefficient systems is independent of the
choice of base points, but is unwieldy for concrete computations.

1.3.3 Group cohomology, topologically

Finally, we are able to give the topological definition of group cohomology:

Definition 1.3.10 (Group homology, topologically). Group homology is
the functor GrpMod −→ Ab∗ defined as follows: For every discrete groupG
we choose a modelXG ofBG; moreover, for every homomorphism ϕ : G −→
H of groups we choose a continuous map fϕ : XG −→ XH realising ϕ on
the level of fundamental groups (see Theorem 1.3.2 for the existence of
such objects).
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– On objects: Let (G,A) be an object in GrpMod, i.e., G is a discrete
group and A is a ZG-module. Then we define group homology of G
with coefficients in A by

H∗(G;A) := H∗
(
XG;A

)
.

– On morphisms: Let (ϕ,Φ): (G,A) −→ (H,B) be a morphism in the
category GrpMod. Then we define H∗(ϕ; Φ) through the following
diagram:

H∗(G;A)
H∗(ϕ;Φ)

//_____ H∗(H;B)

H∗(XG;A)
H∗(fϕ;Φ)

// H∗(XH ;B)

Definition 1.3.11 (Group cohomology, topologically). Group homology
is the contravariant functor GrpMod– −→ Ab∗ defined as follows: For
every discrete group G we choose a model XG of BG; moreover, for
every homomorphism ϕ : G −→ H of groups we choose a continuous
map fϕ : XG −→ XH realising ϕ on the level of fundamental groups (see
Theorem 1.3.2 for the existence of such objects).

– On objects: Let (G,A) be an object in GrpMod–, i.e., G is a discrete
group and A is a ZG-module. Then we define group cohomology of G
with coefficients in A by

H∗(G;A) := H∗(XG;A
)
.

– On morphisms: Let (ϕ,Φ): (G,A) −→ (H,B) be a morphism in the
category GrpMod–. Then we define H∗(ϕ; Φ) through the following
diagram:

H∗(H;B)
H∗(ϕ;Φ)

//_____ H∗(G;A)

H∗(XH ;B)
H∗(fϕ;Φ)

// H∗(XG;A)

Notice that group homology and group cohomology defined in this way
indeed are functorial (homology covariantly, cohomology contravariantly).
This definition of group homology and group cohomology is independent
of the chosen models in the following sense: Any two choices of models
of classifying spaces and of maps between them leads to naturally and
canonically isomorphic functors.
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1.3.4 Group (co)homology, first examples

Proposition 1.3.12 (Group (co)homology – low degrees).

1. In degree 0, the group homology functor coincides with (i.e., is natu-
rally isomorphic to) the functor GrpMod −→ Ab of taking coinvari-
ants.

2. In degree 0, the group cohomology functor coincides with the con-
travariant functor GrpMod– −→ Ab of taking invariants.

3. In degree 1, the functor Grp −→ Ab of taking group homology with
trivial Z-coefficients coincides with the Abelianisation functor.

4. In degree 1, the (contravariant) functor Grp −→ Ab of taking group
cohomology with trivial Z-coefficients coincides with HomGrp( · ,Z).

Proof. Let (G,A) and (H,B) be two objects in GrpMod (or, equivalently
in GrpMod–), and let ϕ : G −→ H be a group homomorphism.

We start by choosing convenient models XG, XH and fϕ : XG −→ XH

of BG, BH and Bϕ respectively: Homotopy theory shows that we can
assume without loss of generality that XG and XH have exactly one 0-cell
each and that the 1-skeleton of XG and XH is just G and H respec-
tively; moreover, we may assume that f : XG −→ XH corresponds on
the 1-skeleton to the map ϕ : G −→ H. Hence, we obtain the diagram in
Figure 1.2 for the cellular chain complexes of the universal coverings (the
actions on the terms in dimension 1 is given by the canonical action on the
left factor). We now prove the first two parts:

1. For the claim in group homology, let (ϕ,Φ): (G,A) −→ (H,B) be a
morphism in GrpMod. Then on the level of cellular chain complexes
with coefficients, we obtain the diagram on the left hand side of
Figure 1.3. Hence, the diagram
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dimension 1 dimension 0

1⊗ eg � // g − 1

ZG⊗Z
⊕

g∈G Z · eg // ZG
Zϕ
��

ZH ⊗Z
⊕

h∈H Z · eh // ZH

1⊗ eh � // h− 1

Figure 1.2: A nice cellular model of a group homomorphism

dimension 1 dimension 0

a · eG � // g · a− a⊕
g∈GA · eg // A

Φ
��⊕

h∈H B · eh // B

b · eh � // h · b− b

dimension 1 dimension 0

(g · a− a)g∈G oo � a∏
g∈GA · eg oo AOO

Φ∏
h∈H B · eh oo B

(h · b− b)h∈H oo �
b

Figure 1.3: Computing group (co)homology in degree 0
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H0(G;A)
H0(ϕ;Φ)

// H0(H;B)

H0(XG;A)
H0(fG;Φ)

// H0(XH ;B)

AG ΦG

// BH

is commutative.
2. The argument for cohomology analogously uses the right hand side

diagram of Figure 1.3 (for a morphism (ϕ,Φ): (G,A) −→ (H,B) in
the category GrpMod–).

The third and fourth part are just a reformulation of a well-known fact
about (co)homology of spaces (and the Hurewicz homomorphism).

Example 1.3.13. Using the concrete models of classifying spaces given in
Section 1.3.1, we obtain our first examples of group (co)homology:

– Trivial group: Let A be a Z-module. Then clearly

Hk(1;A) =

{
A if k = 0

0 if k > 0
and Hk(1;A) =

{
A if k = 0

0 if k > 0

for all k ∈ N, because the one point space is a model of B1.
– The infinite cyclic group: Let t be a generator of Z and let A be

a Z[Z]-module. Then looking at the standard cell decomposition
of S1 ' BZ we obtain (see Example 1.3.9)

Hk(Z;A) =


AZ if k = 0

AZ if k = 1

0 for all k ∈ N>1

and Hk(Z;A) =


AZ if k = 0

AZ if k = 1

0 for all k ∈ N>1.

– Free groups: Let n ∈ N>0. Because the n-fold wedge of circles is a
model of BFn, we obtain (where Fn acts trivially on Z)

Hk(Fn; Z) =


Z if k = 0

Zn if k = 1

0 for all k ∈ N>1.
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– Surface groups: Let Mg be an oriented closed connected surface of
genus g > 0. Then Mg is a model of Bπ1(π1(Mg)) and so (where
π1(Mg) acts trivially on Z)

Hk

(
π1(Mg); Z

)
=


Z if k = 0

Z2·g if k = 1

Z if k = 2

0 for all k ∈ N>2.

– The cyclic group Z/2 of order 2: Looking at the standard cell de-
composition of infinite-dimensional projective space RP∞, which is a
model of BZ/2, we see that (where Z/2 acts trivially on Z)

Hk(Z/2; Z) =


Z if k = 0

Z/2 if k ∈ N is odd

0 if k ∈ N>0 is even

and Hk(Z/2; Z) =


Z if k = 0

0 if k ∈ N is odd

Z/2 if k ∈ N>0 is even.

This might come as a surprise: There exist “small” groups with
“large” homology. In particular, this computation shows that there
is no finite-dimensional model of BZ/2.

1.3.5 Products and free products

Several topological constructions preserve the property of being classifying
spaces of discrete groups. For example, the product of two classifying
spaces is a classifying space for the product group and glueings of classifying
spaces lead to classifying spaces for amalgamated free products of groups.

Proposition 1.3.14 (Group cohomology of product groups). Let G1 and
G2 be two discrete groups, and let X1 and X2 be models of the classifying
space of G1 and G2 respectively.

1. Then X1 ×X2 is a model of B(G1 ×G2).
2. Consequently, for all principal ideal rings A (on which the groups act

trivially) we obtain natural short exact Künneth sequences

0→
⊕
p+q=k

Hp(G1;A)⊗A Hq(G2;A)→ Hk(G1 ×G2;A)→
⊕

p+q=k−1

TorA1
(
Hp(G1;A), Hq(G2;A)

)
→ 0
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for all k ∈ N (induced by the homological cross product). These
sequences split, but the splittings are not necessarily natural.
If all homology groups Hk(G1;A) are finitely generated over A, then
there also are corresponding short exact Künneth sequences for coho-
mology of groups.

Proof. The first part follows from the observation that X1 × X2 has fun-
damental group G1 × G2 and that the product of the universal coverings
of X1 and X2 is a universal covering for X1 ×X2 (in particular, X1 ×X2

has contractible universal covering).

For the second part, we apply the Künneth formula to the first part.

Definition 1.3.15 (Amalgamated free products). Let α1 : H −→ G2 and
α2 : H −→ G2 be homomorphism of groups. An amalgamated free product
of G1 and G2 over H is a groupG together with homomorphisms β1 : G1 −→
G, and β2 : G2 −→ G with β1◦α1 = β2◦α2 satisfying the following universal
property:

For all groups G′ and homomorphisms β′1 : G1 −→ G′ and β′2 : G2 −→ G′

with β′1 ◦ α1 = β′2 ◦ α2 there is exactly one homomorphism β′ : G −→ G′

making the following diagram commutative:

G1
β1

  A
AA

A
β′1

  

H

α1 ==||||

α2 !!
BB

BB
G

β′
//___ G′

G2

β2

>>}}}}

β′2

>>

Of course, amalgamated free products are determined uniquely (upt to
canonical isomorphism) by this universal property. That all amalgamated
free products indeed exist can be shown by giving explicit constructions of
such groups [48]. On the other hand, amalgamated free products naturally
occur in topology – for example, when computing the fundamental group
of a glued space via the Seifert and van Kampen theorem [30, 31].

Proposition 1.3.16 (Group (co)homology of amalgamated free products).
Let α1 : H −→ G1 and α2 : H −→ G2 be two injective group homomor-
phisms of discrete groups.
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1. There exist models Y , X1, X2 of BH, BG1 and BG2 with the fol-
lowing properties: The complex Y is a subcomplex of X1 and X2 and
the push-out X1 ∪Y X2 is a model of B(G1 ∗H G2).

2. Consequently, there are long exact Mayer-Vietoris sequences

· · · → Hk(H;A)→ Hk(G1;A)⊕Hk(G2;A)→ Hk(G;A)→ Hk−1(H;A)→ . . .

· · · → Hk−1(H;A)→ Hk(G;A)→ Hk(G1;A)⊕Hk(G2;A)→ Hk(H;A)→ . . .

for all Z-modules A with trivial group action.
3. In particular: For all discrete groups G1 and G2 we obtain

Hk(G1 ∗G2;A) ∼= Hk(G1;A)⊕Hk(G2;A)

Hk(G1 ∗G2;A) ∼= Hk(G2;A)⊕Hk(G2;A)

for all k ∈ N>0 and all Z-modules A with trivial group action.

Proof. We start by constructing nice models of the various classifying
spaces: Let Y , X1, and X2 be models of BH, BG1, and BG2 respec-
tively. Then we can realise the group homomorphisms α1 : H −→ G2

and α2 : H −→ G2 by continuous maps f1 : Y −→ X1 and f2 : Y −→ X2;
using cellular approximation and taking mapping cylinders, we may as-
sume that the maps f1 and f2 actually are inclusions of subcomplexes. In
the following, we write

X := X1 ∪Y X2.

In view of the Seifert and van Kampen theorem, the complex X has funda-
mental groupG1∗HG2; moreover, the inclusions of the subcomplexes Y , X1,
and X2 into X induce the structure homomorphisms of the groups H, G1,
and G2 into G1 ∗H G2. These three homomorphisms are injective by the
structure theory of amalgamated free products (and the assumption on
injectivity of α1 and α2).

Therefore, it remains to show that the universal covering X̃ of X is
contractible: Because X̃ is a simply connected CW-complex it suffices to
establish that Hk(X̃; Z) = 0 for all k ∈ N>1. To this end we decompose X̃
into smaller pieces and apply the Mayer-Vietoris sequence to this decom-
position: Let π : X̃ −→ X be the universal covering map and let

Ȳ := π−1(Y ), X̄1 := π−1(X1), X̄2 := π−1(X2)
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be the inverse images of the subcomplexes Y , X1, X2 in X̃. In view of the
Mayer-Vietoris sequence for the glueing

X̃ = X̄1 ∪Ȳ X̄2

it suffices to show that Ȳ , X̄1, X̄2 have trivial homology.
In the following, we give the argument only for Ȳ – the arguments for X̄1

and X̄2 being similar. Because Y is a model of BH, the universal covering
of Y is contractible; hence, it suffices to show that the connected compo-
nents of Ȳ are simply connected. For any base point y in Ȳ we have a
commutative diagram

π1(Ȳ , y) //

π1(π)

��

π1(X̃) = 1

π1(π)

��

π1(Y, π(y)) // π1(X)

where the horizontal arrows are induced by the inclusions of complexes.
In particular, the lower horizontal arrow corresponds to the inclusion of H
into G. As the left vertical arrow is injective by covering theory, we con-
clude that π1(Ȳ , y) is trivial, as desired. This finishes the proof of the first
part.

The second part and the third part now follow by applying the long exact
Mayer-Vietoris sequences to the models constructed in the first part.

Remark 1.3.17. There are also versions of the previous propositions with
twisted coefficients; however, for the sake of simplicity, we only treated
trivial coefficients.

Using the above propositions one can for example compute the group
(co)homology of the infinite dihedral group. Moreover – as soon as we
know the group (co)homology of all finite cyclic groups (see Section 1.6.2)
– we can compute the group (co)homology of all finitely generated Abelian
groups and of the matrix group SL2(Z) ∼= Z/4 ∗Z/2 Z/6.

Recall that singular and cellular (co)homology on the category of CW-
complexes can be characterised uniquely by the Eilenberg-Steenrod axioms.
Are there analogous axioms for group (co)homology? Indeed, there are
such axioms; however, in contrast to the geometric situation it is imperative
to incorporate all (twisted) coefficients into the discussion. We will explain
this approach in more detail in Section 1.5.6.
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1.4
Group cohomology,

combinatorially

It might seem unsatisfactory that in order to obtain an invariant of groups
we had to take the detour via classifying spaces – it is only natural to
suspect that there is a purely algebraic description of group (co)homology.
Translating the functorial simplicial models of classifying spaces into alge-
bra, we obtain the bar resolution of a discrete group. Twisting this equivari-
ant chain complex with modules over the group in question yields functorial
(co)chain complexes that in turn give rise to functors GrpMod −→ Ab∗ and
GrpMod– −→ Ab∗. In fact – as we will see in Section 1.5.6 – these functors
are naturally isomorphic to the group (co)homology functors constructed
topologically in Section 1.3.

An interesting aspect of the approach via the bar resolution is that no
choices (such as choosing models of classifying spaces) are involved, and
that the construction is functorial even on the level of (co)chain complexes.
Moreover, this approach is visibly linked to algebraic properties of groups,
leading to applications in the classification of group extensions and in Ga-
lois theory (Sections 1.4.4 and 1.4.3).

A disadvantage of the approach via the bar resolution is that we loose
some flexibility (in the topological setting, we can choose a model of the
classifying space suitable for the problem at hand); concrete calculations
in higher degrees are close to impossible via the bar resolution.

1.4.1 The bar resolution

Basically, the bar resolution is an algebraic counterpart of the functorial
simplicial models of classifying spaces of discrete groups:

Definition 1.4.1 (The bar resolution). Let G be a discrete group. The
bar resolution of G is the ZG-chain complex C∗(G) defined as follows:

25
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– For n ∈ N let

Cn(G) :=
⊕

g∈Gn+1

Z · g0 · [g1| · · · |gn]

with the G-action characterised by

h ·
(
g0 · [g1| · · · |gn]

)
:= (h · g0) · [g1| · · · |gn]

for all h ∈ G and all g ∈ Gn+1.
– The differential is the ZG-homomorphism ∂ : C∗(G) −→ C∗−1(G)

uniquely determined by

Cn(G) −→ Cn−1(G)

g0 · [g1| · · · |gn] 7−→ g0 · g1 · [g2| · · · |gn]

+
n−1∑
j=1

(−1)j · g0 · [g1| · · · |gj−1|gj · gj+1|gj+2| · · · |gn]

+ (−1)n · g0 · [g1| · · · |gn−1].

A straightforward computation shows that ∂ ◦ ∂ = 0 and hence that
C∗(G) is a ZG-chain complex.

Using tensor products and the Hom-functor, we also obtain versions with
twisted coefficients (see Convention 1.2.7 for our conventions on tensor
products and Hom-complexes of ZG-chain complexes):

Definition 1.4.2 (The bar construction with coefficients). Let G be a
discrete group and let A be a ZG-module. Let C∗(G;A) be the Z-chain
complex given by

C∗(G;A) := C∗(G)⊗G A,
and let C∗(G;A) be the Z-cochain complex given by

C∗(G;A) := HomG

(
C∗(G), A

)
.

Of course, these constructions are functorial with respect to morphisms
in the categories GrpMod and GrpMod–:

Definition 1.4.3 (The bar construction on morphisms). Let G and H
be discrete groups, let A be a G-module, and let B be an H-module.
Furthermore, let ϕ : G −→ H be a group homomorphism.
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– We let C∗(ϕ) : C∗(G) −→ C∗(H) be the ZG-chain map uniquely de-
termined by

Cn(G) −→ Cn(H)

g0 · [g1| · · · |gn] 7−→ ϕ(g0) ·
[
ϕ(g1)

∣∣ · · · ∣∣ ϕ(gn)
]
.

– If (ϕ,Φ): (G,A) −→ (H,B) is a morphism in GrpMod, then we write

C∗(ϕ; Φ) := C∗(ϕ)⊗G Φ: C∗(G;A) −→ C∗(H;B);

notice that C∗(ϕ; Φ) is a well-defined Z-chain map.
– Dually, if (ϕ,Φ): (G,A) −→ (H,B) is a morphism in GrpMod–, then

we write

C∗(ϕ; Φ) := HomG(C∗(ϕ),Φ): C∗(H;B) −→ C∗(G;A);

this is a well-defined Z-cochain map.

1.4.2 Group cohomology, combinatorially

Definition 1.4.4 (Group homology, combinatorially). Group homology is
the functor GrpMod −→ Ab∗ defined as follows:

– On objects: Let (G,A) be an object in GrpMod, i.e., G is a discrete
group and A is a ZG-module. Then we define group homology of G
with coefficients in A by

H∗(G;A) := H∗
(
C∗(G;A)

)
.

– On morphisms: Let (ϕ,Φ): (G,A) −→ (H,B) be a morphism in the
category GrpMod. Then we define

H∗(ϕ; Φ) := H∗
(
C∗(ϕ; Φ)

)
: H∗(G;A) −→ H∗(H;B).

Definition 1.4.5 (Group cohomology, combinatorially). Group cohomol-
ogy is the functor GrpMod– −→ Ab∗ defined as follows:

– On objects: Let (G,A) be an object in GrpMod–, i.e., G is a discrete
group and A is a ZG-module. Then we define group cohomology of G
with coefficients in A by

H∗(G;A) := H∗(C∗(G;A)
)
.
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– On morphisms: Let (ϕ,Φ): (G,A) −→ (H,B) be a morphism in the
category GrpMod–. Then we define

H∗(ϕ; Φ) := H∗(C∗(ϕ; Φ)
)
: H∗(H;B) −→ H∗(G;A).

Notice that H∗ : GrpMod −→ Ab∗ indeed is a (covariant) functor and
that H∗ : GrpMod– −→ Ab∗ is a (contravariant) functor.

Remark 1.4.6. We will prove in Section 1.5.6 that indeed the combina-
torial description and the topological description give rise to naturally iso-
morphic group (co)homology functors. In the remainder of the present sec-
tion, we always refer to the combinatorial description of group (co)homology,
when writing expressions like H∗(G;A) or H∗(G;A).

1.4.3 Application: Cyclic Galois extensions (Hilbert 90)

The key tool in the classification of cyclic Galois extensions is Hilberts
Satz 90. Recall that a Galois extension is called cyclic if its Galois group
is a cyclic group.

Theorem 1.4.7 (Hilbert 90 – cohomological version). Let L/K be a finite
Galois extension of fields with Galois group G. Then

H1(G;L×) = {1},

where the G-action on the coefficients L× is the Galois action (and we think
of the coefficients L× as well as the cohomology group as multiplicative
groups).

Proof. We follow the general strategy of averaging – as the group G is
finite, we can sum up expressions over all elements of G.

Let f ∈ C1(G;L×) = HomG(C1(G), L×) be a cocycle. Because char-
acters L× −→ L× are linearly independent over L [26, Theorem VI.4.1],
there exists an element x ∈ L such that

x̄ :=
∑
τ∈G

f
(
1 · [τ ]

)
· τ(x) ∈ L
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is non-zero, and hence lies in L×. We now claim that the ZG-homo-
morphism f̄ given by

f̄ : C0(G) −→ L×

σ0 7−→ σ0(x̄)

witnesses that f is a coboundary: Indeed, for all σ1 ∈ G we have

(δf̄)
(
1 · [σ1]

)
= f̄((−1) · (σ1 − 1))

=
x̄

σ1(x̄)

=
x̄∑

τ∈G σ1

(
f(1 · [τ ])

)
· σ1 ◦ τ(x)

=
x̄∑

τ∈G f(σ1 · [τ ]) · σ1 ◦ τ(x)

=
x̄∑

τ∈G
1

f(1·[σ1])
· f(1 · [σ1 ◦ τ ]) · σ1 ◦ τ(x)

= x̄ · f(1 · [σ1]) ·
1

x̄
,

because f is a cocycle. Using G-equivariance of f̄ , δf̄ , and f , we ob-
tain δf̄ = f , as desired.

Corollary 1.4.8 (Hilbert 90). Let L/K be a finite cyclic Galois extension,
let σ be a generator of the Galois group G, and let x ∈ L. Then the
following are equivalent:

1. The norm NL/K(x) equals 1.
2. There exists an a ∈ L× satisfying x = a/σ(a).

Proof. Recall that the norm NL/K(x) is the determinant of the K-homo-
morphism L −→ L given by multiplication with x; we use the following
well-known properties of the norm:

– The norm is invariant under the action of the Galois group.
– More precisely, NL/K(x) =

∏
τ∈G τ(x).

So if x = a/σ(a) for some a ∈ L×, then

NL/K(x) =
NL/K(a)

NL/K(σ(a))
=
NL/K(a)

NL/K(a)
= 1.
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Conversely, suppose that NL/K(x) = 1, and that the Galois group (and
hence σ) has order n. Then the ZG-homomorphism f : C1(G) −→ L×

determined uniquely by

1 · [1] 7−→ 1

1 · [σ] 7−→ x

...

1 · [σn−1] 7−→ x · σ(x) · · · · · σn−2(x)

is easily seen to be a cocyle (because
∏n−1

j=0 σ
j(x) = NL/K(x) = 1). Hence,

by the theorem, it is a coboundary, say f = δf̄ for some f̄ ∈ C0(G;L×).
In particular,

x = f(1 · [σ]) = δf̄(1 · [σ]) =
f̄(1)

f̄(σ)
=

f(1)

σ(f(1))
.

In order to understand cyclic Galois extensions, one now applies the
corollary to roots of unity in the base field: If L/K is a cyclic Galois
extension of degree n with charK - n, if ζ ∈ K is a primitive n-th root of
unity and if σ is a generator of the Galois group of L/K, then the corollary
provides an element a ∈ L with ζ = a/σ(a). In particular, an ∈ Lσ = K,
so Xn−an is a polynomial over K and one can show in this situation, that
in fact L is the splitting field of Xn − an over K.

Remark 1.4.9. There is also an additive version of the above results,
involving the trace and cohomology with coefficients in the extension field
instead of the norm and cohomology with coefficients in the units of the
extension field.

1.4.4 Application: Group extensions with Abelian ker-

nel

In the following, we study the question of how to classify extension groups
of a given Abelian kernel and a given quotient group.
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Definition 1.4.10 ((Equivalence of) extensions). Let Q be a group and
let A be an Abelian group.

– An extension of Q by A is an exact sequence

0 −→ A −→ G −→ Q −→ 1

of groups.
– Two extensions 0 → A → G → Q → 1 and 0 → A → G′ → Q → 1

are equivalent if there is a homomorphism ϕ : G −→ G′ making the
diagram

0 // A // G

ϕ

��

// Q // 1

0 // A // G′ // Q // 1

commutative; notice that in this case ϕ necessarily is an isomorphism.

Remark 1.4.11 (The conjugation action of the quotient on the kernel).
An extension 0→ A→ G→ Q→ 1 of a group Q by an Abelian group A
induces a ZQ-module structure on A as follows: The group G acts by con-
jugation on the normal subgroup A. Because A is Abelian, the conjugation
action of A on itself is trivial. Therefore, the quotient Q = A \ G acts by
“conjugation” on A, and so we obtain a ZQ-module structure on A.

Example 1.4.12 (Actions on the kernel).
– Let A be an Abelian group and let Q be some group. Then the action

of Q on A induced by the product extension

0 −→ A −→ A×Q −→ Q −→ 1

(whereA −→ A×Q is the inclusion of the first factor andA×Q −→ Q
is the projection onto the second factor) is the trivial action.

– In the extension

0 −→ A3 −→ S3 −→ S3/A3 −→ 1

the non-trivial element of the quotient group S3/A3
∼= Z/2 acts by

taking inverses on A3
∼= Z/3.
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Definition 1.4.13. Let Q be a group and let A be a ZQ-module. We
write E(Q,A) for the set of all equivalence classes of extensions of Q by A
that induce the given ZQ-module structure on A. (It is not difficult to see
that equivalent extensions induce the same action on the kernel.)

Theorem 1.4.14 (Classification of group extensions with Abelian kernel).
Let Q be a group and let A be a ZQ-module. Then the maps

H2(Q;A)←→ E(Q,A)

[f ] 7−→ [0→ A→ Gf → Q→ 1]

ηE ←− [ E

are mutually inverse bijections (the definition of the extensions Gf and the
classes ηE is provided in the course of the proof below).

Clearly, this theorem is a great help in classifying groups (see Sec-
tion 1.6.4 for examples). Conversely, by exhibiting non-trivial extensions,
we can construct non-trivial cohomology classes.

As we will see later (Section 1.5), group cohomology is related to the
Ext-functors, which owe their name to the classification of extensions as
described in Theorem 1.4.14.

Proof. We start with the map from the right hand side to the left hand
side. More precisely, we show how to obtain a 2-cocycle from a given
extension and that the corresponding cohomology class does not change
when replacing the extension by an equivalent one:

Let E ∈ E(Q,A), and let

0 // A
i // G

π // Q // 0

be an extension of Q by A inducing the given Q-action on A that rep-
resents E. The idea is to measure the failure of π to be a split group
homomorphism by a 2-cocycle:

– Choosing a section. Let s : Q −→ G be a set-theoretic section
of π : G −→ Q. Of course, the map s in general will not be a group
homomorphism. Measuring the failure of s being a group homomor-
phism leads to the map

f̄ : Q×Q −→ A

(q1, q2) 7−→ s(q1) · s(q2) · s(q1 · q2)−1;
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here, f̄ maps to A because s is a section of π. (This map f̄ is the
key to obtaining a cocycle out of the given extension.)

– Rewriting the group structure on G. Using the map f̄ we can recover
the group structure on G from the group structure on Q and the
Q-action on A as follows: First of all,

G −→ A×Q
g 7−→

(
g · s(π(g))−1, π(g)

)
a · s(q)←− [ (a, q)

are mutually inverse bijections. Using these bijections, the compo-
sition on G translates into the composition (where • denotes the
Q-action on A induced by the given extension)

(A×Q)× (A×Q) −→ A×Q(
(a, q), (a′, q′)

)
7−→

(
a+ q • a′ + f̄(q, q′), q · q′

)
.

Indeed, for all (a, q), (a′, q′) ∈ A×Q we have (in G)

a · s(q) · a′ · s(q′) = a · q • a′ · s(q) · s(q′)
= a · q • a′ · f̄(q1, q2) · s(q · q′),

because the action of Q on A is given by conjugation in G.
– Constructing a cocycle. Because the composition on G is associative,

a short calculation shows that

f̄(q1, q2) + f̄(q1 · q2, q3)− q1 • f̄(q2, q3)− f̄(q1, q2 · q3) = 0

for all q1, q2, q3 ∈ Q. We now define f ∈ C2(Q;A) = HomQ(C2(Q), A)
to be the homomorphism given by

C2(Q) −→ A

q0 · [q1|q2] 7−→ q0 • f̄(q1, q2).

The relation above for f̄ following from the associativity of G shows
that f is a cocycle.
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– How does the choice of section affect the cocycle? Let s′ : Q −→ G be
another section of π and let f ′ ∈ C2(Q;A) be the corresponding cocy-
cle. Because s and s′ are sections of π, there is a function c̄ : Q −→ A
such that

s′(q) = c̄(q) · s(q)

for all q ∈ Q. A straightforward computation shows that c ∈ C1(Q;A)
given by

c : C1(Q) −→ A

q0 · [q1] 7−→ q0 • c̄(q1)

satisfies δ(c) = f ′ − f . In fact,

f ′(1 • [q1|q2]) = s′(q1) · s′(q2) · s′(q1 · q2)−1 in G

= c̄(q1) · s(q1) · c̄(q2) · s(q2) · s(q1 · q2)−1 · c̄(q1 · q2)−1 in G

= c̄(q1) ·
(
q1 • c̄(q2)

)
· s(q1) · s(q2) · s(q1 · q2)−1 · c̄(q1 · q2)−1 in G

= c̄(q1) + q1 • c̄(q2) + f(1 • [q1|q2])− c̄(q1 · q2) in A

= δ(c)(1 • [q1|q2]) + f(1 • [q1|q2])

for all q1, q2 ∈ Q; here, we used the fact that the Q-action on A
is induced from conjugation in G. Now using Q-equivariance we
obtain δ(c) = f ′ − f .

– How does the choice of extension affect the cocycle? Let

0 // A
i // G′ π′ // Q // 0

be an extension equivalent to the one involving G. Furthermore, let
ϕ : G′ −→ G be an isomorphism witnessing that these extensions are
equivalent. If s′ : Q −→ G′ is a section of π′, then ϕ◦s′ : Q −→ G is a
section of π and the cocycles corresponding to s′ and to ϕ◦s′ coincide.
Therefore, the previous paragraph shows that the extension G′ leads
to the same cohomology class as the extension G.

Using the cocycles corresponding to sections of π we therefore obtain a
well-defined cohomology class ηE ∈ H2(Q;A).

Conversely, suppose we are given a cohomology class η ∈ H2(Q;A). We
show how to construct an equivalence class of extensions of Q by A out
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of this cohomology class. More precisely, we construct extensions out of
2-cocycles and show that cohomologous cocycles lead to equivalent exten-
sions:

– A group structure out of a cocycle. Let f ∈ C2(Q;A) be a cocycle,
and let

f̄ : Q×Q −→ A

(q1, q2) 7−→ f(1 · [q1|q2]).

Inspired by the first part of the proof, on the set A×Q we define the
composition

(A×Q)× (A×Q) −→ A×Q(
(a, q), (a′, q′)

)
7−→

(
a+ q • a′ + f̄(q, q′), q · q′

)
.

The same calculation as above shows that f being a cocycle implies
that this composition is associative.
Moreover, using the cocycle property of f once more, we see that
(e, 1) is a neutral element for this composition, where

e := −f̄(1, 1) = −f(1 • [1|1]).

An easy computation shows that every element ofA×Q has an inverse
element with respect to this composition and the neutral element e.
So Gf := A×Q is a group with respect to this composition.

– An extension out of a cocycle. Via the homomorphisms

if : A −→ Gf = A×Q
a 7−→ (a+ e, 1)

and

πf : Gf = A×Q −→ Q

(a, q) 7−→ q.

the group Gf can be viewed as an extension of Q by A:

0 // A
if
// Gf

πf
// Q // 1
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– The induced action on the kernel. The map

sf : Q −→ Gf = A×Q
q 7−→ (0, q)

is a section of πf . Hence, the Q-action ∗ of the above extension on A
is given by

q ∗ a = sf (q) · (a+ e, 1) · sf (q)−1

= (0, q) · (a+ e, 1) · (0, q)−1

=
(
0 + q • (a+ e) + f̄(q, 1), q

)
· (0′, q−1)

=
(
q • (a+ e) + f̄(q, 1) + q • 0′ + f̄(q, q−1), 1

)
=

(
q • (a+ e) + f̄(q, 1) + e, 1

)
= (q • a+ e, 1)

= if (q • a)

for all q ∈ Q and all a ∈ A; here, we wrote (0′, q−1) = (0, q)−1, and (in
the penultimate step) we used the cocycle property of f on 1 · [q|1|1].
So this extension 0 −→ A −→ Gf −→ Q −→ 1 induces the given
Q-action on A and thus represents a class in E(Q,A).

– What happens if we change the cocycle? Similarly as above we see
that changing the cocycle f by a coboundary leads to an equivalent
extension.

Therefore, we obtain a well-defined map H2(Q;A) −→ E(Q,A).
That these two maps are mutually inverse to each other follows from the

concrete constructions, and is left as an exercise to the reader.

Example 1.4.15 (Extensions of free groups). Of course, any extension of a
free group by an Abelian group (more generally, by any group) splits. This
is consistent with the classification result above: Taking the equivalence of
group cohomology defined topologically and of group cohomology defined
via the bar resolution for granted, we see that the cohomology groups
occurring in Theorem 1.4.14 vanish (recall that there are one-dimensional
models for the classifying spaces of free groups (Example 1.3.3)).

Remark 1.4.16 (The extension corresponding to the trivial cohomology
class). Let Q be a group and let A be a ZQ-module. Then the proof of the



1.4 Group cohomology, combinatorially 37

theorem above shows that the zero class in H2(Q;A) corresponds to the
semi-direct product

0 −→ A −→ AoQ −→ Q −→ 1,

where the action used to construct the semi-direct product is nothing but
the given action of Q on A.

Conversely, non-trivial extensions lead to non-trivial cohomology classes
in degree 2; for example, we can use this to show that H2(Z/3; Z) is non-
trivial (where Z/3 acts trivially on Z).

Theorem 1.4.17 (Functoriality of the classification of extensions). The
classification of extensions with Abelian kernel is functorial in the follow-
ing sense: Let (ϕ,Φ): (Q,A) −→ (Q′, A′) be a morphism in the cate-
gory GrpMod.1 Moreover, let E ∈ E(Q,A) and E ′ ∈ E(Q′, A′) be rep-
resented by 0 → A → G → Q → 1 and 0 → A′ → G′ → Q′ → 1
respectively. Then there is a group homomorphism ϕ̃ : G −→ G′ making
the diagram

0 // A //

Φ

��

G //

eϕ
��
�
�
� Q //

ϕ

��

1

0 // A′ // G′ // Q′ // 1

commutative if and only if (in H2(Q,ϕ∗A′))

H2(idQ; Φ)(ηE) = H2(ϕ; idA′)(ηE′).

Proof. Exercise (this can be seen by studying the explicit constructions in
the proof of Theorem 1.4.14).

Corollary 1.4.18. Let Q be a discrete group, let A be a ZQ-module, let

0 // A // G
π // Q // 1

be an extension inducing the given Q-action on A, and let E be the corre-
sponding equivalence class in E(Q,A). Then H2(π; idπ∗A)(ηE) = 0.

1i.e., Q and Q′ are discrete groups, A is a ZQ-module, A′ is a ZQ′-module, ϕ : Q −→ Q′

is a group homomorphism, and Φ: A −→ ϕ∗A′ is a ZQ-homomorphism.
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Proof. Using π, we obtain the G-module π∗A out of A, and hence the
semi-direct product extension 0→ π∗A→ π∗AoG→ G→ 1. The group
homomorphism

π̃ : π∗AoG −→ G

(a, g) 7−→ a · g

leads to a commutative diagram

0 // π∗A //

idA

��

π∗AoG //

eπ
��

G //

π
��

1

0 // A // G π
// Q // 1.

Recalling that the cohomology class corresponding to the semi-direct prod-
uct π∗AoG is trivial (see Remark 1.4.16), we obtain

H2(π; idA)(ηE) = H2(idQ; idA)(ηsemi-direct product) = 0

from Theorem 1.4.17, as claimed.

More generally, also extensions of quotient groups by non-Abelian kernels
can be classified by means of group cohomology [4, Section IV.6]; however,
this classification is much more delicate – for example, given a quotient
and a kernel group with an outer action by the quotient, there does not
necessarily exist any extension inducing the given action (i.e., there is no
non-Abelian analogue of the semi-direct product).

A related question is to determine the conjugacy classes of all splittings of
a split extension with Abelian kernel; this is related to the first cohomology
group of the quotient group with coefficients in the kernel [4, Section IV.2].



1.5
Group cohomology
via derived functors

Our aim is now to find an algebraic description of group (co)homology that
has some built-in flexibility (like the definition of group (co)homology via
classifying spaces), and to show that both the topological definition and
the combinatorial definition of group (co)homology are instances of this
more general framework.

The solution is to interpret group (co)homology in terms of derived func-
tors; natural questions now are:

– What is a derived functor?
– Wich functors are group homology and group cohomology derived

from?
In the present section, we will start with a review of homological algebra,

then we will define/characterise derived functors, and finally, we will show
how group (co)homology fits into this setting and why all three approaches
to group (co)homology lead to the same theory. During this section it might
prove useful to keep the following slogan in mind:

Homological algebra measures non-exactness, both on the level
of objects (homology) and on the level of morphisms (derived
functors).

For convenience, we will do homological algebra only in module cate-
gories; in a way this is also the most general case – like all manifolds can
be assumed to be submanifolds of Euclidean space; of course, this embed-
ding point of view also has its drawbacks, but for the applications we have
in mind it is appropriate.

Convention 1.5.1 (Rings). In the following, by a ring we always mean
an associative, not necessarily commutative, ring with unit. If R is a ring,
then R-Mod denotes the category of left R-modules and Mod-R denotes
the category of right R-modules.

39
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We assume that the reader has some basic familiarity with homological
algebra, especially with the notions of chain complexes, homology, chain
homotopies, and the snake lemma as provided by a basic course on algebraic
topology [13, 53] (see also Appendix ??).

Large parts of this section are inspired by the excellent book of Weibel [53,
Chapter 2].

1.5.1 Right/left exact functors

Recall that a sequence of morphisms of modules over a ring is called exact
if for every morphism in the sequence, the image equals the kernel of the
next morphism. I.e., a sequence

. . . // An
fn // An−1

fn−1 // An−2
// . . .

of modules over a given ring is exact if and only if im fn = ker fn−1 for
all n.

Definition 1.5.2 (Right/left exact functors). Let R and S be two rings.
– A (covariant or contravariant) functor R-Mod −→ S-Mod is additive

if it preserves the sum operation on the homomorphism groups.
– An additive functor F : R-Mod −→ S-Mod is right exact if for every

short exact sequence 0 // A
f
// B

g
// C // 0 in R-Mod the

sequence

F (A)
F (f)
// F (B)

F (g)
// F (C) // 0

is exact (in S-Mod); analogously, left exact functors are defined.
– An additive contravariant functor F : R-Mod −→ S-Mod is left exact

if for every short exact sequence 0 // A
f
// B

g
// C // 0 in

R-Mod the sequence

0 // F (C)
F (g)
// F (B)

F (f)
// F (A)

is exact (in S-Mod); analogously, right exact contravariant functors
are defined.
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– (Contravariant) Functors R-Mod −→ S-Mod that are both right
exact and left exact (i.e., that map short exact sequences to short
exact sequences) are called exact.

The same terminology is used when R-Mod or S-Mod is replaced by the
corresponding category of right modules.

Remark 1.5.3 (Exact functors and (long) exact sequences). Using splicing
of short exact sequences it follows that exact functors also map long exact
sequences to long exact sequences.

The fundamental example of left exact functors are Hom-functors:

Proposition 1.5.4 (Left exactness of Hom). Let R be a ring, and let A
be a left R-module.

1. Then HomR(A, · ) : R-Mod −→ Ab is a left exact functor.
2. The functor HomR( · , A) : R-Mod −→ Ab is left exact.

(Analogously, the Hom-functors on right R-modules are left exact).

Proof. Exercise (this is a straightforward calculation).

A rich source of semi-exact functors is provided by adjoint functors:

Definition 1.5.5 (Adjoint functors). Let F : Mod-R −→ Mod-S and
G : Mod-S −→ Mod-R be additive functors. The functor G is right adjoint
to F (the functor F is left adjoint to G) if there is a natural isomorphism

HomS

(
F ( · ), ·

) ∼= HomR

(
· , G( · )

)
of Abelian groups, i.e., for all X ∈ Ob(Mod-R) and all Y ∈ Ob(Mod-S)
there is an isomorphism ϕX,Y : HomS(F (X), Y ) −→ HomR(X,G(Y )) such
that for all morphisms f ∈ HomR(X ′, X) and all g ∈ HomS(Y, Y

′) the
diagram

HomS

(
F (X), Y

)
HomS(F (f),g)

��

ϕX,Y
// HomR

(
X,G(Y )

)
HomR(f,G(g))
��

HomS

(
F (X ′), Y ′)

ϕX′,Y ′
// HomR

(
X ′, G(Y ′)

)
is commutative.
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Proposition 1.5.6 (Adjointness implies exactness). Let R and S be two
rings, and suppose that the additive functor F : Mod-R −→ Mod-S admits
a right adjoint functor G : Mod-S −→ Mod-R. Then F is right exact and
G is left exact.

Proof. Exercise (use the exactness properties of the Hom-functors and ap-
ply a Yoneda-ish trick).

Example 1.5.7 (Tensor products and homomorphism modules). Let R
be a ring, and let A be a left R-module. Then · ⊗R A : Mod-R −→ Ab
and HomZ(A, · ) : Ab −→ Mod-R are adjoint functors, because

HomZ( · ⊗R A, · ) ∼= HomR

(
· ,HomZ(A, · )

)
.

Therefore, · ⊗R A is right exact.
In particular: If G is a group, then the coinvariants functor · G = · ⊗GZ

is right exact and the invariants functor · G = HomG(Z, · ) is left exact.

Example 1.5.8 (Pulling back module structures). Let ϕ : G −→ H be a
group homomorphism. Then the functor ϕ∗ : ZH-Mod −→ ZG-Mod that
is given by pulling back the module structures via ϕ is exact – a sequence
of modules over a ring is exact if and only if the underlying sequence of
Abelian groups is exact.

Remark 1.5.9 (A more general setup). The notion of exactness cannot
only be formulated in module categories over a ring but more general in
the setting of so-called Abelian or triangulated categories.

However, by the Freyd-Mitchell embedding theorem, every small (part
of an) Abelian category is isomorphic via an exact functor to a full subcat-
egory of some module category [53, 16]. So we do not loose too much in
generality by considering only module categories, while keeping the comfort
of proofs using “elements.”

1.5.2 Derived functors, schematically

The derived functor of a left or right exact functor is an “exact extension”
of the functor in question, which is universal in a certain sense.
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Definition 1.5.10 (Homological ∂-functor, cohomological δ-functor). Let
R and S be two rings.

– A homological ∂-functor is an additive functor T∗ : R-Mod −→ S-Mod∗
together with S-morphisms (∂n : Tn(A

′′) −→ Tn−1(A
′))n∈N defined for

every short exact sequence 0 → A′ → A → A′′ → 0 of R-modules
such that T∗ and ∂∗ fit together in natural long exact sequences. I.e.,
for every commutative diagram

0 // A′ //

��

A //

��

A′′ //

��

0

0 // B′ // B // B′′ // 0

of R-modules with exact rows, the associated diagram

. . . // Tn(A
′) //

��

Tn(A) //

��

Tn(A
′′)

∂n //

��

Tn−1(A
′) //

��

. . .

. . . // Tn(B
′) // Tn(B) // Tn(B

′′)
∂n

// Tn−1(B
′) // . . .

of S-modules is commutative and has exact rows (here, the upper ∂n
is the morphism associated with the upper short exact sequence of
R-modules, and the lower ∂n is the morphism associated with the
lower short exact sequence of R-modules).

– Similarly, a (covariant) cohomological δ-functor is an additive func-
tor T ∗ : R-Mod −→ S-Mod∗ together with a sequence of S-mor-
phisms (δn : T n(A′′) −→ T n+1(A′))n∈N defined for every short exact
sequence 0→ A′ → A→ A′′ → 0 of R-modules such that T ∗ and δ∗

fit together in natural long exact sequences.

Definition 1.5.11 (Left derived functor). Let R and S be two rings,
and let F : R-Mod −→ S-Mod be a right exact functor. A homological
∂-functor L∗ : R-Mod −→ S-Mod∗ is a left derived functor of F if it satis-
fies the following properties:

– Extension. The functor L∗ extends F in the sense that L0 and F are
naturally isomorphic functors R-Mod −→ S-Mod.

– Universality. If T∗ : R-Mod −→ S-Mod∗ is a homological ∂-functor
and if τ0 : T0 −→ F is a natural transformation, then there is a unique
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natural transformation τ∗ : T∗ −→ L∗ of homological ∂-functors ex-
tending τ0.

Definition 1.5.12 (Right derived functor). Let R and S be two rings,
and let F : R-Mod −→ S-Mod be a left exact functor. A cohomological
δ-functor R∗ : R-Mod −→ S-Mod∗ is a right derived functor of F if it
satisfies the following properties:

– Extension. The functor R∗ extends F in the sense that R0 and F are
naturally isomorphic functors R-Mod −→ S-Mod.

– Universality. If T ∗ : R-Mod −→ S-Mod∗ is a cohomological δ-functor
and if τ 0 : F −→ T 0 is a natural transformation, then there is a
unique natural transformation τ ∗ : R∗ −→ T ∗ of homological δ-func-
tors extending τ 0.

In view of universality, derived functors of a given functor are unique
(up to canonical natural isomorphism).

Example 1.5.13 (Derived functors of exact functors). Let R and S be
rings and let F : R-Mod −→ S-Mod be an exact functor. Then the func-
tor L∗ : R-Mod −→ S-Mod given by L0 := F and Ln := 0 for all n ∈ N>0

is easily seen to be a left derived functor of F (analogously we obtain a
right derived functor).

Moreover, derived functors always exist and can be constructed by the
following recipe (as explained in detail in the subsequent sections):

– We replace the objects by a decomposition of the objects into “sim-
pler” objects (projective and injective resolutions).

– Apply the functor in question to these decompositions and measure
the failure of exactness via (co)homology.

In the case of group (co)homology, for a fixed group, we will see that
group (co)homology is obtained by deriving the coinvariants and the in-
variants functors.

1.5.3 Projective and injective resolutions

One of the fundamental ideas in homological algebra is to replace objects
by sequences of objects that are easier to understand. Tractable objects
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in the sense of homological algebra are projectives (a generalisation of free
modules) and injectives (a generalisation of divisible Abelian groups).

Definition 1.5.14 (Projective modules). Let R be a ring. An R-module A
is projective if it has the following lifting property: For every surjective R-
homomorphism π : B −→ C and every R-homomorphism α : A −→ C
there is an R-homomorphism ᾱ : A −→ B such that π ◦ ᾱ = α. Schemati-
cally:

A

α

��

ᾱ

��~
~

~
~

B π
// C // 0

Proposition 1.5.15 (Characterisations of projectivity). Let R be a ring,
and let A be an R-module. Then the following are equivalent:

1. The module A is projective.
2. The module A is a direct summand in a free R-module.
3. The functor HomR(A, · ) : R-Mod −→ Ab is exact.
4. Every short exact sequence 0 → B′ → B → A → 0 of R-modules

splits.

Proof. Using the definition of projectivity it is not difficult to see that
1 and 2 are equivalent, and that 1 and 3 are equivalent. Moreover, it is
easily seen that 2 and 4 are equivalent.

Example 1.5.16 (Projective modules). Of course, all free modules are
projective. The converse is not true in general: For example, the mod-
ule Z× {0} is a projective Z× Z-module, but not a free Z× Z-module.

Other prominent examples of projective modules that are not free occur
naturally in the context of topological K-theory.

Remark 1.5.17 (Flat modules). All projective modules are flat: Let R
be a ring, and let A be a projective R-module, i.e., A is a direct summand
in a free R-module. Hence, the functor · ⊗R A : Mod-R −→ Ab is exact;
in other words, the R-module A is flat.

Notice that not all flat modules are projective; for example, the Z-mod-
ule Q is flat, but not a direct summand in a free Z-module and therefore
not projective.

The dual concept to projectivity is injectivity – on a formal level, it can
be obtained by reversing arrows:
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Definition 1.5.18 (Injective modules). Let R be a ring. An R-module A
is called injective if it satisfies the following extension property: For ev-
ery injective R-module homomorphism i : B −→ C and every R-homo-
morphism α : B −→ A there is an extension ᾱ : C −→ A such that ᾱ◦i = α.
Schematically:

A

0 // B
i
//

α

OO

C

ᾱ
__@

@
@

@

Remark 1.5.19 (Injective modules and homomorphism modules). Let
R be a ring and let A be a left R-module. Then the homomorphism
functor HomR( · , A) : R-Mod −→ Ab is exact if and only if the R-module A
is injective.

Example 1.5.20 (Injective modules).

– The Z-module Q/Z is injective (apply Zorn’s Lemma to the partially
ordered set of extensions).

– Let R be a ring. Then left the R-module

R′ := HomZ(R,Q/Z)

(where we consider the first argument R as right R-module) is injec-
tive: Apply Remark 1.5.19 to

HomR( · , R′) ∼= HomR

(
· ,HomZ(R,Q/Z)

)
∼= HomZ( · ,Q/Z)

and the fact that Q/Z is an injective Z-module. (Notice that a se-
quence of R-modules is exact if and only if the underlying sequence
of Z-modules is exact).

The replacement of objects by simpler objects mentioned above is for-
malised by the notions of projective and injective resolutions:

Definition 1.5.21 (Projective/injective resolutions). Let R be a ring, and
let A be an R-module.
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– A projective resolution of A is a chain complex (P∗, ∂∗) of projective
R-modules together with an R-homomorphism ε : P0 −→ A such that
the concatenated sequence

. . . // P1
∂1 // P0

ε // A // 0

is exact; we denote the concatenated sequence by P∗ � ε.
– Dually, an injective resolution of A is a cochain complex (I∗, δ∗) of

injective R-modules together with an R-homomorphism η : A −→ I0
such that the concatenated sequence

0 // A
η
// I0 δ0 // I1 // . . .

is exact; we denote the concatenated sequence by η � I∗.

Example 1.5.22 (Bar resolution). The bar resolution C∗(G) is a projec-
tive ZG-resolution of the trivial ZG-module Z: The complex

. . . ∂2 // C1(G)
∂1 // C0(G) ε // Z

g � // 1

is exact, as can be seen via an explicit Z-chain contraction. Moreover, for
all n ∈ N the n-th chain module

Cn(G) =
⊕

g∈Gn+1

Z · g0 · [g1| · · · |gn] ∼=
⊕
g∈Gn

ZG · [g1| · · · |gn]

is a free (thus projective) ZG-module (recall the definition of the G-action
on Cn(G) given in Definition 1.4.1).

However, in general, C∗(G)⊗ZA is not a projective ZG-resolution of the
ZG-module A.

Example 1.5.23 (Classifying spaces). Let G be a discrete group and let
XG be a model of the classifying space BG. Because the universal cov-
ering X̃G is contractible, the (singular or cellular) chain complex C∗(X̃G; Z)

can be canonically extended by a surjective augmentation ε : C0(X̃G; Z) −→
H0(X̃G; Z) = Z such that C∗(X̃G; Z) � ε is exact.

Moreover, by the definition of the singular/cellular chain complex and

the fact that G acts freely on X̃G, the chain modules Cn(X̃G; Z) are free
ZG-modules.
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Of course, an important step in our agenda to replace objects by se-
quences of simpler objects is to prove that such replacements indeed exist
for every object:

Proposition 1.5.24 (Enough projectives/enough injectives). Let R be a
ring.

1. The category of R-modules has enough projective modules, i.e., every
R-module is a quotient of a projective R-module.

2. The category of R-modules has enough injective modules, i.e., every
R-module is a submodule of an injective R-module.

Proof. Clearly every R-module is a quotient of a free R-module (e.g., for
an R-module A we could consider the free module generated by the set A
and map every generator to the corresponding element in A).

Moreover, every R-module A is a submodule of an injective R-module:
It is not difficult to see that products of injective modules are injective;
so

∏
HomR(A,R′)R

′, where R′ := HomZ(R,Q/Z), is an injective module by
Example 1.5.20. The evaluation homomorphism

A −→
∏

HomR(A,R′)

R′

a 7−→
(
f(a)

)
f∈HomR(A,R′)

is injective: If a ∈ A \ {0}, then using the injectivity of Q/Z over Z we
find a Z-homomorphism f̄ : A −→ Q/Z with f̄(a) 6= 0; then

f : A −→ HomZ(R,Q/Z) = R′

b 7−→
(
r 7→ f̄(r · b)

)
is an R-homomorphism with f(a) 6= 0.

Caveat 1.5.25 (Enough projectives/injectives in Abelian categories). By
the Freyd-Mitchell embedding theorem every small Abelian category can
be viewed as a full subcategory of a module category; however, even though
module categories contain enough projectives and enough injectives, not
all subcategories of module categories do so. Therefore, there exist Abelian
categories that do not have enough projectives/injectives.

Corollary 1.5.26 (Existence of resolutions). Let R be a ring.
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1. Every R-module has a projective resolution.
2. Every R-module has an injective resolution.

Proof. The proofs of both cases are similar, so we only prove the claim
about the projective resolutions. Let A be an R-module. We inductively
construct a projective resolution of A:

Because the category of R-modules has enough projectives (Proposi-
tion 1.5.24), there is a projective R-module P0 admitting an epimorphism

π0 : P0 −→ A.

Now let n ∈ N and suppose inductively, that we already constructed a
partial projective resolution

Pn
πn // Pn−1

πn−1 // . . . π1 // P0
π0 // A.

Because the category of R-modules has enough projectives, there is a pro-
jective R-module Pn+1 admitting an epimorphism πn+1 : Pn+1 −→ kerπn.
Then the sequence

Pn+1
πn+1 // Pn

πn // Pn−1
πn−1 // . . . π1 // P0

π0 // A

is exact, which completes the induction step.

1.5.4 The fundamental lemma of homological algebra

As next step, we will prove that the replacements of objects (i.e., projective
and injective resolutions) are essentially unique:

Proposition 1.5.27 (Fundamental lemma of homological algebra). Let
R be a ring, let A and B be two R-modules, and let f : A −→ B be an
R-module homomorphism.

1. Let P∗ � (ε : P0 → A) be an R-chain complex where all Pn are projec-
tive, and let C∗ � (γ : C0 → B) be an exact sequence of R-modules.
Then f can be extended to a chain map f∗ �f : P∗ �ε −→ C∗ �γ; more-
over, the extension f∗ : P∗ −→ C∗ is unique up to R-chain homotopy.
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2. Let (η : B → I0) � I∗ be an R-cochain complex where all modules In

are injective, and let (γ : A → C0) � C∗ be an exact cochain complex
of R-modules.
Then f can be extended to a cochain map f � f ∗ : γ � C∗ −→ η � I∗;
moreover, the extension f ∗ : C∗ −→ I∗ is unique up to R-cochain
homotopy.

Proof. The statement about injective resolutions can be proved in the same
way as the statement about projective resolutions. Moreover, we only
sketch the proof of the existence part (the uniqueness part follows by similar
arguments [53, Theorem 2.2.6]); to this end, we inductively construct an
extension

f∗ � f : P∗ � ε −→ C∗ � γ

of f : Because P0 is projective and γ is surjective, we find an R-homo-
morphism f0 : P0 −→ C0 making the diagram

P0
ε //

f0
��
�
�
� A

f

��

C0 γ
// B

commutative.
Let n ∈ N and suppose inductively that a chain map f∗ : P∗ �ε −→ C∗ �γ

extending f is constructed up to degree n. In order to construct fn+1 we
proceed as follows: Because C∗ �γ is exact, im fn◦∂Pn+1 ⊂ ker ∂Cn = im ∂Cn+1.
Using projectivity of Pn+1 we obtain an R-homomorphism fn+1 fitting into
the commutative diagram

Pn+1

∂P
n+1 //

fn+1

��
�
�
�

Pn
∂P

n //

fn

��

Pn−1

fn−1

��

Cn+1
∂C

n+1

// Cn
∂C

n

// Cn−1

as desired.

Corollary 1.5.28 (Uniqueness of resolutions). Let R be a ring and let A
an R-module.
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1. Then up to canonical R-chain homotopy equivalence there is exactly
one projective resolution of A. I.e., if P∗ �ε and P ′

∗ �ε′ are two projec-
tive R-resolutions of A, then there is a canonical R-chain homotopy
equivalence P∗ ' P ′

∗.
2. Dually, up to canonical R-chain homotopy equivalence there is exactly

one injective resolution of A.

Proof. The existence of projective and injective resolutions is provided by
Proposition 1.5.26, uniqueness follows from the fundamental lemma (ap-
plied to the identity map idA : A −→ A).

Another invaluable tool in the context of derived functors is the fol-
lowing observation, which roughly says that projective resolutions can be
manifactured in a natural way for short exact sequences of modules:

Proposition 1.5.29 (Horseshoe lemma). Let R be a ring, let

0 // A′ f ′
// A

f ′′
// A′′ // 0

be a short exact sequence of R-modules, and suppose that P ′
∗ �ε′ and P ′′

∗ �ε′′

are projective resolutions of A′ and A′′ respectively. Then there exists a
projective resolution P∗ � ε of A and R-chain maps f ′∗ : P

′
∗ � ε′ −→ P∗ � ε

and f ′′∗ : P∗ � ε −→ P ′′
∗ � ε′′ extending f ′ and f ′′ respectively such that

0 // P ′
n

f ′n // Pn
f ′′n // P ′′

n
// 0

is an exact sequence in every degree n ∈ N.

Proof. We set
Pn := P ′

n ⊕ P ′′
n

for all n ∈ N, and we define f ′n : P ′
n −→ Pn and f ′′n : Pn −→ P ′′

n to be the
canonical injection and the canonical projection respectively; of course, this
is basically the only way to construct a resolution of A inducing short exact
sequences in each degree, because short exact sequences over projective
modules split.

Similar to the arguments in the proof of the fundamental lemma of ho-
mological algebra, using projectivity we inductively construct a surjective
R-homomorphism ε : P0 −→ A and R-homomorphisms Pn −→ Pn−1 fitting
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0

��

0

��

. . . 0

��

0

��
// P ′
n

//

f ′n
��

P ′
n−1

//

f ′n−1

��

. . . // P ′
0

ε′ //

f ′0
��

A′ //

f ′

��

0

Pn //___

f ′′n
��

Pn−1
//

f ′′n−1

��

. . . // P0
ε //

f ′′0
��

A //

f ′′

��

0

// P ′′
n

//

��

P ′′
n−1

//

��

. . . // P ′′
0

ε′′ //

��

A′′ //

��

0

0 0 . . . 0 0

Figure 1.4: Proof of the horseshoe lemma

into the commutative “horseshoe” diagrams in Figure 1.4 (in such a way
that the middle row is a complex).

That P∗ � ε indeed is a resolution of A follows from the snake lemma and
the five lemma.

Proposition 1.5.30 (Horseshoe lemma, naturality). Let R be a ring and
let

0 // A′ //

��

A //

��

A′′ //

��

0

0 // B′ // B // B′′ // 0

be a commutative diagram of R-modules with exact rows. Then there exist
projective resolutions of these six modules together with chain maps between
them extending this ladder diagram such that in every degree we obtain a
corresponding commutative diagram with exact rows.

Proof. We choose any projective resolutions of the outer modules A′, B′,
A′′, and B′′ and lift the outer vertical maps to chain maps between these
resolutions. As next step, we choose projective resolutions of A and B as
in the horseshoe lemma. To finish the proof we need a lift of the middle
vertical morphism to the projective resolutions of A and B such that the
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corresponding ladder diagrams in each degree are commutative; this again
is an exercise in juggling with projectives and inductive constructions of
chain maps [53, Proof of Theorem 2.4.6].

Similarly, horseshoes of injective resolutions can (naturally) be filled with
injective resolutions.

1.5.5 Derived functors, construction

Using the techniques developed in the previous sections, we finally can
prove the existence of derived functors:

Theorem 1.5.31 (Left derived functors). Let R and S be two rings, and
let F : R-Mod −→ S-Mod be a right exact functor. Then there exists a
left derived functor of F (and by definition of left derived functors, it is
essentially unqiue).

Proof (of Theorem 1.5.31).
– Construction. Following the recipe given in Section 1.5.2, we con-

struct a left derived functor L∗ : R-Mod −→ S-Mod∗: For every
R-module A we choose a projective R-resolution PA

∗ � (εA : PA
0 → A)

of A; then we define

Ln(A) := Hn

(
F (PA

∗ )
)

for all n ∈ N. If f : A −→ B is an R-homomorphism, we choose a
lift f∗ : P

A
∗ � εA −→ PB

∗ � εB of f , and define

Ln(f) := Hn

(
F (f∗)

)
: Ln(A) −→ Ln(B)

for all n ∈ N. Because projective resolutions and lifts of homomor-
phisms to projective resolutions are essentially unique by the funda-
mental lemma of homological algebra (Proposition 1.5.27), the defi-
nition of L∗ is (up to canonical natural isomorphism) independent of
these choices and L∗ indeed is a functor.
Notice that Ln(P ) = 0 for all projective R-modules and all de-
grees n ∈ N>0, because the projective module P admits a projective
resolution concentrated in degree 0:

. . . // 0 // P
idP // P // 0.
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– The functor L∗ : R-Mod −→ S-Mod∗ extends F . Let f : A −→ B be
an R-homomorphism and let f∗ �f : PA

∗ � εA −→ PB
∗ � εB be as above;

in particular, there is a commutative diagram

PA
1

∂A
1 //

f1
��

PA
0

εA //

f0
��

A

f

��

// 0

PB
1 ∂B

1

// PB
0 εB

// B // 0

with exact rows. Applying F and homology, we obtain a commutative
diagram

L0(A)

L0(f)

��

H0(F (PA
∗ ))

H0(F (f∗))
��

F (PA
0 )/F (im ∂A1 )

��

F (PA
0 )/F (ker εA)

��

F (A)

F (f)

��

L0(B) H0(F (PB
∗ )) F (PB

0 )/F (im ∂B1 ) F (PB
0 )/F (ker εB) F (B)

because F is right exact. Therefore, L0 coincides with F .
– The functor L∗ : R-Mod −→ S-Mod∗ is a homological ∂-functor. We

now construct the natural transformations (∂n)n∈N: Let

0 // A′ //

��

A //

��

A′′ //

��

0

0 // B′ // B // B′′ // 0

be a commutative diagram of R-modules with exact rows. According
to the extended horseshoe lemma (Proposition 1.5.30), there are pro-
jective resolutions QA′

∗ � ε′, QA
∗ � ε, QA′′

∗ � ε′′, QB′
∗ � η′, QB

∗ � η, QB′′
∗ � η′′

of these six modules such that the corresponding ladder diagrams in
each degree are commutative and have exact rows; because of pro-
jectivity, these exact rows are even split exact sequences. Therefore,
applying the additive functor F , we obtain a commutative diagram

0 // F (QA′
∗ ) //

��

F (QA
∗ ) //

��

F (QA′′
∗ ) //

��

0

0 // F (QB′
∗ ) // F (QB

∗ ) // F (QB′′
∗ ) // 0
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of R-chain complexes whose rows are exact in every degree. Now the
snake lemma provides us with natural exact sequences in homology.
Because the chain complexes F (Q?

∗) and F (P ?
∗ ) are canonically chain

homotopic by the fundamental lemma of homological algebra, we also
obtain natural long exact sequences in homology when we replace
the resolutions Q?

∗ by the resolutions P ?
∗ we chose at the begin of the

proof.
Translated into L∗ this is nothing but saying that we obtain a com-
mutative diagram

. . . // Ln(A
′) //

��

Ln(A) //

��

Ln(A
′′)

∂n //

��

Ln−1(A
′) //

��

. . .

. . . // Ln(B
′) // Ln(B) // Ln(B

′′)
∂n

// Ln−1(B
′) // . . .

with exact rows. Furthermore, by construction, L∗ is additive. So,
L∗ is a homological ∂-functor.

– The functor L∗ is universal. Let T∗ : R-Mod −→ S-Mod∗ be a
homological ∂-functor and suppose there is a natural transforma-
tion τ0 : T0 −→ F = L0. We inductively extend τ0 to a natural
transformation τ∗ : T∗ −→ L∗ by dimension shifting : Let n ∈ N and
suppose that τn : Tn −→ Ln is already constructed; we now con-
struct τn+1: Let A be an R-module. Then there is a short exact
sequence

0 // A′ iA // P
πA // A // 0

of R-modules, where P is projective. Because T∗ and L∗ are homo-
logical ∂-functors, because Ln+1(P ) = 0, and because τn is natural,
we obtain the following commutative diagram (the solid arrows) with
exact rows:

Tn+1(A)
∂n+1 //

τn+1(A)
��
�
�
�

Tn(A
′)
Tn(iA)

//

τn(A′)
��

Tn(P )

τn(P )
��

0 = Ln+1(P ) // Ln+1(A)
∂n+1

// Ln(A
′)
Ln(iA)

// Ln(P )

A simple diagram chase shows that there is a unique S-homomor-
phism τn+1(A) making the left hand square commutative. (The
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lower line of this diagram explains the term “dimension shifting”:
The module Ln+1(A) can be recovered from Ln applied to a different
module A′.)
We now have to show that τn+1(A) indeed is compatible with the
connecting homomorphisms ∂n+1 of all short exact sequences with
A as quotient and that τn+1 is compatible with homomorphisms of
modules.

1. The homomorphism τn+1(A) is compatible with ∂n+1. Let

0 // B′ // B // A // 0

be a short exact sequence of R-modules. As P is projective, a
diagram chase reveals that there are R-homomorphisms f and f ′

fitting into the commutative diagram

0 // A′ //

f ′

��
�
�
� PA //

f

��
�
�
� A // 0

0 // B′ // B // A // 0

We now consider the diagram in Figure 1.5; The small outer
four quadrangles commute because T∗ and L∗ are homological
∂-functors and because τn is natural by induction. Moreover, the
large outer square commutes by construction of τn+1(A). Hence,
also the inner square is commutative, as was to be shown.

2. Moreover, τn+1 is compatible with homomorphisms of modules.
Let f : A −→ B be an R-homomorphism. Let

0 −→ A′ −→ PA −→ A −→ 0

0 −→ B′ −→ PB −→ B −→ 0

be the short exact sequences with projective R-modules PA
and PB used in the definition of τn+1(A) and τn+1(B), respec-
tively. Similarly as above, we can find R-homomorphisms p and
f ′ fitting into the commutative diagram

0 // A′ //

f ′

��

PA //

p

��

A //

f

��

0

0 // B′ // PB // B // 0
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Tn+1(A)

τn+1(A)

��

∂T
n+1 // Tn(A

′)

τn(A′)

��

Tn(f ′)

yyttttttttt

Tn+1(A)
∂T

n+1 //

τn+1(A)
��

LLLLLLLLLL

LLLLLLLLLL

Tn(B
′)

τn(B′)
��

Ln+1(A)
∂L

n+1

//

rrrrrrrrrr

rrrrrrrrrr
Ln(B

′)

Ln+1(A)
∂L

n+1

// Ln(A
′)

Ln(f ′)

eeJJJJJJJJJ

Figure 1.5: Compatibility of τn+1(A) with ∂n+1

Tn(A
′)

Tn(f ′)
//

τn(A′)

��

Tn(B
′)

τn(B′)

��

Tn+1(A)
Tn+1(f)

//

τn+1(A)
��

∂T
n+1

eeKKKKKKKKKK

Tn+1(B)

τn+1(B)
��

∂T
n+1

99rrrrrrrrrr

Ln+1(A)
Ln+1(f)

//

∂L
n+1yyssssssssss

Ln+1(B)

∂L
n+1 %%LLLLLLLLLL

Ln(A
′)

Ln(f ′)
// Ln(B

′)

Figure 1.6: Naturality of τn+1
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Considering the diagram in Figure 1.6 and arguing as above, we
find that

∂Ln+1 ◦ τn+1(B) ◦ Tn+1(f) = ∂Ln+1 ◦ Ln+1(f) ◦ τn+1(A).

Because Ln+1(PB) = 0, the morphism ∂Ln+1 : Ln+1(B) −→ Ln(B
′)

is injective, and thus we obtain

τn+1(B) ◦ Tn+1(f) = Ln+1(f) ◦ τn+1(A).

as desired.
This finishes the proof that L∗ indeed is a left derived functor of F .

Replacing projectives by injectives, we can show with the same type of
arguments that left exact functors admit right derived functors:

Theorem 1.5.32 (Right derived functors). Let R and S be two rings,
and let F : R-Mod −→ S-Mod be a left exact functor. Then there exists a
right derived functor of F (and by definition of right derived functors, it is
essentially unique).

Prominent examples of derived functors are Tor and Ext, which play a
crucial rôle in the Künneth formula and the universal coefficient theorem,
as well as in group (co)homology (see below):

Definition 1.5.33 (Tor and Ext). Let R be a ring, and let A be a left
R-module.

– Then we define
TorR∗ ( · , A) : Mod-R −→ Ab∗

as the left derived functor of · ⊗R A : Mod-R −→ Ab.
– And we define

ExtR∗ (A, · ) : R-Mod −→ Ab∗

as the right derived functor of HomR(A, · ) : R-Mod −→ Ab.

Remark 1.5.34 (Etymology of Tor and Ext). The functor Tor is related
to torsion in modules (e.g., over the integers); the functor Ext is related to
extension problems (such as in Section 1.4.4).

Further examples of derived functors are the higher lim-terms (derived
functor of inverse limits), sheaf cohomology (derived functor of the sections
functor), and higher direct images in sheaf theory (derived functor of direct
images).
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1.5.6 Group cohomology, via derived functors

Using the fact that the coinvariants functor is right exact and that the
invariants functor is left exact (Example 1.5.7), we can define group (co)ho-
mology in terms of derived functors:

Definition 1.5.35 (Group homology, as derived functor). Group homology
is the functor H∗ : GrpMod −→ Ab∗ defined as follows:

– If G is a discrete group, then

H∗(G; · ) := TorZG
∗ ( ·̄ ,Z) : ZG-Mod −→ Ab∗

is the derived functor of · G = · ⊗GZ : ZG-Mod −→ Ab of G; here, G
acts trivially on Z, and ·̄ denotes the conversion of left ZG-modules
into right ZG-modules using the canonical involution on ZG.

– If ϕ : G −→ H is a group homomorphism, then by universality of the
derived functor H∗(H; · ), there is a unique natural transformation

τϕ∗ : H∗(G;ϕ∗ · ) −→ H∗(H; · )

of homological ∂-functors ZH-Mod −→ Ab∗ extending the natural
transformation (ϕ∗ · )G −→ ·H induced by ϕ; notice that H∗(G;ϕ∗ · )
indeed is a homological ∂-functor, because ϕ∗ : ZH-Mod −→ ZG-Mod
is exact (Example 1.5.8).

– If (ϕ,Φ): (G,A) −→ (H,B) is a morphism in GrpMod, then we write

H∗(ϕ; Φ) := τϕ∗ (B) ◦ TorZG
∗ (Φ,Z).

which is a homomorphism H∗(G;A) −→ H∗(H;B) in Ab∗.

Definition 1.5.36 (Group cohomology, as derived functor). Group coho-
mology is the (contravariant) functor H∗ : GrpMod– −→ Ab∗ defined as
follows:

– If G is a discrete group, then

H∗(G; · ) := Ext∗ZG(Z, · ) : ZG-Mod −→ Ab∗

is the derived functor of · G = HomG(Z, · ) : ZG-Mod −→ Ab∗; here,
G acts trivially on Z.
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– If ϕ : G −→ H is a group homomorphism, then by universality of the
derived functor H∗(H; · ) there is a unique natural transformation

τ ∗ϕ : H∗(H; · ) −→ H∗(G;ϕ∗ · )

of cohomological δ-functors ZH-Mod −→ Ab∗ extending the natural
transformation ·H −→ (ϕ∗ · )G induced by ϕ; notice that H∗(G;ϕ∗ · )
indeed is a cohomological δ-functor, because ϕ∗ is exact.

– If (ϕ,Φ): (G,A) −→ (H,B) is a morhpism in GrpMod–, then we
write

H∗(ϕ; Φ) := Ext∗ZG(Φ,Z) ◦ τ ∗ϕ(B),

which is a homomorphism (ϕ,Φ): (G,A) −→ (H,B).

Notice that group homology and group cohomology defined in this way
indeed are functors of the given types; for compatibility with composi-
tion, we need the uniqueness of the natural transformations extending
(co)invariants (exercise).

Recalling the construction of derived functors via projective/injective
resolutions, we see that we can use any projective/injective resolution of
the coefficient module to compute group (co)homology, which provides sig-
nificant flexibility. In general, it is quite difficult to find nice “small” reso-
lutions by algebraic means, though. In Section 1.6, we will use geometric
input to construct accessible resolutions.

1.5.7 Group cohomology, axiomatically

Imitating the characterisation of derived functors, we are led to the follow-
ing axiomatic description of group homology and group cohomology.

Theorem 1.5.37 (Group homology, axiomatically). There exists, up to
natural isomorphism, exactly one functor H∗ : GrpMod −→ Ab∗ together
with connecting homomorphisms ∂∗ : H∗(G;A′′) −→ H∗−1(G;A′) for every
discrete group G and every short exact sequence 0 → A′ → A → A′′ → 0
of ZG-modules such that the following properties are satisfied:

– Extension of coinvariants. The functor H∗ extends the coinvariants
functor GrpMod −→ Ab (Example 1.2.9), i.e., H0 and the coinvari-
ants functor are naturally isomorphic.
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– Long exact sequences. Let G be a discrete group, and let

0 // A′ Φ′ // A
Φ′′ // A′′ // 0

be a short exact sequence of ZG-modules. Then there is a natural
(see explanations below) long exact sequence

. . . // Hn(G;A′)
Hn(idG; Φ′)

// Hn(G;A)
Hn(idG; Φ′′)

// Hn(G;A′′)
∂n

// Hn−1(G;A′) // . . .

– Vanishing. For all discrete groups G, all projective ZG-modules P ,
and all n ∈ N>0 we have

Hn(G;P ) = 0.

As in the case of derived functors, these axioms are a formal way of saying
that all information of the group homology functor is stored in degree 0
(and the coefficient modules); the natural long exact sequences and the
vanishing axiom allow to reconstruct the rest of the functor.

Remark 1.5.38. It is natural to ask whether we can interpret the whole
group homology functor GrpMod −→ Ab∗ as derived functor of some func-
tor GrpMod −→ Ab. However, as the category GrpMod is not a nice
category (it is not Abelian or exact), this is not possible.

What does “naturality of the long exact sequence” mean in this context?
Let ϕ : G −→ H be a group homomorphism, and let

0 // A′ Φ′ // A
Φ′′ // A′′ // 0

0 // B′
Ψ′
// B

Ψ′′
// B′′ // 0

be short exact sequences of ZG-modules and ZH-modules respectively.
Moreover, suppose there are morphisms

(ϕ,Ξ′) : (G,A′) −→ (H,B′)

(ϕ,Ξ): (G,A) −→ (H,B)

(ϕ,Ξ′′) : (G,A′′) −→ (H,B′′)
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in GrpMod making the diagram

0 // A′ Φ′ //

Ξ′

��

A
Φ′′ //

Ξ
��

A′′ //

Ξ′′

��

0

0 // ϕ∗B′
ϕ∗Ψ′
// ϕ∗B

ϕ∗Ψ′′
// ϕ∗B′′ // 0

of ZG-modules commutative (notice that the lower line is exact as well,
because ϕ∗ is an exact functor). Then the corresponding diagram

. . . // Hn(G;A′)
Hn(idG; Φ′)

//

Hn(ϕ;Ξ′)
��

Hn(G;A)
Hn(idG; Φ′′)

//

Hn(ϕ;Ξ)
��

Hn(G;A′′)
∂n

//

Hn(ϕ;Ξ′′)
��

Hn−1(G;A′) //

Hn−1(ϕ;Ξ′)
��

. . .

. . . // Hn(H;B′)
Hn(idH ; Ψ′)

// Hn(H;B′)
Hn(idH ; Ψ′′)

// Hn(H;B′′)
∂n

// Hn−1(H;B′) // . . .

should be commutative as well.

Proof. In Theorems 1.5.40, 1.5.41, 1.5.42 we will establish that such a
functor exists.

The rest of this proof is concerned with the uniqueness of such a functor:
Let H∗ and K∗ be two functors GrpMod −→ Ab∗ satisfying the axioms
above. Similarly, as in the proof of universality in Theorem 1.5.31, we
proceed inductively by dimension shifting :

By the first axiom, there is a natural isomorphism τ0 : K0 −→ H0. Sup-
pose n ∈ N and that we constructed a natural isomorphism τn : Kn −→ Hn;
we now construct τn+1:

Let (G,A) be an object in GrpMod. Then there is a short exact sequence

0 // A′ iA // PA
πA // A // 0

of ZG-modules, where PA is projective. In view of the vanishing axiom,
Hn+1(G;PA) = 0. Therefore, there is a unique homomorphism

τn+1(A) : Kn+1(G;A) −→ Hn+1(G;A)
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fitting into the commutative diagram

Kn+1(G;PA) // Kn+1(G;A)
∂K

n+1 //

τn+1(A)
��
�
�
�

Kn(G;A′) //

τn(A′)
��

Kn(G;PA)

��
τn(PA)
��

0 // Hn+1(G;A)
∂H

n+1

// Hn(G;A′) // Hn(G;PA)

with exact rows (the rows are exact because of the long exact sequence
axiom). The same arguments as in the proof of universality in Theo-
rem 1.5.31 show that τn+1 is compatible with the morphisms ∂n+1 and that
it is compatible with morphisms in GrpMod; so τ∗ is a natural transforma-
tion between K∗ and H∗.

Reversing the rôles of H∗ and K∗ und using the uniqueness of the re-
sulting natural transformations we conclude, that H∗ and K∗ are naturally
isomorphic.

Theorem 1.5.39 (Group cohomology, axiomatically). There is up to natu-
ral isomorphism exactly one contravariant functor H∗ : GrpMod– −→ Ab∗
(together with connecting homomorphisms δ∗ : H∗(G;A′′) −→ H∗+1(G;A′)
for every discrete group G and every short exact sequence 0→ A′ → A→
A′′ → 0 of ZG-modules such that the following properties are satisfied:

– Extension of invariants. The functor H∗ extends the invariants func-
tor GrpMod– −→ Ab (Example 1.2.9), i.e., H0 and the invariants
functor are naturally isomorphic.

– Long exact sequences. Let G be a discrete group, and let

0 // A′ Φ′ // A
Φ′′ // A′′ // 0

be a short exact sequence of ZG-modules. Then there is a natural
long exact sequence

. . . // Hn(G;A′)
Hn(idG; Φ′)

// Hn(G;A)
Hn(idG; Φ′′)

// Hn(G;A′′)
δn

// Hn+1(G;A′) // . . .

– Vanishing. For all discrete groups G, all injective ZG-modules I, and
all n ∈ N>0 we have

Hn(G; I) = 0.
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Proof. Existence is contained in Theorems 1.5.40, 1.5.41, 1.5.42. Unique-
ness follows in the same way as in the group homology case.

Theorem 1.5.40 (Topological definition and the axioms).
– The topological definition of group homology (Definition 1.3.10) sat-

isfies the axioms of Theorem 1.5.37.
– The topological definition of group cohomology (Definition 1.3.11)

satisfies the axioms of Theorem 1.5.39.

Proof. We only give the proof for homology; the proof for cohomology can
then be obtained by the usual modifications.

– Extension of coinvariants. That the topologically defined functor H0

coincides with the coinvariants functor is the content of Proposi-
tion 1.3.12.

– Long exact sequences. Let G be a group and let XG be a model of the
classifying space BG. Then the (singular) chain complex C∗(X̃G; Z)
of the universal covering is a chain complex consisting of free ZG-mod-
ules.
So for any short exact sequence 0→ A′ → A→ A′′ → 0 of ZG-mod-
ules, the induced sequences

0 // Cn(XG;A′) // Cn(XG;A) // Cn(XG;A′′) // 0

0 // Cn(X̃G; Z)⊗G A′ // Cn(X̃G; Z)⊗G A // Cn(X̃G; Z)⊗G A′′ // 0

are exact in every degree n ∈ N. Therefore, the snake lemma provides
us with a long exact sequence in homology.
Moreover, this long exact sequence is natural as the construction on
the level of chain complexes is natural enough and the snake lemma
yields a natural long exact sequence in homology.

– Vanishing. Let G be a group, let P be a projective ZG-module, and
let XG be a model of BG. Because X̃G is contractible, we have

Hn

(
C∗(X̃G; Z)

)
= Hn(X̃G; Z) = 0

for all n ∈ N>0; as P is projective, and hence flat, also the se-
quence C∗(XG;P ) = C∗(X̃G; Z) ⊗G P is exact in all degrees greater
than 0. In particular,

Hn(G;P ) = Hn

(
C∗(XG;P )

)
= 0



1.5 Group cohomology via derived functors 65

for all n ∈ N>0.

Theorem 1.5.41 (Combinatorial definition and the axioms).

– The combinatorial definition of group homology via the bar resolution
(Definition 1.4.4) satisfies the axioms of Theorem 1.5.37.

– The combinatorial definition of group cohomology via the bar resolu-
tion (Definition 1.4.5) satisfies the axioms of Theorem 1.5.39.

Proof. This is essentially the same proof as in the topological case. We
only give the proof for homology; the proof for cohomology can then be
obtained by the usual manipulations.

– Extension of coinvariants. This is the same computation as in Propo-
sition 1.3.12 (there the models have been chosen in such a way that
the cellular complexes look like the start of the bar resolution).

– Long exact sequences. This is the same argument as in the topological
case above – the bar construction consists of free modules and the
bar construction is functorial on the chain level.

– Vanishing. Because Hn

(
C∗(G)

)
= 0 for all n ∈ N>0 and the chain

modules are projective, the same reasoning as in the topological case
applies.

Theorem 1.5.42 (Derived functor definition and the axioms).

– The definition of group homology via deriving coinvariants functors
(Definition 1.5.35) satisfies the axioms of Theorem 1.5.37.

– The definition of group cohomology via deriving invariants functors
(Definition 1.5.36) satisfies the axioms of Theorem 1.5.39.

Proof. We only give the proof for homology; the proof for cohomology can
then be obtained by the usual manipulations.

– Extension of coinvariants. This follows from the definition of group
homology via derived functors: Let (ϕ,Φ): (G,A) −→ (H,B) be a
morphism in GrpMod. Then the diagram in Figure 1.7 is commuta-
tive; i.e., H0 coincides with the coinvariants functor.

– Long exact sequences. By definition of group homology via derived
functors we obtain long exact sequences in group homology, and these
long exact sequences are natural in the module parameter if the group
is fixed.
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H0(G;A)

H0(ϕ;Φ)

��

TorZG
0 (A,Z)

TorZG
0 (Φ,Z)

��

A⊗G Z

��

AG

��

[a]
_

��

TorZG
0 (ϕ∗B,Z)

τϕ
0 (B)

��

ϕ∗B ⊗G Z

��

(ϕ∗B)G

��

H0(H;B) TorZH
0 (B,Z) B ⊗H Z BH [Φ(a)]

Figure 1.7: The derived functor version of group homology in degree 0

. . . // Hn(G;A′)
Hn(idG; Φ′)

//

TorZG
n (Φ′;Z)

��

Hn(G;A)
Hn(idG; Φ′′)

//

TorZG
n (Φ;Z)

��

Hn(G;A′′)
∂n

//

TorZG
n (Φ′′;Z)

��

Hn−1(G;A′) //

TorZG
n−1(Φ′;Z)

��

. . .

. . . // Hn(G;ϕ∗B′)
Hn(idG;ϕ∗Ψ′)

//

τϕ
n (B′)

��

Hn(G;ϕ∗B′)
Hn(idG;ϕ∗Ψ′′)

//

τϕ
n (B)
��

Hn(G;ϕ∗B′′)
∂n

//

τϕ
n (B′′)
��

Hn−1(H;ϕ∗B′) //

τϕ
n−1(B′)

��

. . .

. . . // Hn(H;B′)
Hn(idH ; Ψ′)

// Hn(H;B′)
Hn(idH ; Ψ′′)

// Hn(H;B′′)
∂n

// Hn−1(H;B′) // . . .

Figure 1.8: Naturality in GrpMod of the long exact sequences of the derived
functor version of group homology

Why do we have naturality in GrpMod as described above? For every
commutative ladder

0 // A′ Φ′ //

Ξ′

��

A
Φ′′ //

Ξ
��

A′′ //

Ξ′′

��

0

0 // ϕ∗B′
ϕ∗Ψ′
// ϕ∗B

ϕ∗Ψ′′
// ϕ∗B′′ // 0

with exact rows as in the explanation of the axioms of group ho-
mology above (following Theorem 1.5.37), we obtain a diagram as in
Figure 1.8.
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Because group homology in the derived functor sense is a homo-
logical ∂-functor in the second variable and because ϕ∗ is an exact
functor, all three rows are exact. The top ladder commutes because
TorZG

∗ ( ·̄ ,Z) is a homological ∂-functor; the lower ladder commutes
because τϕ∗ is a natural transformation of homological ∂-functors.
Hence, also the outer ladder has to be commutative. By definition,
the compositions of the vertical arrows are nothing but H∗(ϕ; Ξ′),
H∗(ϕ; Ξ), and H∗(ϕ; Ξ′′), which concludes the proof of naturality.

– Vanishing. This vanishing property was established in the construc-
tion of left derived functors (see proof of Theorem 1.5.31).

In view of the axiomatic characterisation of group (co)homology, we
finally see that our three descriptions of group (co)homology give rise to the
same functors; in particular, for problems concerning group (co)homology
we are free to choose an appropriate description or method of computation
of group (co)homology.

Corollary 1.5.43 (Group (co)homology, equivalence of the three descrip-
tions).

1. The topological definition of group homology, the combinatorial defi-
nition of group homology, and the definition of via deriving coinvari-
ants functors are naturally isomorphic functors GrpMod −→ Ab∗.

2. The topological definition of group cohomology, the combinatorial def-
inition of group cohomology, and the definition of group cohomology
via deriving the invariants functors are naturally isomorphic con-
travariant functors GrpMod– −→ Ab∗.
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1.5.8 Computing group (co)homology – summary

Often one is interested in a (co)homology group only up to isomorphism of a
given group and given coefficients and not in the whole group (co)homology
functor. In the following, we briefly summarise the different methods for
computing group (co)homology established so far (see Corollary 1.5.43).
Let G be a discrete group and let A be a ZG-module.

– Group homology.
– Pick a projective ZG-resolution P∗ � (ε : P0 → A) of A and com-

pute
H∗(G;A) = TorZG

∗ ( ·̄ ,Z) ∼= H∗
(
(P∗)G

)
.

– Pick a projective ZG-resolution P∗ � (ε : P0 → Z) of the trivial
ZG-module Z; by the fundamental lemma of homological alge-
bra, P∗ is ZG-homotopy equivalent to the bar complex C∗(G)
of G. Therefore, P∗ ⊗G A and C∗(G) ⊗G A are Z-homotopy
equivalent and so

H∗(G;A) = H∗
(
C∗(G)⊗G A

) ∼= H∗(P∗ ⊗G A).

– Group cohomology.
– Pick an injective ZG-resolution (η : A→ I0) � I∗ of A and com-

pute
H∗(G;A) = Ext∗ZG(Z, · ) ∼= H∗((I∗)G)

.

– Pick a projective ZG-resolution P∗ � (ε : P0 → Z) of the trivial
ZG-module Z; by the fundamental lemma of homological alge-
bra, P∗ is ZG-homotopy equivalent to the bar complex C∗(G)
of G. Therefore, HomG(P∗, A) and HomG(C∗(G), A) are Z-ho-
motopy equivalent and so

H∗(G;A) = H∗(HomG(C∗(G), A)
) ∼= H∗(HomG(P∗, A)

)
.

For example, nice such projective resolutions P∗ � ε can be obtained by
looking at a suitable model of the classifying space BG or more generally
by studying appropriate actions of G.



1.6
Group cohomology
and group actions

The full power of the theory of group (co)homology lies in its tight con-
nection with group actions: Nice group actions give rise to nice projective
resolutions – and hence to computations of group (co)homology; conse-
quently, group (co)homology also can be viewed as an obstruction for the
existence of certain group actions.

In the present section, we will enjoy the interplay between group (co)ho-
mology and group actions while studying the question of which finite groups
can act freely on spheres. In particular, we will compute the (co)homology
of finite cyclic groups (Section 1.6.2), we will classify certain p-groups us-
ing group cohomology (Section 1.6.4), and we will deduce an algebraic
obstruction for the existence of free actions on spheres in terms of Sylow
subgroups (Sections 1.6.1, 1.6.3, 1.6.5).

Furthermore, we explain how to measure the surjectivity of the Hurewicz
homomorphism using group homology (Sections 1.6.6 and 1.6.7) and, more
generally, we give a brief overview of spectral sequences linking group ho-
mology and homology associated with certain group actions (Section 1.6.8)
– generalising the description of group homology via classifying spaces in
several directions.

1.6.1 Application: Groups acting on spheres I

Finite groups acting freely on spheres admit particularly nice resolutions
thanks to the homological structure of spheres:

Theorem 1.6.1 (Groups acting on spheres). Let G be a finite group acting
freely on an n-dimensional sphere Sn.

1. If n is even, then G is trivial or G ∼= Z/2.

69
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2. If n is odd, then there exists a periodic projective ZG-resolution of
the trivial ZG-module Z of period n+ 1.

This theorem is the first step towards a classification of all finite groups
admitting free actions on a sphere; we will continue this point of view in
Section 1.9 by investigating groups with periodic cohomology. A thorough
treatment of this classical problem is provided in the lecture notes by Davis
and Milgram [11].

The basic idea behind the proof is to consider a cellular ZG-chain com-
plex of Sn and to use the fact that H0(S

n; Z) ∼= Z ∼= Hn(S
n; Z) in splicing

together infinitely many copies of the cellular chain complex to obtain a
periodic resolution. However, for this we need to know which ZG-module
structure the G-action on Sn induces on Z ∼= Hn(S

n; Z). The key to suc-
cesfully studying this ZG-module structure is the Lefschetz fixed point
theorem:

Definition 1.6.2 (Lefschetz number). Let X be a finite CW-complex and
let f : X −→ X be a continuous map. Then the Lefschetz number of f is
the integer defined by

Λ(f) :=
∑
n∈N

(−1)n · trZ
(
Hn(f ; Z) : Hn(X; Z)→ Hn(X; Z)

)
;

here, trZ denotes the trace given by the usual integral trace of Z-linear
endomorphisms on the free part of the corresponding finitely generated
Abelian group.

Example 1.6.3 (Lefschetz number and Euler characteristic). If X is a
finite CW-complex, then the Lefschetz number of the identitiy map idX
coincides with the Euler characteristic of X:

Λ(idX) = χ(X)

Theorem 1.6.4 (Lefschetz fixed point theorem [21, Theorem 2C.3]). Let
X be a finite CW-complex and let f : X −→ X be a continuous map. If f
has no fixed points, then Λ(f) = 0.

The converse of the Lefschetz fixed point theorem obviously does not
hold in general; for example, the identity map on S1 has Lefschetz number
equal to 0 despite of having lots of fixed points.
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Corollary 1.6.5 (Groups acting on spheres and top homology). Let G be
a group that acts freely on an n-sphere Sn.

1. If n is even, then G is the trivial group or G ∼= Z/2.
2. If n is odd, then G acts trivially on Hn(S

n; Z) ∼= Z.

Proof. As the 0-dimensional sphere S0 is nothing but a disjoint union of
two points (on which only the trivial group and groups isomorphic to Z/2
can act freely) we assume n > 0 in the following.

Let f : Sn −→ Sn be the continuous map induced by the action of a given
non-trivial element of G on Sn; this map f does not have a fixed point
because the G-action on Sn is free. As the homology of Sn is concentrated
in the degrees 0 and n (which are distinct!), we obtain by the Lefschetz
fixed point theorem

0 = Λ(f)

= trZH0(f ; Z) + (−1)n · trZHn(f ; Z)

= 1 + (−1)n · deg f.

So, if n is odd, then deg f = 1 and hence Hn(f ; Z) = id. Thus G acts
trivially on Hn(S

n; Z).
If n is even, then deg f = −1; thus, all non-trivial elements of G act by

multiplication by −1 on Hn(S
n; Z). Consequently, if g, g′ ∈ G \ {1}, then

g · g′ acts by multiplication by 1 on Hn(S
n; Z); therefore, g · g′ = 1. In

particular, G = 1 or G ∼= Z/2.

Proof (of Theorem 1.6.1). If n is even, then G is trivial or isomorphic
to Z/2 by Corollary 1.6.5. Notice that the cellular chain complex of RP∞,
which is a model of BZ/2, associated with the standard cell structure gives
rise to a projective Z[Z/2]-resolution

. . . // Z[Z/2]
t−1 // Z[Z/2]

1+t // Z[Z/2]
t−1 // Z[Z/2] ε // Z // 0

of the trivial Z[Z/2]-module Z of period 2 (where t denotes the generator
of Z/2 and ε : Z[Z/2] −→ Z is the homomorphism sending 1 and t to 1).

If n is odd, we argue as follows: We choose a G-equivariant CW-structure
on Sn such that the G-action freely permutes the cells (such a cell structure
always exists [?]). Let C∗ be the associated cellular chain complex; because
G acts freely on the cells, the complex C∗ in fact is a ZG-complex consisting
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of free ZG-modules. Notice that Ck = 0 for all k ∈ N>n because Sn is
n-dimensional. Let

η : Z ∼= Hn(S
n; Z) = ker ∂n −→ Cn,

ε : C0 −→ C0/ im ∂1 = H0(S
n; Z) ∼= Z

be the inclusion and projection, respectively; hence,

0 // Z
η
// Cn

∂n // . . . ∂2 // C1
∂1 // C0

ε // Z // 0

is exact. Because the G-action on Z ∼= H0(S
n; Z) induced by the G-action

is trivial (continuous maps between connected spaces induce the identity
on zero-th homology), and because the G-action on Z ∼= Hn(S

n; Z) induced
by the G-action on Sn is trivial by Corollary 1.6.5, this is an exact sequence
in ZG-Mod.

We can now splice together infinitely many copies of these exact se-
quences and thus obtain a free ZG-resolution

. . . // C1
∂1 // C0

η◦ε
// Cn

∂n // . . . ∂2 // C1
∂1 // C0

ε // Z // 0

of the trivial ZG-module Z of period n+ 1.

1.6.2 (Co)Homology of finite cyclic groups

A prominent class of groups admitting nice actions on spheres is the class
of finite cyclic groups; therefore, we can apply Theorem 1.6.1 to obtain a
straightforward computation of (co)homology of finite cyclic groups. In a
way, this is a generalisation of the computation of (co)homology of Z/2
via RP∞ ∼= BZ/2 – the geometric analogue of the algebraic resolutions
produced by Theorem 1.6.1 are increasing unions of lens spaces.

Corollary 1.6.6 ((Co)Homology of finite cyclic groups). Let n ∈ N>0, let
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t · e0
t2 · e0

tn−1 · e1

t · e1

tn−1 · e1

e1

e0

Figure 1.9: A free Z/n-equivariant CW-structure on S1

G be a cyclic group of order n, and let A be a ZG-module. Then

Hk(G;A) ∼=


AG if k = 0

AG/N · A if k is odd

ker(N : A→ A)/(t− 1) · A if k > 0 is even

Hk(G;A) ∼=


AG if k = 0

ker(N : A→ A)/(t− 1) · A if k is odd

AG/N · A if k > 0 is even,

where t ∈ G is a generator and N := 1+ t+ · · ·+ tn−1 is the norm element.
In particular,

Hk(G; Z) ∼=


Z if k = 0

Z/n if k is odd

0 if k > 0 is even.

Proof. The cyclic group G ∼= Z/n acts freely on the circle by rotation
around 2π/n. A corresponding free G-equivariant CW-structure on S1

is depicted in Figure 1.9. In view of the construction in the proof of
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Theorem 1.6.1, this CW-structure leads to the following exact sequence
of ZG-modules:

0 // H1(S
1; Z) = Z η

// ZG t−1 // ZG ε // Z = H0(S
1; Z) // 0

What is the map ε? Every 0-cell corresponds to the generator 1 in Z;
hence, ε(g) = 1 for all g ∈ G.

What is the map η? The sum of all 1-cells, i.e., the norm element
(compare also the proof of Corollary 1.4.8)

N := 1 + t+ t2 + · · ·+ tn−1 ∈ ZG,

is a generator of H1(S
1; Z); hence, η(1) = N .

Therefore, as in the proof of Theorem 1.6.1, splicing these sequences
together yields the following free ZG-resolution of Z of period 2:

. . . N // ZG t−1 // ZG N // ZG t−1 // ZG ε // Z

Applying · ⊗G A and HomG( · , A) to this resolution and taking (co)ho-
mology afterwards, we obtain the (co)homology of G = Z/n with coeffi-
cients in A (Section 1.5.8), and thus the stated results.

Corollary 1.6.7 (Classifying spaces of non-torsion-free groups). Let G be
a group that is not torsion-free. Then there is no finite dimensional model
of the classifying space BG.

Proof. Exercise.

Example 1.6.8 ((Co)Homology of finitely generated Abelian groups). Us-
ing the computation of (co)homology of cyclic groups (Corollary 1.6.6 and
Example 1.3.13), the classification of finitely generated Abelian groups, and
the Künneth theorem (Proposition 1.3.14), we can compute (co)homology
of finitely generated Abelian groups. For example, for all n ∈ N>0 and all
even k ∈ N>0 we have

Hk(Z/n× Z/n; Z) ∼= Z/n⊕k/2+1,

which is not periodic.
The homology of Abelian groups carries an additional structure, the

Pontrjagin product. In the case of finitely generated Abelian groups, the
ring structure of group homology can also be determined [4, Section V.6].
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1.6.3 Application: Groups acting on spheres II

In view of the computation of (co)homology of cyclic groups, we obtain a
first group-theoretic obstruction for finite groups to act freely on spheres:

Corollary 1.6.9 (Finite higher rank Abelian groups cannot act freely on
spheres).

1. For n ∈ N>1 the group Z/n× Z/n cannot act freely on a sphere.
2. Consequently, all Abelian subgroups of a finite group acting freely on

a sphere must be cyclic.

Proof. Using the Künneth theorem (Proposition 1.3.14) and the compu-
tation of the homology of cyclic groups (Corollary 1.6.6) shows that the
homology of Z/n×Z/n is not periodic; hence, there is no periodic projec-
tive Z/n× Z/n-resolution of Z. So, by Theorem 1.6.1, Z/n× Z/n cannot
act freely on a sphere.

The second part follows from the first part with help of the classification
of finite Abelian groups.

Corollary 1.6.10 (p-Groups acting freely on spheres). Let p ∈ N be a
prime and let G be a non-trivial p-group acting freely on a sphere. Then
G contains a unique subgroup of order p.

Proof. As G is a non-trivial p-group, its centre is non-trivial [26, Theo-
rem I.6.5], and thus a non-trivial Abelian p-group; in particular, G contains
a central subgroup C of order p.

Assume for a contradiction that G contained another subgroup C ′ of
order p. Then the subgroup of G generated by C and C ′ is Abelian and is
easily seen to be isomorphic to Z/p×Z/p, contradicting Corollary 1.6.9.

In the next section, we will classify all finite p-groups with a unique
subgroup of order p.
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1.6.4 Application: Classifying p-groups with a unique

subgroup of order p

In the following, we will classify all finite p-groups with a unique subgroup
of order p (Corollary 1.6.13), which is a result due to Burnside [?].

The proof consists of an induction over the order of the p-groups in ques-
tion. For the induction step we will need the classification of all p-groups
that contain a cyclic subgroup of index p:

Theorem 1.6.11 (Classification of p-groups with a cyclic subgroup of
index p). Let p ∈ N be a prime. Any p-group with a cyclic subgroup of
index p is isomorphic to one of the groups in the following list:

1. Let p ∈ N be a prime.
A. Z/pn for all n ∈ N>0.
B. Z/pn × Z/p for all n ∈ N>0.
C. Z/pn o Z/p for all n ∈ N>1, where the generator [1] of Z/p acts

on Z/pn by multiplication with 1 + pn−1. (Because (1 + pn−1)p

is congruent to 1 modulo pn this indeed defines a Z/p-action
on Z/pn.)

Note that no two of these groups are isomorphic.
2. For the prime 2 there are three more families of groups to consider:

A. Dihedral 2-groups. Let n ∈ N>2. The dihedral group D2n is the
semi-direct product group Z/2n o Z/2, where Z/2 acts on Z/2n
by multiplication by −1.

B. Generalised quaternion 2-groups. Let H be the quaternion alge-
bra and let n ∈ N>0. Then the generalised quaternion group Q2n

is the subgroup of the units of H generated by eπ·i/2
n

and j; al-
ternatively, we can describe Q2n by the presentation

Q2n = 〈x, y | y4 = 1, y2 = x2n

, y · x · y−1 = x−1〉.

Notice that the extension 0→ Z/2n+1 → Q2n → Z/2→ 0 (given
by the inclusion of the subgroup generated by x) does not split
and that the quotient acts by multiplication by −1 on the kernel.
For example, Q2 is the ordinary quaternion group (of order 8).

C. Z/2n o Z/2 for all n ∈ N>2, where Z/2 acts on Z/2n by multi-
plication by −1 + 2n−1.
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Again, no two of these groups are isomorphic, and none of these
groups is isomorphic to a group of type 1.

Clearly, all of these p-groups contain a cyclic subgroup of index p. Con-
versely, every such p-group is of this type:

The idea of the proof is to view the p-group in question as an extension
of Z/p by the cyclic subgroup of index p and to use the classification of
extensions with Abelian kernel. Therefore, as a preparation, we first have
to understand all actions of Z/p on a cyclic group Z/pn:

Lemma 1.6.12 (Classifying Z/p-actions on Z/pn). Let p ∈ N be a prime,
let n ∈ N>1, and let a ∈ Z with ap ≡ 1 mod pn.

1. If p is odd, then a ≡ 1 mod pn−1.
2. If p = 2, then a ≡ ±1 mod 2n−1.

Proof. Exercise (by Fermat’s little theorem, we can write a in the form
a = 1 + k · pd where d > 0 and where p does not divide k).

Proof (of Theorem 1.6.11). Let G be a p-group containing a cyclic sub-
group C of index p; then G is finite and C is a normal subgroup of G (by
a classical result in the theory of p-groups [26, Lemma I.6.7]). Hence, we
have an extension

0 −→ C −→ G −→ Z/p −→ 0

of groups; here, C ∼= Z/pn for some n ∈ N, and we may assume without
loss of generality that n > 0.

This extension induces an action of Z/p on C (via conjugation in G). If
this action is trivial, then G is Abelian; so, G is of type 1A or 1B, by the
classification of finitely generated Abelian groups.

In the following, we assume that the action of Z/p on C is non-trivial
(in particular, n > 1).

1. If p is odd, then by Lemma 1.6.12 the Z/p-action on C ∼= Z/pn is
given by multiplication by a number a ∈ Z with a ≡ 1 mod pn−1.
We show now that the only extensions inducing this action are the
ones isomorphic to the semi-direct product extension corresponding
to groups of type 1C: In view of the classification of group extensions
with Abelian kernel (Theorem 1.4.14), it suffices to show that one of
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the generators of Z/p acts by multiplication with 1 + pn−1 on C and
that H2(Z/p;C) = 0.
Because [a] ∈ Z/pn and [1+pn−1] are elements of order p in C = Z/pn,
we have{

[a0], . . . , [ap−1]
}

=
{
[1 + j · pn−1]

∣∣ j ∈ {0, . . . , p− 1}
}

=
{
[1 + pn−1]j

∣∣ j ∈ {0, . . . p− 1}
}
,

and thus we can assume without loss of generality that a = 1+ pn−1.
Recall that (Corollary 1.6.6)

H2(Z/p;C) = CZ/p/N · C,

where N :=
∑p−1

j=0[a
j] ∈ C is the norm element. Then for the invari-

ants we obtain

CZ/p = C [1+pn−1]

=
{
[x] ∈ Z/pn

∣∣ pn−1 · x ≡ 0 mod pn
}

= p · Z/pn;

on the other hand,

N =

p−1∑
j=0

[aj]

=

p−1∑
j=0

[1 + j · pn−1]

= [p] +
[p · (p− 1)

2
· pn−1

]
= [p],

and hence N · C = p · Z/pn. So

H2(Z/p;C) = CZ/p/N · C = 0.

2. Similar arguments as in the first part show that the only possible
2-groups with cyclic subgroup of index 2 are the ones in the list
above [4, proof of Theorem IV.4.1].



1.6 Group cohomology and group actions 79

Corollary 1.6.13 (Classification of p-groups with a unique subgroup of
order p). Let p ∈ N be a prime and let G be a finite p-group. If G contains
a unique group of order p, then G is cyclic or a generalised quaternion
group.

Proof. We prove the assertion by induction over the order of G. If |G| = p,
then G must be cyclic.

For the induction step we may assume that every proper subgroup of G is
cyclic or a generalised quaternion group. By the classification result Theo-
rem 1.6.11, it suffices to show that G contains a cyclic subgroup of index p:
the only groups in the list above with a unique subgroup of order p are the
groups of type 1A (cyclic groups) and the groups of type 2B (generalised
quaternion groups). As G is a p-group there is a normal subgroup H of G
of index p [26, Corollary I.6.6].

– If H is cyclic, then we obviously are in that situation.
– If H is a generalised quaternion group, then we argue as follows:

Looking at the conjugation action of G on the set of cyclic subgroups
of H of index 2 in H (a set with an odd number of elements; this
can be shown by inspecting the orders of elements in generalised
quaternion groups), we see that H contains a cyclic subgroup C of
index 2 that is normal in G. Using the conjugation action of G/C
on C, we obtain an epimorphism

G/C −→ (Z/|C|)× −→ (Z/4)× = {−1,+1};

let K/C be the kernel of this epimorphism. By construction, the
generator of K/C acts trivially on C; therefore, K is not generalised
quaternion and thus cyclic by the induction hypothesis. On the other
hand, K has index 2 in G, which finishes the proof.

1.6.5 Application: Groups acting on spheres III

Combining the obstruction in terms of periodic resolutions (Corollary 1.6.10)
with Burnside’s classification result (Corollary 1.6.13), we obtain a nice al-
gebraic obstruction for finite groups to be able to act freely on spheres:
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Corollary 1.6.14 (Sylow groups of finite groups acting on spheres). Let
G be a finite group acting freely on a sphere. Then every Sylow subgroup
of G is cyclic or generalised quaternion.

Proof. Let p ∈ N be a prime, and let S be a p-Sylow subgroup of G; then
S contains a unique subgroup of order p (Corollary 1.6.10).

Hence, Burnside’s classification result (Corollary 1.6.13) tells us that S
is a cyclic or a generalised quaternion group.

While all finite cyclic groups can act freely on S1 and all generalised
quaternion groups can act freely on S3 (the unit sphere in H), not every
finite group all of whose Sylow subgroups are cyclic or generalised quater-
nion can act freely on a sphere (Example 1.6.17). The latter result is a
consequence of Milnor’s study of elements of order 2 in groups acting freely
on spheres:

Theorem 1.6.15 (Milnor’s generalisation of the Borsuk-Ulam theorem [33,
Theorem 1]). Let n ∈ N>0 and let T : Sn −→ Sn be a continuous map
without fixed points that satisfies T ◦ T = idSn. Then for every continuous
map f : Sn −→ Sn of odd degree there exists an x ∈ Sn with

T ◦ f(x) = f ◦ T (x).

When T : Sn −→ Sn is the antipodal map, then the statement of this
theorem is the ordinary Borsuk-Ulam theorem.

Corollary 1.6.16 (Elements of order 2 in groups acting on spheres [33,
Remark on p. 624]). Any finite group acting freely on a sphere can contain
at most one element of order 2.

Proof. Let n ∈ N>0 and let G be a finite group acting freely on Sn. Every
homeomorphism of Sn has odd degree (namely 1 or −1); in particular, by
the theorem, every element in G of order 2 commutes with every homeo-
morphism of Sn. Therefore, all elements of G of order 2 are central.

Because the centre of G cannot contain a copy of Z/2 × Z/2 (Corol-
lary 1.6.9), we conclude that G can contain at most one element of order 2
(and this is central).
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Example 1.6.17 (Symmetric groups and actions on spheres [33, Corol-
lary 2]). In view of the previous corollary, the symmetric group Sn on n ∈ N
letters cannot act freely on a sphere if n ≥ 3 (because the transpositions
are elements of order 2).

Notice however that the group S3 does have periodic cohomology; in fact
all finite groups satisfying the Sylow subgroup condition of Corollary 1.6.14
have periodic cohomology (Corollary 1.9.30).

1.6.6 Group actions on highly connected spaces

Of course, in general a free action of a group on a highly connected space
will not give rise to a periodic projective resolution; however, we still obtain
a partial projective resolution. For simplicity, we consider only the case of
trivial coefficients.

Proposition 1.6.18 (Group (co)homology and partial resolutions). Let G
be a group and let

Pn
∂n // Pn−1

∂n−1 // . . . // P1
∂1 // P0

ε // Z // 0

be a partial projective ZG-resolution of the trivial ZG-module Z of length n.
Then Hk((P∗)G) ∼= Hk(G; Z) for all k ∈ {0, . . . , n−1} and there is an exact
sequence

0 −→ Hn+1(G; Z) −→
(
Hn(P∗)

)
G
−→ Hn

(
(P∗)G

)
−→ Hn(G; Z) −→ 0.

Proof. Exercise.

Corollary 1.6.19 (Partial resolutions via group actions). Let G be a
group, let n ∈ N and suppose that there is an (n−1)-connected free G-CW-
complex X. Then the cellular chain complex of X gives a partial projec-
tive ZG-resolution of Z of length n. Hence, Hk(X/G; Z) ∼= Hk(G; Z) for
all k ∈ {0, . . . , n− 1} and there is an exact sequence(

Hn(X; Z)
)
G
−→ Hn(X/G; Z) −→ Hn(G; Z) −→ 0.

Proof. Using the Hurewicz theorem, this follows from the above proposi-
tion.
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1.6.7 Application: The Hurewicz homomorphism in de-

gree 2

For example, using partial resolutions provided by free actions on highly
connected spaces, we can analyse the Hurewicz homomorphism; it turns
out that group homology is a measure for the surjectivity of the Hurewicz
homormophism (Proposition 1.6.21).

Definition 1.6.20 (Hurewicz homomorphism). Let X be a pointed con-
nected CW-complex, and let n ∈ N. Then the Hurewicz homomorphism in
degree n is the homomorphism

hXn : πn(X) = [Sn, X]• −→ Hn(X; Z)

[f ] 7−→ Hn(f ; Z)([Sn]Z),

where [Sn]Z ∈ Hn(S
n; Z) denotes the fundamental class of Sn.

Proposition 1.6.21 (Measuring surjectivity of the Hurewicz homomor-
phism). Let n ∈ N≥2, and let X be a connected, pointed CW-complex

whose universal covering X̃ is (n − 1)-connected (i.e., πj(X̃) = 0 for
all j ∈ {0, . . . , n− 1}). Then there is an exact sequence

πn(X)
hX

n // Hn(X; Z) // Hn

(
π1(X); Z

)
// 0

(The map Hn(X; Z) −→ Hn(π1(X); Z) in this sequence can be shown to be
induced by the classifying map X −→ Bπ1(X).)

Proof. Exercise (use Proposition 1.6.18 and the Hurewicz theorem).

Corollary 1.6.22 (Measuring surjectivity of the Hurewicz homomorphism
in degree 2). Let X be a pointed connected CW-complex. Then there is an
exact sequence

π2(X)
h2(X)
// H2(X; Z) // H2

(
π1(X); Z

)
// 0.

Example 1.6.23 (Free fundamental groups and Hurewicz homomorphism
in degree 2). If X is a pointed connected CW-complex with free fundamen-
tal group, then the Hurewicz homomorphism hX2 : π2(X) −→ H2(X; Z) in
degree 2 is surjective (Example 1.3.13).
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1.6.8 Preview: Group actions and spectral sequences

If G is a discrete group and A is a ZG-module, then

H∗(BG;A) ∼= H∗(G;A)

by the topological description of group homology. This identity can be
read in two ways:

– Group homology is a means to compute homology of certain topo-
logical spaces.

– Certain topological spaces compute group homology.
Both of these interpretations allow for generalisations in terms of spec-

tral sequences [4, Chapter VII] (spectral sequences will be the topic of
Section 1.10):

Theorem 1.6.24 (Homology of free quotients via group homology). Let
G be a discrete group, let X be a free G-CW-complex, and let A be a
ZG-module. Then there is a converging spectral sequence of the follow-
ing type:

E2
pq = Hp

(
G;Hq(X;A)

)
=⇒ Hp+q(X/G;A).

Theorem 1.6.25 (Group homology via actions on acyclic spaces). Let
G be a discrete group, let X be a connected (not necessarily free) G-CW-
complex, and let A be a ZG-module. If X is acyclic (i.e., X has the integral
homology of a point), then there is a converging spectral sequence of the
following type:

E1
pq =

⊕
σ∈Σp

Hq(Gσ;Aσ) =⇒ Hp+q(G;A).

Here, we use the following notation:
– For p ∈ N we choose a set Σp of representatives of the G-orbits of
p-cells of X.

– For p ∈ N and σ ∈ Σp, the group Gσ is the subgroup of G consisting
of all elements mapping the cell σ to itself.

– For p ∈ N and σ ∈ Σp, the ZGσ-module A is obtained from the
ZG-module A by twisting the action according to the orientation char-
acter Gσ −→ Z/2 of the Gσ-action on the cell σ.
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1.7

Cohomology of subgroups

In this section, we will study the relation between the (co)homology of
subgroups and the (co)homology of ambient groups:

– How can we compute (co)homology of a subgroup in terms of the
(co)homology of the ambient group? More precisely, let H be a
subgroup of a discrete group G and let B be a ZH-module. How can
we express H∗(H;B) in terms of H∗(G; · )?

– How can we assemble (co)homology of a group out of the (co)homology
of its proper subgroups? More precisely, let G be a group and let A
be a ZG-module. How can we find a family S of proper subgroups
of G that is as small as possible such that we can recover H∗(G;A)
from (H∗(H; · ))H∈S?

The first question is answered by Shapiro’s lemma (Section 1.7.2), the
second question is addressed by the transfer technique (Section 1.7.3).
In particular, we will derive the decomposition of (co)homology of finite
groups into a direct sum of the (co)homology of its Sylow subgroups (Sec-
tion 1.7.5). We start with some algebraic preparations in Section 1.7.1.

1.7.1 Induction, coinduction, and restriction

How can we compute (co)homology of a subgroup in terms of the (co)ho-
mology of the ambient group? As first step we need a way to turn modules
over the subgroup into modules over the ambient group:

Definition 1.7.1 (Induction, coinduction). Let G be a group and let H
be a subgroup.

– Induction. We write

IndGH := ZG⊗ZH · : ZH-Mod −→ ZG-Mod

85
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for the induction functor. Here, for a ZH-module B, the ZG-module
structure on IndGH(B) = ZG⊗ZH B is given by

G× ZG⊗ZH B −→ ZG⊗ZH B

(g, g′ ⊗ b) 7−→ g · g′ ⊗ b;

Notice that we use · ⊗ZH · instead of · ⊗H · .
– Coinduction. We write

CoindGH := HomZH(ZG, · ) : ZH-Mod −→ ZG-Mod

for the coinduction functor. For a ZH-module B, the ZG-module
structure on CoindGH(B) = HomZH(ZG,B) is given by

G× HomZH(ZG,B) −→ HomZH(ZG,B)

(g, f) 7−→
(
g′ 7→ f(g′ · g)

)
Example 1.7.2 (Induction modules). Let H be a subgroup of a group G.

– Induction of the group ring ZH. Of course,

IndGH(ZH) = ZG⊗ZH ZH ∼= ZG.

Notice however that CoindGH(ZH) 6∼= ZG in general.
– Induction of the trivial module Z. Then we have an isomorphism

IndGH(Z) = ZG⊗ZH Z ∼= Z[G/H]

of ZG-modules; here, the G-action on Z[G/H] :=
⊕

G/H Z is the one

induced by the left translation action of G on the coset space G/H.

Proposition 1.7.3 ((Co)induction for finite index subgroups). Let G be
a group and let H be a subgroup of finite index. Then there is a natural
isomorphism

IndGH(B) ∼= CoindGH(B)

for all ZH-modules B.

Proof. A straightforward computation shows that the two homomorphisms

ϕ : IndGH(B) = ZG⊗ZH B −→ HomZH(ZG,B) = CoindGH(B)

g ⊗ b 7−→
(
g′ 7→ χH(g′ · g) · (g′ · g) · b

)
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and

ψ : CoindGH = HomZH(ZG,B) −→ ZG⊗ZH B = IndGH(B)

f 7−→
∑

gH∈G/H

g ⊗ f(g−1)

are well-defined and ZG-linear. Here, χH : G −→ {0, 1} denotes the char-
acteristic function of H in G; notice that the term following χH(g′ · g) only
makes sense if g′ · g ∈ H.

Moreover, ϕ and ψ are mutually inverse: It is clear that ψ◦ϕ = idIndG
H(B).

Conversely, let f ∈ CoindGH(B). Then

ϕ ◦ ψ(f) = ϕ

( ∑
gH∈G/H

g ⊗ f(g−1)

)
=

∑
gH∈G/H

(
g′ 7→ χH(g′ · g) · (g′ · g) · f(g−1)

)
=

∑
gH∈G/H

(
g′ 7→ χH(g′ · g) · f(g′ · g · g−1)

)
=

∑
gH∈G/H

(
g′ 7→ χHg−1(g′) · f(g′)

)
= f,

and thus ϕ ◦ ψ = idCoindG
H(B).

Conversely, we can just forget about parts of the action of the ambient
group, thereby turning modules over the ambient group into modules over
subgroups:

Definition 1.7.4 (Restriction). Let G be a group, let H be a subgroup
of G, and let i : H −→ G be the inclusion. Then we write

ResGH := i∗ · : ZG-Mod −→ ZH-Mod

for the restriction functor.

Lemma 1.7.5 (Restrictions of projectives). Restrictions of projectives are
projective. More precisely: Let G be a group, let H be a subgroup, and let
P be a projective ZG-module. Then ResGH P is a projective ZH-module.



88 1.7 Cohomology of subgroups

Proof. As a module is projective if and only if it is a direct summand in
a free module and as the functor ResGH is compatible with direct sums, it
suffices to show that ResGH ZG is a free ZH-module. Indeed, as ZH-module,
ZG is nothing but a direct sum of |G/H| copies of the ZH-module ZH; in
particular, ZG is a free ZH-module.

Corollary 1.7.6 (Restrictions of resolutions). Let G be a group, let H be
a subgroup, and let P∗ � ε be a projective ZG-resolution of a ZG-module A.
Then ResGH P∗ � ε is a projective ZH-resolution of the ZH-module ResGH A.

Proposition 1.7.7 (Mixing induction and restriction). Let G be a group,
let H be a discrete subgroup, and let A be a ZG-module. Then there is a
natural isomorphism

IndGH ResGH A
∼= Z[G/H]⊗Z A

of ZG-modules, where G acts diagonally on Z[G/H]⊗Z A.

Proof. A straightforward computation shows that

IndGH ResGH A = ZG⊗ZH A −→ Z[G/H]⊗Z A

g ⊗ a 7−→ gH ⊗ g · a
g ⊗ g−1 · a←− [ gH ⊗ a

are well-defined ZG-homomorphisms that are mutually inverse.

The converse composition ResGH IndGH can be described using double
cosets [4, Proposition III.5.6].

1.7.2 Shapiro’s lemma

Shapiro’s lemma shows that (co)homology of a subgroup can indeed be
computed in terms of (co)homology of the ambient group with suitably
(co)induced coefficients:
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Proposition 1.7.8 (Shapiro’s lemma). Let G be a discrete group, let H
be a subgroup, and let B be a ZH-module. We write i : H −→ G for the
inclusion. Moreover, we define ZH-homomorphisms I and C by

I : B −→ ZG⊗ZH B = IndGH(B)

b 7−→ 1⊗ b,

C : CoindGH(B) = HomZH(ZG,B) −→ B

f 7−→ f(1);

notice that I is split injective while C is split surjective (as ZH-homo-
morphism).

1. Then (i, I) : (H,B) −→ (G, IndGH(B)) is a morphism in GrpMod and
(i, C) : (H,B) −→ (G,CoindGH(B)) is a morphism in GrpMod–.

2. The induced homomorphisms

H∗(i; I) : H∗(H;B) −→ H∗
(
G; IndGH(B)

)
,

H∗(i;C) : H∗(G; CoindGH(B)
)
−→ H∗(H;B)

are natural isomorphisms.

The heart of the proof of Shapiro’s lemma is the algebraic fact that for
all ZG-modules A and all ZH-modules B there are natural isomorphisms
(of Abelian groups)

A⊗G ZG⊗ZH B ∼= A⊗ZH B,

HomG

(
A,HomZH(ZG,B)

) ∼= HomH(A,B)

and that projective ZG-resolutions can be viewed as projective ZH-reso-
lutions.

Proof (of Shapiro’s lemma). The first part follows directly from the defi-
nition. For the second part we argue as follows:

We consider the following diagram:

H∗(H;B)

H∗(i;I)
��

H∗
(
C∗(H)⊗H B

)
H∗(C∗(i)⊗HI)

��

H∗
(
C∗(H)⊗H B

)
H∗(C∗(i)⊗H idB)
��

H∗
(
G; IndGH(B)

)
H∗

(
C∗(G)⊗G IndGH(B)

)
H∗

(
ResGH C∗(G)⊗H B

)
H∗(ϕ∗)
oo
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The left square is commutative by the description of group homology in
terms of the bar resolution.

What about the right square? The map ϕ∗ is the chain map given by

ϕn : ResGH Cn(G)⊗H B −→ Cn(G)⊗G IndGH(B)

c⊗ b 7−→ c⊗ 1⊗ b,
which is an isomorphism (see the remark preceding the proof). Therefore,
H∗(ϕ∗) is also an isomorphism. It follows directly from the definition of I
and ϕ∗ that the right square is commutative as well.

In order to prove the Shapiro lemma for group homology, it therefore
remains to show that als the right vertical arrow H∗(C∗(i) ⊗H idB) is an
isomorphism; thus it suffices to show that

C∗(i) : C∗(H) −→ ResGH C∗(G)

is a chain homotopy equivalence of ZH-chain complexes.
By Corollary 1.7.6, the complex ResGH C∗(G) (together with the canoni-

cal augmentation C0(G) −→ Z) is a projective ZH-resolution of Z. As the
ZH-chain map C∗(i) induces an isomorphism on the resolved module Z
(namely the identity homomorphism), the fundamental lemma of homo-
logical algebra implies that C∗(i) is a ZH-chain homotopy equivalence.

Similar arguments prove the statement about cohomology.

Corollary 1.7.9. Let H be a subgroup of a group G. Then

H∗(H; Z) ∼= H∗(G; Z[G/H])

by Shapiro’s lemma and Example 1.7.2.

Corollary 1.7.10. Let G be a discrete group satisfying H∗(G;A) ∼= H∗(1;A)
for all ZG-modules A. Then G is the trivial group.

Proof. Assume for a contradiction that G is non-trivial. Then G con-
tains a non-trivial cyclic group. Using Shapiro’s lemma, the computation
of homology of cyclic groups (or the computation of H1( · ; Z)), and the
assumption on G, we obtain

0 6∼= C ∼= H1(C; Z)

∼= H1

(
G; IndGC(Z)

)
∼= H1

(
1; IndGC(Z)

)
= 0,
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which is absurd. Hence G must be trivial.

Corollary 1.7.11. Let G be a group and let H be a subgroup of finite
index. Then there is a canonical isomorphism

H∗(H; ZH) ∼= H∗(G; CoindGH ZH) ∼= H∗(G; IndGH ZH)
∼= H∗(G; ZG)

by Proposition 1.7.3 and Shapiro’s lemma.

This corollary is interesting in view of the topological/geometric inter-
pretations of cohomology of a group with group ring coefficients via ends
of groups [49, 17].

1.7.3 The transfer

How can we assemble (co)homology of a group out of the (co)homology of
its proper subgroups? The answer to this question lies in the study of the
relation between (co)homology of a group and (co)homology of its finite
index subgroups.

Definition 1.7.12 (Restriction and corestriction). Let G be a group, let
H be a subgroup, and let i : H −→ G be the inclusion. Furthermore, let
A be a ZG-module.

– The map

resGH := H∗(i; idA) : H∗(G;A) −→ H∗(H; ResGH A)

is called restriction.
– The map

corGH := H∗(i; idA) : H∗(H; ResGH A) −→ H∗(G;A)

is called corestriction.

If H is a finite index subgroup of G, then there are non-trivial homo-
morphisms going in the other direction, the so-called transfer maps; in
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H∗(H; ResGH A) oo
∼= // H∗(G; IndGH ResGH A)

H∗(G;A)
H∗(idG;Φ)

//

trG
H

OO�
�
�

H∗(G; CoindGH ResGH A)
��

∼=

OO
H∗(H; ResGH A) oo

∼= //

trG
H

��
�
�
�

H∗(G; CoindGH ResGH A)
OO

∼=
��

H∗(G;A) H∗(G; IndGH ResGH A)
H∗(idG;Ψ)
oo

Figure 1.10: Transfer, via Shapiro’s lemma

the following, we will construct these maps. In order to answer the ques-
tion above we will investigate the relation between the transfer and the
(co)restriction maps; moreover, we will have to consider the “action” of
the ambient group G on the (co)homology of its subgroups (Section 1.7.4).

We start with the description of the transfer via Shapiro’s lemma:

Definition 1.7.13 (Transfer map, via Shapiro’s lemma). LetG be a group,
letH be a subgroup of finite index, and let A be a ZG-module. The transfer
maps

trGH = resGH : H∗(G;A) −→ H∗(H; ResGH A)

trGH = corGH : H∗(H; ResGH A) −→ H∗(G;A)

are defined by the commutative diagrams in Figure 1.10:
Here, in the homological transfer, the lower horizontal arrow is the map

induced by the (injective) ZG-homomorphism

Φ: A −→ HomZH(ZG,A) = CoindGH ResGH A

a 7−→ (g 7→ g · a),

the right vertical isomorphism is the isomorphism induced by the isomor-
phism CoindGH ResGH A

∼= IndGH ResGH A from Proposition 1.7.3, and the up-
per horizontal arrow is the isomorphism from Shapiro’s lemma (Proposi-
tion 1.7.8).

In the cohomological transfer, the lower horizontal arrow is the map
induced by the (surjective) ZG-homomorphism

Ψ: IndGH ResGH A = ZG⊗ZH A −→ A

g ⊗ a 7−→ g · a,
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the right vertical arrow is the isomorphism induced by the corresponding
isomorphism on the coefficient modules (Proposition 1.7.3), and the upper
horizontal arrow is the isomorphism from Shapiro’s lemma.

The slight abuse of notation for resGH and corGH might be confusing in
the beginning; however, this notation will pay off later, because it allows
to treat homology and cohomology uniformly.

Remark 1.7.14 (The nature of transfer).
– As the isomorphisms of Proposition 1.7.3 and of Shapiro’s lemma are

natural in the module variable, also the transfer maps are natural in
the module variable.

– One can show that the transfer map itself in general is not induced
by a morphism in GrpMod or GrpMod– respectively. (Exercise).

While the above definition is a concise description of the transfer it is not
very illuminating. In the following, we derive a more explicit description
on the level of (co)chain complexes and give a topological interpretation:

Remark 1.7.15 (Transfer map, explicit description). Let H be a finite
index subgroup of a group G and let A be a ZG-module. Moreover, let
P∗ � ε be a projective ZG-resolution of Z; in particular, P∗ � ε can also be
viewed as a projective ZH-resolution of Z (Corollary 1.7.6). We now give
an explicit description of the transfer maps

trGH : H∗(G;A) = H∗(P∗ ⊗G A) −→ H∗(P∗ ⊗H A) = H∗(H; ResGH A)

trGH : H∗(H; ResGH A) = H∗(HomH(P∗, A)
)
−→ H∗(HomG(P∗, A)

)
= H∗(G;A)

in terms of the resolution P∗ � ε: We start with the homological transfer.
Recalling the proof of Proposition 1.7.3 and Shapiro’s lemma, we see that
the diagram in Figure 1.11 is commutative, where Φ is as in the definition
of the transfer and where À and Á are the following chain maps:

À : P∗ ⊗G CoindGH ResGH A −→ P∗ ⊗G IndGH ResGH A

p⊗ f 7−→
∑

gH∈G/H

g ⊗ f(g−1)

Á : P∗ ⊗G IndGH ResGH A −→ P∗ ⊗H A
p⊗ g ⊗ a 7−→ g−1p⊗ a.
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H∗(P∗ ⊗H A)

QQQQQQQQQQQQQ

QQQQQQQQQQQQQ
H∗(P∗ ⊗G IndGH ResGH A)

H∗(Á)
oo

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

H∗(H; ResGH A) oo ∼=

Shapiro
// H∗(G; IndGH ResGH A)

H∗(G;A)
H∗(idG;Φ)

//

trG
H

OO

H∗(G; CoindGH ResGH A)
��

∼= [G:H]<∞

OO

H∗(P∗ ⊗G A)
H∗(idP∗ ⊗GΦ)

//

OO�
�
�
�
�
�
�
�
�
�
�
�

mmmmmmmmmmmmmm

mmmmmmmmmmmmmm
H∗(P∗ ⊗G CoindGH ResGH A)

H∗(À)

OO

VVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVV

Figure 1.11: Transfer, via resolutions of the ambient group

Therefore, the dashed left vertical arrow (which corresponds to the homo-
logical transfer) is induced from the chain map

P∗ ⊗G A −→ P∗ ⊗H A

p⊗ a 7−→
∑

gH∈G/H

g−1p⊗ g−1a =
∑

Hg∈H\G

gp⊗ ga.

Similarly, one shows that the cohomological transfer is induced by the
cochain map

HomH(P∗, A) −→ HomG(P∗, A)

f −→
(
p 7→

∑
gH∈G/H

f(g · p)
)
.

In other words: the transfer map can be viewed as some sort of averaging
process. In the context of bounded cohomology (Section 2.6), we will
extensively use a similar averaging process (over amenable objects).

Remark 1.7.16 (Transfer map, topologically). Let G be a group and let
H be a subgroup of G of finite index. Then the transfer

trGH : H∗(G; Z) −→ H∗(H; Z)
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can be described topologically as follows: Let XG be a model of the classi-
fying space of G, and let πH : XH −→ XG be the covering associated with
the subgroupH of G = π1(XG); by covering theory, we have a commutative
diagram

X̃G = X̃H

fπH

��fπG

��

XH

πH

��

XG

of covering maps, and XH is a model of BH.
Taking C∗(X̃G; Z) as projective ZG-resolution (Example 1.5.23), we ob-

tain (Remark 1.7.15) that the homological transfer is induced by the chain
map

À : C∗(X̃G; Z)⊗G Z −→ C∗(X̃G; Z)⊗H Z

σ ⊗ 1 7−→
∑

Hg∈H\G

gσ ⊗ 1.

We now translate this chain map into a chain map between the chain
complexes of XG and XH : To this end we look for a nice description of the
right vertical arrow in the commutative diagram

C∗(X̃G; Z)⊗H Z C∗(XH ; Z);

C∗(X̃G; Z)⊗G Z

À

OO

C∗(XG; Z)

Á

OO�
�
�

here, the upper horizontal identification maps σ⊗1 to π̃H◦σ. For a singular
simplex σ ∈ map(∆k, XG) we denote by π−1

H (σ) the set of all πH-lifts of σ
to XH (see Figure 1.12). Then covering theory shows that the chain map Á

is given by

C∗(XG; Z) −→ C∗(XH ; Z)

σ 7−→
∑

eσ∈π−1
H (σ)

σ.
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XG σ

XH π−1
H (σ)

πH

Figure 1.12: Transfer, topologically: lifting simplices

Similarly, the topological transfer can also be described using cellular
(co)homology.

Remark 1.7.17 (Transfer and homological ∂-functors). Using (co)efface-
ability, the transfer maps in homology and cohomology can also be de-
scribed in terms of homological ∂-functors and cohomological δ-functors
respectively [4, Section III.9].

One of the key features of the transfer is its tight connection with the
index of the subgroup in question; for example, this property of the transfer
allows to deduce many torsion results:

Proposition 1.7.18 (Transfer and index). Let G be a group, let H ⊂ G be
a subgroup of finite index, and let A be a ZG-module. For all α ∈ H∗(G;A)
and all α ∈ H∗(G;A) the following relation holds:

corGH ◦ resGH(α) = [G : H] · α

Notice that in the homological case, resGH denotes the transfer and that
in the cohomological case, corGH denotes the transfer; this slight abuse of
notation allows us to state properties of the transfer in a uniform way.

Proof. We prove only the statement in homology; the cohomological case
is similar. For the proof we use the description of the transfer given in
Remark 1.7.15:
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Let P∗ � ε be a projective ZG-resolution of Z. Then the composition

H∗(G;A)
trG

H=resG
H// H∗(H; ResGH A)

corG
H // H∗(G;A)

is modeled on the level of chain complexes by the composition of the two
chain maps

P∗ ⊗G A −→ P∗ ⊗H A

p⊗ a 7−→
∑

Hg∈H\G

gp⊗ ga

P∗ ⊗H A −→ P∗ ⊗G A
p⊗ a 7−→ p⊗ a;

this composition is nothing but multiplication by [G : H], because by
definition of ⊗G we have

gp⊗ ga = p⊗ a

in P∗ ⊗G A for all p ∈ P∗, all a ∈ A, and all g ∈ G.

The converse composition of (co)restriction maps will be studied in Sec-
tion 1.7.4.

Corollary 1.7.19 (Torsion in group (co)homology). Let G be a group, let
H be a subgroup of finite index, let A be a ZG-module, and let k ∈ N.

1. If Hk(H; ResGH A) = 0, then [G : H] · Hk(G;A) = 0. Similarly, if
Hk(H; ResGH A) = 0, then [G : H] ·Hk(G;A) = 0.

2. In particular: If [G : H] is invertible in A and Hk(H; ResGH A) = 0,
then Hk(G;A) = 0. Similarly, if [G : H] is invertible in A and
if Hk(H; ResGH A) = 0, then Hk(G;A) = 0.

Proof. This immediately follows from the properties of the transfer estab-
lished in Proposition 1.7.18.

Example 1.7.20 (Infinite groups whose higher (co)homology is torsion).
1. The group SL(2,Z) ∼= Z/4∗Z/2 Z/6 contains a free group of index 12.

Because there are one-dimensional models of classifying spaces of free
groups, it follows that

12 ·Hk

(
SL(2,Z);A

)
= 0 and 12 ·Hk

(
SL(2,Z);A

)
= 0

for all k ∈ N>1 and all coefficient modules A.
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2. The infinite dihedral group D∞ contains an infinite cyclic group of
index 2. Therefore,

2 ·Hk(D∞;A) = 0 and 2 ·Hk(D∞;A) = 0

for all k ∈ N>1 and all coefficient modules A.

Corollary 1.7.21 ((Co)homology of finite groups is torsion). Let G be a
finite group.

1. If A is a ZG-module and k ∈ N>0, then

|G| ·Hk(G;A) = 0 and |G| ·Hk(G;A) = 0.

2. In particular,

H∗(G; Q) = H∗(1; Q) and H∗(G; Q) = H∗(1; Q).

Proof. This corollary follows from the previous corollary applied to the
trivial group as subgroup.

Hence, if we want to compute the (co)homology of a finite group G, we
only need to compute the p-primary parts for all primes p dividing |G|.
These p-primary parts in turn are related to the (co)homology of p-Sylow
subgroups (Section 1.7.5); in order to describe the precise relation, we need
to study the “action” of G on the (co)homology of its Sylow subgroups
(Section 1.7.4).

1.7.4 Action on (co)homology of subgroups

When trying to assemble (co)homology of the ambient group out of the
(co)homology of certain subgroups, it is natural to take the “action” of the
ambient group on these (co)homology groups into account.

Definition 1.7.22 (Action of the ambient group on (co)homology of sub-
groups). Let G be a group, letH be a subgroup, and let A be a ZG-module.
Moreover, let g ∈ G.
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– We write

c(g) := (h 7→ g · h · g−1, a 7→ g · a)
: (H,ResGH A) −→ (gHg−1,ResGgHg−1 A)

for the isomorphism in GrpMod given by conjugation with g. Then
for α ∈ H∗(H;A) we set

g • α := H∗
(
c(g)

)
(α) ∈ H∗(gHg

−1;A).

– Similarly, we write

c(g)− := (g · h · g−1 7→ h, a 7→ g · a)
: (gHg−1,ResGgHg−1 A) −→ (H,ResGH A)

for the isomorphism in GrpMod– given by conjugation with g. For
α ∈ H∗(H;A) we set

g • α := H∗(c(g)−)
(α) ∈ H∗(gHg−1; ResGgHg−1 A).

Notice that in the definition above

(g′ · g) • α = g′ • (g • α)

holds for all g, g′ ∈ G and all α in the (co)homology of H with coefficients
in ResGH A; clearly, if H is not normal in G, this is not an honest action on
(co)homology of H with coefficients in ResGH A, but close to such an action.

Proposition 1.7.23 (Action of the ambient group, via resolutions). Let
G be a group, let H be a subgroup, and let A be a ZG-module. If P∗ � ε is
a projective ZG-resolution of Z, then the action of an element g ∈ G can
be described by the commutative diagram

H∗(H; ResGH A)

g• ·
��

H∗(P∗ ⊗H ResGH A)

��

H∗(gHg
−1; ResGgHg−1 A) H∗(P∗ ⊗gHg−1 ResGgHg−1 A),
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where the right vertical arrow is the map induced by the chain map

P∗ ⊗H ResGH A −→ P∗ ⊗gHg−1 ResGgHg−1 A

p⊗ a 7−→ gp⊗ ga.

Similarly, the action of g on cohomology is induced by the cochain map

HomH(P∗,ResGH A) −→ HomgHg−1(P∗,ResGgHg−1 A)

f 7−→
(
a 7→ g · f(g−1 · a)

)
.

Proof. We give only the proof for homology; the cohomological case is sim-
ilar. By Corollary 1.7.6, we can view P∗ �ε also as projective ZH-resolution
and as projective ZgHg−1-resolution of Z. The description of group homol-
ogy in terms of projective resolutions of the trivial module Z shows that
the homomorphism g • · is induced from the chain map f∗⊗H (a 7→ g · a),
where f∗ : ResGH P∗ −→ ResGgHg−1 P∗ is any chain map extending the ho-
momorphism idZ : Z −→ Z on the resolved module and that is compatible
with the ZH-action on the domain and the ZgHg−1-action on the target
with respect to the group homomorphism

H −→ gHg−1

h 7−→ g · h · g−1;

such a chain map is for instance given by

f∗ : ResGH P∗ −→ ResGgHg−1 P∗

p 7−→ g · p.

Therefore, the claim follows.

Proposition 1.7.24 (The action of subgroups on their own (co)homology).
Let G be a group, let H be a subgroup, and let A be a ZG-module.

1. For all h ∈ H and all α ∈ H∗(H; ResGH A) and all α ∈ H∗(H; ResGH A),
we have

h • α = α.

2. In particular, if H is a normal subgroup of G, then the conjugation
action of G on (H,A) induces an action (in the ordinary sense) of
the quotient group G/H on H∗(H; ResGH A) and on H∗(H; ResGH A).
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Proof. The second part directly follows from the first part. For the first
part we use the description of the “action” in terms of projective resolutions
(Proposition 1.7.23): Let P∗ �ε be a projective ZG-resolution of Z; because
hHh−1 = H the diagram

H∗(H; ResGH A)

h• ·
��

H∗(P∗ ⊗H ResGH A)

H∗(f∗⊗H(a 7→h·a))
��

H∗(H; ResGH A) H∗(P∗ ⊗H ResGH A)

is commutative, where f∗ : ResGH P∗ −→ ResGH P∗ is the chain map

f∗ : ResGH P∗ −→ ResGH P∗

p 7−→ h · p.

Because the chain map f∗⊗H (a 7→ h ·a) maps p⊗a ∈ ResGH P∗⊗H ResGH A
to

hp⊗ ha = p⊗ a ∈ ResGH P∗ ⊗H ResGH A,

the right vertical arrow is the identity, i.e., the element h acts trivially
on H∗(H; ResGH A).

Similarly, the statement about cohomology can be obtained.

The “action” of the ambient group provides a convenient means to de-
scribe the behaviour of the transfer:

Definition 1.7.25 (Invariant classes in (co)homology). Let G be a group,
let H be a subgroup of finite index, and let A be a ZG-module. A class
α ∈ H∗(H; ResGH A) (or in H∗(H; ResGH A)) is G-invariant, if

resgHg
−1

H∩gHg−1 g • α = resHH∩gHg−1 α

holds for all g ∈ G.

Proposition 1.7.26 (Transfer and the action of the ambient group). Let
G be a group, let H be a subgroup of finite index, and let A be a ZG-module.

1. Then

resGH ◦ corGH α =
∑

HgH∈H\G/H

corHH∩gHg−1 ◦ resgHg
−1

H∩gHg−1 g • α
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for all α ∈ H∗(H; ResGH A) and all α ∈ H∗(H; ResGH A) respectively.
In particular: If H is normal in G, then

resGH ◦ corGH α =
∑

gH∈G/H

g • α

for all α ∈ H∗(H; ResGH A) and all α ∈ H∗(H; ResGH A) respectively.
2. The restriction maps are G-invariant in the following sense: For all

classes α ∈ H∗(G;A) and all α ∈ H∗(G;A) we have

g • resGH α = resGgHg−1 α

for all g ∈ G. In particular, all elements in the image of resGH are
G-invariant in the sense of Definition 1.7.25.

Proof. We prove only the statement about homology; the proof of the
statement about cohomology is analogous.

Again, we use the description of the “action” of G on homology and of
the transfer in terms of projective resolutions (Remark 1.7.15 and Proposi-
tion 1.7.23); let P∗ � ε be a projective ZG-resolution of Z. In the following,
we also denote the chain map

P∗ ⊗H ResGH A −→ P∗ ⊗gHg−1 ResGgHg−1 A

p⊗ a 7−→ gp⊗ ga.

by g • · as well, and analogously, we also use the notation res and cor
for the corresponding chain level descriptions; moreover, we decorate all
tensor products explicitly with the group in question to keep track of the
different actions, and we use the abbreviation Hg := H ∩ gHg−1.

For the first part, we start by computing the right hand side on the chain
level: Notice that the (co)restriction maps on the right hand side indeed
are well-defined as the group/subgroup pairs occurring in this expression
all are of finite index. For all p⊗H a ∈ P ⊗H A the chain level expression
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for the right hand side equals

∑
HgH∈H\G/H

corHgHg−1 ◦ resgHg
−1

Hg
g • (p⊗H a)

=
∑

HgH∈H\G/H

corHgHg−1 ◦ resgHg
−1

Hg
(gp⊗gHg−1 ga)

=
∑

HgH∈H\G/H

corHgHg−1

∑
Hgghg−1∈Hg\gHg−1

ghg−1 · gp⊗Hg ghg
−1 · ga

=
∑

HgH∈H\G/H

corHgHg−1

∑
Hgghg−1∈Hg\gHg−1

ghp⊗Hg gha

=
∑

HgH∈H\G/H

∑
Hgghg−1∈Hg\gHg−1

ghp⊗H gha

=
∑

Hg∈H\G

gp⊗H ga;

by the description of the transfer in terms of projective resolution (Re-
mark 1.7.15) we know that this term is nothing but the chain level expres-
sion for the left hand side. This proves the first part.

We now come to the second part: Again, we evaluate the corresponding
expressions on the chain level. Notice that in the homology case, resGH is
the transfer map. For all p⊗G a ∈ P∗ ⊗G A we have

g • resGH(p⊗G a) = g •
∑

Hg′∈H\G

g′p⊗H g′a

=
∑

Hg′∈H\G

gg′p⊗gHg−1 gg′a

=
∑

gHg−1g′∈gHg−1\G

g′p⊗gHg−1 g′a

= resGgHg−1(p⊗G a).

In particular, the corresponding relation in homology holds as well.

Furthermore, for any α ∈ H∗(G;A) we obtain that β := resGH α is G-in-
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variant in the sense of Definition 1.7.25 because

resgHg
−1

H∩gHg−1 g • β = resgHg
−1

H∩gHg−1(g • resGH α)

= resgHg
−1

H∩gHg−1 ◦ resGgHg−1 α

= resGH∩gHg−1 α

= resHH∩gHg−1 ◦ resGH α

= resHH∩gHg−1 β;

in the third and in the fifth step we used “associativity” of res, which is
easily established by looking at the description via projective resolutions.
(Exercise).

1.7.5 Decomposing group (co)homology into primary

parts

Using the transfer and the “action” of a finite group on the (co)homology of
its Sylow subgroups, we obtain a nice decomposition of the (co)homology
of finite groups into pieces related to the Sylow subgroups. We start by
decomposing group (co)homology into its primary parts:

Definition 1.7.27 (Primary parts). Let A be an Abelian group, and let
p ∈ N be a prime. The p-primary part of A is the subgroup

A[p] := {a ∈ A | ∃n∈N pn · a = 0}.

Remark 1.7.28 (Decomposing torsion groups into primary parts). Let A
be an Abelian group that consists only of torsion elements. Then

A =
⊕

p∈N prime

A[p]

because: As all elements of A are torsion, all cyclic subgroups of A are
torsion groups. Using the classification of finite Abelian groups, we see
that any such cyclic subgroup is generated by elements of the primary
parts of A. Therefore, A =

∑
p∈N primeA[p]. A straightforward computation

shows that this sum is direct.
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Proposition 1.7.29 (Primary decomposition of group (co)homology I).
Let G be a finite group, let A be a ZG-module, and let k ∈ N>0. Then

Hk(G;A) =
⊕

p∈P (|G|)

Hk(G;A)[p],

Hk(G;A) =
⊕

p∈P (|G|)

Hk(G;A)[p],

where P (|G|) denotes the set of all positive prime numbers dividing |G|.

Proof. By the remark above, any Abelian group that consists only of tor-
sion elements is the direct sum of its primary parts. Now the claim follows
with help of Corollary 1.7.21.

Proposition 1.7.30 (Primary decomposition of group (co)homology II).
Let G be a finite group. For each prime p ∈ P (|G|) let Gp be a p-Sylow
subgroup of G. Moreover, let k ∈ N>0.

1. For p ∈ P (|G|), the map resGGp
: Hk(G;A)[p] −→ Hk(Gp; ResGGp

A) is
injective and the image consists exactly of the G-invariant elements
of Hk(Gp; ResGGp

A) in the sense of Definition 1.7.25. Literally the
same statement also holds in cohomology.

2. In particular: If p ∈ P (|G|), and if Gp is normal in G, then

Hk(G;A)[p]
∼= Hk(Gp; ResGGp

A)G/Gp ,

Hk(G;A)[p]
∼= Hk(Gp; ResGGp

A)G/Gp .

3. Putting it all together, we obtain the primary decompositions

Hk(G;A) ∼=
⊕

p∈P (|G|)

Hk(Gp; ResGGp
A)G,

Hk(G;A) ∼=
⊕

p∈P (|G|)

Hk(Gp; ResGGp
A)G

(here, we used · G to denote the G-invariants in the sense of Defini-
tion 1.7.25).

Proof. We prove only the homological statements; the results in cohomol-
ogy follow from similar arguments.
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The second part follows directly from the first part, and the third part
can be deduced from the first part with help of Proposition 1.7.29. There-
fore, it suffices to prove the first part:

The map resGGp
is injective on H∗(G;A)[p]: As Gp is a p-Sylow subgroup

of G, the index [G : Gp] is not divisible by p and hence invertible in the
p-primary part H∗(G;A)[p]. Because

corGGp
◦ resGGp

= [G : Gp]

it follows that resGGp
indeed is injective on H∗(G;A)[p].

What is the image of resGGp
? We have already seen in Proposition 1.7.26

that the image of resGGp
consists of G-invariant elements. Hence, it remains

to prove that any G-invariant element of H∗(Gp; ResGGp
A) lies in the im-

age resGGp
(H∗(G;A)[p]): Let β ∈ H∗(Gp; ResGGp

A) be G-invariant. We then
consider the class

α :=
1

[G : Gp]
· corGGp

β ∈ H∗(G;A)[p];

notice that corGGp
β lies in the p-primary part of H∗(G;A) because the order

of β is a prime power (as Gp is a p-group). Moreover, [G : Gp] is invertible
in the p-primary part H∗(G;A)[p]. Therefore, α indeed is a well-defined
element of H∗(G;A)[p].

Furthermore, β = resGH α because by G-invariance of β and Proposi-
tion 1.7.18

resGGp
◦ corGGp

β =
∑

GpgGp∈Gp\G/Gp

cor
Gp

Gp∩gGpg−1 ◦ res
gGpg−1

Gp∩gGpg−1 g • β

=
∑

GpgGp∈Gp\G/Gp

cor
Gp

Gp∩gGpg−1 ◦ res
Gp

Gp∩gGpg−1 β

=
∑

GpgGp∈Gp\G/Gp

[Gp : Gp ∩ gGpg
−1] · β

= [G : Gp] · β.

The last equality follows by decomposing G/Gp into left Gp-orbits.



1.7 Cohomology of subgroups 107

Example 1.7.31 (The symmetric group S3). For example, using the pri-
mary decomposition in Proposition 1.7.30, it is possible to compute the
(co)homology of the symmetric group S3; for all k ∈ N we have (Exercise):

Hk(S3; Z) ∼=



Z if k = 0

0 if k ≡ 0 mod 4 and k > 0

Z/2 if k ≡ 1 mod 4

0 if k ≡ 2 mod 4

Z/6 if k ≡ 3 mod 4,

Hk(S3; Z) ∼=



Z if k = 0

Z/6 if k ≡ 0 mod 4 and k > 0

0 if k ≡ 1 mod 4

Z/2 if k ≡ 2 mod 4

0 if k ≡ 3 mod 4.

Later we will see that there are several possibilities to simplify this
slightly cumbersome computation and we will also explain the obvious pat-
terns in these (co)homology groups (using product structures, periodicity,
or spectral sequences (Sections 1.8, 1.9, 1.10).

Using more sophisticated transfer maps it is possible to obtain more fine-
grained information about the (co)homology of finite groups; an example
of such a refined transfer map is the Evens transfer [?].

1.7.6 Application: Generalising the group-theoretic trans-

fer

The transfer in group (co)homology discussed above actually is a general-
isation of the classical transfer in group theory [14]:

Definition 1.7.32 (Classical transfer). Let G be a group and let H be a
subgroup of finite index n. Then the classical transfer is the homomor-
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phism

Gab −→ Hab

[g] 7−→
[ n∏
k=1

gk · g ·R(gk · g)−1

]
;

here, g1, . . . , gn is a set of representatives ofH\G, andR : G −→ {g1, . . . , gn}
is the map associating to each group element g ∈ G the representative of
the corresponding coset H · g.

One can show that this indeed is a well-defined group homomorphism
that is independent of the chosen set of representatives.

Proposition 1.7.33 (Classical transfer and group homology). Let G be a
group and let H be a subgroup of finite index. Then the transfer map

trGH : H1(G; Z) −→ H1(H; Z)

coincides with the classical transfer of Definition 1.7.32, when we identify
the first group homology with Z-coefficients with the Abelianisation of the
group in question (Proposition 1.3.12).

Proof. This can be proved by carefully analysing the homological transfer
in terms of the topological description or via bar resolutions. (Exercise).

For instance, the classical transfer is related to quadratic residues in
number theory:

Example 1.7.34 (Legendre symbol via transfer). Let p ∈ N>2 be a prime.
Then the transfer map corresponding to the subgroup {+1,−1} of the
units Z/p× coincides with the Legendre symbol associated with p; this is
a consequence of the Gauß lemma on quadratic residues. (Exercise).
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Product structures

Until now, we viewed group homology and group cohomology only as
graded Abelian groups; however, group (co)homology carries an additional,
multiplicative, structure.

Like products in (co)homology of topological spaces, these products pro-
vide a finer structure on group (co)homology that allows us to understand
certain phenomena in group (co)homology better and that also simplifies
calculations substantially.

Before starting with the details of the constructions, we first give a brief
overview of the products to come: In the following list, we only indicate
the basic shape of the products. The exact types (including coefficients)
are given during the detailed discussions and constructions below:

– (Co)Homological cross-product. The homological cross-product is of
the shape

Hp ⊗Z Hp′ −→ Hp+p′ ,

the cohomological cross-product is of the shape

Hp ⊗Z H
p′ −→ Hp+p′ .

These products both are external products.
– Cup-product. The cup-product is an internal product of the shape

Hp ⊗Z H
p′ −→ Hp+p′ .

– Cap-product. The cap-product is a product of the shape

Hp ⊗Z Hp′ −→ Hp′−p.

In the rest of this section, we will focus mainly on the cup-product as it
is the most important of these products. We will start with an axiomatic

109
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description for the cup-product, and we then will construct all of the prod-
ucts listed above by tensor product constructions on the (co)chain level,
and derive further properties.

For the sake of simplicity, we will pursue a rather elementary approach to
products – a more conceptual point of view would be based on the notion
of differential graded algebras [1].

1.8.1 A multiplicative structure for group cohomology

Theorem 1.8.1 (Cup-product in group cohomology, axiomatically). There
is exactly one multiplicative structure · ∪ · , the so-called cup-product, on
group cohomology satisfying the following axioms: For every group G, all
ZG-modules A and A′, and all degrees p, p′ ∈ N the cup-product structure
provides a Z-linear map

· ∪ · : Hp(G;A)⊗Z H
p′(G;A′) −→ Hp+p′(G;A⊗Z A

′);

here, G acts diagonally on the coefficients A⊗Z A
′.

– Degree 0. For every group G and all ZG-modules A and A′, the
cup-product

AG⊗ZA
′G = H0(G;A)⊗ZH

0(G;A′) −→ H0(G;A⊗ZA
′) = (A⊗ZA

′)G

coincides with the Z-homomorphism induced from the canonical in-
clusions AG −→ A and A′G −→ A′.

– Naturality with respect to connecting homomorphisms. Let G be a
group, let 0 −→ A′ −→ A −→ A′′ −→ 0 be a short exact sequence
of ZG-modules, and let B be a ZG-module such that the induced
sequence 0 −→ A′ ⊗Z B −→ A ⊗Z B −→ A′′ ⊗Z B −→ 0 is exact.
Then

δ(α ∪ β) = (δα) ∪ β

for all α ∈ H∗(G;A′′) and all β ∈ H∗(G;B), where the δs are the
connecting homomorphisms of the long exact cohomology sequences
corresponding to the above short exact sequence of ZG-modules.
(An analogous statement holds when the factors are swapped; how-
ever, a sign has to be introduced in that case.)
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Proof. Uniqueness. Uniqueness is a consequence of a dimension shifting
argument: Let G be a group. We prove uniqueness of the cup-product on
the cohomology of G by double induction over the degrees of the domain
of the product:

The cup-product H0 ⊗Z H
0 −→ H0 is determined uniquely by the first

axiom.
Let B be a ZG-module and let β ∈ Hp′(G;B). We show now inductively

that the cup-product · ∪ β : H∗ −→ H∗+p′ is determined uniquely by
the cup-product · ∪ β : H0 −→ Hp′ in degree 0: For the induction step,
let p ∈ N and assume that we proved the claim for · ∪ β : Hp −→ Hp+p′ .
Let A be a ZG-module. Notice that there is a ZG-embedding

A −→ HomZ(ZG,A) = CoindG1 A

a 7−→ (g 7→ g · a),

which is split injective over Z; in particular, the associated short exact
sequence 0 −→ A −→ CoindG1 A −→ (CoindG1 A)/A −→ A stays exact
when tensored with B. Furthermore, Hk(G; CoindG1 A) = 0 for all k ∈ N>0

by Shapiro’s lemma (Proposition 1.7.8). Hence, the second axiom provides
us with a commutative diagram

Hp
(
G; (CoindG1 A)/A

) δ //

· ∪β
��

Hp+1(G;A) //

· ∪β
��

Hp+1(G; CoindG1 A) = 0

��

Hp+p′
(
G; (CoindG1 A)/A⊗Z B

)
δ
// Hp+1+p′(G;A⊗Z B) // Hp+1+p′(G; CoindG1 A⊗Z B)

with exact rows; therefore, δ : Hp(G; CoindG1 A/A) −→ Hp+1(G;A) is sur-
jective and so · ∪ β : Hp+1(G;A) −→ Hp+1+p′(G;A ⊗Z B) is determined
uniquely by · ∪ βHp −→ Hp+p′ .

Using the swapped version of the second axiom, in the same way we can
prove inductively that α ∪ · : H∗ −→ Hp+∗ is determined uniquely by the
cup-product α ∪ · : H0 −→ Hp.

Putting both inductions together, we see that the cup-product indeed is
determined uniquely by the cup-product H0 ⊗Z H

0 −→ H0, which in turn
is covered by the first axiom.

Existence. We will prove existence by giving an explicit construction in
terms of projective resolutions (Section 1.8.2–1.8.4).
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When proving existence below, we will also see that the cup-product en-
joys several other properties as well that we would expect of a nice product,
such as associativity, graded commutativity, existence of a unit, naturality
with respect to morphisms in GrpMod– etc. (see Proposition 1.8.18).

Caveat 1.8.2 (Homological products). In general, there is no sensible
map of type AG ⊗Z A

′
G −→ (A ⊗Z A

′)G. Therefore, there are no obvious
analogous axioms for a product on group homology.

For Abelian groups, there is the so-called Pontryagin product [4, Chap-
ter V.5] on group homology, and in the general case one can define a
coproduct instead of a product.

1.8.2 Algebraic preliminaries: tensor products of reso-

lutions

The construction of the cup-product will be achieved by the same alge-
braic means as the construction of the cup-product for singular or cellular
(co)homology of topological spaces. In particular, the construction relies
on an understanding of tensor products of chain complexes:

Convention 1.8.3 (Tensor products of chain complexes). For Z-chain
complexes (C∗, ∂) and (C ′

∗, ∂
′
∗), the tensor product C∗ ⊗Z C

′
∗ is the chain

complex given by

(C∗ ⊗Z C
′
∗)n :=

⊕
p∈N

Cp ⊗Z C
′
n−p

for all n ∈ N equipped with the boundary operator given by

(C∗ ⊗Z C
′
∗)n −→ (C∗ ⊗Z C

′
∗)n−1

x⊗ x′ 7−→ ∂x⊗ x′ + (−1)|x|x⊗ ∂′x′

for all n ∈ N; here, | · | stands for the degree of an element in a chain
complex. Notice that the square of this boundary operator indeed is zero.

The sign is chosen according to the following convention: whenever
an operator of degree d is moved past an element of degree p, then the
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sign (−1)d·p is introduced. Other choices of signs are possible and appro-
priate in certain circumstances; however, in the following, the above choice
of signs proves to be convenient.

Proposition 1.8.4 (Tensor products of resolutions). Let G and G′ be two
groups, and let P∗ � ε and P ′

∗ � ε′ be a ZG-resolution and a ZG′-resolution
of Z respectively. Then the tensor product (P∗⊗ZP

′
∗)�(ε⊗Zε

′) is a projective
Z[G × G′]-resolution of Z; here, the group G × G′ acts componentwise on
the tensor products.

Proof. We have to show that all the chain modules of P∗⊗ZP
′
∗ are projective

Z[G×G′]-modules and that the complex (P∗ ⊗Z P
′
∗) � (ε⊗Z ε

′) is acyclic.
The latter easily follows from the Künneth theorem and the right ex-

actnes of the tensor product, because the two factors P∗ � ε and P ′
∗ � ε′ are

acyclic.
As projective modules can be characterised by being direct summands

of free modules, and as tensor products are compatible with direct sums,
the first statement follows from the fact that

Z[G]⊗Z Z[G′] −→ Z[G×G′]

g ⊗ g′ 7−→ (g, g′)

is a Z[G×G′]-isomorphism.

Corollary 1.8.5 (Diagonal approximation). Let G be a group, and let P∗�ε
be a projective ZG-resolution of Z. Then up to ZG-homotopy equivalence
there is exactly one chain map

∆∗ : P∗ −→ P∗ ⊗Z P∗

compatible with ε and ε⊗Z ε and extending idZ : Z −→ Z = Z⊗Z Z; here,
G acts diagonally on P∗ ⊗Z P∗.

Any such chain map ∆∗ is called a diagonal approximation of the reso-
lution P∗ � ε.

Proof. By Proposition 1.8.4, the tensor product (P∗ ⊗Z P
′
∗) � (ε ⊗Z ε) is

a projective Z[G × G]-resolution of Z. Moreover, the restriction func-
tor Z[G×G]-Mod −→ ZG-Mod induced by the diagonal homomorphism

G −→ G×G
g 7−→ (g, g)
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is exact (Example 1.5.8). Therefore, the claim follows from the fundamen-
tal lemma of homological algebra (Proposition 1.5.27).

In general, it is not easy to find a nicely expressible diagonal approxi-
mation of a given resolution. Fortunately, for the bar resolution and the
standard periodic resolutions of finite cyclic groups, convenient diagonal
approximations are known:

Example 1.8.6 (The Alexander-Whitney map). Let G be a group. Then
the Alexander-Whitney map ∆∗ : C∗(G) −→ C∗(G)⊗Z C∗(G) given by

Cn(G) −→
(
C∗(G)⊗Z C∗(G)

)
n

g0 · [g1| · · · |gn] 7−→
n∑
p=0

g0 · [g1| · · · |gp]⊗ g0 · g1 · · · · · gp · [gp+1| · · · |gn]

for all n ∈ N is a diagonal approximation over ZG (as is readily verified by
a small computation).

The topological counterpart of this map maps a simplex to the sum of
tensor products of its front and back faces, i.e., it gives an approximation
of a bigger simplex by sums of products of smaller simplices.

Example 1.8.7 (A diagonal approximation for finite cyclic groups). Let
n ∈ N>0; we write G := Z/n for the cyclic group of order n. Let P∗ � ε be
the standard projective ZG-resolution

. . . N // ZG t−1 // ZG N // ZG t−1 // ZG ε // Z

of Z (see Corollary 1.6.6); here, t = [1] ∈ Z/n is a generator of the cyclic
group G = Z/n, and N denotes the norm element.

Then the ZG-map ∆∗ : P∗ −→ P∗ ⊗Z P∗ given by

Pp+p′ = Z[G] −→ Z[G]⊗Z Z[G] = Pp ⊗Z Pp′

1 7−→


1⊗ 1 if p is even

1⊗ t if p is odd and p′ is even∑
j,k∈{0,...,n−1},j<k t

j ⊗ tk if p is odd and p′ is odd

for all p, p′ ∈ N is a diagonal approximation for the resolution P∗ � ε;
indeed, a straightforward but rather tedious computation shows that ∆∗
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is compatible with the boundary operators and the augmentations ε and
ε⊗Z ε respectively.

Notice that when computing with this diagonal approximation, some
care has to be taken to keep all the parts in the different degrees apart
from each other!

1.8.3 The cross-product

The first step towards the construction of the cup-product is the construc-
tion of an external product, the so-called cross-product; on the (co)chain
level, the cross-products are nothing but tensor products:

Definition 1.8.8 (Cross-product on the (co)chain level). Let G and G′ be
two groups, let A be a ZG-module, let A′ be a ZG′-module, let P∗ � ε be a
projective ZG-resolution of Z, and let P ′

∗ �ε′ be a projective ZG′-resolution
of Z. Then the cross-product on the chain level is defined by

× : (P∗ ⊗G A)⊗Z (P ′
∗ ⊗G′ A′) −→ (P∗ ⊗Z P

′
∗)⊗G×G′ (A⊗Z A

′)

(x⊗ a)⊗ (x′ ⊗ a′) 7−→ (x⊗ x′)⊗ (a⊗ a′);

dually, the cross-product on the cochain level is defined by

× : HomG(P∗, A)⊗Z HomG′(P
′
∗, A

′) −→ HomG×G′(P∗ ⊗Z P
′
∗, A⊗Z A

′)

f ⊗ f ′ 7−→
(
x⊗ x′ 7→ (−1)|f

′|·|x|f(x)⊗ f ′(x′)
)
.

Using the description of group (co)homology via projective resolutions
of Z (Section 1.5.8), we can thus define cross-products in group (co)homology:

Definition 1.8.9 ((Co)Homological cross-product). Let G and G′ be two
groups. Moreover, let A and A′ be a ZG-module and a ZG′-module re-
spectively.

– Homological cross-product. The homological cross-product is defined
by

Hp(G;A)⊗Z Hp′(G
′;A′)

· × · // Hp+p′(G×G′;A⊗Z A
′)

Hp(P∗ ⊗G A)⊗Z Hp′(P
′
∗ ⊗G′ A′) // Hp+p′

(
(P∗ ⊗Z P

′
∗)⊗G×G′ (A⊗Z A

′)
)

[z]⊗ [z′] � // [z × z′]
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for all p, p′ ∈ N, where P∗�ε and P ′
∗�ε′ are some projective resolutions

of Z over ZG and ZG′ respectively. (The isomorphism on the right
is provided by Proposition 1.8.4).

– Cohomological cross-product. The cohomological cross-product is de-
fined by

Hp(G;A)⊗Z H
p′(G′;A′)

· × · // Hp+p′(G×G′;A⊗Z A
′)

Hp

(
HomG(P∗, A)

)
⊗Z Hp′

(
HomG′(P

′
∗, A

′)
)

// Hp+p′
(
HomG×G′(P∗ ⊗Z P

′
∗, A⊗Z A

′)
)

[f ]⊗ [f ′] � // [f × f ′]

for all p, p′ ∈ N, where P∗�ε and P ′
∗�ε′ are some projective resolutions

of Z over ZG and ZG′ respectively. (The isomorphism on the right
is provided by Proposition 1.8.4).

Remark 1.8.10 (Well-definedness of the (co)homological cross-product).
The (co)homological cross product in group (co)homology is well-defined
in the following sense:

1. The cross-product of two classes does not depend on the choice of
the representing (co)cycles.

2. The cross-product does not depend on the choice of projective reso-
lution.

For the first part, we observe that we have in the situation of Defini-
tion 1.8.8 the relations

∂(z × z′) = ∂z × z′ + (−1)|z| · z × ∂z′

δ(f × f ′) = δf × f ′ + (−1)|f | · f × δf ′

for all chains z ∈ P∗⊗GA, z′ ∈ P ′
∗⊗G′A′ and all cochains f ∈ HomG(P∗, A),

f ′ ∈ HomG′(P
′
∗, A

′).

For the second part, we consider the following (with the notation from
Definition 1.8.8): Let Q∗ � η be another ZG-resolution of Z. By the fun-
damental lemma of homological algebra, there is a ZG-chain homotopy
equivalence f : P∗ −→ Q∗ extending the identity on Z. A simple computa-
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tion shows that then

f ⊗G idA

(f ⊗Z idP ′∗)⊗G×G′ idA⊗ZA′

HomG(f, idA)

HomG×G′(f ⊗Z idP ′∗ , idA⊗ZA′)

are Z-chain homotopy equivalences of the complexes involved in the defi-
nition of the cross-products extending the identity on Z, which are com-
patible with taking cross-products. As these chain homotopy equivalences
induce the identity on group (co)homology, this shows that the (co)homo-
logical cross-product in group (co)homology is independent of the chosen
resolution of G. Similarly, we can argue for the resolutions for the right
hand factor.

1.8.4 The cup-product

As mentioned above, the cup-product is an internal product on group co-
homology, derived from the cohomological cross-product:

Definition 1.8.11 (Cup-product). Let G be a group, and let A and A′ be
two ZG-modules. Then the map

· ∪ · : H∗(G;A)⊗Z H
∗(G;A′) −→ H∗(G;A⊗Z A

′)

given by

Hp(G;A)⊗Z H
p′(G;A′) −→ Hp+p′(G;A⊗Z A

′)

α⊗ α′ 7−→ Hp+p′(d; idA⊗ZA′)(α× α′)

for all p, p′ ∈ N is the cup-product on cohomology of G. Here, G acts
diagonally on the coefficients A⊗Z A

′ and d : G −→ G×G is the diagonal
homomorphism; hence, (d, idA⊗ZA′) : (G,A ⊗Z A

′) −→ (G × G,A ⊗Z A
′)

indeed is a morphism in GrpMod–.

Remark 1.8.12 (Topological cup-product). If G is a group and if XG

is a model for BG, then the group cohomological cup-product and the
topological cup-product on H∗(G; Z) ∼= H∗(XG; Z) coincide. (Exercise).
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H∗(G; Z)

H∗(G′; Z)

H4(G×G′; Z)

x

x′

x ∪ x′

Figure 1.13: Cohomology ring of a product group, schematically

Example 1.8.13 (Cohomology of Z2). Because the 2-torus is a model
for B(Z × Z), we obtain from the preceding remark that there is an iso-
morphism

H∗(Z× Z; Z) ∼= Z[x]/(x2)⊗Z Z[y]/(y2)

of graded rings, where x and y have degree 1.

Remark 1.8.14 (The cohomology of product groups). More generally, us-
ing the cohomological Künneth theorem, we can compute the cup-product
structure on cohomology with Z-coefficients of a product of two groups (as
long as the group homology with Z-coefficients of one of the two factors is
finitely generated in each degree) in terms of the cup-product structure on
the two factors (Figure 1.13).

For concrete computations it is often helpful to be able to express the
cup-product in terms of the same projective resolution in domain and tar-
get; such a description can be given via diagonal approximations:

Remark 1.8.15 (Cup-product via diagonal approximations). Let G be a
group, let A and A′ be two ZG-modules, and let P∗ � ε be a projective
ZG-resolution of Z; furthermore, let ∆∗ : P∗ −→ P∗ ⊗Z P∗ be a diago-
nal approximation. Then for all p, p′ ∈ N the diagram in Figure 1.14 is
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Hp(G;A)⊗Z Hp′(G;A′)

· ∪ ·
--

· × ·
// Hp+p′(G×G;A⊗Z A′)

H∗(d;id)
// Hp+p′(G;A⊗Z A′)

Hp
(
HomG(P∗, A)

)
⊗Z Hp′

(
HomG(P∗, A′)

) · × ·
//

H∗(HomG(∆∗, idA⊗ZA′ ) ◦ · × · )

11
Hp+p′

(
HomG(P∗ ⊗Z P∗, A⊗Z A′)

)H∗(HomG(∆∗, id))
// Hp+p′

(
HomG(P∗, A⊗Z A′)

)

Figure 1.14: Computing the cup-product via diagonal approximations

commutative: the left square commutes by definition of the cohomological
cross-product, the right square commutes by the fundamental lemma of
homological algebra (the chain map ∆∗ is compatible with the diagonal
embedding G −→ G×G).

Example 1.8.16 (Cohomology ring of finite cyclic groups). Let n ∈ N>0.
Then there is an isomorphism

H∗(Z/n; Z) ∼= Z[x]/(n · x)

of graded rings, where x is a generator of degree 2. In order to prove
this, we compute cup-products in H∗(Z/n; Z) via the standard projective
resolution of Z: For brevity, we write G := Z/n = 〈t|tn = 1〉 and we write
P∗ � ε for the standard projective ZG-resolution

. . . N // ZG t−1 // ZG N // ZG t−1 // ZG ε // Z

of Z (see Corollary 1.6.6). For p ∈ N we let f2p ∈ HomG(P2p,Z) be the
cocycle given by

f2p : P2p = ZG −→ Z
1 7−→ 1.

We show now that we can take x to be the cohomology class [f2]: Look-
ing at the computation of H∗(G; Z) via the resolution P∗ (see Corol-
lary 1.6.6), we see that f2p corresponds to the generator [1] of the co-
homology group H2p(G; Z) = Z/n.
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Using the diagonal approximation ∆∗ : P∗ −→ P∗ ⊗Z P∗ from Exam-
ple 1.8.7, we obtain

f2p ∪ f2p′ = f2(p+p′)

for all p, p′ ∈ N, because

(f2p ∪ f2p′)(1) = (f2p × f2p′)
(
∆∗(1)

)
= (f2p × f2p′)(1⊗ 1)

= f2p(1)⊗ f2p′(1)

= 1;

in the second step we took advantage of the fact that the only term of ∆∗(1)
(where 1 ∈ ZG = P2(p+p′)) that survives under the evaluation of f2p × f2p′

is the one where the degrees of the components are 2p and 2p′ respectively.

Therefore, H∗(Z/n; Z) is generated by the element [f2] ∈ H2(Z/n; Z),
which has infinite multiplicative order and additive order n, as claimed.

Remark 1.8.17 (The cup-product in terms of bar resolutions). Let G be
a group, and let A and A′ be two ZG-modules. Then the cup-product on
cohomology is induced by the following map on the bar resolution:

HomG(Cp(G), A)⊗Z HomG(Cp′(G), A′) −→ HomG(Cp+p′(G), A⊗Z A
′)

f ⊗ f ′ 7−→
(
g0 · [g1| · · · |gp+p′ ]
7→ (−1)p·p

′ · f(g0 · [g1| . . . |gp])
⊗ f(g0 · · · gp · [gp+1| · · · |gp+p′ ])

)
;

indeed, this follows from the description of the cup-product via diagonal ap-
proximations (Remark 1.8.15) and the definition of the Alexander-Whitney
map (Example 1.8.6).

Using this description via the bar resolution, we can finally complete the
proof of Theorem 1.8.1:

Proposition 1.8.18 (Cup-product, construction satisfies the axioms).
The cup-product defined above satisfies the axioms of Theorem 1.8.1: Let
G be a group.
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1. Degree 0. For all ZG-modules A and A′, the cup-product

AG⊗ZA
′G = H0(G;A)⊗ZH

0(G;A′) −→ H0(G;A⊗ZA
′) = (A⊗ZA

′)G

coincides with the Z-homomorphism induced from the canonical in-
clusions AG −→ A and A′G −→ A′.

2. Naturality with respect to connecting homomorphisms. Let 0 −→
A′ −→ A −→ A′′ −→ 0 be a short exact sequence of ZG-modules and
let B be a ZG-module such that the induced sequence

0 −→ A′ ⊗Z B −→ A⊗Z B −→ A′′ ⊗Z B −→ 0

is exact. Then

δ(α ∪ β) = (δα) ∪ β

for all α ∈ H∗(G;A′′) and all β ∈ H∗(G;B), where the δs are the
connecting homomorphisms of the long exact cohomology sequences
corresponding to the above short exact sequence of ZG-modules.
(An analogous statement holds when the factors are swapped; how-
ever, a sign has to be introduced in that case.)

Proof. The first part can easily be verified using the description of the
cup-product in terms of the bar resolution and the Alexander-Whitney
map (Remark 1.8.17).

For the second part, we also use the description of the cup-product in
terms of the bar resolutions: Let p := |β|, and let f ∈ HomG(Cp(G), B)
be a cocycle representing the class β ∈ Hp(G;B). Then we consider the
diagram

0 // HomG(C∗(G), A′) //

· ∪f
��

HomG(C∗(G), A) //

· ∪f
��

HomG(C∗(G), A′′) //

· ∪f
��

0

0 // HomG(C∗+p(G), A′ ⊗Z B) // HomG(C∗+p(G), A⊗Z B) // HomG(C∗+p(G), A′′ ⊗Z B) // 0

induced by the given two short exact sequences of ZG-modules and the cup-
product via the Alexander-Whitney map on the bar-resolution. That this
diagram is commutative can be read off the description of the cup-product
via the Alexander-Whitney map. Moreover, the rows are exact because
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the chain modules of C∗(G) all are projective ZG-modules. Because f is a
cocycle, we obtain

δ( · ∪ f) = (δ · ) ∪ f + (−1)| · | · · ∪ δf
= (δ · ) ∪ f,

where δ here is the coboundary operator of the cochain complexes built
out of C∗(G) via HomG; hence, the vertical arrows are cochain maps as
well.

The long exact sequence in cohomology is derived from this diagram via
the snake lemma; the naturality part of the snake lemma therefore proves
the desired cup-product relation on the level of group cohomology.

We now come to the algebraic properties of the cup-product [4, Chap-
ter V.III]:

Proposition 1.8.19 (Cup-product, algebraic properties). Let G be a group.
1. Unit element. The element 1 ∈ Z = H0(G; Z) acts as a unit element

for the cup-product in the following sense: Let A be a ZG-module.
Then for all α ∈ H∗(G;A) we have the relation

1 ∪ α = α = α ∪ 1

in H∗(G;A) (where we use the canonical isomorphisms Z⊗Z A ∼= A
and A ∼= A⊗Z Z).

2. Graded commutativity. The cup-product is graded commutative in
the following sense: Let A and A′ be two ZG-modules. Then for
all α ∈ H∗(G;A) and all α′ ∈ H∗(G;A′) we have

α′ ∪ α = (−1)|α|·|α
′| ·H∗(idG; t)(α ∪ α′),

where t : A⊗ZA
′ −→ A′⊗ZA is the ZG-isomorphism given by swap-

ping the two factors.
3. Associativity. The cup-product is associative in the following sense:

Let A, A′, and A′′ be ZG-modules. Then

(α ∪ α′) ∪ α′′ = α ∪ (α′ ∪ α′′)

holds in H∗(A ⊗Z A
′ ⊗Z A

′′) for all α ∈ H∗(G;A), α′ ∈ H∗(G;A′),
and α′′ ∈ H∗(G;A′′).
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4. Naturality with respect to morphisms in GrpMod–. Let H be an-
other group, let ϕ : G −→ H be a group homomorphism, and suppose
that (ϕ,Φ): (G,A) −→ (H,B) and (ϕ,Φ′) : (G,A′) −→ (H,B′) are
morphisms in GrpMod–. Then

H∗(ϕ; Φ⊗Z Φ′)(α ∪ α′) =
(
H∗(ϕ; Φ)(α)

)
∪

(
H∗(ϕ; Φ′)(α′)

)
holds for all α ∈ H∗(H;B) and all α′ ∈ H∗(H;B′).

Proof. The first three parts can either be proved by looking at the descrip-
tion of the cup-product in terms of projective resolutions or by verifying the
properties in degree 0 and then applying dimension shifting. (Exercise).

The last part follows directly from the definitions (or the description in
terms of the bar resolution).

Corollary 1.8.20 (Cohomology ring with Z-coefficients). Let G be a group.
Then the cohomology H∗(G; Z) is a graded ring with respect to the multi-
plication given by the cup-product, which is graded commutative.

Moreover, any group homomorphism G −→ G′ induces a unital ring
homomorphism H∗(G

′; Z) −→ H∗(G; Z))

Of course, similar observations apply to more general coefficients (e.g.,
whenever the coefficients are an algebra on which the group acts trivially).

This ring structure demonstrates that group cohomology is actually quite
rigid and so simplifies many calculations.

Example 1.8.21 (Endomorphisms of finite cyclic groups in cohomology).
Let n, m ∈ N>0 and let ϕ : Z/n −→ Z/m be a group homomorphism.
What is the induced homomorphism in group cohomology with integer
coefficients?

We know that H∗(ϕ; idZ) is a unital ring automorphism by the pre-
vious corollary; moreover, we know that the cohomology ring of a fi-
nite cyclic group is a polynomial algebra generated by a single element
of degree 2 with infinite multiplicative order and having the group or-
der as additive order (Example 1.8.16). Therefore, it suffices to com-
pute H2(ϕ; idZ) : H2(Z/m; Z) −→ H2(Z/n; Z). This in turn can be done
via the universal coefficient theorem, which relates this homomorphism to
the homomorphism that ϕ induces on H1.
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H∗(G′; Z)

H∗(G; Z)

H2(G ∗G′; Z)

Figure 1.15: Cohomology ring of free products of groups, schematically

For example, if ϕ : Z/3 −→ Z/3 is the group homomorphism given
by [1] 7−→ [−1], then

H2p(ϕ; idZ) : H2p(Z/3; Z) −→ H2p(Z/3; Z)

[1] 7−→ [2p]

for all p ∈ N.

Example 1.8.22 (Cohomology ring of free products of groups). Let G
and G′ be two groups. Then there is an isomorphism

H∗(G ∗G′; Z) ∼= Z⊕
⊕
k∈N

(
Hk(G; Z)×Hk(G′; Z)

)
of graded rings; the grading on the right hand side is as follows: the first
Z-summand is the part in degree 0, and for k ∈ N>0 the degree k part
is Hk(G; Z)×Hk(G′; Z). Moreover, the product of two classes in non-zero
degree that lie in different factors is zero (see also Figure 1.15).

This is a consequence of the fact that we know from the Mayer-Vietoris
sequence (Proposition 1.3.16) that the homomorphism

H∗(G ∗G′; Z) −→ Z⊕
⊕
k∈N

(
Hk(G; Z)×Hk(G′; Z)

)
of graded Abelian groups given by restriction to the subgroups G and G′

respectively is an isomorphism of graded Abelian groups. By naturality,
this isomorphism is compatible with the cup-products; thus, this homo-
morphism is an isomorphism of graded rings, as claimed.

Analogously to the additive primary decomposition of cohomology of
finite groups, there is also a multiplicative decomposition. For simplicity,
we only treat the case of trivial coefficients:
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H∗(G; Z)[p]
∼= H∗(Gp; Z)G

H2(G; Z)

Figure 1.16: Cohomology ring of a finite group, schematically

Corollary 1.8.23 (Primary decomposition, multiplicatively). Let G be a
finite group, and let P (|G|) be the set of positive primes dividing |G|.

1. Then there is a canonical isomorphism

H∗(G; Z) ∼= Z⊕
∏

p∈P (|G|)

H∗(G; Z)[p]

of graded rings; here, Z is the part in degree 0 and for k ∈ N>0 the
degree k part of the right hand side is formed by

∏
p∈P (|G|)H

k(GZ)[p]

(see also Figure 1.16).
2. Moreover, if for p ∈ P (|G|) we write Gp for a p-Sylow subgroup of G,

then there is also a canonical isomorphism

H∗(G; Z) ∼= Z⊕
∏

p∈P (|G|)

H∗(Gp; Z)G

of graded rings (where the G-fixed points are to be understood as in
Definition 1.7.25).

Proof. Because P (|G|) is finite, we know already that there is an isomor-
phism

H∗(G; Z) −→ Z⊕
⊕

p∈P (|G|)

H∗(G; Z)[p] = Z⊕
∏

p∈P (|G|)

H∗(G; Z)[p]

of graded Abelian groups, given by projecting onto the primary parts
(Proposition 1.7.29).
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It is not difficult to see that these projections are compatible with the
graded ring structure: If p ∈ P (|G|), then the p-primary part H∗(G; Z)[p]

clearly is a (graded) ideal in H∗(G; Z). Hence also⊕
q∈P (|G|)\{p}

H∗(G; Z)[q]

is a (graded) ideal inH∗(G; Z). So the projectionH∗(G; Z) −→ H∗(G; Z)[p]

is a ring homomorphism.
The second part follows directly from the first part: Let p ∈ P (|G|).

The isomorphism H∗(G; Z)[p] −→ H∗(Gp; Z)G of graded Abelian groups in
Proposition 1.7.30 is induced by resGGp

, which is a morphism in GrpMod–,
and thus is a ring homomorphism; as the underlying homomorphism of
Abelian groups is an isomorphism, this must be a ring isomorphism.

Example 1.8.24 (Cohomology ring of the symmetric group S3). Using
the multiplicative primary decomposition one can, for instance, compute
the cohomology ring H∗(S3; Z) of S3. (Exercise).

Proposition 1.8.25 (Cup-product and transfer). Let G be a group and let
H be a subgroup of finite index; moreover, let A and A′ be two ZG-modules.
Then

corGH
(
(resGH α) ∪ α′

)
= α ∪ corGH α

′

for all α ∈ H∗(G;A) and all α′ ∈ H∗(H; ResGH A
′).

Proof. We prove the corresponding relation on the cochain level. Let P∗ �ε
be a projective ZG-resolution of Z. For all cochains f ∈ HomG(P∗, A)
and f ′ ∈ HomH(ResGH P∗,ResGH A

′) we have (in HomG(P∗ ⊗Z P∗, A⊗Z A
′))

corGH
(
(resGH f) ∪ f ′

)
=

∑
gH∈G/H

g · (f × f ′)

=
∑

gH∈G/H

g · f × g · f ′

=
∑

gH∈G/H

f × g · f ′

= f ×
∑

gH∈G/H

g · f ′

= f × resGH f
′.
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1.8.5 The cap-product

Like for (co)homology of topological spaces there is also a cap-product in
group cohomology, which is kind of a dual of the cup-product:

Definition 1.8.26 (Cap-product in group (co)homology). Let G be a
group, and let A and A′ be two ZG-modules. Then the cap-product is
defined as follows: For all p, p′ ∈ N with p ≤ p′ it is the homomorphism

· ∩ · : Hp(G;A)⊗Z Hp′(G;A′) −→ Hp′−p(G;A⊗Z A
′)

that is induced by the following map

HomG(Pp, A)⊗Z
(
(P∗ ⊗Z P∗)p′ ⊗G A′) −→ Pp′−p ⊗G (A⊗Z A

′)

f ⊗ (x⊗ x′ ⊗ a) 7−→ (−1)p·p
′ · x⊗ f(x′)⊗ a

where P∗ � ε is some projective ZG-resolution of Z.

Similarly to the case of the cross-product, one can show that this defini-
tion does not depend on the choice of (co)cycles or the projective resolution.
Furthermore, as in the case of the cup-product one can get rid of the tensor
product complex P∗ ⊗Z P∗ by using a diagonal approximation.

The cap-product is dual to the cup-product in the following sense:

Proposition 1.8.27 (Evaluation and cup-/cap-products). Let G be a group,
and let A, A′, and B be ZG-modules.

1. For all α ∈ Hp(G;A), all α′ ∈ Hp′(G;A′) and all β ∈ Hp+p′(G;B)
we have

〈α ∪ α′, β〉 = 〈α, α′ ∩ β〉

in (A⊗Z A
′ ⊗Z B)G.

2. In particular, for all α ∈ Hp(G;A) and all β ∈ Hp(G;A′), we have

α ∩ β = 〈α, β〉

in A⊗G B.
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Here, the evaluation 〈 · , · 〉 is induced from the following map on the
level of resolutions:

〈 · , · 〉 : HomG(Pp, A)⊗Z Pp ⊗G A′ −→ A⊗G A′

f ⊗ (x⊗ a) 7−→ f(x)⊗ a.

Proof. The first part is a straightforward computation on the (co)chain
level. The second part follows from the first part by taking the first factor
to be the unit element in H0(G; Z).

In the context of Tate cohomology of finite groups, the cap-product will
provide us with striking duality phenomena.

Example 1.8.28 (Poincaré duality groups). An interesting class of groups
that can be described in terms of the cap-product is the class of Poincaré
duality groups, which play an important rôle in geometric topology.
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Tate cohomology

and periodic cohomology

If G is a finite group, then group homology H∗(G; · ) and group cohomol-
ogy H∗(G; · ) behave similarly in certain situations; for example, if G is a
finite group, then induced and coinduced modules coincide.

Tate’s idea was to pack group homology and group cohomology of finite
groups into a common Z-graded functor Ĥ∗. Technically, this is achieved
by extending N-graded projective resolutions of Z to Z-graded “projective
resolutions” of Z, so-called complete projective resolutions. A convenient
theoretical framework for this type of homological algebra is relative ho-
mological algebra (which also will play a key rôle in the context of bounded
cohomology).

Schematically, Tate cohomology looks as follows:

. . . H2 H1 H0

��
44

44
44

44
44

. . . Ĥ−3 Ĥ−2 Ĥ−1
?�

OO

Ĥ0 Ĥ1 Ĥ2 . . .

H0

OOOO

H1 H2 . . .

Example applications of Tate cohomology are:
– The theory of cohomologically trivial modules, which is interesting

from an algebraic point of view [4, Chapter VI.8].
– The theory of periodic cohomology, which is related to the problem

of which finite groups admit free actions on spheres (Section 1.9.5).
We will first describe Tate cohomology axiomatically; in a second step

we sketch the construction of Tate cohomology via complete projective res-
olutions, and then give a brief overview of the relative homological algebra
needed in the context of Tate cohomology. After discussing the relation
between Tate cohomology and ordinary group (co)homology, we will have
a look at the product structure on Tate cohomology. Finally, we will study
periodic cohomology.

129
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1.9.1 Tate cohomology – definition

We start with the definition of the domain category of Tate cohomology,
we will then give an axiomatic description of Tate cohomology (additively),
and then we will indicate how Tate cohomology can be constructed in terms
of complete projective resolutions:

Definition 1.9.1 (The category GrpMod̂ ). The category GrpMod̂ is de-
fined as follows:

– The objects of GrpMod̂ are pairs (G,A), where G is a finite group
and A is a ZG-module.

– A morphism (i,Φ): (H,B) −→ (G,A) in GrpMod̂ consists of the
inclusion i : H −→ G of a subgroup H of a finite group G and a ZH-
morphism Φ: i∗A = ResGH A −→ B. The composition of morphisms
is defined by covariant composition in the first component and by
contravariant composition in the second component.

Theorem 1.9.2 (Tate cohomology, axiomatically). Tate cohomology is the
(up to natural isomorphism) unique contravariant functor

Ĥ∗( · ; · ) : GrpMod̂ −→ AbZ∗

(from the category GrpMod̂ to the category of Z-graded Abelian groups)

together with connecting homomorphisms δ∗ : Ĥ∗(G;A′′) −→ Ĥ∗+1(G;A′)
for all finite groups G and all short exact sequences 0 −→ A′ −→ A −→
A′′ −→ 0 of ZG-modules such that the following properties are satisfied:

– Middle degrees. For every finite group G and every ZG-module A
there is a natural (in both variables) exact sequence

0 // Ĥ−1(G;A) // H0(G;A) = AG // AG = H0(G;A) // Ĥ0(G;A) // 0

where the homomorphism AG −→ AG coincides with the homomor-
phism given by multiplication with the norm element

∑
g∈G g ∈ Z[G].

– Long exact sequences. For every finite group G and every short exact
sequence 0 −→ A′ −→ A −→ A′′ −→ 0 of ZG-modules, there is a
natural (in both variables) long exact sequence

. . . // Ĥk(G;A′) // Ĥk(G;A) // Ĥk(G;A′′)
δk
// Ĥk+1(G;A′) // . . .
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in Tate cohomology.
– Vanishing on induced modules. For all finite groups G, all Z-modules A,

and all k ∈ Z we have Ĥk(G; ZG⊗G A) = 0.

With help of a dimension shifting argument we see that there is at most
one such theory. The existence of such a theory relies on Z-graded projec-
tive resolutions, so-called complete projective resolutions:

Definition 1.9.3 (Complete projective resolutions). Let G be a group.
A complete projective ZG-resolution of Z is a Z-graded ZG-chain com-
plex P∗ consisting of projectives ZG-modules together with a surjective
ZG-homomorphism ε : P0 −→ Z, the augmentation, such that the bound-
ary operator ∂0 : P0 −→ P−1 factors over ε and an inclusion Z ↪→ P−1:

. . . // P1
∂1 // P0

∂0 //

ε
�� ��6

66
66

66
P−1

∂−1 // P−2
// . . .

Z
1�

BB�������

The complex P∗ together with the augmentation and factorisation is de-
noted by P∗ O ε.

Definition 1.9.4 (Tate cohomology).
– Let G be a finite group, and let A be a ZG-module. Then Tate

cohomology of G with coefficients in A is defined by

Ĥk(G;A) := Hk
(
HomG(P∗, A)

)
for all k ∈ Z, where P∗ O ε is some complete projective ZG-resolution
of Z.

– If (i,Φ): (H,B) −→ (G,A) is a morphism in GrpMod̂ , then we

define Ĥ∗(i; Φ) : Ĥ∗(G;A) −→ Ĥ∗(H;B) by
1. choosing a complete projective ZG-resolution P∗ O ε of Z,
2. taking a restriction type cochain map

HomG(P∗, A) −→ HomH(ResGH P∗,ResGH A),

3. combining this with the cochain map induced by Φ,
4. and finally taking cohomology.
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In order for Tate cohomology defined in this way to be well-defined, we
need the usual ingredients: we need that complete projective resolutions
do exist and that they (and their morphisms) are essentially unique.

Proposition 1.9.5 (Existence and uniqueness of complete projective res-
olutions). Let G be a finite group.

1. Then there exists a complete projective ZG-resolution of Z.
2. Moreover, between any two complete projective ZG-resolutions of Z

there exists up to ZG-homotopy precisely one ZG-chain map that
preserves the augmentations.

The existence part is covered by Example 1.9.7 below. In order to prove
the uniqueness part, we need a new version of homological algebra, so-
called relative homological algebra.

Caveat 1.9.6 (Extending maps between complete projective resolutions).
Let G be a finite group, and let P∗ Oε and P ′

∗ Oε′ be two complete projective
ZG-resolutions of Z. By projectivity, we can extend the identity on Z to a
chain map between the positive parts of P∗ and P ′

∗ respectively. However,
projectivity does not help us with extending such a map to the negative
part (the arrows in the extension problems point in the wrong direction!).

If the modules in the negative parts were injective, we could just use the
extension property provided by injectivity; of course, projective modules
are not injective in general. However, for finite groups G, any projec-
tive ZG-module is almost injective, namely relatively injective (see Defini-
tion 1.9.10 below).

We will later encounter a similar version of homological algebra again,
namely, when developping the algebraic approach to bounded cohomology
(Section 2.7).

Example 1.9.7 (Complete projective resolutions of finite type). Let G be
a finite group. Then we can construct a complete projective resolution of Z
as follows (Exercise):

1. Because G is finite, the bar resolution P+
∗ � ε is a projective ZG-re-

solution of finite type; a ZG-resolution is of finite type if all its chain
modules are finitely generated ZG-modules.



1.9 Tate cohomology and periodic cohomology 133

2. Then the dual complex Hom G(ε, idZ) � Hom G(P+
∗ ,ZG) is a ZG-re-

solution of Z by finitely generated projective ZG-modules.
Here, for a ZG-module A, we write Hom G(A,ZG) for the ZG-module
whose underlying Abelian group is HomG(A,ZG) together with the
G-action

G× Hom G(A,ZG) −→ Hom G(A,ZG)

(g, f) 7−→
(
x 7→ f(x) · g−1

)
.

3. Splicing these two resolutions together, we obtain a complete projec-
tive ZG-resolution of Z, which is of finite type.

Example 1.9.8 (Complete resolutions for finite groups acting freely on
spheres). For finite groups that act freely on spheres, we can just take the
pieces constructed in Theorem 1.6.1 and splice them together to obtain a
periodic complete projective resolution of Z of finite type.

Example 1.9.9 (Tate cohomology of finite cyclic groups). Let n ∈ N>0,
and let G = Z/n = 〈t | tn = 1〉. Then (where N ∈ ZG is the norm
element)

. . . // ZG N // ZG t−1 // ZG N //

�� ��8
88

88
88

ZG t−1 // ZG // . . .

Z
1�

BB�������

is a complete projective ZG-resolution of Z. In particular, we obtain

Ĥk(Z/n; Z) ∼=

{
Z/n if k is even

0 if k is odd

for all k ∈ Z.

It is not difficult to check that the construction of Tate cohomology
via complete projective resolutions indeed satisfies the axioms, as soon
as uniqueness of complete projective resolutions and maps between such
resolutions is established.
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1.9.2 Relative homological algebra

We give a very brief introduction to the basic notions of relative homolog-
ical algebra; the central concept is that of a relatively injective module – a
variant of injective modules. When studying bounded cohomology, we will
use a similar theory in a functional analytic context (Section 2.7).

Definition 1.9.10 (Relatively injective modules). Let G be a finite group.
– An injective ZG-morphism i : B −→ C is said to be relatively injec-

tive (or admissible), if it splits as a Z-homomorphism (there does not
necessarily have to exist a G-equivariant split!).

– A ZG-module A is relatively injective, if for every relatively injective
ZG-morphism i : B −→ C and every ZG-homomorphism α : B −→ A
there exists a ZG-homomorphism ᾱ : C −→ A extending i:

A

0 // B
i //

α

OO

C
σ

ee

ᾱ
__@

@
@

@

Example 1.9.11 (Relatively injective modules). Let G be a finite group.
1. Coinduced modules are relatively injective: more precisely, if A is

a Z-module, then CoindG1 A = HomZ(ZG,A) is a relatively injec-
tive ZG-module: Let i : B −→ C be a relatively injective ZG-homo-
morphism and let σ : C −→ B be a Z-split of i. If α : B −→ CoindG1 A
is a ZG-homomorphism, then

ᾱ : C −→ HomZ(ZG,A) = CoindG1 A

c 7−→
(
g 7→ α

(
σ(g · c)

)
(1)

)
is a ZG-homomorphism satisfying ᾱ ◦ i = α.

2. All projective ZG-modules are relatively injective ZG-modules: Again,
we use the fact that projective modules are the same as direct sum-
mands of free modules.
It is not difficult to see that direct summands of relatively injective
modules are relatively injective again. Therefore, it suffices to show



1.9 Tate cohomology and periodic cohomology 135

that free ZG-modules are relatively injective: Let S be a set. Because
G is finite, there is an isomorphism⊕

S

ZG = IndG1
⊕
S

Z ∼= CoindG1
⊕
S

Z

of ZG-modules. As the latter one is relatively injective by the first
part, we obtain that

⊕
S ZG is relatively injective.

In particular, not every relatively injective ZG-module is an injective
ZG-module.

Relative homological algebra is concerned with resolving modules by
relatively injective modules. However, as relatively injective modules only
solve certain extension problems, we can only hope for a corresponding
version of the fundamental lemma of homological algebra, if we require
resolutions not only to be acyclic but also to give rise to relatively injective
mapping problems.

Definition 1.9.12 (Relatively injective resolutions). Let G be a finite
group. A strong relatively injective resolution of a ZG-module A is a
cochain complex I∗ consisting of relatively injective ZG-modules together
with an augmentation η : Z −→ I0 such that the concatenated cochain
complex η � I∗ is Z-contractible.

In the context of Tate cohomology, the following is the key example of
strong relatively injective resolutions:

Example 1.9.13 (Relatively injective resolutions out of projective reso-
lutions). Let G be a finite group. If P∗ O ε is a complete projective ZG-
resolution of Z, then the negative part (Z ↪→ P−1) � (Pk)k∈Z<0 is a strong
relatively injective ZG-resolution of Z.

Indeed, all cochain modules are relatively injective by Example 1.9.11.
Moreover, the concatenated complex (Z ↪→ P−1)�(Pk)k∈Z<0 is Z-contractible
because it consists of free Z-modules and it is acyclic (Exercise).

Proposition 1.9.14 (Fundamental lemma of relative homological alge-
bra). Let G be a finite group.

1. From any Z-contractible ZG-cochain complex that resolves Z to any
ZG-cochain complex of relatively injective modules together with an
augmentation from Z, there exists up to ZG-homotopy exactly one
ZG-cochain map that is compatible with the augmentations.
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Z

projective strong relatively injective

Figure 1.17: A fundamental lemma for complete projective resolutions:
the classical fundamental lemma for projective resolutions in
the positive part, combined with the fundamental lemma for
strong relatively injective resolutions for the negative part

2. In particular: Between any two strong relatively injective ZG-reso-
lutions of Z there exists up to ZG-chain homotopy exactly one ZG-
chain map that is compatible with the augmentations.

Proof. This is proved by the same inductive arguments as the fundamental
lemma of classical homological algebra.

Combining this fundamental lemma with the classical one, we obtain
also a fundamental lemma for complete projective resolutions of Z (see
Figure 1.17).

1.9.3 Tate cohomology and ordinary group (co)homology

We now make the statement from the introduction more precise that Tate
cohomology is a wrapper for both cohomology and homology of finite
groups:

Proposition 1.9.15 (Tate cohomology and group cohomology).

1. In positive degrees, Tate cohomology coincides with ordinary group
cohomology (and restriction homomorphisms), i.e., there is a natural
(in GrpMod̂ ) isomorphism

Ĥk( · ; · ) ∼= Hk( · ; · )
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for all k ∈ N>0, and these natural isomorphism are compatible with
the connecting homomorphisms and with the description of Tate co-
homology in the middle degrees.

2. In negative degrees, Tate cohomology coincides with ordinary group
homology (and transfer homomorphisms), i.e., there is a natural (with
respect to morphisms in GrpMod̂ ) isomorphism

Ĥk( · ; · ) ∼= H−k−1( · ; · )

for all k ∈ Z<0, and these natural isomorphisms are compatible with
the connecting homomorphisms and with the description of Tate co-
homology in the middle degrees.

Proof. Let G be a finite group, and let A be a ZG-module. We choose a
complete projective ZG-resolution P∗ O ε as constructed in Example 1.9.7.

That Tate cohomology of G with coefficients in A in positive degrees co-
incides with ordinary group cohomology of G with coefficients in A follows
directly from the construction of Tate cohomology.

Using the fact that finitely generated projective ZG-modules behave
nicely with respect to taking HomG and ⊗G, we deduce that Tate co-
homology of G with coefficients in A in negative degrees coincides with
ordinary group homology of G with coefficients in A: Indeed, we have

HomG(P∗, A)k = HomG

(
Hom G(P+

−(∗−1),ZG), A
)k

= P+
−k−1 ⊗G A

for all k ∈ Z<0, where P+
∗ is the part of P∗ in positive degree.

Similarly, one proves the assertions about morphisms by direct inspection
on the (co)chain level.

In particular, this proposition justifies the schematic picture for Tate
cohomology in Figure 1.18, and we can deduce that

Ĥ0(G; Z) ∼= Z/|G| and Ĥ−1(G; Z) = 0

holds for all finite groups G.
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Figure 1.18: Tate cohomology, schematically

1.9.4 The product structure on Tate cohomology

The key feature of Tate cohomology is the cup-product structure, giving
rise to a striking duality between ordinary group homology and cohomology
(Theorem 1.9.18).

Theorem 1.9.16 (Tate cohomology, product structure). There is exactly
one multiplicative structure · ∪ · , the so-called cup-product, on Tate co-
homology of finite groups satisfying the following axioms: For every finite
group G, all ZG-modules A and A′, and all degrees p, p′ ∈ Z the cup-
product structure provides a Z-linear map

· ∪ · : Ĥp(G;A)⊗Z Ĥ
p′(G;A′) −→ Ĥp+p′(G;A⊗Z A

′);

here, G acts diagonally on the coefficients A⊗Z A
′.

– Degree 0. For every finite group G and all ZG-modules A and A′,
the cup-product

· ∪ · : Ĥ0(G;A)⊗Z Ĥ
0(G;A′) −→ Ĥ0(G;A⊗Z A

′)

is induced from · ∪ · : H0(G;A) ⊗Z H
0(G;A′) −→ H0(G;A ⊗Z A

′)
(which is nothing but the canonical map AG ⊗Z A

′G −→ (A⊗Z A
′)G)

via the canonical projection H0 −→ Ĥ0.
– Naturality with respect to connecting homomorphisms. Let G be a

finite group, let 0 −→ A′ −→ A −→ A′′ −→ 0 be a short exact
sequence of ZG-modules, and let B be a ZG-module such that the
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induced sequence 0 −→ A′ ⊗Z B −→ A ⊗Z B −→ A′′ ⊗Z B −→ 0 is
exact. Then

δ(α ∪ β) = (δα) ∪ β

for all α ∈ Ĥ∗(G;A′′) and all β ∈ Ĥ∗(G;B), where the δs are the con-
necting homomorphisms of the long exact Tate cohomology sequences
corresponding to the above short exact sequence of ZG-modules.
(An analogous statement holds when the factors are swapped; how-
ever, a sign has to be introduced in that case.)

Proof. Uniqueness follows similarly as in the classical case (Theorem 1.8.1)
by dimension shifting (notice however that we need to induct both up and
down from 0).

Existence is much harder to establish than in the classical case, though:
We will not provide a full proof here, but only sketch some of the ideas and
problems (a complete proof is given in Brown’s book [4, Chapter VI.5]).

The fundamental idea in the construction of the cup-product on ordinary
group cohomology was the observation that tensor products of projective
resolutions are projective resolutions again. However, when dealing with
complete resolutions, two issues arise:

– The usual tensor products of chain complexes is not “big” enough –
every element can only contain components of finitely many different
degrees. For complete resolutions, we will need to use the completed
tensor product ⊗̂Z, defined by

(C ⊗̂Z C
′)n :=

∏
p∈Z

Cp ⊗Z C
′
n−p

for all Z-graded chain complexes C∗ and C ′
∗, and all degrees n ∈ Z.

– Moreover, if P∗ O ε is a complete projective ZG-resolution of Z, then
the completed tensor product (P∗ ⊗̂Z P∗) O (ε ⊗̂Z ε) in general will not
be a complete projective ZG-resolution of Z.

However, the completed tensor product complex P∗ ⊗̂Z P∗ is still nice
enough such that by means of relative homological algebra one can con-
struct a diagonal approximation P∗ −→ P∗ ⊗̂Z P∗ and that one can show
that such diagonal approximations are essentially unique. Then the cup-
product in Tate cohomology can be defined via a completed version of the
cross-product followed by such a diagonal approximation.
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Corollary 1.9.17 (The cup-product on Tate cohomology and ordinary
group cohomology). Let G be a group and let A and A′ be two ZG-modules.
Then for all p, p′ ∈ N>0, the two cup-products

· ∪ · : Ĥp(G;A)⊗Z Ĥ
p′(G;A′) −→ Ĥp+p′(G;A⊗Z A

′)

· ∪ · : Hp(G;A)⊗Z H
p′(G;A′) −→ Hp+p′(G;A⊗Z A

′)

coincide.

Proof. This follows from Theorem 1.9.16, Theorem 1.8.1 and Proposi-
tion 1.9.15 via a standard dimension shifting argument.

Theorem 1.9.18 (Tate cohomology, duality). Let G be a finite group, and
let k ∈ Z. Then the cup-product

· ∪ · : Ĥk(G; Z)⊗Z Ĥ
−k(G; Z) −→ Ĥ0(G; Z) = Z/|G| ↪→ Q/Z

[1] 7→ [1/|G|]

is a duality pairing. I.e., the induced homomorphisms

Ĥk(G; Z) −→ HomZ
(
Ĥ−k(G; Z),Q/Z

)
α 7−→

(
β 7→ α ∪ β

)
Ĥ−k(G; Z) −→ HomZ

(
Ĥk(G; Z),Q/Z

)
β 7−→

(
α 7→ α ∪ β

)
are isomorphisms.

Proof. Using the universal coefficient theorem and the identifications

Ĥk(G; Z) ∼= Hk(G; Z)

Ĥ−k−1(G; Z) ∼= Hk(G; Z)

for all k ∈ N>0 (Proposition 1.9.15) it is not difficult to see that the groups

Ĥk(G; Z) and HomZ(Ĥ−k(G; Z),Q/Z) are isomorphic Abelian groups: Us-
ing a complete projective ZG-resolution of finite type and the fact that all
(co)homology groups of G are |G|-torsion, we see that all (co)homology
groups of G with Z-coefficients are finite Abelian groups. Furthermore,
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Ext1
Z(A,Z) ∼= HomZ(A,Q/Z) for all finite Abelian groups A. Notice how

the degree shift in the Ext-terms in the universal coefficient theorem coin-
cides with the degree shift in lower Tate cohomology.

However, it requires some work to establish that the cup-product pro-
vides such an isomorphism: This can, for example, be achieved as fol-
lows [9, 4, Theorem XII.6.5, Theorem VI.7.4]:

1. Show (for instance, by dimension shifting) that there exists an ele-

ment ζ ∈ Ĥ−1(G; Z) (the Tate homology in degree −1) such that the
cap-product

· ∩ ζ : Ĥk(G;A) −→ Ĥ−1−k(G;A)

is an isomorphism for any ZG-module A.
2. Use the duality between the cap-product and the cup-product to

show with help of the first step that the cup-product

· ∪ · : Ĥk(G; Q/Z)⊗Z Ĥ
−1−k(G; Z) −→ Ĥ−1(G; Q/Z)

is a duality pairing.
3. Use the long exact sequence associated with the short exact se-

quence 0 −→ Z −→ Q −→ Q/Z −→ 0 and the naturality of the
cup-product to deduce that the cup-product

· ∪ · : Ĥk(G; Z)⊗Z Ĥ
−k(G; Z) −→ Ĥ0(G; Z) = Z/|G|

is a duality pairing.

Using dimension shifting, we can furthermore also derive the following
properties of the cup-product on Tate cohomology:

– Existence of a unit. The element [1] ∈ Z/|G| = Ĥ0(G; Z) is a left
and right neutral element for the cup-product on Tate cohomology.

– Associativity. The cup-product on Tate cohomology is associative.
– Graded commutativity. The cup-product on Tate cohomology is graded

commutative in the sense of Proposition 1.8.19.
– Naturality. The cup-product on Tate cohomology is natural with

respect to morphisms in GrpMod̂ .
In particular: If G is a finite group, then Ĥ∗(G; Z) is a graded commu-

tative, unital Z-graded ring, and inclusions of subgroups of finite groups
induce unital homomorphisms of Z-graded rings.
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Like in the case of ordinary group (co)homology, Tate cohomology of
a given group G can be assembled out of the Tate cohomology of its Sy-
low groups and the “action” of G on the Tate cohomology of the Sylow
subgroups (in the sense of Section 1.7.4):

Proposition 1.9.19 (Tate cohomology, primary decomposition). Let G
be a finite group and let P (|G|) be the set of positive primes dividing |G|.

1. There is an isomorphism

Ĥ∗(G; Z) ∼=
∏

p∈P (|G|)

Ĥ∗(G; Z)[p]

of Z-graded rings; for k ∈ Z, the degree k part of the right hand side
is

∏
p∈P (|G|) Ĥ

k(G; Z)[p].

2. For p ∈ P (|G|) let Gp be a Sylow subgroup of G. Then we have an
isomorphism

Ĥ∗(G; Z) ∼=
∏

p∈P (|G|)

Ĥ∗(Gp; Z)G

of Z-graded rings.

Proof. Basically the same arguments as in the case of ordinary group co-
homology (Corollary 1.8.23) let us derive this decomposition from the nat-
urality properties of the cup-product in Tate cohomology.

1.9.5 Periodic cohomology

Notice that the ordinary group cohomology ring cannot contain any in-
vertible classes of positive degree (because there are no negative degrees to
compensate . . . ); the Tate cohomology ring, however, can contain also in-
vertible elements in non-zero degrees. Any such element gives rise to a very
strong periodicity of the Tate cohomology groups (see also Figure 1.19).
The theory of such groups is one of the algebraic counterparts of the groups
that admit free actions on spheres.

Definition 1.9.20 (Periodic cohomology). A finite group G is said to have

periodic cohomology if there is a degree d ∈ N>0 such that Ĥd(G; Z) con-

tains an element that is invertible in the Tate cohomology ring Ĥ∗(G; Z).
The smallest such d is the period of G.
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Ĥ−4 Ĥ−3 Ĥ−2 Ĥ−1 Ĥ0 Ĥ1 Ĥ2 Ĥ3 Ĥ4

Figure 1.19: Periodic cohomology, schematically (for d = 4)

In view of the duality theorem (Theorem 1.9.18), periodicity in the sense
of the previous definition can be reformulated in several ways:

Proposition 1.9.21 (Characterisations of periodic cohomology). Let G
be a finite group. Then the following are equivalent:

1. The group G has periodic cohomology.
2. There exist n ∈ Z and d ∈ N>0 such that for all ZG-modules A there

is an isomorphism Ĥn(G;A) ∼= Ĥn+d(G;A).

3. For some degree d ∈ N>0 we have Ĥd(G; Z) ∼= Z/|G|.
4. For some degree d ∈ N>0 the Tate cohomology group Ĥd(G; Z) con-

tains an element of (additive) order |G|.

Proof. The implication “1 ⇒ 2” is trivial.
For the implication “2 ⇒ 3” we observe that Ĥ0(G; Z) ∼= Z/|G|, and

that – by dimension shifting – we can assume without loss of generality
that n = 0.

The implication “3 ⇒ 4” is trivial.
For the implication “4 ⇒ 1” we fall back on the duality theorem (Theo-

rem 1.9.18): Let α ∈ Ĥd(G; Z) be an element of additive order |G|; because

Q/Z is injective, there is a homomorphism Ĥd(G; Z) −→ Q/Z that maps α

to [1/|G|]. By the duality theorem, there is a class β ∈ Ĥ−d(G; Z) such
that this homomorphism coincides with

· ∪ β : Ĥd(G; Z) −→ Ĥ0(G; Z) ∼= Z/|G| ↪→ Q/Z
[1] 7→ [1/n];

in particular, α ∪ β = [1], that is, α is invertible in Ĥ∗(G; Z). In other
words, G has periodic cohomology.
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Example 1.9.22 (The groups Z/n × Z/n). Let n ∈ N>0. Then the
group Z/n × Z/n does not have periodic cohomology; this follows from
the Künneth formula (Example 1.6.8), Proposition 1.9.15, and the charac-
terisation 2 of the above proposition.

Example 1.9.23 (Finite groups acting freely on spheres). Finite groups
that act freely on a sphere have periodic cohomology in the sense of Defini-
tion 1.9.20: For example, we can deduce this from the fact that such groups
admit periodic (complete) resolutions (Example 1.9.8) and the characteri-
sation of periodicity (Proposition 1.9.21).

Alternatively, it is possible to prove by a direct argument that there
is a cohomology class such that cup-product with this class induces an
isomorphism in (Tate) cohomology. (Exercise).

Caveat 1.9.24. The symmetric group S3 has periodic cohomology (in view
of the computations of Example 1.7.31 or Corollary 1.9.30 below); however,
S3 cannot act freely on a sphere (Example 1.6.17).

As we know, the periods of finite groups that act freely on spheres are
even (by Theorem 1.6.1), and all subgroups of groups that act freely on
spheres also act freely on spheres. The analogous properties hold also for
groups with periodic cohomology:

Proposition 1.9.25 (Basic properties of groups with periodic cohomol-
ogy). Let G be a finite group with periodic cohomology.

1. If G is non-trivial, then the period of the cohomology of G is even.
2. All subgroups of G have periodic cohomology as well.

Proof. By definition, periodicity of the cohomology of the group G entails
the existence of an invertible class α ∈ Ĥd(G; Z), where d ∈ N>0 is the
period.

Why is the period d even if G is non-trivial? Assume for a contradiction
that d is odd. Because the product structure on Tate cohomology is graded
commutative, we deduce

α ∪ α = (−1)|α|·|α| · α ∪ α = (−1)d·d · α ∪ α = −α ∪ α.

As α is invertible in Ĥ∗(G; Z), it follows that α has additive order at most 2.

On the other hand, looking at the isomorphism · ∪ α : Ĥ0(G; Z) −→
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Ĥd(G; Z) shows that α has additive order |G|. Therefore G ∼= Z/2 or
G is trivial. In the first case, G has period 2 (Corollary 1.6.6 and Exam-
ple 1.9.23), contradicting our assumption. Hence, d has to be odd.

We now come to the proof of the second part: Let H ⊂ G be a sub-
group. Because the restriction resGH : Ĥ∗(G; Z) −→ Ĥ∗(H; Z) is a unital

homomorphism of Z-graded rings, the image resGH(α) ∈ Ĥd(H; Z) is invert-

ible in Ĥd(G; Z); that is, H has periodic cohomology.

Example 1.9.26 (Finite groups with periodic cohomology of period 2).
A finite group has periodic cohomology with period 2 if and only if it is
cyclic (and non-trivial): Clearly, any finite cyclic (non-trivial) group has
periodic cohomology with period 2 (Corollary 1.6.6 and Example 1.9.23).

Conversely, suppose that G is a finite group with periodic cohomology
of period 2; of course, G is then non-trivial. Moreover,

Gab
∼= H1(G; Z)

∼= Ĥ−2(G; Z)

∼= Ĥ0(G; Z)
∼= Z/|G|.

Because the Abelianisation Gab is a quotient group of G, the cardinalities
force G ∼= Gab

∼= Z/|G|; in particular, G is cyclic.

Example 1.9.27 (Finite groups with periodic cohomology of period 4).
Let G be a finite group with periodic cohomology of period 4. Then

Ĥk(G; Z) ∼=


Z/|G| if k ≡ 0 mod 4

0 if k ≡ 1 mod 4

Gab if k ≡ 2 mod 4

0 if k ≡ 3 mod 4;

(in particular, we can also read off the homology and cohomology groups
of G with Z-coefficients).

Example 1.9.28 (Generalised quaternion groups). In particular, this al-
lows to compute (co)homology of the generalised quaternion groups. (Ex-
ercise).
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1.9.6 Characterising groups with periodic cohomology

In Section 1.6 we considered the problem of which finite groups admit
free actions on spheres; in particular, we derived an algebraic necessary
conditions for such groups: namely, all Sylow subgroups of a finite group
acting freely on a sphere have to be cyclic or generalised quaternion (Corol-
lary 1.6.14). However, the converse is not true in general, and the classifi-
cation of all finite groups acting freely on spheres is quite sophisticated.

In the previous section we saw that all finite groups acting freely on
spheres have periodic cohomology. In the present section, we will show
that indeed all finite groups all of whose Sylow subgroups are cyclic or
generalised quaternion do have periodic cohomology.

Theorem 1.9.29 (Characterising p-groups with periodic cohomology).
Let p ∈ N be a prime and let G be a finite p-group. Then the following are
equivalent:

1. The group G has periodic cohomology.
2. All Abelian subgroups of G are cyclic.
3. The group G is cyclic or a generalised quaternion group.
4. The group G acts freely on a sphere.

Proof. If G has periodic cohomology, then so do all of its (Abelian) sub-
groups (Proposition 1.9.25). In view of Example 1.9.22 and the classifica-
tion of finite Abelian groups, we obtain that all Abelian subgroups of G
have to be cyclic (this is the same argument as in Corollary 1.6.9).

If all Abelian subgroups of G are cyclic, then G contains a unique group
of order p (arguing as in the proof of Corollary 1.6.10), and hence G is
cyclic or generalised quaternion by Burnside’s classification result (Corol-
lary 1.6.13).

If the group G is cyclic or a generalised quaternion group, then G acts
freely on a sphere and hence has periodic cohomology (Example 1.9.23).

While free actions of all of the Sylow subgroups in general cannot be as-
sembled into a free action of the whole group (e.g., the symmetric group S3
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has cyclic Sylow subgroups but cannot act freely on a sphere), the analo-
gous statement for periodic cohomology is true:

Corollary 1.9.30 (Characterising groups with periodic cohomology).

1. A finite group has periodic cohomology if and only if all of its Sylow
subgroups have periodic cohomology.

2. A finite group has periodic cohomology if and only if all of its Sylow
subgroups are cyclic or generalised quaternion groups.

Proof. In view of Theorem 1.9.29 it suffices to prove the first part: Let G be
a finite group all of whose Sylow subgroups have periodic cohomology. In
order to prove that G has periodic cohomology as well, we use the primary
decomposition of the Tate cohomology of G:

For every p ∈ P (|G|) let Gp be a Sylow subgroup of G; because Gp

has periodic cohomology by assumption, there is a dp ∈ N>0 such that

Ĥdp(Gp; Z) contains an invertible element αp.

However, not all of Ĥ∗(Gp; Z) is contained in the Tate cohomology of G,
but only the G-invariant part. So we first show that some power of αp is
G-invariant (with G-invariant inverse): To this end, let ep ∈ N>0 with

∀x∈(Z/|Gp|)× xep = 1;

for example, we could take ep = ϕ(|Gp|), where ϕ is the Euler ϕ-function.
For g ∈ G, we now consider the classes

ρp(g) := res
Gp

(Gp)g
αp ∈ Ĥdp

(
(Gp)g; Z

)
,

σp(g) := res
gGpg−1

(Gp)g
g • αp ∈ Ĥdp

(
(Gp)g; Z

)
,

where we used the abbreviation (Gp)g := Gp ∩ gGpg
−1. Because αp is

invertible, so are ρp(g) and σp(g) (the restrictions and the action g • · are
compatible with cup-products); therefore, we obtain

Ĥdp
(
(Gp)g; Z

) ∼= Ĥ0
(
(Gp)g; Z

) ∼= Z/|(Gp)g|,

and in particular, there is a ιp(g) ∈ (Z/|(Gp)g|)× satisfying the rela-
tion σp(g) = ιp(g)·ρp(g). By construction of ep it follows that ι

ep
p = 1 (there
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is a surjective homomorphism (Z/|Gp|)× −→ (Z/|(Gp)g|)×) and thus

res
Gp

(Gp)g
g • αep

p =
(
res

Gp

(Gp)g
g • αp

)ep

= σp(g)
ep

= ιp(g)
ep · ρp(g)ep

= ρp(g)
ep

=
(
res

Gp

(Gp)g
αp

)ep

= res
Gp

(Gp)g
αep
p ,

i.e., the class α
ep
p is G-invariant; analogously, we see that the inverse α

−ep
p

is G-invariant.
Taking d ∈ N>0 as the least common multiple of all the products dp·ep, we

deduce with help of the primary decomposition of Tate cohomology (Propo-

sition 1.9.19) that Ĥd(G; Z) contains a class that is invertible in Ĥ∗(G; Z).
This finishes the proof that G has periodic cohomology.

Remark 1.9.31 (Estimating the period of a group). The proof of the
previous theorem also provides an explicit estimate for the period of a
group all of whose Sylow subgroups are cyclic or generalised quaternion:
The period is at most as big as the least common multiple of all ϕ(|Gp|)·dp,
where dp is the period of the Sylow subgroup Gp.

This can be further simplified by taking into account that cyclic groups
have period 2 and generalised quaternion groups have period 4 (they admit
a free action on S3).

Example 1.9.32 (The symmetric group S3). For example, looking at the
Sylow subgroups of S3, we can deduce that S3 has periodic cohomology
and that the period is at most 4.

Using Proposition 1.9.25 and Example 1.9.26 we can rule out the peri-
ods 0, 1, 2 and 3. So S3 has periodic cohomology with period 4. Therefore,
we can easily read off all the (co)homology groups of S3 (Example 1.7.31).

Recall that S3 cannot act freely on a sphere, though (Example 1.6.17).

Corollary 1.9.33 (Groups with periodic cohomology and odd cohomol-
ogy). Let G be a finite group with periodic cohomology. If k ∈ Z is odd,

then Ĥk(G; Z) = 0.
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Proof. In view of the primary decomposition of Tate cohomology (Proposi-
tion 1.9.19), it suffices to prove the corresponding statement for all p-groups
with periodic cohomology. (Exercise).
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1.10
The Hochschild-Serre

spectral sequence

How can we compute the (co)homology of an extension group if we know
the (co)homology of the quotient and the kernel? The methods we studied
so far do not give a satisfying solution to this problem – sometimes we
can obtain partial results via the Shapiro lemma or the transfer, but these
methods are not powerful enough to treat the general case.

In the present section, we will have a brief look at an algebraic tool that
allows us to attack this problem, so-called spectral sequences. Spectral
sequences can be thought of as a sophisticated version of long exact ho-
mology sequences approximating the homology of a graded chain complex
in terms of smaller pieces – in the case of a grading of a chain complex of
length 1 the corresponding spectral sequence is nothing but the long exact
homology sequence.

In the first section, we will explain what a spectral sequence is and some
of the terminology that goes with it. We will then state some examples of
spectral sequences and derive some basic applications. In Section 1.10.3
and Section 1.10.4, we explain how the Hochschild-Serre spectral sequence

E2
pq = Hp

(
Q;Hq(N ; ResGN A)

)
=⇒ Hp+q(G;A),

Epq
2 = Hp

(
Q;Hq(N ; ResGN A)

)
=⇒ Hp+q(G;A)

of a group extension 1 −→ N −→ G −→ Q −→ 1 computes the (co)hom-
ology of an extension group in terms of the kernel and the quotient.

Mainly, there will be no proofs in this section, but only explanations
of the terminology and example computations; furthermore, for simplicity
we will restrict our discussion to the setting that all spectral sequences
reside in the first quadrant. Extensive treatments of spectral sequences
(including proofs) can be found in the books by Weibel [53], Hatcher [22],
McCleary [32], and in the lecture notes of Bauer [1].
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Figure 1.20: Pages of a homological spectral sequence

1.10.1 Spectral sequences in a nutshell

We will now explain the principle of spectral sequences. In the beginning,
spectral sequences and all the notation might seem frightening and very
technical; however, with a little bit of practice one will sooner or later ap-
preciate their power and fall for the challenge of tricking spectral sequences
into revealing all their secrets.

A spectral sequence is a sequence of bigraded modules, where the next
bigraded module is obtained from the previous one by taking homology
(see also Figure 1.20 for an illustration):

Definition 1.10.1 (Homological spectral sequence). A (bigraded, homo-
logical) spectral sequence over a ring R is a sequence (Er, dr)r∈N>0 of bi-
graded R-modules (i.e., every Er is family (Er

pq)p,q∈N of R-modules) and
R-homomorphisms dr : Er −→ Er with the following properties:

– For every r ∈ N>0 the map dr has degree (−r, r− 1), and dr ◦ dr = 0.
– For every r ∈ N>0 there is an isomorphism

Er+1 ∼= H∗(E
r, dr) =

ker dr

im dr
,

and this isomorphism is a part of the data of the spectral sequence.
The term Er is also called the r-th page of (E∗, d∗).
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Figure 1.21: Convergence of a homological spectral sequence, schematically

Definition 1.10.2 (The ∞-page of a homological spectral sequence). Let
(Er, dr)r∈N>0 be a homological spectral sequence (in the sense of the pre-
vious definition). Because all the (Er, dr) reside in the first quadrant, for
every p, q ∈ N there exists an s ∈ N>0 such that

Es
pq = Es+1

pq = Es+2
pq = . . . ;

we then define E∞
pq := Es

pq.

Definition 1.10.3 (Collapsing of a spectral sequence). Let (Er, dr)r∈N>0

be a homological spectral sequence and let s ∈ N>0. We say that this
spectral sequence collapses at stage s if

Es = Es+1 = Es+2 = . . .

(In this case, in particular Es = E∞.)

Until now, nothing really happened yet – we just introduced some no-
tation. The next definition is crucial for the applications of spectral se-
quences; it allows us to relate a spectral sequence to something we want to
compute:

Definition 1.10.4 (Convergence of a spectral sequence). Let R be a ring,
let A be an N-graded R-module, and let (FnA)n∈N be an increasing filtra-
tion of A that is compatible with the grading of A. We say that a spectral
sequence (Er, dr)r∈N>0 over R converges to A if the following conditions are
satisfied (see also Figure 1.21):
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– For all p, q ∈ N we have (with F−1A := 0)

E∞
pq
∼=

FpAp+q
Fp−1Ap+q

.

– The spectral sequence is exhaustive, i.e., FnAn = An for all n ∈ N.
In this case one writes

E2
pq =⇒ Ap+q.

Remark 1.10.5 (Stepping through a spectral sequence). What is the typ-
ical “usage” of a spectral sequence? We might be interested in some graded
object A (in most cases: homology of something) for which there happens
to exist a (homological) spectral sequence (Er, dr)r∈N>0 converging to A,
where the E2-term is something accessible:

E2
p+q =⇒ Ap+q.

Usually, one then proceeds as follows:
1. Try to compute as many of the modules of the E2-term as possible;

in general, the more zeroes, the better!
2. Try to prove that many of the differentials d2

pq in the E2-term are
zero – e.g., using the degree, torsion phenomena, product structures,
. . .

3. Using the results of the first two steps, try to compute as much of
the E3-term and the differential d3 as possible.
Note. Many spectral sequences collapse (at least to a large extent)
at the E2-stage or the E3-stage!

4. Carry on like that and try to compute as much of the E∞-term as
possible.

5. Try to solve the extension problems arising when reconstructing A
out of E∞.

Caveat 1.10.6. If a spectral sequence (Er, dr)r∈N>0 converges to a graded
filtred module A, and if we know this spectral sequence, then this does not
necessarily mean that we can actually compute A – we only obtain the quo-
tients F∗A/F∗−1A of the associated filtration (as depicted in Figure 1.21)!
I.e., we still have to solve a sequence of extension problems (Figure 1.22).

In most cases, one is not able to determine the differentials (dr)r∈N>0

explicitly; however, the degrees of these differentials already reveal a lot
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0 −→ F0An −→ F1An −→
F1An
F0An

−→ 0

0 −→ F1An −→ F2An −→
F2An
F1An

−→ 0

...

0 −→ Fn−1An −→ FnAn = An −→
FnAn
Fn−1An

−→ 0

Figure 1.22: Convergence of a homological spectral sequence, extensions

about the spectral sequence and its long-term development, and additional
external input might provide enough information to extract non-trivial
conclusions out of a spectral sequence.

In a way, spectral sequences behave more like puzzles than like determin-
istic processes. We will explain some of the basic techniques for handling
spectral sequences below (Section 1.10.4).

Dually to the concept of homological spectral sequences there is also a
notion of cohomological spectral sequences:

Definition 1.10.7 (Cohomological spectral sequence). A (bigraded) co-
homological spectral sequence over a ring R is a sequence (Er, dr)r∈N>0 of
bigraded R-modules Er and R-homomorphisms dr : Er −→ Er with the
following properties:

– For every r ∈ N>0 the map dr has degree (r,−r+1), and dr ◦ dr = 0.
– For every r ∈ N>0 there is an isomorphism

Er+1
∼= H∗(Er, dr) =

ker dr
im dr

,

and this isomorphism is a part of the data of the spectral sequence.
Similar to the homological case, the ∞-page and collapsing are defined for
cohomological spectral sequences.

Definition 1.10.8 (Convergence of a cohomological spectral sequence).
Let R be a ring, let A be an N-graded R-module, let A be an N-graded
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R-module, and let (FnA)n∈N be an decreasing filtration of A that is com-
patible with the grading of A. We say that a cohomological spectral se-
quence (Er, dr)r∈N>0 converges to A if the following conditions are satisfied:

– For all p, q ∈ N we have

Epq
∞
∼=

FpAp+q
Fp+1Ap+q

– The filtration F∗A is exhaustive and Hausdorff, i.e., F0A = A and
Fn+1A = 0.

1.10.2 Some classic spectral sequences

In the following, we list some classic spectral sequences that converge to
interesting objects; of course, this list is by no means complete.

Where do spectral sequences come from? Two of the main sources are the
spectral sequences associated with double complexes (or filtred complexes),
and the Grothendieck spectral sequence:

– Double complexes. For every N × N-graded double complex, there
are two spectral sequences [53, Chapter 5.6]: one relates the vertical
homology of the horizontal homology to the homology of the total
complex, and the other one relates the horizontal homology of the
vertical homology to the homology of the total complex.

– Grothendieck spectral sequence. The Grothendieck spectral sequence
allows to compute derived functors of compositions of functors in
terms of the derived functors of the factors [53, Chapter 5.8].

These two spectral sequences are the foundation for many classic spectral
sequences in algebraic topology:

– Künneth theorem. For instance, the Künneth theorem can be viewed
as a special case of the double complex spectral sequences [53, The-
orem 5.6.4].

– Group actions. The spectral sequences for group actions (see Sec-
tion 1.6.8) can be derived from double complexes [4, Chapter VII.7].

– Leray spectral sequence. The Leray spectral sequence allows to com-
pute homology of a space in terms of nerves of coverings with low
multiplicity and acyclic intersections [4, Theorem VII.4.4].
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– Leray-Serre spectral sequence. The Leray-Serre spectral sequence al-
lows to express the (co)homology of the total space of a fibration in
terms of the (co)homology of the base and fibre [53, Chapter 5.3].

– Atiyah-Hirzebruch spectral sequence. The Atiyah-Hirzebruch spectral
sequence relates values of generalised cohomology theories to values
of singular homology with coefficients in the so-called coefficients of
the generalised homology theory [51, Chapter 15].

In the context of group cohomology, the central spectral sequence is the
Hochschild-Serre spectral sequence, which describes the (co)homology of
an extension group in terms of the (co)homology of the quotient and the
kernel (Section 1.10.3).

What are typical results that can be proved via spectral sequences?

– Long exact homology sequences. Spectral sequences whose E2-terms
are concentrated in two adjacent rows give rise to long exact se-
quences [53, Exercise 5.2.2].
A more careful analysis shows that every first quadrant spectral se-
quence gives rise to a five term exact sequence in low degrees [53,
Exercise 5.1.3].

– Vanishing/torsion results. Vanishing and torsion properties are pre-
served under taking homology and thus survive until the E∞-page.
Usually, these vanishing and torsion properties can then also be trans-
ferred to the graded target object.

– Dimension results/Euler characteristic. Similarly, also dimension
properties and Euler characteristics survive the travel through the
pages until the E∞-page and can then be transferred to the graded
target object.

1.10.3 The Hochschild-Serre spectral sequence

In group (co)homology, one of the central spectral sequences is the Hochschild-
Serre spectral sequence (see Figure 1.23):

Theorem 1.10.9 (The Hochschild-Serre spectral sequence). Let G be a
group fitting into a short exact sequence 1 −→ N −→ G −→ Q −→ 1 of
groups, and let A be a ZG-module.
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Hp(Q;Hq(N ; ResGN A))
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Figure 1.23: The Hochschild-Serre spectral sequence, schematically

1. Then there is a homological spectral sequence

E2
pq = Hp

(
Q;Hq(N ; ResGN A)

)
=⇒ Hp+q(G;A);

here, Q ∼= G/N acts on the coefficients H∗(N ; ResGN A) as described
in Proposition 1.7.24.

2. Similarly, there is a cohomological spectral sequence

Epq
2 = Hp

(
Q;Hq(N ; ResGN A)

)
=⇒ Hp+q(G;A).

If A is a ZG-algebra, then this spectral sequence is multiplicative
in the following sense: All terms (Er)r∈N≥2

carry the structure of
a differential graded algebra (i.e., they are equipped with a graded
commutative product such that the differentials satisfy the Leibnitz
rule) such that

– the product on the E2-term coincides with the cup-product on
the cohomology H∗(Q;H∗(N ; ResGN A)), and

– such that the filtration on H∗(G;A) induced by this spectral se-
quence is also compatible with the cup-product on H∗(G;A).

Proof. Each of the descriptions of group (co)homology provides a proof of
the Hochschild-Serre spectral sequence (and its convergence):

– Topologically. Associated with the group extension in the statement
of the theorem there is a fibration BN −→ BG −→ BQ of (models



1.10 The Hochschild-Serre spectral sequence 159

of) the classifying spaces (i.e., the short exact sequence on π1 induced
by this fibration coincides with the given group extension). Then for
every ZG-module A, the Serre spectral sequence

E2
pq = Hp

(
BQ;Hq(BN ; ResGN A)

)
=⇒ Hp+q(G;A)

of the fibration BN −→ BG −→ BQ coincides with the Hochschild-
Serre spectral sequence of this group extension [?]; of course, the
same argument applies to cohomology.

– Via projective resolutions of Z. When expressing group (co)homology
in terms of projective resolutions of the trivial module Z, the Hoch-
schild-Serre spectral sequence can be obtained from the spectral se-
quences associated to double complexes [4, Chapter VII.6].

– Via derived functors. Decomposing the G-(co)invariants functor into
a composition of the N -(co)invariants functor followed by the Q-(co)-
invariants functor, we can deduce the Hochschild-Serre spectral se-
quence from the Grothendieck spectral sequence [?].

Remark 1.10.10 (Naturality of the Hochschild-Serre spectral sequence).
The Hochschild-Serre spectral sequence is natural in the following sense:
For simplicity, let A be a Z-module on which all of the following groups
act trivially. If

1 // N //

��

G //

��

Q //

��

1

1 // N ′ // G′ // Q′ // 1

is a commutative diagram of groups with exact rows, then the correspond-
ing induced homomorphisms on homology fit together to form a morphism

E2
pq = Hp

(
Q;Hq(N ; ResGN A)

)
+3

��

Hp+q(G;A)

��

E2
pq = Hp

(
Q′;Hq(N

′; ResG
′

N ′ A)
)

+3 Hp+q(G
′;A)

of spectral sequences (i.e., homomorphisms between the corresponding
pages of the spectral sequences that are compatible with the differentials,
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and such that the map between the (r+1)-st pages is the map induced on
homology by the map between the r-th pages).

Similarly, the cohomological Hochschild-Serre spectral sequence is natu-
ral with respect to such morphisms (and if the coefficients are an algebra,
then the morphism of cohomological spectral sequences is also compatible
with the product structure).

Example 1.10.11 (Inheritance through spectral sequences). As indicated
above, certain properties survive the passage to the E∞-page and allow to
deduce inheritance properties: Let 1 −→ N −→ G −→ Q −→ 1 be an
extension of groups. Then the cohomological dimension satisfies

cdG ≤ cdN + cdQ

(Exercise), and (whenever these Euler characteristics are defined)

χ(BG) = χ(BN) · χ(BQ).

Moreover, also torsion results and duality properties can be derived.

1.10.4 Sample computations for group extensions

In the following, we give some sample computations to illustrate basic
techniques in spectral sequence computations.

Collapsing at the E2-stage, trivial extension problems. We start illus-
trating the use of the Hochschild-Serre spectral sequence by computing,
again, the homology of the symmetric group S3:

Example 1.10.12 (The symmetric group S3). The symmetric group S3

fits into a group extension

1 −→ Z/3 −→ S3 −→ Z/2 −→ 1,

where the quotient Z/2 acts on the kernel Z/3 by taking inverses. The
Hochschild-Serre spectral sequence then gives us:

E2
pq = Hp

(
Z/2;Hq(Z/3; Z)

)
=⇒ Hp+q(S3; Z),

where Z/2 acts on the coefficients H∗(Z/3; Z) by the maps induced by
taking inverses on Z/3; i.e., for k ∈ N, the group Z/2 acts by multiplication
by (−1)k on H2k+1(Z/3; Z) ∼= Z/3 (see Example 1.4.12).
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Figure 1.24: The Hochschild-Serre spectral sequence for S3

1. How does the E2-term look like? The description of the Z/2-action
on the homology of Z/3 gives the vertical axis of the E2-term of the
Hochschild-Serre spectral sequence (recall that zero-th homology is
given by taking coinvariants).
Of course, the horizontal axis is nothing but H∗(Z/2; Z). In view
of the torsion results provided by the transfer (Corollary 1.7.19), we
obtain

E2
pq = Hp

(
Z/2;Hq(Z/3; Z)

)
= 0

for all p, q ∈ N>0. Therefore, the E2-term looks as depicted in
Figure 1.24.

2. Are there non-trivial differentials? For any r ∈ N≥2, the differen-
tial dr of the Hochschild-Serre spectral sequence has degree (−r, r−1);
in particular, the horizontal and the vertical component of the bide-
gree have different parity. Hence, all differentials (dr)≥2 have to be
trivial in this example. In other words, the spectral sequence cor-
responding to the above extension collapses at the E2-stage, and
therefore E∞ = E2.

3. What about the extension problems? From the E∞-page of the spec-
tral sequence, for k ∈ N>0 we obtain short exact sequences of Abelian
groups of the following types:
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0→ Hk(S3; Z)→ Z/2→ 0 if k ≡ 1 mod 4
0→ Hk(S3; Z)→ 0 if k ≡ 2 mod 4
0→ Z/3→ Hk(S3; Z)→ Z/2→ 0 if k ≡ 3 mod 4
0→ Hk(S3; Z)→ 0 if k ≡ 0 mod 4.

The classification of finitely generated Abelian groups tells us that
all these extensions have to be trivial. Therefore, we obtain

Hk(S3; Z) ∼=



Z if k = 0

Z/2 if k ≡ 1 mod 4

0 if k ≡ 2 mod 4

Z/6 if k ≡ 3 mod 4

0 if k ≡ 4 mod 4 and k > 0.

Collapsing at the E2-stage, non-trivial extension problems. We now give
an example of an instance of the Hochschild-Serre spectral sequence that
still collapses at the E2-term, but where the resulting extension problems
are non-trivial:

Example 1.10.13 (The infinite dihedral group). We consider the infinite
dihedral group D∞ = 〈s, t | s2 = 1, sts = t−1〉; it is not difficult to see that
the group D∞ fits into an extension

1 −→ Z −→ D∞ −→ Z/2 −→ 1,

where the quotient Z/2 acts on the kernel Z by taking inverses. The
Hochschild-Serre spectral sequence then gives us:

E2
pq = Hp

(
Z/2;Hq(Z; Z)

)
=⇒ Hp+q(D∞; Z),

where Z/2 acts on the coefficients H∗(Z; Z) by the maps induced by taking
inverses in Z; i.e., the group Z/2 acts trivially on H0(Z; Z) ∼= Z and by
multiplication by −1 on H1(Z; Z) ∼= Z.

1. How does the E2-term look like? With help of the standard peri-
odic Z/2-resolution of Z (see the proof of Corollary 1.6.6) we see
that the E2-term of this spectral sequence has the shape depicted in
Figure 1.25.
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Figure 1.25: The Hochschild-Serre spectral sequence for D∞

2. Are there non-trivial differentials? Looking at the degrees of the
differentials, we see that the differentials all start or end in 0; so,
there are no non-trivial differentials. In other words, the spectral
sequence collapses at the E2-stage, and thus E∞ = E2.

3. What about the extension problems? We obtain H0(D∞; Z) ∼= Z,
and Hk(D∞; Z) = 0 for all even k ∈ N>0 from the spectral sequence.
For all odd k ∈ N, the E∞-term of the Hochschild-Serre spectral
sequence gives us short exact sequences of the following type:

0→ Z/2→ Hk(D∞; Z)→ Z/2→ 0.

Now the classification of finitely generated Abelian groups shows that
Hk(D∞; Z) ∼= Z/4 or Hk(D∞; Z) ∼= Z/2× Z/2.
In order to find out which of these alternatives actually happens, we
take advantage of the fact that the group extension

1 −→ Z −→ D∞ −→ Z/2 −→ 1,

we started with splits. In particular, we see that the identity ho-
momorphism Z/2 ∼= Hk(Z/2; Z) −→ Hk(Z/2; Z) ∼= Z/2 factors
throughHk(D∞; Z). Hence, Hk(D∞; Z) cannot be isomorphic to Z/4.
Therefore,

Hk(D∞; Z) ∼= Z/2⊕ Z/2

for all odd k ∈ N, which completes the computation of H∗(D∞; Z)
via the Hochschild-Serre spectral sequence.
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Figure 1.26: The Hochschild-Serre spectral sequence for Z/n

Reverse engineering. Sometimes, the Hochschild-Serre spectral sequence
also allows to compute the (co)homology of the quotient or the kernel if the
(co)homology of the extension group is known. As a toy example of this
principle, we demonstrate how to compute the homology of finite cyclic
groups out of the homology of Z:

Example 1.10.14 (Finite cyclic groups). Let n ∈ N>0. We consider the
group extension

0 −→ Z −→ Z −→ Z/n −→ 0

given by multiplication by n on Z; here, Z/n acts trivially on the kernel Z.
The Hochschild-Serre spectral sequence then gives us:

E2
pq = Hp

(
Z/n;Hq(Z; Z)

)
=⇒ Hp+q(Z; Z),

where Z/n acts trivially on the coefficients H∗(Z; Z).

1. How does the E2-term look like? In this case, we do not have
the complete information needed to compute the E2-term – because
H∗(Z/n; Z) is what we want to compute. However, we know enough
to describe the basic shape of the E2-term: Because

H0(Z; Z) ∼= Z, H1(Z; Z) ∼= Z, ∀k∈N>1 Hk(Z; Z) = 0

all entries above height 1 in the E2-term have to be zero.
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As H0(Z; Z) ∼= Z ∼= H1(Z; Z) is an isomorphism of Z[Z/n]-modules,
the zero-th and the first row have to contain isomorphic entries; i.e.,
E2
p0
∼= E2

p1 for all p ∈ N.
Clearly, E2

00 = H0(Z/n; Z) ∼= Z. Using the fact that the first homol-
ogy group with integral coefficients coincides with the Abelianisation,
we obtain

E2
10 = H1(Z/n; Z) ∼= Z/n.

All this information is illustrated in Figure 1.26.
However, at this point, we do not know what the other entries in
the zero-th and first row are. In particular, we cannot say anything
about the differential d2, yet.

2. How does the E3-term look like? Looking at the degrees of the dif-
ferentials, we see that the spectral sequence collapses at the E3-term;
hence, E∞ = E3.
Because Hk(Z; Z) = 0 for all k ∈ N>1 this implies that the only
non-trivial entries in the zeroth and the first row can be in the posi-
tions (0, 0), (1, 0) or (0, 1).
Furthermore, on the one hand, H1(Z; Z) ∼= Z, and on the other hand,
H1(Z; Z) fits into the short exact sequence

0 −→ Z/ im d2
20 −→ H1(Z; Z) ∼= Z −→ Z/n −→ 0

derived from the E∞-term. Therefore, im d2
20 = 0.

3. Refining the information on the E2-term. Using the information on
the E3-term we want to derive information on the E2-term. By
definition,

E3
pq =

ker d2
pq

im d2
p+2,q−1

for all p, q ∈ N. In particular, we obtain:
– for all p ∈ N>1 the differential d2

p0 is injective, and
– for all p ∈ N>2 the differential d2

p0 is surjective;
i.e., d2

p0 is an isomorphism for all p ∈ N>2. Together with the tiny
part of E2 that we already computed, we deduce inductively that

E2
p0 = E2

p1
∼=

{
Z/n if p ∈ N is odd

0 if p ∈ N>0 is even.
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Therefore, Hk(Z/n; Z) = 0 for even k ∈ N>0, and Hk(Z/n) ∼= Z/n
for all odd k ∈ N.

Non-trivial differentials in E2. Another nice example of the Hochschild-
Serre spectral sequence is the computation of the Heisenberg group via the
“obvious” central extension:

Example 1.10.15 (The Heisenberg group). Using the Hochschild-Serre
spectral sequence, one can also determine the (co)homology of the 3-di-
mensional discrete Heisenberg group. (Exercise.)

In this example, the necessary information about the differentials in
the E2-term can be obtained from the fact that the first homology with
integral coefficients coincides with the Abelianisation.

Naturality, multiplicativity. Of course, the multiplicative structure and
naturality conveniently add rigidity to the spectral sequences:

Example 1.10.16 (The dihedral group D4). The dihedral group D4 fits
into a short exact sequence

1 −→ Z/4 −→ D4 −→ Z/2 −→ 1,

where the quotient Z/2 acts on the kernel Z/4 by taking inverses.
We now wish to compute cohomology of H∗(D4; Z/2) (an example that

we would not be able to treat without the technique of spectral sequences!).
Again, it is not clear a priori how the differentials on the E2-term look like.

Comparing the cohomological Hochschild-Serre spectral sequence for the
extension for D4 above with the cohomological Hochschild-Serre spectral
sequence of the trivial extension

1 −→ Z/4 −→ Z/4 −→ 1 −→ 1,

and using the fact that the cohomological Hochschild-Serre spectral se-
quence is multiplicative, one can show that

Hk(D4; Z/2) ∼= (Z/2)k+1

for all k ∈ N>0; moreover, it is also possible to determine the product
structure [1, Beispiel 7.3.1].



1.11

Exercises

Most of the exercises are grouped into collections of four exercises, covering
the material of one week of lectures. The exercises vary in difficulty; some of
them are straightforward applications of the material presented in the text,
while others require additional knowledge (e.g., from algebraic topology).

Exercise sheet #1

Exercise 1.1 (Group rings and subrings of C).
1. Let ζ5 ∈ C be a primitive fifth root of unity. Are the rings Z[Z/5] and

Z[ζ5] ⊂ C isomorphic?
2. Are there non-trivial groups whose integral group ring is isomorphic to a

subring of C ?

Exercise 1.2 (A functorial model of classifying spaces). Let G be a torsion-free
group, and let ∆G be the (infinite-dimensional) simplex (with the weak topology)
spanned by G. The left translation action of G on G induces a continuous
G-action on ∆G. Show that the quotient space G \∆G is a model of BG.

Exercise 1.3 (Homology of the projective plane with twisted coefficients).
1. Let Zw be the Z[Z/2]-module whose underlying Z-module is Z with the

Z/2-action given by the generator of Z/2 acting by multiplication by −1.
Compute H∗(RP2; Zw) and H∗(RP2; Zw). Compare the results with (co)-
homology of RP2 with Z-coefficients.

2. Formulate generalised Poincaré duality with twisted coefficients for closed
connected (but not necessarily orientable) manifolds.

Exercise 1.4 ((Co)Homology of Z/2).
1. Compute group homology and group cohomology of Z/2 with arbitrary

coefficients (using the topological description).
2. Generalise the result for H∗(Z/2; Q) and H∗(Z/2; Q) to arbitrary finite

groups!
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Exercise sheet #11
2

Exercise 1.5 (The infinite dihedral group). The infinite dihedral group is the
isometry group of Z (equipped with the metric induced by the inclusion Z ↪→ R
into the Euclidean line). We denote the infinite dihedral group by D∞.

1. Find a nice presentation of D∞ by generators and relations (for instance,
analogous to finite dihedral groups).

2. How can D∞ be written as a free product of two small groups?
3. Compute the (co)homology of D∞ with constant coefficients via the topo-

logical description.
4. Deduce that there is no finite-dimensional model of the classifying space

of D∞.
[There is however a finite-dimensional model of the classifying space for
proper actions of D∞.]

5. Prove that D∞ is an extension of Z/2 by Z; what is the induced action
of Z/2 on Z ? Is the cohomology class corresponding to this extension
trivial?
In particular, D∞ is virtually Z; compare H∗(D∞; Q) with H∗(Z; Q).

6. Compute H1(Z/2; Z) for all Z[Z/2]-module structures on Z via the com-
binatorial description.

7. Compute group (co)homology of the Klein four group D2 with constant
coefficients via the topological description and compare the result with
group (co)homology of Z/2 and D∞ respectively.
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Exercise sheet #2

Exercise 1.6 (Bar resolution). Let G be a discrete group.
1. Show that C∗(G) together with the map ∂ : C∗(G) −→ C∗(G) (see Defini-

tion ??) indeed forms a ZG-chain complex.
2. Show that the complex C∗(G) ε // Z is contractible by giving an explicit

Z-chain contraction; here, ε : C0(G) −→ Z is the Z-homomorphism map-
ping all elements of G to 1.

Exercise 1.7 (Extensions of Z/3 by Z/2).
1. Show that H2(Z/3; Z) contains at least three elements by giving three

non-equivalent extensions of Z/3 by Z (here, Z carries the only possible
Z/3-action, the trivial one).

2. Conclude that there is no Z[Z/3]-chain contraction of C∗(G) ε // Z .

Exercise 1.8 (Classification of extensions). Let Q be a discrete group and let
A be a ZQ-module. Show that the maps

H2(Q;A)←→ E(Q,A)
[f ] 7−→ [0→ A→ Gf → Q→ 0]
ηE ←− [ E

constructed in ?? are mutually inverse.

Exercise 1.9 (Naturality of the classification of extensions). Show that the
classification of extensions with Abelian kernel is natural in the following sense:
Let (ϕ, Φ): (Q,A) −→ (Q′, A′) be a morphism in GrpMod, and let E ∈ E(Q,Q)
and E′ ∈ E(Q′, A′) be represented by the extensions 0 → A → G → Q → 1
and 0 → A′ → G′ → Q′ → 1 respectively. Show that there exists a group
homomoprhism ϕ̃ : G −→ G′ making the diagram

0 // A //

Φ

��

G //

eϕ
��
�
�
� Q //

ϕ

��

1

0 // A′ // G′ // Q′ // 1

commutative if and only if (in H2(Q;ϕ∗A′))

H2(idQ; Φ)(ηE) = H2(ϕ; idA′)(ηE′).
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Exercise sheet #3

Exercise 1.10 (Projective modules over group rings).
1. For which groups G is the trivial ZG-module Z projective?
2. For which groups G is the trivial QG-module Q projective?

Exercise 1.11 (Cohomological dimension). Let G be a group. Then

cd G := inf
{
n ∈ N ∪ {∞}

∣∣ Z admits a projective ZG-resolution of length n
}

is the cohomological dimension of G; analgously,

gdim G := inf
{
n ∈ N ∪ {∞}

∣∣ there is a model of BG of dimension n
}

is the geometric dimension of G.
1. Show that the cohomological dimension of a group is at moast as big as

the geometric dimension.
2. Which groups have cohomological dimension equal to 0 ?
3. Let n ∈ N. Determine the cohomological and the geometrical dimension

of Zn.

Exercise 1.12 (Exactness properties of Hom). Let R be a ring.
1. Show that a seqeuence B′ f ′

// B
f ′′
// B′′ // 0 of R-modules is exact if

and only if for all R-modules A the corresponding sequence

0 // HomR(B′′, A)
HomR(f ′′, idA)

// HomR(B,A)
HomR(f ′, idA)

// HomR(B′, A)

is exact.
2. Give an example for a Z-module A and a short exact sequence of Z-modules

witnessing that the functor HomZ( · , A) is not exact.

Exercise 1.13 (Adjointness and exactness). Let R and S be rings.
1. Prove that an additive functor F : Mod-R −→ Mod-S having a right ad-

joint functor is right exact.
2. Show that the tensor product functor · ⊗R A : Mod-R −→ Ab is right

exact for every left R-module A.
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Exercise sheet #4

Exercise 1.14 (Tor, examples).
1. Compute the groups TorQ[X]

∗
(
Q[X]/X2009, Q[X]/X2010

)
via a suitable pro-

jective resolution.
2. Does TorZ[X]

2 (A,B) = 0 hold for all Z[X]-modules A and B ?

Exercise 1.15 (Partial projective resolutions). Let G be a discrete group, let
n ∈ N, and let

Pn
∂n // Pn−1

// · · · // P1
∂1 // P0

ε // Z // 0

be a partial projective ZG-resolution of the trivial ZG-module Z of length n
(i.e., the ZG-modules P0, . . . , Pn are projective, the sequence above is exact, but
the ZG-homomorphism ∂n is not necessarily injective).

1. Show that the partial projective resolution above can be extended to a
projective ZG-resolution of Z.

2. Show that there is an exact sequence of the following type:

0 −→ Hn+1(G; Z) −→
(
Hn(P∗)

)
G
−→ Hn

(
(P∗)G

)
−→ Hn(G; Z) −→ 0

Exercise 1.16 (Hurewicz homomorphism and group cohomology).
1. Let n ∈ N≥2, and let X be a (pointed) CW-complex with fundamental

group G whose universeal covering is (n− 1)-connected. Show that there
is an exact sequence

πn(X)
hX

n // Hn(X; Z) // Hn(G; Z) // 0,

where hXn : πn(X) −→ Hn(X; Z) is the Hurewicz homomorphism in de-
gree n.
Hints. Use Exercise 1.15.

2. Conclude that the Hurewicz homomorphism π2(X) −→ H2(X; Z) is sur-
jective for all connected (pointed) CW-complexes X with free fundamental
group.

Exercise 1.17 (Grp and GrpMod and pre-additive categories). A category C
is called pre-additive if for all objects X and Y in C the sets MorC(X, Y ) can be
endowed with the structure of Abelian groups in such a way that composition
of morphisms is bilinear.

1. Is there a pre-additive structure on the category Grp of groups?
2. Is there a pre-additive structure on the category GrpMod ?
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Exercise sheet #5

Exercise 1.18 (Geometric dimension and torsion).
1. Let G be a discrete group that is not torsion-free. Show that

gdim G =∞ = cdG.

(I.e., there is no finite dimensional model of BG and there is no projective
resolution of finite length of the trivial ZG-module Z.)

2. Does there exist a torsion-free group with infinite geometric/cohomological
dimension?

Exercise 1.19 (Z/p-actions on Z/pn). Let p ∈ N prim, let n ∈ N>1, and let
a ∈ Z with ap ≡ 1 mod pn. Prove the following:

1. If p 6= 2, then a ≡ 1 mod pn−1.
2. If p = 2, then a ≡ ±1 mod 2n−1.

Exercise 1.20 (Generalised quaternion groups). For m ∈ N≥2 let Qm denote
the m-th generalised quaternion group, i.e., Qm is the subgroup of the quater-
nions H generated by the elements eπi/m and j. Determine H2009(Qm; Z), where
Qm acts trivially on Z.

Exercise 1.21 (Homology of SL(2, Z)).
1. Let m, n ∈ Z, and let ϕ : Z/m −→ Z/n be a group homomorphism.

Compute the induced homomorphism

H∗(ϕ; idZ) : H∗(Z/m; Z) −→ H∗(Z/n; Z)

(where the groups in question act trivially on the coefficients Z).
2. Compute H∗(SL(2, Z); Z), where SL(2, Z) acts trivially on Z.

Hints. Use the fact that SL(2, Z) is isomorphic to Z/4 ∗Z/2 Z/6, where
the amalgamated free product is taken with respect to the homomor-
phisms Z/2 −→ Z/4 and Z/2 −→ Z/6 given by multiplication by 2 and 3
respectively.
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Exercise sheet #6

Choose one of the following topics (or any other topic related to group (co)homol-
ogy), and answer the questions (partially) with help of the literature – try to find
suitable literature on http://www.ams.org/mathscinet, http://books.google.com,
http://scholar.google.com, . . . ; further hints are given below. You do not have
to understand these works in detail – it suffices to understand the important
ideas and concepts and the overall structure.

Write a summary of you results (1–4 pages), preferably in such a way that
you are able to give a short talk in class.

Exercise 1.22 (More homological algebra).
1. What are Abelian and derived categories?
2. What are derived functors in this context?

Hints.
–S.I.Gelfan,Y.I.Manin.MethodsofHomologicalAlgebra,SpringerMonographsinMathemat-

ics,Springer,2002.[ChapterIII]
–C.Weibel.Anintroductiontohomologicalalgebra,Volume38ofCambridgestudiesinadvanced

mathematics,CambridgeUniversityPress,1994.[Chapter1and10]

Exercise 1.23 (Groups with small homology).
1. Are the non-trivial discrete groups G with H∗(G; Z) ∼= H∗(1; Z) ?
2. What consequences does this have for the realisability of given (co)homol-

ogy groups as group (co)homology?
Hints.

–Keyword:“acyclicgroups”
–J.N.Mather.Thevanishingofthehomologyofcertaingroupsofhomeomorphisms,Topology10,

p.297–298,1971.
–D.M.Kan,W.P.Thurston.EveryconnectedspacehasthehomologyofaK(π,1),Topology15,

p.253–258,1976.

Exercise 1.24 (Geometric meaning of group cohomology in degree 1). Let G
be a discrete group.

1. What is the geometric meaning of H1(G; ZG) ?
2. What can be said about the shape of H1(G; ZG) ?

Hints.
–Keyword:“endsofgroups/spaces”
–R.Geoghegan.TopologicalMethodsinGroupTheory,Volume243ofGraduateTextsinMath-

ematics,Springer,2008.[Chapter13.3–13.5]
–J.R.Stallings.Ontorsion-freegroupswithinfinitelymanyends,AnnalsofMathematics88,

p.312–334,1968.
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Exercise sheet #7

Exercise 1.25 (Transfer and chains of subgroups). Let G be a group and let
H ⊂ G and K ⊂ G be subgroups of finite index with K ⊂ H. Show that

resHK ◦ resGH = resGK ,

corGH ◦ corHK = corGK

holds in (co)homology with arbitrary ZG-coefficients.

Exercise 1.26 ((Co)Homology of S3). Compute the (co)homology of S3 with
Z-coefficients (with trivial S3-action) with help of the primary decomposition.

Exercise 1.27 (Classical transfer).
1. Prove (e.g., using the topological description of transfer) that homological

transfer with Z-coefficients coincides with the classical transfer from group
theory. The group theoretical transfer for a subgroup H ⊂ G of finite
index is given by

Gab −→ Hab

[g] 7−→
[[G:H]∏
k=1

gk · g ·R(gk · g)−1

]
,

where {g1, . . . , g[G:H]} ⊂ G is a system of representatives of H \ G and
R : G −→ {g1, . . . , g[G:H]} is the map associating with every group ele-
ment g ∈ G the representative of the corresponding coset H · g.

2. Let p ∈ N>2 be prime. Show that the transfer corresponding to the
(multiplicative) subgroup {−1, 1} in Z/p× coincides with the Legendre
symbol with respect to p.
Hints. Use the Gauß lemma for quadratic residues.

Exercise 1.28 (Transfer is invisible in GrpMod and GrpMod–). Show that the
transfer maps in group (co)homology in general are not induced by morphisms
in GrpMod or GrpMod–.
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Exercise sheet #8

Exercise 1.29 (Cohomology ring of S3). Calculate the cohomology ring of the
symmetric group S3.

Exercise 1.30 (Cohomology ring of D∞). Calculate the cohomology ring of the
infinite dihedral group D∞ ∼= Z/2 ∗ Z/2.

Exercise 1.31 (Comparison of the product structure with the topological cup-
product). Let G be a group and let XG be a model of BG. Show that the canon-
ical isomorphism H∗(G; Z) ∼= H∗(XG; Z) is compatible with the cup-product in
group cohomology and the cup-product on singular (or cellular) cohomology.

Exercise 1.32 (Algebraic properties of the cup-product). Show that the cup-
product in group cohomology has the following properties: Let G be a discrete
group.

1. Multiplicative unit. Show that the class 1 ∈ Z ∼= H0(G; Z) is a unit for
the cup-product, i.e., show that

1 ∪ α = α = α ∪ 1

holds for all ZG-modules A and all classes α ∈ H∗(G;A), where we use
the canonical identifications Z⊗Z A ∼= A ∼= A⊗Z Z.

2. Graded commutativity. Let A and A′ be two ZG-modules. Prove that

α′ ∪ α = (−1)|α|·|α
′| ·H∗(idG; t)(α ∪ α′)

holds for all cohomology classes α ∈ H∗(G;A) and α′ ∈ H∗(G;A′), where
t : A ⊗Z A′ −→ A′ ⊗Z A is the ZG-homomorphism interchanging the two
factors.
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Exercise sheet #9

Exercise 1.33 (Groups with periodic cohomology).
1. Describe the group (co)homology of groups having periodic cohomology

with period 4 in as simple terms as possible.
2. Compute the group (co)homology of gerenalised quaternion groups.
3. Deduce the following: If G is a group with periodic cohomology and if

k ∈ Z is odd, then Ĥk(G; Z) = 0.

Exercise 1.34 (Finite groups acting freely on spheres). Let G be a finite group
that acts freely on a sphere. Prove that G has periodic cohomology without
using the duality theorem for Tate cohomology.
Hints. A strategy of proof is outlined in Brown’s book [4, Exercise V.3.3].

Exercise 1.35 (Some projective resolutions). Let G be a finite group.

1. Show that if 0 // Z
η
// P0

// P1
// . . . is an exact ZG-chain complex with

projective modules (Pn)n∈N, then η �P∗ is a strong relatively injective ZG-
resolution of Z.

2. Prove the following: If P is a finitely generated projective ZG-module,
then also Hom G(P, ZG) is a finitely generated projective ZG-module and
for all ZG-modules A there is a natural isomorphism

HomG

(
Hom G(P, ZG), A

) ∼= P ⊗G A

of Abelian groups. (This was used when comparing Tate cohomology in
negative degrees with ordinary group homology.)
Hints. For a ZG-module P we denote by Hom G(P, ZG) the ZG-module
whose underlying Abelian group is HomG(P, ZG) endowed with the fol-
lowing G-action:

G× Hom G(P, ZG) −→ Hom G(P, ZG)

(g, f) 7−→
(
x 7→ f(x) · g−1

)
.

Exercise 1.36 (Periodic cohomology with large period). Are there groups with
periodic cohomology of arbitrarily large period?
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Exercise sheet #10

The three-dimensional Heisenberg group is the group

H :=


1 x z

0 1 y
0 0 1

∣∣∣∣∣∣ x, y, z ∈ Z

 ⊂ SL(3, Z).

Exercise 1.37 (Algebraic properties of the Heisenberg group).
1. Show that the Heisenberg group fits into a central extension of the type

1 −→ Z −→ H −→ Z⊕ Z −→ 1.

2. Compute the Abelianisation Hab of the Heisenberg group.

Exercise 1.38 (Homology of the Heisenberg group). Calculate the homol-
ogy H∗(H; Z) of the Heisenberg group with trivial coefficients via the Hochschild-
Serre spectral sequence.

Exercise 1.39 (Cohomological dimension of the Heisenberg group).
1. Let G be a group. Show that the cohomological dimension (see exercise

sheet #3) can also be described via

cd G = inf
{
n ∈ N

∣∣ for all j ∈ N>n we have Hj(G; · ) = 0
}
.

2. Using the Hochschild-Serre spectral sequence prove that

cd G ≤ cd Q + cd N

holds for all group extensions 1 −→ N −→ G −→ Q −→ 1.
3. Conclude that the Heisenberg group has cohomological dimension 3.

Exercise 1.40 (A model of the classifying space for the Heisenberg group).
1. Show that there exists an oriented closed connected three-dimensional

manifold that is a model of the classifying space of the Heisenberg group H.
2. Use this model and Poincaré duality to compute the homology of H with

Z-coefficients.
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2
Bounded cohomology



2.1

Introduction

There are many examples of successfully enriching algebraic structures and
algebraic invariants related to group theory with metric data. One instance
of this paradigm is bounded cohomology.

What is bounded cohomology? Bounded cohomology is a functional ana-
lytic variant of group cohomology turning groups and Banach modules over
groups into graded semi-normed vector spaces. I.e., on objects bounded
cohomology looks like

Hn
b (G;V ),

where
– the number n ∈ N is the degree in the grading of the graded semi-

normed vector space H∗
b(G;V ),

– the first parameter is a (discrete) group G,
– and the second parameter is a Banach G-module V , the so-called

coefficients.
The homological sibling of bounded cohomology is so-called `1-homology.

How can we construct bounded cohomology? The main theme in con-
structing bounded cohomology is to pass to a functional analytic setting
by replacing the ring ZG by `1(G) and by replacing ordinary cocycles
by bounded cocycles; there are three main (equivalent) descriptions of
bounded cohomology:

– Topologically (via classifying spaces)
– Combinatoriallly (via the Banach bar resolution)
– Algebraically (via relative homological algebra).

Why is bounded cohomology interesting? First, bounded cohomology
is a fascinating theory in its own right linking topology, group theory,
functional analysis and measure theory; while it is similar to group coho-
mology and singular cohomology in several respects, there are also striking
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differences – e.g., the mapping theorem for bounded cohomology of spaces
(Theorem 2.8.2).

Second, bounded cohomology helps to solve the following problems:
– Which mapping degrees can occur for maps between two given man-

ifolds? (Section 2.9)
– Can we measure the size of certain characteristic classes? [19, 5]
– Which groups can act interestingly on the circle? [18]
– Does a given group admit quasi-morphisms to R that are not a per-

turbation of an actual group homomorphism? (A quasi-morphism
from a discrete group G to R is a map G −→ R that satisfies multi-
plicativity up to a uniformly bounded error.) (Section 2.5.4)

Moreover, there are many applications of bounded cohomology to rigidity
theory; unfortunately these are beyond the scope of these lectures [8, 38].

Overview

In the second part of the semester we will study the following topics:
– Understand and compare the three basic descriptions of bounded

cohomology
– Application of bounded cohomology to the study of quasi-morphisms

(Section 2.5.4)
– Relation of bounded cohomology and amenability; amenable groups

will play a rôle similar to the one of finite groups in ordinary group
cohomology (Section 2.6)

– The mapping theorem in bounded cohomology (Section 2.8)
– Applications to the simplicial volume (Section 2.9)

For simplicity, we will only treat the case of bounded cohomology of
discrete groups; an extensive treatment of the general case is provided in
Monod’s book [37].
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2.2
The domain category for

bounded cohomology

The basic algebraic objects in the world of bounded cohomology are Banach
modules with isometric group actions and the `1-completion of the real
group ring.

Definition 2.2.1 (Banach G-modules). Let G be a (discrete) group.
– A (left) normed G-module is a normed R-vector space V together

with an isometric G-action G×V −→ V . (Analogously, right normed
G-modules are defined.)

– A Banach G-module is a Banach space together with an isometric
G-action.

– A morphism of normed G-modules is a G-equivariant bounded linear
map between normed G-modules.

Recall that a Banach space is nothing but a normed R-vector space that
is complete with respect to the given norm; a linear map Φ: V −→ W
between normed vector spaces is bounded if

‖Φ‖ := sup
x∈V \{0}

‖Φ(x)‖
‖x‖

is finite.
A fundamental example of a Banach G-module is the `1-completion of

the real group ring:

Definition 2.2.2 (`1-group algebra). Let G be a discrete group. The
`1-group algebra `1(G) is the completion of the real group ring RG :=
R⊗Z ZG with respect to the `1-norm

‖ · ‖1 : RG −→ R∑
g∈G

ag · g 7−→
∑
g∈G

|ag|.

183
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I.e., the underlying Banach space of `1(G) is the set of all `1-summable
series over G with coefficients in R, and the multiplication is given by the
usual multiplication of series.

Notice that every Banach G-module is a module over `1(G) (because the
action is isometric).

Example 2.2.3 (`1-group algebras).

– If G is a finite group, then `1(G) = RG.
– For the group Z of the integers, `1(Z) is the space of absolutely

convergent formal power series in one variable.

Moreover, Banach G-modules arise naturally in the `1-completion of the
bar resolution complex or in the `1-completion of the singular chain com-
plex of the universal covering of a space with fundamental group G.

As indicated in the introduction, the domain categories for bounded
cohomology and `1-homology incorporate both a group parameter and a
module parameter, the coefficients. The exact definition is just a straight-
forward translation of the the definition of the domain categories GrpMod
and GrpMod– for ordinary group (co)homology into our Banach setting:

Definition 2.2.4 (GrpBan, GrpBan–). The categories GrpBan, GrpBan–

are defined as follows:

1. GrpBan : The objects of the category GrpBan are pairs (G, V ), where
G is a discrete group and V is a (left) Banach G-module.
The set of morphisms in GrpBan between two objects (G, V ) and
(H,W ) is the set of paris (ϕ,Φ), where

– ϕ : G −→ H is a group homomorphism, and
– Φ: V −→ ϕ∗W is a morphism of Banach G-modules; here, ϕ∗W

is the Banach G-module whose underlying Banach space is W
and whose (isometric) G-action is given by

G×W −→ W

(g, w) 7−→ ϕ(g) · w.

The composition of morphisms is defined by composing both compo-
nents (notice that this is well-defined in the second component).
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2. GrpBan– : The category GrpBan– has the same objects as the cat-
egory GrpBan, i.e., pairs of groups and Banach modules over this
group.
The set of morphisms in GrpBan– between two objects (G, V ) and
(H,W ) is the set of pairs (ϕ,Φ), where

– ϕ : G −→ H is a group homomorphism, and
– Φ: ϕ∗W −→ V is a morphism of Banach G-modules.

The composition of morphisms is defined by covariant composition
in the first component and contravariant composition in the second
component.

As in the case of ordinary group (co)homology, we need viable notions
of homomorphism spaces, tensor products, invariants and coinvariants.

Definition 2.2.5 (Bounded operators, projective tensor products). Let U
and V be two normed R-vector spaces.

– We write B(U, V ) for the normed R vector space of all bounded linear
operators of type U −→ V with respect to the operator norm. (If V
is a Banach space, then so is B(U, V )).

– We call U# := B(U,R) the dual space of U ; the operator norm on U#

is denoted by ‖ · ‖∞.
– We write U⊗V for the projective tensor product of U and V ; the pro-

jective tensor product is the completion of the tensor product U⊗RV
of R-vector spaces with respect to the projective norm given by

‖x‖ := inf

{∑
j

‖uj‖ · ‖vj‖
∣∣∣∣ ∑

j

uj ⊗ vj represents x ∈ U ⊗R V

}

for all x ∈ U ⊗R V .

The norm on the tensor product described above is the biggest sensible
norm on the tensor product; the name projective tensor product derives
from the fact that the projective tensor product is well-behaved with re-
spect to quotient maps of Banach spaces [46, Proposition 2.5].

Remark 2.2.6 (Adjunction properties). The operations B and ⊗ are ad-
joint on the category of Banach spaces in the following sense: For all
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Banach spaces U , V and W there is a natural isometric isomorphism

B(U ⊗ V,W )←→ B
(
U,B(V,W )

)
f 7−→

(
u 7→ (v 7→ f(u⊗ v))

)(
u⊗ v 7→ f(u)(v)

)
←− [ f

of Banach spaces.

In a way, bounded cohomology and `1-homology can be viewed as be-
ing “derived functors” of the invariants and coinvariants functors in this
Banach context:

Definition 2.2.7 ((Co)invariants of Banach G-modules). Let G be a dis-
crete group, and let V be a Banach G-module.

– The invariants of V are the Banach space

V G := {x ∈ V | ∀g∈G g · x = x}.

– The coinvariants of V are given by

VG := V/W,

where W ⊂ V is the subspace generated by {g ·v−v | g ∈ G, v ∈ V }.
Caveat. The subspace W is not closed in V in general; therefore,
the algebraically defined coinvariants V/W in general do not form a
Banach space with respect to the norm on V . On the other hand,
the norm on V turns VG = V/W into a Banach space.

Convention 2.2.8 (Morphism spaces and projective tensor products of
Banach G-modules). Let G be a discrete group. We follow the convention
that (if not explicitly stated otherwise) all Banach G-modules are left Ba-
nach G-modules; taking inverses in G leads to an involution on `1(G) that
enables us to convert left Banach G-modules into right Banach G-modules
and vice versa.

More explicitly, we use the following conventions for tensor products and
morphism spaces: Let U and V be two left Banach G-modules.

– Then B(U, V ) is a Banach G-module with respect to the diagonal
action

G×B(U, V ) −→ B(U, V )

(g, f) 7−→
(
u 7→ g · f(g−1 · u)

)
,
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and we write BG(U, V ) :=
(
B(U, V )

)G
.

– Moreover, U ⊗V is a Banach G-module with respect to the diagonal
action (given by the extension to the completion of)

G× U ⊗ V −→ U ⊗ V
(g, u⊗ v) 7−→ (g · u)⊗ (g · v),

and we write U ⊗G V := (U ⊗ V )G.

Example 2.2.9. If G is a discrete group and V is a Banach G-module,
then by construction (where G acts trivially on R)

V G = BG(R, V ) and VG = V ⊗G R.

Example 2.2.10 (Invariants and coinvariants as functors). It is not diffi-
cult to see that we can extend the definition of invariants to a (contravari-
ant) functor GrpBan– −→ Ban and that we can extend the definition of
coinvariants to a functor GrpBan −→ Ban.

Here, Ban denotes the category of Banach spaces (with bounded opera-
tors as morphisms).

Clearly, the adjunction in Remark 2.2.6 is G-equivariant.
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2.3
Homology

of normed chain complexes

In the following, we introduce the basic homological framework – normed
chain complexes and their homology. A normed chain complex is a chain
complex equipped with a norm such that the boundary operators all are
bounded operators. In particular, the homology of a normed chain complex
inherits a semi-norm. For example, in the case of the singular chain com-
plex equipped with the `1-norm this semi-norm contains valuable geometric
information such as the simplicial volume.

In order to understand this semi-norm in homology it suffices to under-
stand the semi-norm in homology of the corresponding completed chain
complex or the dual cochain complex; in the case of singular homology,
this corresponds to the investigation of `1-homology and bounded coho-
mology respectively.

Also in the case of bounded cohomology of groups, completions and dual
cochain complexes lie at the heart of the constructions; there we start out
with the R-valued bar complex.

After introducing the basic definitions for normed chain complexes, we
discuss the fundamental properties of semi-norms in homology. The last
section is concerned with the equivariant setting.

The discussion of the main examples of these concepts follows in the
subsequent sections.

2.3.1 Normed chain complexes

In the following, we use the convention that Banach spaces are Banach
spaces over R and that all (co)chain complexes are indexed over the set N
of natural numbers.

Definition 2.3.1 (Normed chain complexes).

189
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– A normed chain complex is a chain complex of normed vector spaces
all of whose boundary morphisms are bounded linear operators. Anal-
ogously, normed cochain complexes are defined.

– A Banach (co)chain complex is a normed (co)chain complex consist-
ing of Banach spaces.

– A morphism of normed (co)chain complexes is a (co)chain map be-
tween normed (co)chain complexes consisting of bounded linear op-
erators.

In our context, the fundamental examples of the concept of normed chain
complexes are given by the singular chain complex and the bar resolution
equipped with the obvious `1-norms:

Example 2.3.2 (`1-Norms). Both the singular chain complex and the
R-valued bar complex carry natural `1-norms:

– Let X be a topological space. We define the `1-norm ‖ · ‖1 on the
singular chain complex C∗(X; R) as the `1-norm with respect to the
basis given by the set of singular simplices. In other words: For n ∈ N
let (where the chains are supposed to be in reduced form, that is no
singular simplex occurs more than once in the sum representation)

Cn(X; R) −→ R
k∑
j=0

aj · σj 7−→
k∑
j=0

|aj|.

This norm turns the singular chain complex into a normed chain
complex: the boundary operator in degree n has operator norm at
most n+ 1, as follows easily from the definitions.
If f : X −→ Y is a continuous map, then the corresponding chain
map C∗(f ; idR) : C∗(X; R) −→ C∗(Y ; R) consists of bounded linear
maps (of operator norm at most 1), and so is a morphism of normed
chain complexes.

– Let G be a discrete group. Then the R-valued bar complex

CR
∗ (G) := C∗(G)⊗Z R

is a normed chain complex with respect to the `1-norm ‖ · ‖1 defined
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by

CR
n (G) −→ R∑

g∈Gn+1

ag · g0 · [g1| · · · |gn] 7−→
∑

g∈Gn+1

|ag|;

again, the definition of the boundary operator in degree n shows that
it is a bounded operator of operator norm at most n+ 1.
If ϕ : G −→ H is a group homomorphism, then the corresponding
chain map CR

∗ (ϕ) : CR
∗ (G) −→ CR

∗ (H) consists of bounded linear op-
erators of operator norm at most 1; therefore, CR

∗ (ϕ) is a morphism
of normed chain complexes.

Definition 2.3.3 (Dual cochain complex). Let (C∗, ∂∗) be a normed chain
complex, and let V be a Banach space. Then the dual cochain com-
plex ((C#)∗, (∂#)∗) is the Banach cochain complex defined by

(C#)n := (Cn)
#

for all n ∈ N, together with the coboundary operators

(∂#)n : (C#)n −→ (C#)n+1

f 7−→ (−1)n+1 ·
(
c 7→ f(∂n+1(c))

)
for all n ∈ N; recall that ·# stands for the (topological) dual normed vector
space and that dual vector spaces are complete.

Definition 2.3.4 (Completions of normed chain complexes). Let (C∗, ∂∗)
be a normed chain complex. Then the boundary operators ∂n can be
extended to boundary operators ∂n : Cn −→ Cn−1 of the completions,
which are bounded operators as well and which satsify ∂n+1 ◦ ∂n = 0. The
Banach chain complex (C∗, ∂∗) is the completion of (C∗, ∂∗).

(Similarly, completions of normed cochain complexes are defined.)

For example, completing the bar complex or the singular chain complex
with respect to the `1-semi-norm leads to `1-homology.

Clearly, for all normed chain complexes C∗ we have (C#)∗ = (C
#
)∗.
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2.3.2 Semi-norms in homology

The presence of chain complexes calls for the investigation of the corre-
sponding homology. In the case of normed chain complexes, the homology
groups carry an additional piece of information – the semi-norm.

Definition 2.3.5 (Semi-norm on homology).
– Let (C∗, ∂∗) be a normed chain complex and let n ∈ N. The n-th

homology of C∗ is the quotient

Hn(C∗) :=
ker(∂n : Cn → Cn−1)

im(∂n+1 : Cn+1 → Cn)
.

– Let (C∗, δ∗) be a normed cochain complex and let n ∈ N. The n-th
cohomology of C∗ is the quotient

Hn(C∗) :=
ker(δn : Cn → Cn−1)

im(δn−1 : Cn−1 → Cn)
.

– Let (C∗, ∂∗) be a normed chain complex. The norm ‖·‖ on C∗ induces
a semi-norm, also denoted by ‖·‖, on the homologyH∗(C∗) as follows:
If α ∈ Hn(C∗), then

‖α‖ := inf
{
‖c‖

∣∣ c ∈ Cn, ∂(c) = 0, [c] = α
}
.

Similarly, we define a semi-norm on the cohomology of normed cochain
complexes.

Caveat 2.3.6. In general, the semi-norm on the homology of a normed
cochain complex is not a norm because the images of the boundary opera-
tors are not necessarily closed (even if the complex in question is a Banach
chain complex). Therefore, it is sometimes convenient to look at the re-
duced (co)homology (defined as the quotient of the kernel by the closure
of the image).

Example 2.3.7 (`1-Semi-norm in homology). For example, the `1-norms
from Example 2.3.2 induce `1-semi-norms on singular homology with real
coefficients and on group homology with real coefficients.
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· · ·
once twice three times · · ·

Figure 2.1: Simplices wrapping around the circle

An example of an interesting invariant for oriented closed connected
manifolds emerging from the `1-norm in singular homology is the simplicial
volume, which is nothing but the `1-semi-norm of the fundamental class
(see Section 2.9).

Definition 2.3.8 (Simplicial volume). Let M be an oriented closed con-
nected manifold of dimension n. The simplicial volume of M is defined
by

‖M‖ := ‖[M ]‖1 = inf
{
‖c‖1

∣∣ c ∈ Cn(M ; R) is a fundamental cycle of M
}

where [M ] ∈ Hn(M ; R) is the fundamental class of M with real coefficients.

Example 2.3.9 (Simplicial volume of the circle). The simplicial volume of
the circle is zero: For d ∈ N>0 let σd : [0, 1] −→ S1 be the singular 1-simplex
given by wrapping the unit interval d times around S1 (Figure 2.1). A
straightforward calculation shows that 1/d · σd is an R-fundamental cycle
of S1; hence,

0 ≤ ‖S1‖ ≤ inf
d∈N>0

∥∥∥1

d
· σd

∥∥∥
1
= inf

d∈N>0

1

d
= 0,

as claimed.

We will discuss the simplicial volume and its fascinating relationship
with Riemannian geometry and bounded cohomology in more detail in
Section 2.9.
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How can we compute such semi-norms in homology? It turns out that
the semi-norm in homology of a normed chain complex can be described in
terms of the homology of the completion or the dual of the chain complex
in question. This means, for example, that the simplicial volume can be
described in terms of `1-homology and bounded cohomology; moreover,
these theories seem to be more appropriate for the study of simplicial
volume than singular (co)homology.

Proposition 2.3.10 (Semi-norm on homology via completions [47, Lemma 2.9]).

1. Let D∗ be a normed chain complex and let C∗ be a dense subcomplex.
Then the induced map H∗(C∗) −→ H∗(D∗) is isometric with respect
to the induced semi-norms in homology.

2. If C∗ is a normed chain complex, then the map H∗(C∗) −→ H∗(C∗)
induced by the inclusion C∗ ⊂ C∗ into the completion is isometric.
In particular: If k ∈ N satisfies Hk(C∗) = 0, then the induced semi-
norm on Hk(C∗) is zero.

Proof. The second part is a special case of the first part. So it suffices to
prove the first part: The idea of the proof is to approximate boundaries
in D∗ by boundaries in C∗. In the following, we write i : C∗ ↪→ D∗ for the
inclusion and ‖ · ‖ for the norm on D∗.

Because C∗ is a subcomplex, ‖H∗(i)‖ ≤ 1. Conversely, let z ∈ Cn be a
cycle and let z ∈ Dn be a cycle with [z] = Hn(i)(z) ∈ Hn(D∗); furthermore,
let ε ∈ R>0. To prove the first part, it suffices to find a cycle z′ ∈ Cn
satisfying

[z′] = [z] ∈ Hn(C∗) and ‖z′‖ ≤ ‖z‖+ ε.

By definition of z, there must be a chain w ∈ Dn+1 with ∂n+1(w) = i(z)−z.
Because Cn+1 is dense in Dn+1 and because ‖∂n+1‖ is finite, there is a
chain w ∈ Cn+1 such that∥∥w − i(w)

∥∥ ≤ ε

‖∂n+1‖
.

Then z′ := z + ∂n+1(w) ∈ Cn is a cycle with [z′] = [z] in Hn(C∗), and∥∥z − i(z′)∥∥ =
∥∥∂n+1(w − i(w))

∥∥ ≤ ε.

In particular, ‖z′‖ ≤ ‖z‖+ ε. Hence, Hn(i) is an isometry.
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Caveat 2.3.11. The previous proposition is surprising in the respect that
usually the processes of completing and taking homology do not harmonise
(Exercise).

Definition 2.3.12 (Kronecker products). Let C∗ be a normed chain com-
plex. The evaluation maps 〈 · , · 〉 : (C#)n×Cn −→ R induce a well-defined
R-linear map

〈 · , · 〉 : H∗((C#)∗)⊗R H∗(C∗) −→ R,

the so-called Kronecker product.

Proposition 2.3.13 (Duality principle for semi-norms [19, 2, p. 17, Propo-
sition F.2.2]). Let C∗ be a normed chain complex and let n ∈ N. Then

‖α‖ = sup
{ 1

‖ϕ‖∞

∣∣∣ ϕ ∈ Hn((C#
∗ )∗) and 〈ϕ, α〉 = 1

}
holds for all α ∈ Hn(C∗); here, sup ∅ := 0.

In particular: If k ∈ N satisfies Hk((C#)∗) = 0, then the induced semi-
norm on Hk(C∗) is zero.

Proof. If α ∈ Hn(C∗) and ϕ ∈ Hn((C#)∗), then∣∣〈ϕ, α〉∣∣ ≤ ‖α‖ · ‖ϕ‖∞.
This shows that ‖α‖ is at least as large as the supremum. Now suppose
that ‖α‖ 6= 0; in particular, if c ∈ Cn is a cycle representing α, then
c 6∈ im ∂n+1. Thus, by the Hahn-Banach theorem there exists a linear
functional f : Cn −→ R satisfying

f |im ∂n+1 = 0, f(c) = 1, ‖f‖∞ ≤ 1/‖α‖.

So f ∈ (C#)n is a cocycle; let ϕ := [f ] ∈ Hn((C#)∗) be the associated co-
homology class. By construction, 〈ϕ, α〉 = 1 and ‖ϕ‖∞ ≤ ‖f‖∞ ≤ 1/‖α‖.
Hence, ‖α‖ is at most as large as the supremum.

Caveat 2.3.14. In general it is not possible to compute the semi-norm on
the cohomology of the dual cochain complex in terms of the semi-norm on
the homology [27, p. 38].
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Caveat 2.3.15. There is no analogue of the universal coefficient theorem
for topological duals of Banach chain complexes [27, Remark 3.4].

Furthermore, the induced semi-norm in homology is compatible with the
mechanism of producing long exact sequence via the snake lemma:

Proposition 2.3.16 (Snake lemma). Let 0 // C∗
i // D∗

p
// E∗ // 0

be a short exact sequence of Banach chain complexes. Then there is a
natural long exact sequence

. . . // Hn(C∗)
Hn(i)
// Hn(D∗)

Hn(p)
// Hn(E∗)

∂n // Hn−1(C∗) // . . .

in homology, and the connecting homomorphism ∂∗ is continuous (with
respect to the induced semi-norms in homology).

In the same way, short exact sequences of Banach cochain complexes
give rise to natural long exact sequences in cohomology with continuous
connecting homomorphisms.

Proof. That the mentioned sequence in homology is exact is a purely alge-
braic fact following from the snake lemma for R-chain complexes.

The continuity of the connecting homomorphisms can, for example, be
derived from its concrete construction [37, proof of Proposition 8.2.1].

2.3.3 The equivariant setting

Of course, we will also need complexes of Banach G-modules and some
basic constructions on them:

Definition 2.3.17 (BanachG-chain complexes). LetG be a discrete group.
– A normed G-(co)chain complex is a (co)chain complex consisting of

normed G-modules all of whose (co)boundary operators are bounded
linear G-equivariant maps.

– A Banach G-(co)chain complex is a normed G-(co)chain complex
consisting of Banach G-modules.

– A morphism of normed/Banach G-(co)chain complexes is a (co)chain
map of normed/Banach (co)chain complexes that consists of G-mor-
phisms.
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– Two morphisms of normed/Banach G-(co)chain complexes are G-ho-
motopic if there exists a (co)chain homotopy between them consisting
of G-morphisms.

Example 2.3.18 (The singular chain complex). Let X be a topological
space and let G be a discrete group that acts continuously on X (for
example the action of the fundamental group of a pointed CW-complex on
the universal covering).

– Let n ∈ N. Then the G-action on X induces a G-action

G× Cn(X; R) −→ Cn(X; R)

(g, σ) 7−→ g · σ :=
(
t 7→ g · σ(t)

)
that is isometric with respect to the `1-norm. So Cn(X; R) is a
normed G-module.

– It is not difficult to see that the boundary operator of the singular
chain complex C∗(X; R) is compatible with this G-action. In Ex-
ample 2.3.2 we have already seen that this boundary operator is a
bounded operator.

Hence, C∗(X; R) is a normed G-chain complex. In general, this chain
complex is not complete; so in general C∗(X; R) is not a Banach G-chain
complex.

Example 2.3.19 (The bar complex). Let G be a discrete group. Then
the G-action given by the RG-module structure on the R-valued bar com-
plex CR

∗ (G) (see Definition 1.4.1 and Example 2.3.2) is isometric with re-
spect to the `1-norm on CR

∗ (G). Therefore, C∗(G; R) is a normed G-chain
complex. Again, in general, CR

∗ (G) is not a Banach G-chain complex.

Convention 2.3.20 (Complexes of morphisms, tensor products). Let G
be a discrete group, let (C∗, ∂∗) be a normed G-chain complex, and let V
be a Banach G-module.

– The cochain complexB(C∗, V ) consists of the chain modulesB(Cn, V )
together with the operator norm and the boundary operator

B(∂n, idV ) : B(Cn, V ) −→ B(Cn+1, V )

f 7−→ (−1)n+1
(
c 7→ f(∂n+1c)

)
;
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as ∂∗ is a bounded operator, so is B(∂∗, idV ). Hence, B(C∗, V ) is a
Banach cochain complex.
Moreover, the diagonal G-action on B(C∗, V ) given by

G×B(Cn, V ) −→ B(Cn, V )

(g, f) 7−→
(
c 7→ g · f(g−1 · c)

)
is isometric and compatible with the coboundary operator, and there-
fore turns B(C∗, V ) into a Banach G-cochain complex.

– The chain complex C∗ ⊗ V consists of the chain modules Cn ⊗ V
together with the projective tensor product norm and the boundary
operator ∂∗ ⊗ idV ; as ∂∗ is a bounded operator, so is ∂∗ ⊗ idV .
Moreover, the diagonal G-action on C∗⊗V is isometric and compat-
ible with the boundary operator, and so C∗⊗V is a Banach G-chain
complex.
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Bounded cohomology,

topologically

The singular chain complex (with real coefficients) of a topological space
is a normed chain complex with respect to the `1-norm. Taking the com-
pletion and the topological dual of the singular chain complex gives rise to
`1-homology and bounded cohomology of spaces respectively.

C∗
b(X; R) ///o/o/o H∗

b(X; R)

C∗(X; R)

topological dual
666v6v6v6v6v

completion (((h(h(h(h(h

C`1

∗ (X; R) ///o/o/o H`1

∗ (X; R)

Topologically, bounded cohomology can be defined by applying bounded
cohomology with twisted coefficients to classifying spaces of groups; schemat-
ically, we can depict this as follows:

`1-Homology GrpBan −→ Top −→ Vec
‖·‖
*

(G, V ) 7−→ BG 7−→ H`1

∗ (BG;V )

Bounded cohomology GrpBan– −→ Top −→ Vec
‖·‖
*

(G, V ) 7−→ BG 7−→ H∗
b(BG;V )

Here, Vec
‖·‖
* denotes the category of semi-normed graded vector spaces

with bounded linear operators as morphisms.
In the following, we give the precise definitions for bounded cohomology

and `1-homology of spaces with twisted coefficients and study some basic
properties of these theories.

199
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2.4.1 Bounded cohomology of spaces

The singular chain complex with real coefficients is a normed chain complex
with respect to the `1-norm introduced in Example 2.3.18. More generally,
the singular chain complex of the universal covering of a space is a normed
equivariant chain complex (Example 2.3.18). Therefore, we can translate
the definition of (co)homology with twisted coefficients in a straightforward
way to our Banach setting:

Definition 2.4.1 (Bounded cohomology with twisted coefficients). Let X
be a pointed connected CW-complex (in the sense of Convention 1.3.5), let

G be the fundamental group ofX, let X̃ be the universal covering ofX, and
let V be a (left) Banach G-module. Then C∗(X̃; R) is a normed G-chain
complex with respect to the `1-norm (Example 2.3.18).

– Bounded cohomology with twisted coefficients. We write

C∗
b(X;V ) := BG

(
C∗(X̃; R), V

)
(which is a Banach cochain complex with respect to the coboundary
operator introduced in Convention 2.3.20). We call

H∗
b(X;V ) := H∗(C∗

b(X;V )
)

bounded cohomology of X with twisted coefficients in V .
– `1-Homology with twisted coefficients. We write

C`1

∗ (X;V ) := C∗(X̃; R)⊗G V

(which is a Banach chain complex with respect to the boundary op-
erator introduced in Convention 2.3.20). We call

H`1

∗ (X;V ) := H∗
(
C`1

∗ (X;V )
)

`1-homology of X with twisted coefficients in V .
The norms on C∗

b(X;V ) and C`1

∗ (X;V ) induce semi-norms in bounded
cohomology and `1-homology respectively; we always consider these semi-
norms on H∗

b(X;V ) and H`1

∗ (X;V ).
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Let TopBan and TopBan– be the categories defined in the same way
as TopMod and TopMod– but using equivariant Banach modules instead
of modules over the group ring (Definition 1.3.7). Then we can extend
bounded cohomology and `1-homology to functors

H∗
b : TopBan– −→ Vec

‖·‖
*

H`1

∗ : TopBan −→ Vec
‖·‖
* .

Remark 2.4.2 (Functoriality of bounded cohomology and `1-homology
with twisted coefficients).

– Bounded cohomology. Let (f,Φ): (X,V ) −→ (Y,W ) be a morphism

in the category TopBan–, and let f̃ : X̃ −→ Ỹ be the unique lift of
f : X −→ Y to the universal coverings mapping the base-point of X̃
to the one of Ỹ ; such a lift exists and is unique by covering theory.
We then define

C∗
b(f ; Φ) := BG

(
C∗(f̃ ; idR),Φ

)
: C∗

b(Y ;W ) −→ C∗
b(X;V ),

which is a cochain map consisting of bounded linear operators of
norm at most ‖Φ‖. Let

H∗
b(f ; Φ) := H∗(C∗

b(f ; Φ)
)
: H∗

b(Y ;W ) −→ H∗
b(X;V );

clearly, this map has operator norm at most ‖Φ‖ with respect to the
induced semi-norms on bounded cohomology.
It is not difficult to see that this definition turns bounded cohomology
into a contravariant functor TopBan– −→ Vec

‖·‖
* .

– `1-Homology. Similarly, the induced morphisms in `1-homology are
defined by taking tensor products of maps.

Proposition 2.4.3 (`1-Semi-norm via bounded cohomology and `1-homol-
ogy). Let X be a pointed connected CW -complex.

1. The homomorphism H∗(X; R) −→ H`1

∗ (X; R) induced by the inclu-
sion of the corresponding chain complexes is isometric with respect
to the `1-semi-norms on homology.

2. For all n ∈ N and all α ∈ Hn(X; R) we have

‖α‖1 = sup
{ 1

‖ϕ‖∞

∣∣∣ ϕ ∈ Hn
b (X; R), 〈ϕ, α〉 = 1

}
.
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Proof. This follows directly from the definitions and the corresponding
statements about completions and duals of normed chain complexes (Propo-
sition 2.3.10 and Proposition 2.3.13).

In particular, `1-homology and bounded cohomology can be used to
study the simplicial volume; in fact, this was one of the motivations for
Gromov to investigate bounded cohomology in his seminal article Volume
and Bounded Cohomology [19].

2.4.2 Elementary properties of bounded cohomology

In the following, we will discuss some of the elementary properties of
bounded cohomology. We will mainly focus on bounded cohomology; sim-
ilar properties hold for `1-homology [27, 28, Chapter 2, Section 3].

Proposition 2.4.4 (Bounded cohomology of a point). Let • denote the
one-point space, and let V be a Banach space. Then H0

b(•;V ) ∼= V and
Hk

b(•;V ) = 0 for all k ∈ N>0.

Proof. Because there is only one singular simplex in every dimension on •,
we have C∗

b(•;V ) = C∗(•;V ), and hence

H∗
b(•;V ) = H∗(•;V ).

Proposition 2.4.5 (Homotopy invariance). Let X and Y be two connected
pointed CW-complexes with fundamental groups G and H respectively, let
V be a Banach G-module, and let W be a Banach H-module. If (f0,Φ)
and (f1,Φ): (X,V ) −→ (Y,W ) are morphisms in TopBan– with homotopic
(base-point preserving) maps f0 and f1, then

H∗
b(f0,Φ) = H∗

b(f1,Φ): H∗
b(Y ;W ) −→ H∗

b(X;V ).

Proof. For simplicity, we give the proof only in the case that V and W are
the constant coefficients R and that Φ = idR.

The classic construction [13, Proposition III.5.7] of subdividing a ho-
motopy between f0 and f1 in an appropriate way gives rise to a chain
homotopy

h∗ : C∗(X; R) −→ C∗(Y ; R)
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f0

f1

Figure 2.2: Homotopy invariance of bounded cohomology

between C∗(f0; idR) and C∗(f1; idR) that is bounded in every degree (see
also Figure 2.2). Therefore, the dual of h∗ leads to a cochain homotopy
between C∗

b(f0; idR) and C∗
b(f1; idR) that is bounded in every degree. Now

the claim follows.

Proposition 2.4.6 (Bounded cohomology in degree 0). The functor

H0
b : TopBan– −→ Vec‖·‖

coincides with the invariants functor (and the induced semi-norm on the
zero-th bounded cohomology coincides with the (restricted) norm on the
coefficient module).

Proof. This is a straightforward calculation on the bounded cochain com-
plex. (Exercise).

Caveat 2.4.7 (`1-Homology in degree 0). Notice that `1-homology in de-
gree 0 in general neither gives the algebraic coinvariants nor the reduced
coinvariants (in the sense of Definition 2.2.7), but something between these
two notions of coinvariants [28, Section 3.2.1].

The first surprise might be the following observation – bounded coho-
mology in degree 1 with trivial coefficients is zero:

Proposition 2.4.8 (First bounded cohomology). Let X be a pointed (con-
nected) CW-complex. Then H1

b(X; R) = 0.

Proof. For simplicity, we give the proof only in the case that X is con-
nected. (The general case requires more complicated notation [50, Corol-
lary 2.14]).



204 2.4 Bounded cohomology, topologically

– The `1-semi-norm on H1(X; R) is trivial: By the universal coefficient
theorem

H1(X; R) = H1(X; Z)⊗Z R
and in view of the Hurewicz theorem, every class in H1(X; Z) can be
represented by a single loop. Therefore, every class α in H1(X; R)
can be written in the form

α =
k∑
j=1

aj ·H1(fj; idR)([S1]R),

where a1, . . . , ak ∈ R and f1, . . . , fk : S1 −→ X are continuous maps;
i.e., we decompose α into “loops.” Using Example 2.3.9, we obtain

‖α‖1 ≤
k∑
j=1

|aj| ·
∥∥H1(fj; idR)([S1]R)

∥∥
1

≤
k∑
j=1

|aj| · ‖S1‖

≤ 0.

– The first bounded cohomology group is trivial: Let ϕ ∈ H1
b(X; R), and

let f ∈ C1
b(X; R) ⊂ C1(X; R) be a bounded cocycle representing ϕ.

In view of the first part and continuity of the evaluation map, we
obtain

|〈ϕ, α〉| ≤ ‖ϕ‖∞ · ‖α‖1 = 0

for all α ∈ H1(X; R). By the universal coefficient theorem for singular
cohomology, there exists a cochain u ∈ C0(X; R) with

δ0(u) = f ;

however, in general, this cochain will not be bounded. In the follow-
ing, we will modify u in order to obtain a bounded cochain witnessing
that ϕ = [f ] = 0 in bounded cohomology: Let x ∈ X be the base-
point of X. We then define u ∈ C0(X; R) to be the linear extension
of

X = map(∆0, X) −→ R
y 7−→ u(y)− u(x).
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Figure 2.3: Excision and barycentric subdivision, schematically

The cochain u is bounded: Because X is path-connected, for ev-
ery y ∈ X there is a path σy : [0, 1] −→ X with σy(0) = y and
σy(1) = x. Therefore, we obtain∣∣u(y)∣∣ =

∣∣u(y)− u(x)∣∣
=

∣∣u(σy(0))− u(σy(1))
∣∣

=
∣∣u(∂1σy)

∣∣
=

∣∣(δ0u)(σy)
∣∣

=
∣∣f(σy)

∣∣
≤ ‖f‖∞

for all y ∈ X. In particular, u ∈ C0
b(X; R).

Moreover, a straightforward computation shows that δ0u = δ0u = f ,
and hence ϕ = [f ] = 0 in H1

b(X; R), as claimed.

Caveat 2.4.9 (Bounded cohomology and excision/Mayer-Vietoris prop-
erty). Bounded cohomology (and `1-homology) in general do not satisfy ex-
cision. For example, one can show that Hk

b(S1; R) = 0 for all k ∈ N>0, but
H2

b(S1 ∨ S1; R) 6= 0 (Theorem 2.5.17, Theorem 2.6.14, and Section 2.6.2).
In particular, there are no cellular versions of bounded cohomology or `1-
homology.

The geometric reason behind this phenomenon is the following: Singular
homology and cohomology satisfy excision, because any singular homology
class can be represented by a singular cycle consisting of “small” singular



206 2.4 Bounded cohomology, topologically

simplices. This is achieved by applying barycentric subdivision (see Fig-
ure 2.3) sufficiently often. However, in an (infinite) `1-chain

∑
n∈N an · σn,

the number of barycentric subdivisions needed for the simplices (σn)n∈N
might be unbounded.

This failure of excision is both a curse and a blessing. On the one hand,
the lack of excision makes concrete computations via the usual divide and
conquer approach almost impossible; on the other hand, it turns out that
bounded cohomology and `1-homology depend only on the fundamental
group (Theorem 2.8.2) and hence can be computed in terms of certain nice
resolutions (Section 2.7).

Caveat 2.4.10 (The comparison map). Let X be a pointed CW-complex.
Then the inclusion C∗

b(X; R) −→ HomR(C∗(X; R),R) = C∗(X; R) of the
bounded cochain complex into the singular cochain complex induces a map
on cohomology, the so-called comparison map

H∗
b(X; R) −→ H∗(X; R).

In general, this map is neither injective (for example, for the space S1∨S1

in degree 2, nor surjective (for example, for S1 in degree 1 (Caveat 2.4.9)).

2.4.3 Bounded cohomology of groups

Like in the case of ordinary group (co)homology, the key to the topological
definition of bounded cohomology is the homotopy theoretical picture of
group theory provided by classifying spaces (see Section 1.3.1 for a short
introduction to classifying spaces of discrete groups).

Definition 2.4.11 (Bounded cohomology, topologically). Bounded coho-

mology of groups is the contravariant functor GrpBan– −→ Vec
‖·‖
* defined

as follows: For every discrete group G we choose a model XG of BG; more-
over, for every homomorphism ϕ : G −→ H of groups we choose a contin-
uous map fϕ : G −→ H realising ϕ on the level of fundamental groups (see
Theorem 1.3.2).

– On objects: Let (G, V ) be an object in GrpBan–, i.e., G is a dis-
crete group and V is a Banach G-module. Then we define bounded
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cohomology of G with coefficients in V by

H∗
b(G;V ) := H∗

b(XG;V ).

– On morphisms: Let (ϕ,Φ): (G, V ) −→ (H,W ) be a morphism in the
category GrpBan–. Then we define H∗

b(ϕ; Φ) through the following
commutative diagram:

H∗
b(H;W )

H∗
b(ϕ;Φ)

//_____ H∗
b(G;V )

H∗
b(XH ;W )

H∗
b(fϕ;Φ)

// H∗
b(XG;V )

In the same way, `1-homology can be defined.
Notice that – because of homotopy invariance – bounded cohomology and

`1-homology indeed are functorial and that the definition is independent
of the chosen models in the following sense: Any two choices of models
of classifying spaces and of maps between them leads to naturally and
canonically isomorphic functors.

Example 2.4.12 (Bounded cohomology of the trivial group). For all Ba-
nach spaces V we have H∗

b(1;V ) = H∗(1;V ) (Proposition 2.4.4).

Example 2.4.13 (Bounded cohomology in degree 0). Bounded cohomol-
ogy of groups in degree 0 (defined topologically) coincides with the invari-
ants functor GrpBan– −→ Vec‖·‖. The case of `1-homology is slightly more
involved [28, Section 3.2].

Example 2.4.14 (First bounded cohomology). For all discrete groups G
we have H1

b(G; R) = 0 by Proposition 2.4.8.

Caveat 2.4.15 (Comparison map). The comparison map between bounded
cohomology and singular cohomology for spaces leads to a comparison map

H∗
b(G; R) −→ H∗(G; R)

for every discrete group G. However, this comparison map in general is
neither injective (for example, for Z ∗Z in degree 2 (Theorem 2.6.14)), nor
surjective (for example, in degree 1 (Example 2.4.14)).
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Surprisingly, bounded cohomology of groups cannot only be computed
via bounded cohomology of classifying spaces but much more generally via
bounded cohomology of any topological space with the given fundamen-
tal group (Theorem 2.8.2). This is a major difference between bounded
cohomology and ordinary group cohomology!



2.5
Bounded cohomology,

combinatorially

As in the case of ordinary group cohomology we might wish for a description
of bounded cohomology and `1-homology that does not involve the choice
of a classifying space.

There is a straightforward translation of the bar construction into the
setting of bounded cohomology, which provides a description of bounded
cohomology that is functorial even on the cochain level.

In this section, we introduce the relevant cochain complexes and de-
rive basic properties of this combinatorial description of bounded coho-
mology. Moreover, we give an example of a group with non-trivial second
bounded cohomology (the free group on two generators) and we explain
how bounded cohomology can help to understand quasi-morphisms. In the
last section, we show that the combinatorial description and the topological
description of bounded cohomology of groups indeed coincide.

2.5.1 The Banach bar resolution

The basic building block for the combinatorial description of bounded co-
homology of groups is the Banach bar complex:

Definition 2.5.1 (The Banach bar complex). Let G be a discrete group.
The Banach bar complex of G is the completion

C`1

∗ (G) := CR
∗ (G)

of the R-valued bar complex CR
∗ (G) = C∗(G) ⊗Z R of G with respect to

the `1-norm (Example 2.3.2).

More explicitly, for a discrete group G, the Banach bar complex C`1

∗ (G)
in degree n consists of all (infinite) sums

∑
g∈Gn+1 ag ·g0·[g1| . . . |gn] with real

209
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coefficients satisfying
∑

g∈Gn+1 |ag| <∞. As in the case of the bar complex,
the G-action is given by the left action on the first component of the tuples
in Gn+1, and the boundary operator is given as in Definition 1.4.1.

In Section 2.7, we will study a version of homological algebra suitable
for bounded cohomology and `1-homology. It will turn out that the com-
plexes C`1

∗ (G;V ) and C∗
b(G;V ) (together with the obvious augmentation

maps) are resolutions in the appropriate sense.

Definition 2.5.2 (The Banach bar complexes with coefficients). Let G be
a discrete group, and let V be a Banach G-module. Then we write (where
the projective tensor product and the space of bounded linear functionals
are taken with respect to the `1-norm on CR

∗ (G))

C`1

∗ (G;V ) := CR
∗ (G)⊗G V ∼= C`1

∗ (G)⊗G V,
C∗

b(G;V ) := B
(
CR
∗ (G), V

) ∼= B
(
C`1

∗ (G), V
)
.

The Banach bar construction is functorial on the categories GrpBan and
GrpBan–, respectively:

Definition 2.5.3 (The Banach bar construction on morphisms). Let G
and H be discrete groups, let V be a Banach G-Module, let W be a Banach
H-module, and let ϕ : G −→ H be a group homomorphism.

– We write CR
∗ (ϕ) := C∗(ϕ)⊗Z idR; i.e., CR

∗ (ϕ) is the map translating
bar elements over G into bar elements over H, using the homomor-
phism ϕ (see also Definition 1.4.3).

– If (ϕ,Φ): (G, V ) −→ (H,W ) is a morphism in GrpBan, then we write

C`1

∗ (ϕ; Φ) := CR
∗ (ϕ)⊗G Φ: C`1

∗ (G;V ) −→ C`1

∗ (H;W ).

– Dually, if (ϕ,Φ): (G, V ) −→ (H,W ) is a morphism in GrpBan–, then
we write

C∗
b(ϕ; Φ) := B

(
CR
∗ (ϕ),Φ

)
: C∗

b(H;W ) −→ C∗
b(G;V ).

2.5.2 Bounded cohomology, combinatorially

Using the Banach bar construction, we obtain a combinatorial version of
bounded cohomology:
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Definition 2.5.4 (Bounded cohomology, combinatorially). Bounded co-
homology is the functor GrpBan– −→ Vec‖·‖∗ defined as follows:

– On objects: Let (G, V ) be an object in GrpBan, i.e., G is a dis-
crete group and V is a Banach G-module. Then we define bounded
cohomology of G with coefficients in V by

H∗
b(G;V ) := H∗(C∗

b(G;V )
)
.

– On morphisms: Let (ϕ,Φ): (G, V ) −→ (H,W ) be a morphism in the
category GrpBan–. Then we define

H∗
b(ϕ; Φ) := H∗(C∗

b(ϕ; Φ)
)
: H∗

b(H;W ) −→ H∗
b(G;V ).

Notice that the `1-norm on CR
∗ (G) induces a semi-norm on H∗

b(G;V ).

Similarly, `1-homology H`1

∗ ( · ; · ) : GrpBan −→ Vec
‖·‖
* can be defined com-

binatorially, using C`1

∗ ( · ; · ).
We will establish the equivalence of the topological and the combinatorial

description of bounded cohomology (and `1-homology) in Section 2.5.5.
In order to get used to this setting, we look at some basic properties:

Proposition 2.5.5 (Bounded cohomology in degree 0). The (contravari-
ant) functor H0

b : GrpBan– −→ Vec‖·‖ given by the combinatorial descrip-
tion of bounded cohomology of groups coincides with the invariants functor.

Proof. This is a straightforward computation similar to the corresponding
argument in ordinary group cohomology (Proposition 1.3.12).

Caveat 2.5.6 (`1-Homology in degree 0). `1-Homology of groups in de-
gree 0 (as given by the combinatorial description) does neither give the al-
gebraic coinvariants nor the reduced coinvariants, but something between
these two notions of coinvariants. (Exercise)

Proposition 2.5.7 (Bounded cohomology in degree 1). Let G be a discrete
group. Then H1

b(G; R) = 0, where G acts trivially on R.

Proof. This is a straightforward computation, relying on the fact that there
are no non-trivial group homomorphisms G −→ R with bounded image.
(Exercise)

Just as in the topological setting, we can also describe the comparison
map on the level of bar complexes:
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Definition 2.5.8 (Comparison map, combinatorially). Let G be a discrete
group and let V be a Banach G-module.

– Then the inclusion C∗(G;V ) −→ C∗
b(G;V ) induces a homomorphism

on the level of cohomology, the so-called comparison map

H∗
b(G;V ) −→ H∗(G;V ).

– We denote the kernel of the comparison map by EH ∗
b(G;V ).

2.5.3 The second bounded cohomology of free groups

Finally, we arrive at our first example of a non-trivial bounded cohomology
group (in non-zero degree):

Theorem 2.5.9 (Bounded cohomology of free groups). Let F be a free
group of rank at least 2. Then H2

b(F ; R) is infinite-dimensional.

Proof (of Theorem 2.5.9). We follow Mitsumatsu’s [36] streamlined ver-
sion of Brooks’s argument [3]. The basic strategy is to find a sequence (fn)n∈N
of bounded cocycles and a sequence (cn)n∈N of `1-cycles in degree 2 such
that

〈fk, cn〉 = −δkn
for all k, n ∈ N. Clearly, the existence of such (co)cycles proves that the
bounded cohomology H2

b(F ; R) is infinite-dimensional.
In the following, we work with a free generating set S of F . Let a and b

be two distinct elements of S.
– Construction of the bounded cocycles. For an element w ∈ F , we

define

ψw : G −→ R
g 7−→ #(occurences of w in g)−#(occurences of w−1 in g),

where we view all elements of F as (reduced) words in S; we now con-
sider the corresponding element ψw ∈ C1(F ; R) = HomF (C1(F ),R)
given by

ψw : C1(F ) −→ R
g0 · [g1] 7−→ ψw(g1).
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Of course, ψw is not bounded in general; however, the cobound-
ary δψw is bounded (as can be shown by an easy computation, see
Lemma 2.5.11 below), and hence yields a cocycle in C2

b(F ; R). We
then set for all k ∈ N

fk := δψ[ak,bk] ∈ C2
b(F ; R).

– Construction of the `1-cycles. For n ∈ N we let

cn :=
∑
j∈N

2−j−1 ·
[
[an, bn]2

j ∣∣ [an, bn]2
j]− bn ∈ C`1

2 (F ; R),

where

bn := [an | a−nb−n] + [b−n | bna−nb−n]− [an | bna−nb−n]
∈ C2(F ; R) ⊂ C`1

2 (F ; R).

Clearly, cn is a well-defined `1-chain. Because the boundary of the
infinite sum in cn equals [an, bn] (telescope!), and the boundary of bn
equals [an, bn] as well, the chain cn is indeed a cycle.

By construction, for all k, n ∈ N we have

〈fk, cn〉 =

〈
fk,

∑
j∈N

2−j−1 ·
[
[an, bn]2

j ∣∣ [an, bn]2
j]〉− 〈fk, bn〉.

Looking at the definition of fk and ψ[ak,bk], one can show that〈
fk,

∑
j∈N

2−j−1 ·
[
[an, bn]2

j ∣∣ [an, bn]2
j]〉

=
∑
j∈N

2−j−1 ·
〈
δψ[an,bn],

[
[an, bn]2

j ∣∣ [an, bn]2
j]〉

= 0.

Furthermore, the second summand reduces to

〈fk, bn〉 = 〈δψ[ak,bk], bn〉
= 〈ψ[ak,bk], ∂bn〉
= 〈ψ[ak,bk], [a

n, bn]〉
= δkn,

as desired.
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g′1 g′2h h−1 g′1 g′2

Figure 2.4: Rewriting composed words

Caveat 2.5.10. In the last few steps of the proof, we could not have
reduced 〈fk, cn〉 = 〈δψ[ak,bk], cn〉 to 〈ψ[ak,bk], ∂cn〉 = 〈ψ[ak,bk], 0〉 = 0, because

the cochain ψ[ak,bk] is in general unbounded (and so cannot be evaluated
on general `1-chains).

Lemma 2.5.11 (Counting words gives a bounded cochain). In the situa-
tion of the proof of the above theorem, the cochain δψw : C2(F ) −→ R is
bounded.

Proof. Let g0, g1, g2 ∈ F . By definition, we have

δψw(g0 · [g1|g2]) = ψw(g1) + ψw(g2)− ψw(g1 · g2)

= #(occurences of w in g1)

−#(occurences of w−1 in g1)

+ #(occurences of w in g2)

−#(occurences of w−1 in g2)

−#(occurences of w in g1 · g2)

+ #(occurences of w−1 in g1 · g2).

We now write g1 = g′1 ·h and g2 = h−1 ·g′2 in such a way that the word g′1 ·g′2
is in reduced form (and represents g1 · g2 by construction) and such that
the word h is in reduced form (see Figure 2.4). Then

δψw(g0 · [g1|g2]) = #(occurences of w in g′1 · h)
−#(occurences of w−1 in g′1 · h)
+ #(occurences of w in h−1 · g′2)
−#(occurences of w−1 in h−1 · g′2)
−#(occurences of w in g′1 · g′2)
+ #(occurences of w−1 in g′1 · g′2).
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Using the fact that for all words g, h such that the concatenation g · h is
in reduced form the number∣∣#(occurences of w in g · h)−#(occurences of w in g)−#(occurences of w in h)

∣∣
is bounded by the length of w with respect to S, we obtain that δψw is
bounded, as claimed.

More generally, Mineyev [34, 35] proved that a finitely presented discrete
group G is word hyperbolic if and only if for all Banach G-modules V and
all k ∈ N≥2 the comparison map Hk

b(G;V ) −→ Hk(G;V ) is surjective. So
word hyperbolic groups of real cohomological dimension bigger than 1 give
rise to non-trivial bounded cohomology classes.

2.5.4 Application: Quasi-morphisms

Allowing for a uniformly bounded additive error in the definition of a group
homomorphism leads to the notion of quasi-morphisms; in this section,
we give a brief introduction into quasi-morphisms and their relation to
bounded cohomology.

Definition 2.5.12 (Quasi-morphisms). Let G be a discrete group. A
quasi-morphism on G is a map f : G −→ R such that

sup
g,h∈G

∣∣f(g) + f(h)− f(g · h)
∣∣ <∞.

We denote the R-vector space of quasi-morphisms on G by QM(G).

Example 2.5.13 (Trivial quasi-morphisms). Let G be a discrete group, let
f : G −→ R be a group homomorphism, and let b : G −→ R be a bounded
function. Then f + b : G −→ R is a quasi-morphism.

Definition 2.5.14 (Trivial quasi-morphisms). Let G be a discrete group.
A quasi-morphism f : G −→ R is called trivial if there exists a group
homomorphism f ′ : G −→ R such that

sup
g∈G

∣∣f(g)− f ′(g)
∣∣ <∞.

The subspace of QM(G) of all trivial quasi-morphisms on G is denoted
by QM0(G).
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These notions lead to the following natural question: Is every quasi-
morphism trivial? How can we get access to the space QM(G)/QM0(G)?

Starting from the observation that the “coboundary” of a quasi-morphism
can be viewed as a bounded cocycle, we obtain that quasi-morphisms can
be studied via bounded cohomology [?, 45]:

Theorem 2.5.15 (Quasi-morphisms and bounded cohomology). Let G be
a discrete group.

1. There is a canonical isomorphism

QM(G)/QM0(G) ∼= EH 2
b(G; R);

recall that EH 2
b(G; R) is, by definition, the kernel of the comparison

map H2
b(G; R) −→ H2(G; R).

2. In particular: If H2(G; R) = 0, then QM(G)/QM0(G) ∼= H2
b(G; R).

Proof. It suffices to prove the first part: To this end we consider the fol-
lowing diagram:

C1(G; R)
δ // C2(G; R)

QM(G)
ψ
//

ϕ

OO

C2
b(G; R)

?�

OO

Here, the maps ϕ and ψ are the cochain maps defined by

ϕ : QM(G) −→ C1(G; R)

f 7−→
(
g0 · [g1] 7→ f(g1)

)
ψ : QM(G) −→ C2

b(G; R)

f 7−→
(
g0 · [g1|g2] 7→ f(g1) + f(g2)− f(g1 · g2)

)
.

Clearly, the images of both maps contain only G-equivariant maps, and the
image of ψ consists of bounded cochains in view of the defining property of
quasi-morphisms; so ϕ and ψ are well-defined. Moreover, a straightforward
calculation shows that this diagram is commutative, and hence that the
image of ψ consists of bounded cocycles.
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In particular, the top row of the diagram witnesses that we obtain an
induced homomorphism

Ψ: QM(G) −→ EH 2
b(G; R).

In order to prove the theorem, we will identify the image and the kernel of
the homomorphism Ψ:

– The image of Ψ. We show that Ψ is surjective: Let f ∈ C2
b(G; R) be

a bounded cocycle representing an element of the kernel EH 2
b(G; R)

of the comparison map; i.e., there is a cochain b ∈ C1(G; R) satisfy-
ing δb = f . Then the map

f̃ : G −→ R
g 7−→ b(1 · [g])

is a quasi-morphism (because δb = f is bounded) and, by construc-

tion, Ψ(f̃) = [f ].
– The kernel of Ψ. We show that the kernel of Ψ coincides with

the subspace QM0(G) of trivial quasi-morphisms: Let f ∈ QM(G)
such that Ψ(f) = 0 in EH 2

b(G; R); i.e., there exists a bounded
cochain b ∈ C2

b(G; R) such that ψ(f) = δb. Viewing b as a (triv-
ial) quasi-morphism (as we may), we obtain that f − b ∈ kerψ.
On the other hand, the kernel of ψ obviously consists of all homomor-
phisms G −→ R. Therefore, f is a trivial quasi-homomorphism.

Corollary 2.5.16 (Quasi-morphisms of free groups). Let F be a non-
Abelian free group. Then the R-vector space QM(F )/QM0(F ) is infinite-
dimensional.

Proof. On the one hand, we have H2(F ; R) = 0 (Example 1.3.13), and so
QM(F )/QM0(F ) ∼= H2

b(F ; R) (Theorem 2.5.15); on the other hand, we
know that H2

b(F ; R) is infinite-dimensional (Theorem 2.5.9).

(Actually, the proof of Theorem 2.5.9 relied on the construction of certain
quasi-morphisms, namely the ψw.)
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2.5.5 Comparing the topological and the combinatorial

definition of bounded cohomology

As was to be expected, the topological description and the combinatorial
description of bounded cohomology of groups give rise to the same theory:

Theorem 2.5.17 (Bounded cohomology, topologically vs. combinatori-
ally). Let G be a discrete group and let X be a model of BG.

1. There are RG-chain maps

ϕ∗ : C∗(X̃; R) −→ CR
∗ (G)

ψ∗ : C
R
∗ (G) −→ C∗(X̃; R)

with the following properties:
– With respect to the corresponding `1-norms we have

‖ϕ∗‖ ≤ 1 and ‖ψ∗‖ ≤ 1.

– Moreover, the compositions ϕ∗ ◦ψ∗ and ψ∗ ◦ϕ∗ are homotopic to
the identity on CR

∗ (G) and C∗(X̃; R) respectively, and there ex-
ist corresponding RG-chain homotopies that consist of bounded
linear maps in every degree.

2. In particular: If V is a Banach G-module, then there is an isomor-
phism

H∗
b(X;V ) ∼= H∗(C∗

b(G;V )
)
,

and this isomorphism is isometric with respect to the induced semi-
norms in cohomology. Moreover, this isomorphism is natural in the
second variable.
Similarly, H`1

∗ (X;V ) ∼= H∗
(
C`1

∗ (G;V )
)
.

Proof. We first show how the second part can be derived from the first
part: Because the chain maps ϕ∗ and ψ∗ are morphisms of normed chain
complexes they induce cochain maps

B(ϕ, idV ) : C∗
b(G;V ) = B

(
CR
∗ (G), V

)
−→ B

(
C∗(X̃; R), V

)
= C∗

b(G;V ),

B(ψ, idV ) : C∗
b(X;V ) = B

(
C∗(X̃; R), V

)
−→ B

(
CR
∗ (G), V

)
= C∗

b(G;V )
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of norm at most 1. Moreover, the bounded(!) chain homotopies pro-
vided by the first part extend to cochain homotopies of the compositions
B(ϕ, idV ) ◦B(ψ, idV ) and B(ψ, idV ) ◦B(ϕ, idV ) to the corresponding iden-
tity maps.

In particular, we obtain the claimed natural isometric isomorphism

H∗
b(X;V ) ∼= H∗(C∗

b(G;V )
)
.

Similarly, the statement about `1-homology can be proved.
It remains to prove the first part: To this end, we proceed in two steps:
– We first replace the complex CR

∗ (G) by a complex DR
∗ (G) (see below),

which is more appropriate in this simplicial context.
– We then construct chain maps

ϕ∗ : C∗(X̃; R) −→ DR
∗ (G)

ψ∗ : D
R
∗ (G) −→ C∗(X̃; R)

by induction over the dimension of simplices/chains with properties
analogous to those of ϕ∗ and ψ∗ stated in the theorem.

How does the chain complex DR
∗ (G) look like? For n ∈ N we let

DR
n (G) :=

⊕
g∈Gn+1

R · (g0, . . . , gn);

the chain moduleDR
n (G) is a normed G-module with respect to the `1-norm

given by the basis Gn+1 and the diagonal G-action. The maps

DR
n (G) −→ DR

n−1(G)

(g0, . . . , gn) 7−→
n∑
j=0

(−1)j · (g0, . . . , ĝj, . . . , gn)

clearly form a G-equivariant boundary operator on DR
∗ (G) that is bounded

in every degree. Moreover, a straightforward computation shows that

CR
∗ (G)←→ DR

∗ (G)

g0 · [g1| · · · |gn] 7−→ (g0, g0 · g1, g0 · g1 · g2, . . . , g0 · · · · · gn)
g0 · [g−1

0 g1| . . . |g−1
n−1 · gn]←− [ (g0, . . . , gn)
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are mutually inverse isometric G-chain maps. Hence, in the following dis-
cussion we can replace CR

∗ (G) by DR
∗ (G).

We now come to the construction of the chain maps ϕ∗ and ψ∗: We

start with a few preparations. Let F ⊂ X̃ be a (set-theoretic, strict)

fundamental domain for the G-action on the the universal covering X̃ of X;
without loss of generality we may assume that F contains the base point x0

of the universal covering X̃. For x ∈ X̃ let gx ∈ G be the group element
uniquely determined by the property

x ∈ gx · F.

Moreover, in the following for n ∈ N we denote the vertices of the stan-
dard simplex ∆n by v0, . . . , vn.

– Construction of ϕ∗ : C∗(X̃; R) −→ DR
∗ (G): For n ∈ N we define ϕn

to be the linear extension of the map

map(∆n, X̃) −→ DR
n (G)

σ 7−→ (gσv0
, . . . , gσ(vn)).

Then clearly ϕ∗ : C∗(X̃; R) −→ DR
∗ (G) is an RG-chain map that has

norm at most 1.
– Construction of ψ∗ : C

R
∗ (G) −→ C∗(X̃; R): We proceed by induction

over the dimension of simplices. For the induction start we define

DR
0 (G) −→ C0(X̃; R)

g0 7−→ g0 · x0.

For the induction step let n ∈ N and suppose that ψ∗ is already con-
structed up to dimension n in such a way that any tuple (g0, . . . , gk)

over G with k ≤ n is mapped to a single singular simplex on X̃ with
vertices g0 · x0, . . . , gk · x0.
We now extend the definition of ψ∗ to degree/dimension n + 1: Let

(g0, . . . , gn+1) ∈ Gn+1. Because πn(X̃, x0) = 0, we can find a singular

(n + 1)-simplex σ : ∆n+1 −→ X̃ with the following property: For
all j ∈ {0, . . . , n + 1} the restriction of σ to the j-th face of ∆n+1

coincides with the simplex ψn(g0, . . . , ĝj, . . . , gn+1) (see Figure 2.5).
We then define

ψn+1(g0, . . . , gn+1) := σ ∈ Cn+1(X̃; R);
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g0 · x0 g1 · x0

g2 · x0

g0 · x0 g1 · x0

g2 · x0

g0 · x0 g1 · x0

g2 · x0

Step 0 Step 1 Step 2

Figure 2.5: Construction of ψ2

notice that σ(vj) = gj · x0 for all j ∈ {0, . . . , n + 1}, that ψn+1 has
norm at most 1, and that ∂n+1 ◦ ψn+1 = ψn ◦ ∂n.
Because the diagonal action of G on Gn+1 is free, and because ψn is
G-equivariant by induction, we can arrange that ψn+1 isG-equivariant
as well.

– The composition ϕ∗ ◦ ψ∗: By construction, we have

ϕ∗ ◦ ψ∗ = idDR
∗ (G) .

– The composition ψ∗ ◦ ϕ∗: In order to construct an RG-chain ho-
motopy h∗ : ψ∗ ◦ ϕ∗ ' idC∗( eX;R) that is bounded in every degree we
inductively construct compatible homotopies between singular sim-
plices and their image under ψ∗ ◦ ϕ∗:
Because all homotopy groups of X̃ are trivial and G acts freely on X̃,
we can inductively construct for every singular simplex σ : ∆n −→ X̃
a continuous map τσ : ∆n × [0, 1] −→ X̃ in such a way that (see
Figure 2.6):

– On ∆n+1 × {0} the map τσ coincides with the singular sim-
plex ψn+1 ◦ ϕn+1(σ).

– On ∆n+1×{1} the map τσ coincides with the singular simplex σ.
– The restriction τσ|∂∆n×[0,1] coincides with the maps given by

the τ ’s corresponding to the faces of σ.
– The construction is G-equivariant in the sense that τg·σ = g · τσ

for all g ∈ G.
Then we define h∗ : C∗(X̃; R) −→ C∗+1(X̃; R) by applying the canon-
ical subdivision of prisms ∆n × [0, 1] into (n + 1)-simplices to the

family {τσ | σ : ∆∗ −→ X̃} constructed above.
A standard computation shows that h∗ indeed is an RG-chain ho-
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σ

ψ2 ◦ ϕ2(σ)

σ

ψ2 ◦ ϕ2(σ)

σ

ψ2 ◦ ϕ2(σ)

Step 0 Step 1 Step 2

Figure 2.6: Construction of h2

motopy between ψ∗ ◦ ϕ∗ and the identity that is bounded in every
degree.

Remark 2.5.18 (Naturality). It is not too difficult (but technically slightly
cumbersome) to show that the isomorphisms constructed above are also
natural with respect to group homomorphisms. Therefore, we obtain an
(isometric) isomorphism of functors identifying bounded cohomology via
the topological description with bounded cohomology via the combinatorial
description (and similarly for `1-homology).

Notice that the same arguments also allow to prove the corresponding
statement about ordinary group (co)homology.

However, much more than the theorem above is true – by Gromov’s map-
ping theorem (see Section 2.8), for any countable connected CW-complex
with fundamental group G there is a canonical isometric isomorphism

H∗
b(X; R) ∼= H∗

b(G; R).

The key to the mapping theorem is the relationship of bounded cohomology
with amenability and the description of bounded cohomology in terms of
suitable resolutions; these topics are the content of the following sections.
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Amenable groups

The rôle of finite groups in the setting of bounded cohomology is played by
the so-called amenable groups. These groups can be characterised as those
groups admitting an invariant mean on the set of bounded functions from
the group in question to R; hence, such a mean allows for a nice averaging.

Using this averaging on bounded cochains, transfer maps in bounded
cohomology can be defined; this important fact will eventually lead to the
mapping theorem in bounded cohomology.

Moreover, the relation of bounded cohomology with amenability pro-
vides a link of bounded cohomology with ergodic theory and geomet-
ric/measurable group theory; while ordinary group cohomology can be
computed nicely by looking at complexes with small skeleta and proper
group actions, bounded cohomology asks for amenable actions and ergodic
theory. (However, we will not have the time to discuss these aspects during
these lectures).

In this section, we give a brief introduction to amenable groups and show
that amenable groups can be characterised in terms of bounded cohomol-
ogy. The deeper connections of amenability with bounded cohomology will
be investigated in later chapters. For simplicity, we will only consider the
case of discrete groups.

2.6.1 Amenable groups via means

Definition 2.6.1 (Amenable groups). A discrete group G is amenable
if there exists a (left) G-invariant mean on the set B(G,R) of bounded
functions of type G −→ R.

A G-invariant mean on B(G,R) is an R-linear map m : B(G,R) −→ R
satisfying the following properties:

223
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– For all f ∈ B(G,R) we have

inf
g∈G

f(g) ≤ m(f) ≤ sup
g∈G

f(g);

in particular, m(1) = 1.
– For all f ∈ B(G,R) and all g ∈ G we have

m
(
h 7→ f(g−1 · h)

)
= m(f).

2.6.2 Examples of amenable groups

Example 2.6.2 (Amenability: finite groups). Finite groups are amenable;
for example, averaging functions on the finite group in question gives rise
to an equivariant mean as required in the definition of amenability.

Moreover, all Abelian groups are amenable: The proof that every Abelian
group admits an invariant mean is highly non-constructive; a basic ingedri-
ent of the proof is the following fixed point theorem [43, Proposition 0.14]:

Theorem 2.6.3 (Markov-Kakutani fixed point theorem). Let K be a non-
empty compact convex subset of a locally convex R-vector space. Let G
be an Abelian group of continuous affine transformations K −→ K (i.e.,
continuous maps that are compatible with convex combinations). Then the
set K contains a G-fixed point.

Example 2.6.4 (Amenability: Abelian groups). Every discrete Abelian
group is amenable: Let G be an Abelian group. We consider the action

G×B(G,R)# −→ B(G,R)#

(g,m) 7−→
(
h 7→ f(g−1 · h

)
of G on the dual vector space B(G,R)# endowed with the weak* topology.
The subset M(G) ⊂ B(G,R)# of non-negative functionals on B(G,R)
mapping the constant function 1 to 1 is a convex closed subset of B(G,R)#;
the set M(G) is non-empty (it contains, for instance, evaluation on the
neutral element of G) and it is compact by the Banach-Alaoglu theorem.
Moroever, G ·M(G) ⊂M(G) by definition of the G-action.
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Because G is Abelian, the Markov-Kakutani fixed point theorem applies
and provides us with a fixed point m ∈ M(G) of this G-action. Clearly,
such a fixed point m is nothing but a G-invariant mean on G. In particular,
G is amenable.

In contrast, free groups are not amenable – in a sense they are the
prototypical examples of non-amenable groups (Caveat 2.6.10):

Example 2.6.5 (Amenability: free groups). The free group F on two
generators (say a and b) is not amenable: Assume for a contradiction that
F is amenable; hence, there is an F -invariant mean m : B(F,R) −→ R.
We write µ for the associated (finitely additive) F -invariant probability
measure

µ : P (F ) −→ R≥0

A 7−→ χ(A);

here, P (F ) denotes the power set of F .
For a letter g ∈ {a, b, a−1, b−1} let Wg be the set of (reduced) words

in a, b, a−1, b−1 that start with g. Because F is the free group freely gener-
ated by a and b, we obtain

1 = µ(F ) = µ(Wa) + µ(Wa−1) + µ({1}) + µ(Wb) + µ(Wb−1).

Moreover, Wa = a · (Wb tWb−1 tWa t {1}), and so (by F -invariance and
finite additivity of µ)

µ(Wa) = µ(Wb) + µ(Wb−1) + µ(Wa) + µ({1}),

which implies µ(Wb) = 0 = µ(Wb−1) and µ({1}) = 0. Similarly, we obtain
µ(Wa) = 0 = µ(Wa−1). Therefore, 1 = µ(F ) = 0, a contradiction. Thus,
F is not amenable.

Caveat 2.6.6. Notice that the finitely additive invariant probability mea-
sure on an amenable group in general is not σ-additive! So some care has
to been taken when arguing using these finitely additive measures.

Remark 2.6.7 (Banach-Tarski paradoxon). The decomposition of the free
group on two generators used in the proof above is a so-called paradoxical
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decomposition. Non-amenable groups can be characterised via paradoxical
decompositions.

Such decompositions play a decisive rôle in the proof of the Banach-
Tarski paradoxon: The unit 2-sphere can be decomposed into finitely many
pieces that in turn can be put together to form two unit 2-spheres. (Of
course, these pieces cannot be Lebesgue-measurable.) The source of such
decompositions of the 2-sphere are paradoxical decompositions of Z ∗ Z,
which is a subgroup of SO(3,R).

2.6.3 Inheritance properties of amenable groups

The class of (discrete) amenable groups behaves nicely with respect to
the basic operations on groups, such as taking subgroups, quotients and
extensions:

Proposition 2.6.8 (Amenable groups, inheritance properties).
1. Subgroups of amenable groups are amenable
2. Quotients groups of amenable groups are amenable.
3. Extensions of amenable groups by amenable groups are amenable.

Proof. These properties can be deduced from the definition in terms of
invariant means in a fairly straightforward manner (Exercise) [43, Propo-
sition 0.16]. For the first part it is convenient to choose a set of repre-
sentatives of the action of the given subgroup on the ambient group; for
the second part, one can push forward an invariant mean on the given
amenable group to yield an invariant mean on the quotient; for the third
part, one can use averaging over the amenable kernel to turn an invariant
mean on the quotient into one of the extension group.

Example 2.6.9 (Amenability: solvable groups). As all discrete Abelian
groups are amenable (Example 2.6.4), and as the class of discrete amenable
groups is closed with respect to taking extensions, it follows inductively
that all solvable groups are amenable.

Caveat 2.6.10 (Von Neumann problem). As the free group on two gen-
erators is not amenable (Example 2.6.5), and as amenability passes down
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to subgroups, we obtain: every discrete group that contains a free group
on two generators as a subgroup is not amenable.

Conversely, von Neumann asked whether a discrete group that is not
amenable has to contain a free group on two generators as a subgroup; Ol-
shanskii was the first to prove that there are non-amenable groups that do
not contain the free group on two generators – more precisely, he produced
torsion(!) groups that are non-amenable [41].

Astonishingly, analogous questions in the context of geometric and mea-
surable group theory do have a positive answer [54, 15].

2.6.4 Geometric characterisations of amenable groups

A geometric and quite concrete approach to amenability is provided by
the notion of a Følner sequence, which is a precise way of saying that a
group is amenable if it contains subsets of finite non-zero measure that are
almost invariant under translation.

Definition 2.6.11 (Følner sequence). Let G be a discrete group. A Følner
sequence for G is a sequence (Sn)n∈N of non-empty finite subsets of G such
that for every g ∈ G we have

lim
n→∞

#
(
Sn

a
g · Sn

)
#Sn

= 0.

(Here,
a

stands for the symmetric difference of sets.)

Example 2.6.12 (A Følner sequence for Zd). Let d ∈ N>0. Then a
straightforward computation shows that ({−n, . . . , n}d)n∈N is a Følner se-
quence for Zd; roughly speaking, the symmetric differences occuring in the
Følner condition grow polynomially with exponent d − 1, but the given
sequence grows polynomially with exponent d, see Figure 2.7.

Theorem 2.6.13 (Characterising amenable groups through Følner se-
quences). A countable discrete group is amenable if and only if it admits a
Følner sequence.
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Sn g · Sn Sn
a
g · Sn

Figure 2.7: The Følner condition in Z2, schematically

Sketch proof. The proof makes use of the axiom of choice in the form of
non-principal ultrafilters on N; ultra-limits are used to convert Følner se-
quences into invariant means.

Conversely, in a suitable topology, invariant means can be approximated
by `1-step functions on G; these step functions give rise to almost invariant
sets [55, Chapter 10].

The theme of amenability being a strong invariance property can also
be translated into further fields [55, Chapter 10]:

– Ergodic theory. A discrete groupG is amenable if and only if for every
continuous G-action on a non-empty compact metrisable space X
there exists a G-invariant probability measure on X.

– Representation theory. A discrete group G is amenable if and only
if the regular representation of G on L2(G,C) has almost invariant
vectors.

2.6.5 Application: Characterising amenable groups via

bounded cohomology

In the following we present Noskov’s characterisation of amenable groups
in terms of bounded cohomology [40, 24]:

Theorem 2.6.14 (Characterisation of amenability by bounded cohomol-
ogy). Let G be a discrete group. Then the following are equivalent:

1. The group G is amenable.
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2. For all Banach G-modules V and all k ∈ N>0 we have

Hk
b(G;V #) = 0.

3. For all Banach G-modules V we have H1
b(G;V #) = 0.

Proof. We start with the proof of the implication “1 =⇒ 2:” Suppose the
group G is amenable; i.e., there is a G-invariant mean m : B(G,R) −→ R.
Let V be a Banach G-module. As first step, using m, we construct a
G-equivariant mean mV : B(G, V #) −→ V # via

mV : B(G, V #) −→ V #

f 7−→
(
v 7→ m

(
g 7→ (f(g))(v)

))
;

clearly, mV is a bounded linear functional of norm at most 1, and using
the invariance property of m it is not difficult to see that mV indeed is
G-equivariant.

Using this mean mV we can now derive triviality of the higher bounded
cohomology with coefficients in V # via a suitable transfer map, which is
one of the key arguments in the theory of bounded cohomology: We define
the transfer t∗ : B

(
CR
∗ (G), V #

)
−→ C∗

b(G;V #) by

B
(
CR
n (G), V #

)
−→ BG

(
CR
n (G), V #

)
= Cn

b (G;V #)

f 7−→
(
g0 · [g1| · · · |gn] 7→ mV

(
g 7→ f(g−1 · g0 · [g1| · · · |gn])

))
;

because mV is G-equivariant, this map is well-defined and t∗ indeed is
a cochain map. Because mV acts as the identity on constant maps (a
property inherited from m), we obtain

t∗ ◦ i∗ = idC∗b(G;V #),

where i∗ : C∗
b(G;V #) = BG

(
CR
n (G), V #

)
−→ B

(
CR
∗ (G), V #

)
denotes the

inclusion. Therefore, on the level of cohomology we have

H∗(t∗) ◦H∗(i∗) = idH∗
b(G;V #),

which proves that H∗(i∗) is injective. On the other hand, it is not difficult
to see that the complex B(CR

∗ (G), V #) has trivial cohomology in all degrees
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bigger than 1 (because CR
∗ (G) −→ R admits a chain contraction that is

bounded in every degree (Proposition 2.7.7) and this chain contraction
gives rise to a cochain contraction of the complex of bounded maps to V #).
Hence, Hk

b(G;V #) = 0 for all k ∈ N>0.

Obviously, statement “2” implies “3”.

It remains to prove “3 =⇒ 1:” Suppose that H1
b(G;V #) = 0 for all

Banach G-modules V . In the following, we consider the Banach G-module

V := B(G,R)/R · 1

of bounded functions on G modulo the constant functions; hence, we can
identify V # with the space of bounded functions on B(G,R) that vanish on
the constant functions. The idea is now to construct a 1-bounded cocycle
with coefficients in V # and to use a 0-cochain hitting this cocycle via the
coboundary operator in order to find an invariant mean on B(G,R):

Let µ ∈ B(G; R)# with µ(1) = 1; for example, let µ be evaluation at the
neutral element. Then

f : CR
1 (G) −→ V #

g0 · [g1] 7−→ g0 · g1 · µ− g0 · µ

is well-defined, bounded andG-equivariant and so an element of C1
b(G;V #);

moreover, a simple calculation shows that f is a cocycle.

Because H1
b(G;V #) = 0, there exists a cochain b ∈ C0

b(G;V #) satisfying

f = δb.

Let ν := b(1) ∈ V #. Then, by definition of the coboundary operator,

(g − 1) · µ = f(g · [1]) = δb(g · [1]) = (g − 1) · ν.

for all g ∈ G. In other words, for all g ∈ G we obtain

g · (µ− ν) = µ− ν,

and thus µ − ν is a G-invariant bounded linear functional on B(G,R)
satisfying (µ− ν)(1) = µ(1)− ν(1) = 1.
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So µ− ν almost is a G-invariant mean on B(G,R); however, in general,
the difference µ−ν will not be non-negative. Similarly to the Hahn decom-
position of signed measures of finite total variation there is a “minimal”
decomposition

µ− ν = ϕ+ − ϕ−
into non-negative functionals ϕ+, ϕ− ∈ B(G,R)#. In addition, this decom-
position is unique in a certain sense [?]; this uniqueness is strong enough
to show that for all g ∈ G the corresponding decomposition of g · (µ − ν)
is g · ϕ+ − g · ϕ−. Because µ − ν is G-invariant, so is the decomposition.
In particular, ϕ+ and ϕ− are G-invariant.

Because (µ − ν)(1) = 1, the functional ϕ+ cannot be trivial. Hence, a
suitable normalisation of ϕ+ is a G-invariant mean on G, showing that G
is amenable.

In particular, we obtain that amenable groups do not admit any non-
trivial quasi-morphisms:

Corollary 2.6.15 (Quasi-morphisms on amenable groups). Any quasi-
morphism on a discrete amenable group is trivial (in the sense of Defini-
tion 2.5.14).

Proof. Let A be a discrete amenable group. In view of Theorem 2.5.15,
the space QM(A)/QM0(A) is isomorphic to the kernel of the comparison
map H2

b(A; R) −→ H2(A; R).
However, by the previous theorem, H2

b(A; R) = H2
b(A; R#) = 0. Hence,

all quasi-morphisms A −→ R are trivial.

Caveat 2.6.16. In general, bounded cohomology in degree 1 of an amenable
group does not vanish for all (even those that admit no pre-dual) coeffi-
cients; for example, there exist Banach Z-modules V such that H1

b(Z;V )
is infinite dimensional [40].

Using a suitable duality on the level of (co)homology, one can deduce
from Theorem 2.6.14 an analogous characterisation of amenable groups in
terms of `1-homology [28, Corollary 5.5].
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2.7
Bounded cohomology,

algebraically

Our aim is now to find an algebraic description of bounded cohomology that
has some built-in flexibility (like the definition of bounded cohomology via
classifying spaces) and to understand how much flexibility we have. In
classical group cohomology, the solution to this problem is to interpret
group cohomology as a derived functor. Unfortunately, in the Banach
world, homological algebra is obstructed by the fact that the category of
Banach modules is not a nice category in the sense of classical homological
algebra (i.e., it is not an Abelian category).

While not actually deriving a functor in the literal, axiomatic, sense,
we can model the construction of derived functors in this Banach setting,
thereby obtaining a description of bounded cohomology in terms of certain
resolutions. Technically, these resolutions are part of a Banach version of
the relative homological algebra that was also used in the context of Tate
cohomology.

Bühler developed a version of `1-homology that is a derived functor
of the reduced coinvariants [7]; however, this approach requires a more
abstract background and is not suitable for the type of applications we
have in mind.

The full strength of the approach to bounded cohomology via (relative)
homological algebra becomes visible when combined with amenability –
see the discussion of the mapping theorem in the next chapter.

2.7.1 Relative homological algebra, Banach version

The basic idea of homological algebra is to approximate objects by simpler
objects – i.e., to replace objects by injective or projective resolutions. The
right version of homological algebra for bounded cohomology is relative
homological algebra. Recall that in relative homological algebra we restrict

233
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the class of mapping problems to injective/surjective maps that split in a
weak sense (cf. Section 1.9.2). In order to obtain enough control over the
norms (and hence over the semi-norm in bounded cohomology) we need an
additional condition on the splittings in terms of operator norms:

Definition 2.7.1 (Relatively injective/projective morphisms of Banach
modules). Let G be a discrete group, and let U and W be two Banach
G-modules.

– A G-morphism π : U −→ W is called relatively projective if there is
a (not necessarily equivariant) linear map σ : W −→ U satisfying

π ◦ σ = idW and ‖σ‖ ≤ 1.

– A G-morphism i : U −→ W is called relatively injective if there is a
(not necessarily equivariant) linear map σ : W −→ U satisfying

σ ◦ i = idU and ‖σ‖ ≤ 1.

Definition 2.7.2 (Relatively injective/projective Banach modules). Let
G be a discrete group and let V be a Banach G-module.

– The module V is called relatively projective if for each relatively pro-
jective G-morphism π : U −→ W and each G-morphism α : V −→ W
there is a G-morphism β : V −→ U such that

π ◦ β = α and ‖β‖ ≤ ‖α‖.

– The module V is called relatively injective if for each relatively injec-
tive G-morphism i : U −→ W and for each G-morphism α : U −→ V
there is a G-morphism β : W −→ V such that

β ◦ i = α and ‖β‖ ≤ ‖α‖.

The mapping problems arising in the definition of relatively projec-
tive and relatively injective Banach G-modules are depicted in Figure 2.8.
Sometimes, “relatively injective” and “relatively projective” morphisms are
also called “admissible monomorphisms” and “admissible epimorphisms”
respectively.

Similarly, to the situation in the context of Tate cohomology, we see
that induced and coinduced modules are relatively projective and relatively
injective respectively:
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V

α

��

β

~~}
}

}
}

U π
//W

σ
yy

// 0

V

0 // U
i //

α

OO

W
σ

ee

β
``A

A
A

A

Figure 2.8: Mapping problems for relatively projective and relatively injec-
tive Banach G-modules respectively

Example 2.7.3 (Relatively injective/projective modules). Let G be a dis-
crete group, let V be a Banach G-module, and let n ∈ N.

– The Banach G-module B(CR
n (G), V ) (with the diagonal G-action)

is relatively injective: Any mapping problem in the sense of Defini-
tion 2.7.2 of the form

B(CR
n (G), V )

0 // U
i //

α

OO

W
σ

ff

ccF
F

F
F

can be solved by the G-morphism

W −→ B
(
CR
n (G), V

)
w 7−→

(
g0 · [g1| · · · |gn] 7→

(
α(g0 · σ(g−1

0 · w))
)
(g0 · [g1| · · · |gn])

)
.

– The Banach G-module CR
n (G) ⊗ V (with the diagonal G-action) is

relatively projective: Any mapping problem in the sense of Defini-
tion 2.7.2 of the form

CR
n (G)⊗ V

α

��}}|
|

|
|

U π
//W

σ
yy

// 0

is solved by the G-morphism

CR
n (G)⊗ V −→ U

g0 · [g1| · · · |gn]⊗ v 7−→ g0 · σ ◦ α
(
1 · [g1| · · · |gn]⊗ (g−1

0 · v)
)
.
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In particular, the category of Banach G-modules contains enough rela-
tively projective objects and enough relatively injective objects; as in the
case of classical group cohomology this observation is interesting in the
context of dimension shifting and proving uniqueness of derived functors.

Remark 2.7.4 (Enough relatively projectives/enough relatively injectives).
Let G be a discrete group and let V be a Banach G-module.

– Then there exists a relatively injective Banach G-module W together
with a relatively injective G-morphism V −→ W ; for example, we
can take the relatively injective Banach G-module W := B(`1(G), V )
(see Example 2.7.3) together with the canonical embedding

V −→ B(`1(G), V )

v 7−→ (g 7→ g · v).

– Similarly, there exists a relatively projective Banach G-module W
together with a relatively projective G-morphism W −→ V ; for ex-
ample, the relatively projective Banach G-module W := `1(G) ⊗ V
together with the canonical projection

`1(G)⊗ V −→ V

g ⊗ v 7−→ g · v.

Example 2.7.5 (Relative projectivity/injectivity of the trivial module R).
Let G be a discrete group.

– The trivial Banach G-module R is relatively injective if and only if
G is amenable (Exercise).

– The trivial BAnach G-module R is relatively projective if and only
if G is finite (Exercise).

Taking duals transforms relatively projective modules into relatively in-
jective modules [27, Proposition A.4].

As in the classical case, resolutions provide the means to describe general
objects (equivariant Banach modules) in terms of simpler ones (relatively
injective/relatively projective Banach modules); the restricted power of
relatively injective/projective Banach modules is reflected by the fact that
we have to use strong resolutions.
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Definition 2.7.6 (Strong relatively injective/projective resolutions). Let
G be a discrete group and let V be a Banach G-module.

– A (homological) resolution of V is a Banach G-chain chain com-
plex C∗ together with a G-morphism ε : C0 −→ V , the augmentation,
satisfying H∗(C∗ � ε) = 0; recall that “�” denotes the concatenation
of (co)chain complexes.
Similarly, cohomological resolutions are defined.

– A resolution of V by Banach G-modules is called strong if the con-
catenated Banach G-(co)chain complex admits a (not necessarily
equivariant) (co)chain contraction of norm at most 1.

– A resolution of V by Banach G-modules is called relatively injective
(or relatively projective) if it consists of relatively projective Banach
G-modules (or relatively injective Banach G-modules respectively).

Crucial examples for strong relatively injective/projective resolutions are
provided by the Banach bar constructions; later, we will see that also
topological spaces give rise to a large number of nice resolutions.

Proposition 2.7.7 (The Banach bar resolution). Let G be a discrete
group, and let V be a Banach G-module.

1. Then CR
∗ (G)⊗V together with ε⊗ idV is a strong relatively projective

G-resolution of V .
2. Dually, B(CR

∗ (G), V ) together with B(ε, idV ) is a strong relative in-
jective G-resolution of V .

Here, ε denotes the canonical augmentation map

ε : CR
0 (G) −→ R

G 3 g0 7−→ 1.

Proof. As preparation, we exhibit a contracting chain homotopy s∗ of
the concatenated chain complex CR

∗ (G) � ε of norm at most 1: We de-
fine s−1 : R −→ CR

0 (G) by s−1(1) := 1 · [], and for n ∈ N we set

sn : CR
n (G) −→ CR

n+1(G)

g0 · [g1| · · · |gn] −→ (−1)n+1 · 1 · [g0|g1| · · · |gn];

a straightforward computation shows that s∗ has the stated properties.
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Then s∗⊗ idV is a contracting chain homotopy of (CR
∗ (G)⊗V )� (ε⊗ idV )

that also has norm as most 1; dually, B(s∗, idV ) is a contracting cochain
homotopy of B(ε, idV ) � B(CR

∗ (G), V ) of norm at most 1.

Moreover, the complexes CR
∗ (G) ⊗ V and B(CR

∗ (G), V ) consist of rel-
atively projective and relatively injective Banach G-modules respectively
(Example 2.7.3), which finishes the proof of the proposition.

Again, as in the classical case, strong relatively injective and strong
relatively projective resolutions are essentially unique:

Proposition 2.7.8 (Fundamental lemma of relative homological algebra,
Banach version). Let G be a discrete group and let f : V −→ W be a
morphism of Banach G-modules.

1. Let P∗ � (ε : P0 → V ) be a Banach G-chain complex where all Pn are
relatively projective, and let C∗�(γ : C0 → W ) be a strong homological
resolution of W by Banach G-modules.
Then f can be extended to a morphism f∗ � f : P∗ � ε −→ C∗ � γ of
Banach G-chain complexes; moreover, the extension f∗ � P∗ −→ C∗
is unique up to bounded (in every degree) G-chain homotopy.

2. Let (η : W → I0) � I∗ be a Banach G-cochain complex where all In

are relatively injective Banach G-modules, and let (γ : V → C0) � C∗

be a strong cohomological resolution of V by Banach G-modules.
Then f can be extended to a morphism f � f ∗ : γ � C∗ −→ η � I∗ of
Banach G-cochain complexes; moreover, the extension f ∗ is unique
up to bounded (in every degree) G-cochain homotopy.

Proof. This version of the fundamental lemma of homological algebra can
be proved by the same inductive arguments as the classical version. (Ex-
ercise) [37, Chapter 7.2].

Corollary 2.7.9 (Uniqueness of strong resolutions). Let G be a discrete
group and let V be a Banach G-module.

1. Then up to canonical (in every degree) bounded G-chain homotopy
equivalence there is exactly one strong relatively projective G-resolu-
tion of V ; i.e., between any two strong relatively projective G-resolu-
tions of V there exists a canonical bounded G-chain homotopy equiv-
alence.
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2. Dually, up to canonical (in every degree) bounded G-cochain ho-
motopy equivalence there is exactly one strong relatively injective
G-resolution of V .

Proof. Existence is covered by Proposition 2.7.7; uniqueness follows form
the fundamental lemma (applied to the identity map V −→ V ).

2.7.2 Bounded cohomology, algebraically

Using strong resolutions, we see that bounded cohomology and `1-homology
can be computed in the same way as derived functors of · G and · G can
be described in the classical case. Namely, for a discrete group G and a
Banach G-module V bounded cohomology can be obtained as follows:

– Replace V by an approximation through simpler objects; i.e., re-
place V by a strong relatively injective resolution I∗.

– Apply the invariants functor · G to I∗.
– Take cohomology; the result is H∗

b(G;V ).
This is justified by the following theorem:

Theorem 2.7.10 (Bounded cohomology, algebraically). Let G be a dis-
crete group and let V be a Banach G-module.

1. If I∗ together with the augmentation η : V → I0 is a strong relatively
injective G-resolution of V , then there is a canonical isomorphism

H∗(I∗G) −→ H∗
b(G;V )

having norm at most 1 in every degree (with respect to the induced
semi-norms).

2. If P∗ together with the augmentation ε : P0 → V is a strong relatively
projective G-resolution of V , then there is a canonical isomorphism

H∗
(
BG(P∗, V )

)
−→ H∗

b(G;V )

that is functorial in the second variable and that has norm at most 1
in every degree.

In addition, these isomorphisms are functorial in the following sense: If
(ϕ,Φ): (G, V ) −→ (H,W ) is a morphism in GrpBan–, and if η � I∗ and
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ϑ � J∗ are strong relatively injective resolutions of V (over G) and of W
(over H), then the following diagram is commutative:

H∗
b(H;W )

H∗
b(ϕ;Φ)

��

H∗(J∗H)oo

��

H∗
b(G;V ) H∗(I∗G)oo

Here, the horizontal arrows are the canonical isomorphisms provided by
the first part; the left vertical map is induced by C∗

b(ϕ; Φ); the right vertical
map is induced by the unique (up to homotopy) morphism ϕ∗J∗ −→ I∗ of
Banach G-cochain complexes extending Φ: ϕ∗W −→ V .

Similar statements also apply to `1-homology [28, Theorem 3.7].

In view of the first two parts of the theorem, the semi-norms on H∗
b(G; · )

and H`1

∗ (G; · ) that are induced by the norms ‖ · ‖∞ and ‖ · ‖1 respectively
on the bar constructions are called the canonical semi-norms. Notice that
by Theorem 2.5.17 the canonical semi-norm coincides with the one given
by the topological description of bounded cohomology.

Caveat 2.7.11. It is not difficult to construct (e.g., via scaling) examples
of strong relatively projective/injective resolutions that do not induce the
canonical semi-norms on (co)homology.

Proof (of Theorem 2.7.10). For the first part, recall that

H∗
b(G;V ) = H∗(C∗

b(G;V )
)

= H∗(B(CR
∗ (G), V )G

)
and that B(CR

∗ (G), V ) is a strong relatively injective G-resolution of V
(see Proposition 2.7.7). Thus, in view of the fundamental lemma (Propo-
sition 2.7.8), there is a canonical isomorphism H∗(I∗G) ∼= H∗

b(G;V ) of
graded semi-normed vector spaces coming from the identity morphism
on V .

Using a small calculation one can show that this isomorphism indeed has
norm at most 1 [23, Proof of Theorem (3.6)]: Namely, if s∗ is a cochain con-
traction of η�I∗ of norm at most 1, then the maps fn : In −→ B(CR

n (G), V )
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defined inductively by

f 0 : I0 −→ B
(
CR

0 (G), V
)

x 7−→
(
g0 7→ g0 · s0(g−1

0 · x)
)
,

fn+1 : In+1 −→ B
(
CR
n+1(G), V

)
x 7−→

(
g0 · [g1| · · · |gn+1] 7→ fn(g0 · sn+1(g−1

0 · x))(g0 · g1 · [g2| · · · |gn+1])
)

for all n ∈ N form aG-equivariant cochain map of norm at most 1 extending
the identity idV on the coefficients V .

Similarly, the second part follows because CR
∗ (G) ⊗ R is a strong rel-

atively projective G-resolution of R (Proposition 2.7.7); the fact about
the semi-norms in this case can be established using results by Park [42,
Theorem 2.2].

The third part is also a consequence of the fundamental lemma (Propo-
sition 2.7.8): the commutativity of the diagram follows because also

B(ϕ,Φ): ϕ∗B
(
CR
∗ (H),W

)
−→ B

(
CR
∗ (G), V

)
is a morphism of Banach G-cochain complexes extending Φ.

Moreover, in the context of bounded cohomology there is also a dimen-
sion shifting mechanism available:

Theorem 2.7.12 (Bounded cohomology, dimension shifting). Let G be a
discrete group.

1. If 0 // U
i // V

p
//W // 0 is a short exact sequence of Ba-

nach G-modules where the projection p : V −→ W is relatively pro-
jective, then there is a corresponding natural long exact sequence in
bounded cohomology:

· · · // Hk
b(G;U)

Hk
b (idG;i)
// Hk

b(G;V )
Hk

b (idG;p)
// Hk

b(G;W ) δk
// Hk+1

b (G;U) // . . .

The connecting homomorphism δk : Hk
b(G;W ) −→ Hk+1

b (G;U) is
continuous with respect to the canonical semi-norm.

2. For all relatively injective Banach G-modules I we have Hk
b(G; I) = 0

for all k ∈ N>0.
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Proof. For the proof of the first part we use the description of bounded co-
homology via the Banach bar complex, which is a strong relatively projec-
tive G-resolution of R. It is not difficult to show that taking G-morphisms
from a relatively projective G-module to a short exact sequence of Banach
G-modules with a relatively projective projection preserves exactness [37,
Chapter 8.2]. Therefore, we obtain the natural long exact sequences in
bounded cohomology from the normed version of the snake lemma (Propo-
sition 2.3.16).

The vanishing of bounded cohomology in higher degree on relatively
injective modules is a consequence of the description in terms of strong
relatively injective resolutions (Theorem 2.7.10).

Caveat 2.7.13 (Bounded cohomology, axiomatically). It is tempting to
combine the dimension shifting mechanism with the fact that there are
enough injective modules in this context (Remark 2.7.4) and the fact
that bounded cohomology in degree 0 coincides with the invariants func-
tor GrpBan– −→ Vec‖·‖ in order to obtain an axiomatic description of
bounded cohomology along the lines of derived functors. Notice however
that the connecting homomorphism, even if it is bijective, in general will
only be continuous but not necessarily bicontinuous or even isometric. So
the näıve axiomatic approach kills the information on the semi-norm, which
is central for the applications.



2.8

The mapping theorem

The characterisation of amenable groups in terms of the vanishing of higher
bounded cohomology (Theorem 2.6.14) gave already a taste of what to
expect from bounded cohomology in the context of amenability. In the
following, we will look at further results in this direction:

– Algebraically, averaging over amenable groups shows that bounded
cohomology cannot see amenable normal subgroups.

– The negligence of bounded cohomology towards amenable objects
can be exploited in the context of bounded cohomology of topological
spaces: looking at the homotopy groups of a space, we see that almost
all homotopy theoretic information is Abelian (and hence amenable)
– except for the fundamental group. This observation is the key
to Gromov’s mapping theorem [19, 23]: Continuous maps between
spaces that on the level of fundamental groups are surjective and
have amenable kernel induce isometric isomorphisms in bounded co-
homology; in particular, all spaces with a given fundamental group
compute bounded cohomology of this particular group.

In this section, we will first sketch a proof of the algebraic mapping
theorem on amenable kernels. After that we will sketch a proof of the
topological mapping theorem – following the strategy of Ivanov [23]. Ap-
plications of the mapping theorem to geometry and topology are given in
the next chapter.

2.8.1 The mapping theorem, algebraically

Recall that a group is amenable if it possesses an invariant mean on the
set of bounded functions (Definition 2.6.1). Using this mean, averaging
and splitting maps on the level of bounded cochains can be produced. An

243
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example of such a result is the following generalisation of the vanishing
result for bounded cohomology of amenable groups [19, 23, 40, 37]:

Theorem 2.8.1 (Mapping theorem, algebraically). Let G be a discrete
group, let A be an amenable normal subgroup, and let V be a Banach
G-module. We write π : G −→ G/A for the canonical projection and
I : V #A −→ V # for the inclusion of the A-fixed points into the dual Ba-
nach G-module of V ; notice that V #A inherits the structure of a Ba-
nach G/A-module from the Banach G-module structure on V # and that
(π, I) : (G, V #) −→ (G/A, V #A) is a morphism in the category GrpBan–.

Then the induced map (the so-called inflation homomorphism)

H∗
b(π; I) : H∗

b(G/A;V #A) −→ H∗
b(G;V #)

is an isometric isomorphism of graded semi-normed vector spaces (with
respect to the canonical semi-norm).

Sketch of proof. Using amenability of A, i.e., averaging over A, one can
construct a morphism

t∗ : B
(
CR
∗ (G), V #

)
−→ B

(
π∗CR

∗ (G/A), V #
)

of Banach G-cochain complexes extending idV # and satisfying

t∗ ◦B
(
CR
∗ (π), idV #

)
= idB(π∗CR

∗ (G/A),V #) .

For example, in degree 0 we can take (where mV : B(A, resGA V
#) −→ V #

is an A-equivariant mean as in the proof of Theorem 2.6.14)

B
(
CR

0 (G), V #
)
−→ B

(
π∗CR

0 (G/A), V #
)

f 7−→
(
g0 · A 7→ g0 ·mV (a 7→ g−1

0 · f(g0 · a))
)
.

This has several consequences:
– For all n ∈ N the Banach G-module B(π∗CR

n (G/A), V #) is relatively
injective.
Hence, B(π∗CR

∗ (G/A), V #) can be viewed as a strong relatively in-
jective G-resolution of V #. In particular, we obtain an isomorphism

H∗
b(G/A;V #A) = H∗(B(CR

∗ (G/A), V #A)G/A
)

= H∗(B(CR
∗ (G/A), V #)G

)
∼= H∗(B(CR

∗ (G), V #)G
)

= H∗
b(G;V #),
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which has norm at most 1 (Theorem 2.7.10); the uniqueness part of
the fundamental lemma of relative homological algebra allows us to
conclude that this isomorphism is H∗

b(π; I) = H∗(B(CR
∗ (π), I)G).

– On the other hand, the one-sided inverse t∗ of B(CR
∗ (π), I) has also

norm at most 1 and therefore witnesses that the canonical semi-norms
on H∗

b(G/A;V #A) and H∗
b(G;V #) are the same.

More results in the same spirit can be obtained by similar arguments [37,
Chapter 8.5].

2.8.2 The mapping theorem, topologically

One of the most startling results in the theory of bounded cohomology is
the topological mapping theorem – in a cunning way it uses the interaction
between topology, homotopy theory, functional analysis and homological
algebra.

The original proof by Gromov [19] relies on a variation of simplicial sets
and simplicial topology; in the following, we will sketch a proof [27] in
terms of homological algebra along the lines of Brooks [3], Ivanov [23],
Noskov [40] and Monod [37].

Theorem 2.8.2 (Mapping theorem, topologically). Let X be a countable
connected pointed CW-complex with fundamental group G, let V be a Ba-
nach G-module, and let XG be a model of the classifying space BG. Then
the classifying map c : X −→ XG induces an isometric isomorphism

H∗
b(c; idV #) : H∗

b(G;V #) = H∗
b(XG;V #) −→ H∗

b(X;V #)

of graded semi-normed vector spaces (which is natural in the coefficients).

Recall that the classifying map of a connected pointed CW-complex X
with fundamental group G is the unique (up to homotopy) continuous
map X −→ BG that induces the identity on the level of fundamental
groups. The classifying map of a space can be viewed as a geometric
incarnation of the ZG-chain map C∗(X̃; Z) −→ C∗(B̃G; Z) provided by
the fundamental lemma of homological algebra.

Sketch of proof. Intuitively, this theorem relies on the following facts:
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– The homotopy type of a CW-complex is determined by its homotopy
groups.

– All higher homotopy groups are Abelian and hence amenable (thus
invisible in bounded cohomology).

More concretely, Ivanov’s proof of this theorem (with trivial coefficients)
consists of the following two steps:

1. Show that B(C∗(X̃; R), V #) together with the canonical augmenta-
tion map is an approximate strong relatively injective G-resolution
of V #.
Definition 2.8.3 (Approximate strong resolutions). Let G be a dis-
crete group.

– If C∗ is a Banach G-cochain complex and n ∈ N, we define the
truncated cochain complex C∗|n to be the Banach G-cochain
complex derived from C∗ by keeping only the modules (and
the corresponding coboundary operators) in degree 0, . . . , n and
defining all modules in higher degrees to be 0.

– An augmented Banach G-cochain complex (C∗, ε : V → C0) is
an approximate strong resolution of the Banach G-module V
if for every n ∈ N, the truncated complex C∗|n admits a par-
tial contracting cochain homotopy, i.e., linear maps (sj : C

j →
Cj−1)j∈{1,...,n} and s0 : C0 → V of norm at most 1 satisfying

∀j∈{1,...,n−1} δj−1 ◦ sj + sj+1 ◦ δj = idCj

as well as s0 ◦ ε = idV .
2. Deduce that H∗

b(c; idV #) is a continuous isomorphism (of norm at
most 1).

3. Show that the isomorphism H∗
b(c; idV #) is isometric.

Ad 1. We start by decomposing the universal covering space X̃ according
to its homotopy groups in highly connected pieces: Because X̃ is a simply
connected countable CW-complex, there is a sequence

. . . pn // Xn
pn−1 // . . . p2 // X2

p1 // X1 := X̃

of principal bundles (pn)n∈N>0 with Abelian structure groups such that

∀j∈{0,...,n} πj(Xn) = 0 and ∀j∈N>n πj(Xn) = πj(X̃)
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holds for all n ∈ N>0 [23, p. 1096]. In particular, all the Xn are sim-
ply connected. Here, the structure groups have the homotopy type of
Eilenberg-Mac Lane spaces associated with higher homotopy groups of X.

Let n ∈ N. Since Xn is n-connected, one can explicitly construct a
partial chain contraction

R
r0 // C0(Xn; R)

r1 // . . . rn // Cn(Xn; R)

with ‖rj‖ ≤ 1 for all j ∈ {0, . . . , n} [23, p. 1097]; this is similar to the
construction in the proof of Theorem 2.5.17. Because r∗ is bounded, we
obtain a partial cochain contraction

V # = B(R, V #) B
(
C0(Xn; R), V #

)B(r0,idV # )
oo . . .

B(r1,idV # )
oo B

(
Cn(Xn; R), V #

)B(rn,idV # )
oo

with norm at most 1. We now wish to translate this partial contracting
cochain map of Xn into one of X̃: At this point, we make use of the
fact that the fibre bundles pj have Abelian (and hence amenable) struc-
ture groups; more precisely, similar to the algebraic mapping theorem we
have [27, Lemma B.4]:

Lemma 2.8.4. Let X and Y be simply connected spaces, let p : X −→ Y be
a principal bundle whose structure group is an Abelian topological group G,
and let V be a Banach space. Then for each n ∈ N there is a partial split
of C∗

b(p;V #)|n, i.e., a cochain map

t|∗n : C∗
b(X;V #)|n −→ C∗

b(Y ;V #)|n

of truncated complexes satisfying for all j ∈ {0, . . . , n}

t|nj ◦ Cj
b(p; idV #) = id and ‖t|nj‖ ≤ 1.

By the above Lemma 2.8.4, for all j ∈ {1, . . . , n} we find partial splits

t(j)|∗n : C∗
b(Xj+1;V

#)|n −→ C∗
b(Xj;V

#)|n

of C∗
b(pj; idV #)|n. As indicated in Figure 2.9, we then consider the maps

V # C0
b(X̃;V #)

s0oo . . .s1oo Cn
b (X̃;V #)

snoo defined by

sj := t(1)|j−1
n ◦· · ·◦t(n−1)|j−1

n ◦B(rj, idV #)◦Cj
b(pn−1;V

#)◦· · ·◦Cj
b(p1;V

#)
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Cj−1
b (Xn;V

#)

t(n−1)|j−1
n ��

Cj
b(Xn;V

#)oo

...

��

...

Cj
b(pn−1;id

V # )

OO

Cj−1
b (Xn−1;V

#)

��

Cj
b(Xn−1;V

#)

OO

Cj−1
b (X2;V

#)

t(1)|j−1
n
��

Cj
b(X2;V

#)

OO

Cj−1
b (X̃;V #) Cj

b(X̃;V #)

Cj
b(p1;id

V # )

OO

sj

oo_ _ _ _

Figure 2.9: Constructing a partial cochain contraction for the bounded
cochains of the universal covering space

for all j ∈ {0, . . . , n}. By construction, ‖sj‖ ≤ 1 and s0, . . . , sn form a
partial cochain contraction [23, p. 1096].

It remains to show that the Banach G-modules B(Cn(X̃; R), V #) are

relatively injective: Let F ⊂ X̃ be a fundamental domain for the G-action
on X̃. For n ∈ N, we write Fn ⊂ Cn(X̃; R) for the subspace generated by
all singular simplices mapping the zeroth vertex of ∆n into F . Then

Cn(X̃; R) = RG⊗R Fn

(as RG-modules). In particular, we obtain

B
(
Cn(X̃; R), V #

)
= B

(
RG⊗ Fn, V #

)
= B

(
`1(G), B(Fn, V

#)
)
.

Because B(`1(G), B(Fn, V
#)) is a relatively injective Banach G-module

(Example 2.7.3), it follows that B(C∗(X̃; R);V #) is a relatively injective
Banach G-module.

Hence, the cochain complex B(C∗(X̃; R), V #) together with the obvi-
ous augmentation map is an approximate strong relatively injective G-res-
olution of V #.
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Ad 2. Let c̃ : X̃ −→ X̃G be the base-point preserving lift of c to the
universal coverings. Because the inductive proof of the fundamental lemma
of homological algebra depends only on finite initial parts of the resolutions
in question, it follows that the morphism

B
(
C∗(c̃; R), idV #

)
: B

(
C∗(X̃G,R), V #

)
−→ B

(
C∗(X̃; R), V #

)
of approximate strong relatively injectiveG-resolutions of V # (that extends
the identity on V #) induces an isomorphism H∗

b(XG;V #) −→ H∗
b(X;V #).

Moreover, this isomorphism has norm at most 1 by construction.
Ad 3. Similarly to the proof of Theorem 2.5.17 we can construct a mor-

phism C∗(X̃; R) −→ CR
∗ (G) −→ C∗(X̃G; R) of normed G-chain complexes

of norm at most 1. This morphism induces a morphism

B
(
C∗(X̃G; R), V #

)
−→ B

(
C∗(X̃; R), V #

)
of Banach G-cochain complexes of norm at most 1 extending the identity
on V #.

Because the inductive proof of the fundamental lemma of homological
algebra depends only on finite initial parts of the resolutions in question
it follows that this morphism is G-homotopy inverse to B(C∗(c̃; R), idV #).
Hence, H∗

b(c; idV #) must be isometric.
Alternatively, for the third step, one can argue using the second step

in combination with the properties of the canonical semi-norm on the
bounded cohomology H∗

b(G;V #) (see Theorem 2.7.10).

In particular, combining this result with the algebraic version of the
mapping theorem (Theorem 2.8.1), we obtain the following astonishing
consequences:

Corollary 2.8.5 (Mapping theorem with amenable kernels, topologically).
Let f : X −→ Y be a (base-point preserving) continuous map between
countable connected pointed CW-complexes such that the induced homomor-
phism π1(f) : π1(X) −→ π1(Y ) is surjective and has amenable kernel A.
Then for all Banach π1(X)-modules V , the induced map

H∗
b(f ; I) : H∗

b(Y ;V #A) −→ H∗
b(X;V #),

where I : V #A −→ V # denotes the inclusion of the A-fixed points, is an
isometric isomorphism of semi-normed vector spaces.
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Corollary 2.8.6 (The `1-semi-norm on singular homology and amenable
kernels). Let f : X −→ Y be a (base-point preserving) continuous map
between countable connected pointed CW-complexes such that the induced
homomorphism π1(f) : π1(X) −→ π1(Y ) is surjective and has amenable
kernel. Then the induced map

H∗(f ; idR) : H∗(X; R) −→ H∗(Y ; R)

is isometric with respect to the `1-semi-norm.

Proof. This is a consequence of the version of the topological mapping the-
orem in Corollary 2.8.5 and the duality principle for semi-norms (Proposi-
tion 2.3.13).

Corollary 2.8.7 (The `1-semi-norm and amenable fundamental group).
Let X be a countable connected CW-complex with amenable fundamental
group, and let k ∈ N>0. Then the `1-semi-norm on Hk(X; R) is zero.

In Section 2.9, we will have a closer look at the effect of the mapping
theorem on the behaviour of the simplicial volume.

2.8.3 Duality and mapping theorems in `1-homology

The proofs given for the mapping theorems in bounded cohomology cannot
be transferred literally to `1-homology – the problem being that in general
the modules CR

n (G/A)⊗V are not relatively projective Banach G-modules
if A is an amenable normal subgroup of G [28, Caveat 5.7].

However, using a suitable duality on the level of (co)homology, the map-
ping theorems in bounded cohomology can be translated into mapping
theorems in `1-homology [28, 7]:

Theorem 2.8.8 (Mapping theorem in `1-homology). Let f : X −→ Y
be a continuous map between countable connected pointed CW-complexes
such that the induced map π1(f) : π1(X) −→ π1(Y ) is surjective and has
amenable kernel A; moreover, let V be a Banach π1(X)-module. Then

H`1

∗ (f ;P ) : H`1

∗ (X;V ) −→ H`1

∗ (Y ;VA)

is an isometric isomorphism.
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Application: Simplicial volume

The simplicial volume is a homotopy invariant of oriented closed connected
manifolds, introduced by Gromov in his proof of Mostow rigidity [39, 19].
In a way, the simplicial volume measures how difficult it is to build a
manifold out of simplices (allowing non-integral coefficients):

Definition 2.9.1 (Simplicial volume). Let M be an oriented closed con-
nected n-manifold. Then the simplicial volume of M is defined as

‖M‖ :=
{
‖c‖1

∣∣ c ∈ Cn(M ; R) is an R-fundamental cycle of M
}
∈ R≥0,

where ‖·‖1 denotes the `1-norm on the singular chain complex with respect
to the basis given by all singular simplices (Example 2.3.7).

This harmless looking homotopy invariant is surprisingly closely related
to the Riemannian volume (which is not a homotopy invariant in general!);
for example, it gives non-trivial lower bounds for the minimal volume and
it allows to prove that the volume of hyperbolic closed manifolds is a ho-
motopy invariant(!). In particular, one can obtain degree theorems via the
simplicial volume.

In view of these geometric aspects of the simplicial volume, it is attractive
to find algebraic tools that help analysing its behaviour; one such tool is
bounded cohomology. Indeed, via the duality principle for semi-norms,
we see that the simplicial volume can be expressed in terms of bounded
cohomology.

In the following, we will give a brief introduction to the simplicial vol-
ume and its beautiful properties. We will start with a general discussion of
functorial semi-norms and degree theorems; in Sections 2.9.1 through 2.9.3
we have a closer look at the connection between simplicial and Rieman-
nian volume. Then we show how the interplay of simplicial volume with
bounded cohomology can be used to prove non-trivial vanishing and inher-
itance results. Finally, we will present a short list of open problems.

251
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2.9.1 Functorial semi-norms and degree theorems

A degree theorem is a statement of the following form:

Theorem 2.9.2 (Metatheorem – degree theorem). Let D and T be certain
suitable classes of Riemannian manifolds of the same dimension – the do-
main manifolds and the target manifolds. Then there is a constant c ∈ R
with the following property: For all M ∈ D, all N ∈ T , and all continuous
maps f : M −→ N we have

| deg f | ≤ c · volM

volN
.

Of course, the classes of domain and target manifolds have to be chosen
very carefully; for example (see Corollary 2.9.10 below):

Theorem 2.9.3 (Degree theorem for hyperbolic manifolds). Let n ∈ N>1,
and let M and N be oriented closed connected hyperbolic n-manifolds. Then

| deg f | ≤ volM

volN

for all continuous maps f : M −→ N .

How can such a degree theorem be proved? A basic strategy is the
following: Find a real-valued invariant v on the class of target and domain
manifolds D and T respectively that has the following properties:

1. For all continuous maps f : M −→ N with M ∈ D and N ∈ T we
have | deg f | · v(N) ≤ v(M).

2. There is a cD ∈ R such that for allM ∈ D we have v(M) ≤ cD ·volM .
3. There is a cT ∈ R such that for all N ∈ T we have v(N) ≥ cT ·volN .

Putting all three properties together we obtain a degree theorem. The art
is now to find appropriate invariants v and good estimates from above and
below.

Using the definition of the mapping degree in terms of singular homology
in the top degree, we see that the simplicial volume is functorial in the
following sense:
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Remark 2.9.4 (Functoriality of the simplicial volume). For all continuous
maps f : M −→ N of oriented closed connected manifolds of the same
dimension we have

| deg f | · ‖N‖ ≤ ‖M‖.
As homotopy equivalences of oriented closed connected manifolds have de-
gree 1 or −1 it follows that the simplicial volume indeed is a homotopy
invariant.

Example 2.9.5 (Simplicial volume of spheres and tori). If n ∈ N>0, then
the sphere Sn and the torus (S1)n have self-maps of degree 2; therefore,
‖Sn‖ = 0 and ‖(S1)n‖ = 0.

Remark 2.9.6 (Simplicial volume and covering maps). If f : M −→ N is
a covering of oriented closed connected manifolds, then

| deg f | · ‖N‖ = ‖M‖.

In view of Remark 2.9.4 it suffices to prove “≥;” this can be shown with a
suitable transfer map on the level of singular chains. (Exercise)

More generally, the `1-semi-norm is an example of a so-called functorial
semi-norm on singular homology with real coefficients [20, 5.34]. These
functorial semi-norms play an important rôle in the study of degree theo-
rems and questions about mapping degrees in general.

2.9.2 Simplicial volume and negative curvature

All examples we discussed so far had vanishing simplicial volume. In the
following, we will briefly explain one source of non-vanishing simplicial
volume: negative curvature.

Theorem 2.9.7 (Simplicial volume of hyperbolic manifolds). Let n ∈ N>1,
and let M be an oriented closed connected hyperbolic n-manifold. Then

‖M‖ =
volM

vn
,

where vn is the supremal volume of all geodesic n-simplices in hyperbolic
n-space.
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Figure 2.10: Geodesics in hyperbolic n-space Hn

What is a hyperbolic manifold? A hyperbolic manifold is a Riemannian
manifold whose Riemannian universal covering is isometric to hyperbolic
space; this is equivalent to the property that the sectional curvature of the
Riemannian metric is everywhere equal to −1.

For n ∈ N>1 hyperbolic n-space Hn is a Riemannian n-manifold that
is homeomorphic to the open n-ball; the Riemannian metric has among
others the following features [2, 44]:

– Between any two points in Hn there exists a unique (up to parametri-
sation) geodesic.

– In particular, using (ordered) convex combinations via geodesics, for
any finite sequence of points in Hn there is a corresponding geodesic
simplex with the given vertices.

– The maximal geodesics in Hn are precisely those circles in the n-
ball that intersect the boundary of the closed n-ball orthogonally
(Figure 2.10).

– It is a curious property of hyperbolic n-space that the supremum over
the volumes of all geodesic n-simplices in Hn is finite. The reason for
this behaviour is the following crucial property of negative curvature:
geodesic triangles are “thin” (Figure 2.11). In fact, it is possible to
define negative curvature in terms of this property.

Proof (of Theorem 2.9.7). We only sketch Thurston’s proof for the esti-
mate

‖M‖ ≥ volM

vn
;
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Figure 2.11: Geodesic triangles in negatively curved spaces are thin

the proof of the converse inequality requires different means (Thurston’s
smearing [52] or discrete versions of it [2]).

Because M is hyperbolic, we can “straighten” any singular simplex on M
by lifting it to the universal covering Hn, replacing the lifted simplex by
the geodesic simplex on Hn with the same vertices, and projecting the
resulting simplex back to M (Figure 2.12).

This process leads to a chain map str∗ : C∗(M ; R) −→ C∗(M ; R) chain
homotopic to the identity; this can be proved with arguments similar to
those in the proof of Theorem 2.5.17.

Because integrating (smooth) fundamental cycles yields the volume of
the manifold in question and because the universal covering map Hn −→M
is a local isometry, we obtain

volM =

∫
strn c

volM

=
r∑
j=0

aj ·
∫

(strn σj)
∗ volM

=
r∑
j=0

aj ·
∫

(strn σj )̃ volHn

≤
r∑
j=0

|aj| · vn

≤ ‖c‖1 · vn
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str∗

Figure 2.12: The straightening map, schematically

for all fundamental cycles c =
∑r

j=0 aj · σj (in reduced form) of M ; taking
the infimum over all fundamental cycles gives ‖M‖ ≥ volM/vn.

Corollary 2.9.8 (Simplicial volume of surfaces). Let M be an oriented
closed connected surface of genus g ≥ 2. Then

‖M‖ = 4 · g − 4.

Proof. Under the given assumptions, the surfaceM is hyperbolic [2]. There-
fore, we obtain from the Gauß-Bonnet theorem that

‖M‖ =
volM

v2

= 4 · g − 4.

In fact, in this case, it is possible to give an ad-hoc argument show-
ing that ‖M‖ ≤ 4 · g − 4 via finite coverings and explicit triangulations
(Exercise).

Recalling that the simplicial volume and the dimension of oriented closed
connected manifolds is a homotopy invariant, we obtain the following as-
tonishing consequence of Theorem 2.9.7:

Corollary 2.9.9 (Homotopy invariance of hyperbolic volume). The vol-
ume of oriented closed connected hyperbolic manifolds is a homotopy in-
variant.

In fact, the simplicial volume originated in Gromov’s proof of Mostow
rigidity [39] where this result is heavily used.

Moreover, we obtain the following degree theorem:
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Corollary 2.9.10 (Degree theorem for hyperbolic manifolds). Let n ∈
N>1, and let M and N be oriented closed connected hyperbolic n-manifolds.
Then

| deg f | ≤ volM

volN
for all continuous maps f : M −→ N .

Remark 2.9.11 (Generalisations of non-vanishing results).
– Using Mineyev’s result on non-vanishing of higher bounded cohomol-

ogy of hyperbolic groups together with the mapping theorem, one ob-
tains: The simplicial volume of oriented closed connected rationally
essential manifolds of dimension at least 2 with word-hyperbolic fun-
damental group is non-zero.

– Lafont and Schmidt showed that also the simplicial volume of com-
pact locally symmetric spaces of non-compact type is non-zero [25].

– Bucher-Karlsson computed the exact value of the simplicial volume of
the product of two oriented closed connected hyperbolic surfaces [6].

Notice that Theorem 2.9.7 also has non-trivial consequences for the fun-
damental groups of closed hyperbolic manifolds (see the vanishing results
of Section 2.9.4) [23].

2.9.3 Simplicial volume and Riemannian volume

In the previous section we saw that the simplicial volume and the Rie-
mannian volume of hyperbolic manifolds coincide up to a constant factor
depending only on the dimension of the manifolds in question. Of course,
in general, the simplicial volume does not coincide with the Riemannian
volume – however, astonishingly, there still are non-trivial connections. We
now present two such connections: the relation with the minimal volume
and the proportionality principle.

Definition 2.9.12 (Minimal volume). Let M be an oriented closed con-
nected smooth manifold. Then the minimal volume of M is defined by

minvolM := inf
{
vol(M, g)

∣∣ g is a Riemannian metric on M

with | sec g| ≤ 1
}
.
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A priori it is not clear that there exist smooth manifolds with non-zero
minimal volume. However, Gromov discovered the following estimate [19]:

Theorem 2.9.13 (Simplicial volume and minimal volume). Let M be an
oriented closed connected smooth n-manifold. Then

‖M‖ ≤ (n− 1)n · n! ·minvolM.

Example 2.9.14. So in particular, oriented closed connected hyperbolic
manifolds have non-zero minimal volume (Theorem 2.9.7).

Another generalisation of the computation of the simplicial volume of
hyperbolic manifolds is the following proportionality principle of Gromov
and Thurston [20, 52, 50]:

Theorem 2.9.15 (Proportionality principle for simplicial volume). Let
M and N be two oriented closed connected Riemannian manifolds with
isometric universal Riemannian coverings. Then

‖M‖
volN

=
‖N‖
volN

.

All known proofs of this theorem make use of the description of the
simplicial volume in terms of bounded cohomology.

For example, the non-vanishing result of Lafont and Schmidt for lo-
cally symmetric spaces of non-compact type (Remark 2.9.11) relies on the
proportionality principle in order to reduce the problem to the case of
irreducible locally symmetric spaces of non-compact type.

2.9.4 Simplicial volume and the mapping theorem in

bounded cohomology

The duality principle for semi-norms (Proposition 2.3.13) and the mapping
theorem in bounded cohomology (Theorem 2.8.2) open the door to many
vanishing results and inheritance properties of the simplicial volume. Re-
call that the mapping theorem roughly says that bounded cohomology of a
space depends only on its classifying map (which encodes the fundamental
group) and that bounded cohomology cannot see amenable groups.



2.9 Application: Simplicial volume 259

Example 2.9.16 (Simplicial volume and amenable fundamental group).
Let M be an oriented closed connected manifold of non-zero dimension
whose fundamental group is amenable; then

‖M‖ = 0.

In order to appreciate the power of the mapping theorem it is a good
exercise to sit down and try to prove by geometric means that the simplicial
volume of all simply connected manifolds is zero (as far as I know, no such
proof is known to date . . . ).

Example 2.9.17 (Simplicial volume and free fundamental group). Let
M be an oriented closed connected manifold of non-zero dimension whose
fundamental group is a free group; then

‖M‖ = 0.

Caveat 2.9.18 (Simplicial volume and fundamental group). The simpli-
cial volume does not depend only on the fundamental group, but on the
classifying map of the manifold in question; namely, if M is an oriented
closed connected manifold with non-zero simplicial volume (such mani-
folds exist: Theorem 2.9.7), then π1(M) ∼= π1(S

2×M), but ‖S2×M‖ = 0
because ‖S2‖ = 0 (Theorem 2.9.19).

2.9.5 Simplicial volume, inheritance properties

As indicated above, we can use bounded cohomology (and its nice invari-
ance properties) to derive some inheritance properties of the simplicial
volume:

Theorem 2.9.19 (Simplicial volume and products). Let M and N be
oriented closed connected manifolds. Then

‖M‖ · ‖N‖ ≤ ‖M ×N‖ ≤
(

dimM + dimN

dimM

)
· ‖M‖ · ‖N‖.

Proof. For the left hand inequality, use the cohomological cross-product
and the duality principle for semi-norms; for the right hand inequality,
use the homological cross-product and its explicit description through the
shuffle product (Exercise) [19, 2].
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Theorem 2.9.20 (Simplicial volume and connected sums). Let M and N
be oriented closed connected manifolds of the same dimension ≥ 3. Then

‖M #N‖ = ‖M‖+ ‖N‖.

Proof. We prove only the weaker statement that

‖M‖+ ‖N‖
2

≤ ‖M #N‖ ≤ ‖M‖+ ‖N‖.

(The proof of the equality as stated in the theorem requires a careful com-
binatorial analysis of the universal covering of the wedge of two classifying
spaces [19].)

Using the continuous maps M#N −→M and M#N −→ N of degree 1
collapsing N and M respectively, we obtain

‖M #N‖ ≥ ‖M‖ and ‖M #N‖ ≥ ‖N‖,

and therefore ‖M #N‖ ≥ 1/2 · (‖M‖+ ‖N‖).
To prove the estimate ‖M #N‖ ≤ ‖M‖+ ‖N‖ we look at the pinching

map
p : M #N −→M ∨N

that collapses the sphere along which M and N are glued together; be-
cause dimM = dimN ≥ 3, the theorem of Seifert and van Kampen shows
that the induced homomorphism π1(p) : π1(M #N) −→ π1(M ∨N) is an
isomorphism.

Therefore, the the mapping theorem and the duality principle for semi-
norms imply thatHn(p; idR) : Hn(M#N ; R) −→ Hn(M∨N ; R) is isometric
with respect to the `1-semi-norm (Corollary 2.8.6). In particular,

‖M #N‖ =
∥∥Hn(p; R)([M #N ]R)

∥∥
1
;

on the other hand, in view of the Mayer-Vietoris sequence, we know that
the classHn(p; R)([M#N ]R) is nothing but the sum of the two classes [M ]R
and [N ]R in

Hn(M #N ; R) ∼= Hn(M ; R)⊕Hn(N ; R).

This shows that

‖M #N‖ =
∥∥Hn(p; R)([M #N ]R)

∥∥
1
≤ ‖M‖+ ‖N‖,

as desired.
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The above theorem does not hold in dimension 2: The simplicial volume
of the torus is 0, whereas the simplicial volume of oriented closed connected
surfaces of higher genus is non-zero (Corollary 2.9.8).

Theorem 2.9.21 (Simplicial volume and fibrations). Let p : M −→ B
be a fibration of oriented closed connected manifolds whose fibre F also is
an oriented closed connected manifold of non-zero dimension, and suppose
that the fundamental group of F is amenable. Then

‖M‖ = 0.

Proof. This is a straightforward application of the mapping theorem [29,
Exercise 14.15 and p. 556].

2.9.6 Open problems

1. Infinite amenable normal subgroups (W. Lück). For which oriented
closed connected manifolds M whose fundamental group contains an
infinite amenable normal subgroup does ‖M‖ = 0 hold?

2. Simplicial volume and Euler characteristic (M. Gromov). Does for
all oriented closed connected aspherical manifolds M with ‖M‖ = 0
follow that χ(M) = 0 ?

3. Integral simplicial volume. What is the exact relation between the
simplicial volume of oriented closed connected aspherical manifolds
and the integral simplicial volume (defined via fundamental cycles
with integral coefficients) of all finite coverings of the manifold in
question?

4. Simplicial volume and `1-homology. Do there exist oriented closed
connected manifolds M with ‖M‖ = 0 such that the image of the
fundamental class [M ]R in `1-homology is non-zero?
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2.10

Exercises

Most of the exercises are grouped into collections of four exercises, covering
the material of one week of lectures. The exercises vary in difficulty; some of
them are straightforward applications of the material presented in the text,
while others require additional knowledge (e.g., from algebraic topology).

Exercise sheet #11

Exercise 2.1 (Homology of normed chain complexes). Give an example of a
normed chain complex C∗ and a k ∈ N with the property that the k-th reduced
homology of C∗ vanishes but the k-th cohomology of the dual complex C#∗

does not vanish. In particular, the induced semi-norm on cohomology of the
dual complex can in general not be expressed in terms of the induced semi-norm
on homology.

Exercise 2.2 (Simplicial volume and mapping degrees).
1. Let f : M −→ N be a continuous map of oriented closed connected mani-

folds of the same dimension with non-zero degree deg f . Show that

‖N‖ ≤ 1
|deg f |

· ‖M‖

and determine the simplicial volume of spheres and tori.
2. Let f : M −→ N be a d-sheeted covering of oriented closed connected

manifolds. Prove that
‖M‖ = d · ‖N‖.

263
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Exercise 2.3 (Simplicial volume and products). Let M and N be oriented
closed connected manifolds. Show that

‖M‖ · ‖N‖ ≤ ‖M ×N‖ ≤
(

dim M + dim N

dim M

)
· ‖M‖ · ‖N‖.

Hints. For the right hand inequality use the homological cross-product, for the
left hand inequality use the cohomological cross-product.

Exercise 2.4 (`p-norms on the singular chain complex). Let X be a topological
space. For p ∈ [1,∞] the `p-norm ‖·‖p on the singular chain complex C∗(X; R) is
the p-norm with respect to the (unordered) basis given by the set of all singular
simplices; i.e., for a chain c =

∑k
j=1 aj · σj ∈ C∗(X; R) in reduced form,

‖c‖p :=
( k∑
j=1

|aj |p
)1/p

.

In the following, let p ∈ (1,∞] and let X be a path-connected space that contains
at least two points.

1. Show that C∗(X; R) is not a normed chain complex with respect to the
`p-norm.

2. The norm ‖ · ‖p induces a semi-norm on homology H∗(X; R). What can
be said about this semi-norm?
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Exercise sheet #12

Exercise 2.5 (Bounded cohomology in degree 0).
1. Show that H0

b ( · ; · ) : GrpBan– −→ Vec‖·‖ coincides with the invariants
functor.

2. What happens in `1-homology in degree 0 ?

Exercise 2.6 (Bounded cohomology in degree 1).
1. Let G be a discrete group. Using the description of bounded cohomology

in terms of the bar resolution, show that H1
b (G; R) = 0.

2. What about H`1
1 ( · ; R) ?

Exercise 2.7 (Quasi-morphisms). Let G be a discrete group. A quasi-mor-
phism f : G −→ R is called homogeneous if

f(gn) = n · f(g)

for all g ∈ G and all n ∈ Z.
1. Is every quasi-morphism homogeneous (up to a uniformly bounded addi-

tive error)?
2. Are there any non-trivial quasi-morphisms on Abelian groups?

Exercise 2.8 (Simplicial volume of surfaces).
1. Let d ∈ N>0. Using the fundamental group, show that every oriented

closed connected surface of genus at least 1 has a d-sheeted covering by a
connected surface.

2. Give a graphical representaion of a double covering of an oriented closed
connected surface of genus 2.
Hints. As first step, draw a double covering of S1 ∨S1 by S1 ∨S1 ∨S1.

3. Let F be an oriented closed connected surface of genus g ∈ N>0. Show
that ‖F‖ ≤ 4 · g − 4.
Hints. In fact, even ‖F‖ = 4 · g − 4 holds; the proof of this fact requires
some background in Riemannian geometry.
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Exercise sheet #13

Exercise 2.9 (Inheritance properties of amenable groups). In the following, all
groups are assumed to be discrete.

1. Show that subgroups of amenable groups are amenable.
2. Show that quotients of amenable groups are amenable.
3. Show that extensions of amenable groups by amenable groups are amenable.

Exercise 2.10 (Amenable groups and Følner sequences).
1. Prove that a discrete countable group is amenable if and only if it admits

a Følner sequence.
Hints. Use (non-principal) ultrafilters on N to obtain an invariant mean
out of a Følner sequence.
For the (more difficult) converse direction it is helpful to have a closer
look at the duality of B and `1.

2. Using the characterisation via Følner sequences show that the free group
on two generators is not amenable.

Exercise 2.11 (Relatively injective/projective modules).
1. Let G be a discrete group. Show that the trivial Banach G-module R is

relatively injective if and only if G is amenable.
2. For which discrete groups G is the trivial Banach G-module R relatively

projective?

Exercise 2.12 (Fundamental theorem of homological algebra, Banach ver-
sion). Let G be a discrete group and let f : U −→ V be a morphism of Ba-
nach G-modules; moreover, let (C∗, ϑ : U ↪→ C0) be a strong (cohomological)
G-resolution of U and let (I∗, η : V ↪→ I0) be an augmented Banach G-cochain
complex consisting of relatively injective Banach G-modules. Prove the follow-
ing:

1. The morphism f can be extended to a morphism f � f∗ : ϑ � C∗ −→ η � I∗

of Banach G-cochain complexes.
2. The extension f∗ : C∗ −→ I∗ is unique up to G-homotopy (that is bounded

in every degree).
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