

ℓ^1 -Homology and Simplicial Volume: *Errata and Comments*

Comments and corrections for my thesis ℓ^1 -Homology and Simplicial Volume, which is available online at

http://nbn-resolving.de/urn:nbn:de:hbz:6-37549578216,

are welcome – please send an email to clara.loeh@uni-muenster.de.

– *Proposition 2.20 on p. 25:* It is erroneously stated that $H_0^{\ell^1}(G;V)\cong V_G$ for all discrete groups G and all Banach G-modules V.

A straightforward computation shows that $H_0^{\ell^1}(G; V) \cong V/U$, where

$$U = \left\{ \sum_{j \in \mathbf{N}} a_j \cdot (v_j - g_j \cdot v_j) \mid (a_j)_j \subset \mathbf{R}, (g_j)_j \subset G, (v_j)_j \subset V \right.$$

$$\text{and } \sum_{j \in \mathbf{N}} |a_j| \cdot ||v_j|| < \infty \right\}.$$

We have $V/\overline{U} = V_G$, but in general U is not closed in V and so V/U need not be equal to V_G .

If V is a reflexive Banach space, then indeed $H_0^{\ell^1}(G;V)\cong V_G$: If V is reflexive, then $0=H_b^1(G;V')\cong H^1(C_*^{\ell^1}(G;V)')$ [3; Propositon 6.2.1]. Therefore, $H_0^{\ell^1}(G;V)$ is Banach [2; Theorem 2.3] and hence $H_0^{\ell^1}(G;V)\cong V/\overline{U}=V_G$.

Bühler [1] provides a slightly different version of ℓ^1 -homology (using the framework of exact categories) that evaluates to the coinvariants in degree 0.

- p. 34, line -6 and Section 3.3:

The converse of the second part of the translation principle (Theorem 3.1) does not hold in general:

Let C=D be a Banach chain complex concentrated in degrees 0 and 1 that consists of a bounded operator $\partial\colon C_1\longrightarrow C_0$ that is not surjective but has dense image (e.g., the inclusion $\ell^1\hookrightarrow c_0$). In particular, the semi-norm on $H_*(C)=H_*(D)$ is zero. The morphism $f\colon C\longrightarrow D$ given by multiplication by a constant $c\in \mathbf{R}\setminus\{-1,0,1\}$ induces an isometric isomorphism $H_*(f)\colon H_*(C)\longrightarrow H_*(D)$.

On the other hand, the coboundary operator $\partial' \colon C_0' \longrightarrow C_1'$ does not have dense image [4; Corollary of Theorem 4.12]. Therefore, there are elements in $H^1(D')$ of non-zero semi-norm. So $H^*(f')$, which is multiplication by c, is not isometric.

proof of Corollary 4.8, p. 49:
 The third line should read

$$H_{\mathsf{b}}^*(\varphi;f') = H^*(C_{\mathsf{b}}^*(\varphi;f')^G \circ i)$$

instead of $C_b^*(\varphi; f') = H^*(C_b^*(\varphi; f')^G \circ i)$.

- Corollary 4.10 on p. 50:

The statement should be corrected to: Let G be a discrete group and let V be a Banach G-module. Then $H_*^{\ell^1}(G;V) \cong H_*^{\ell^1}(1;V_G)$ if and only if $H_b^*(G;V') \cong H_b^*(1;V'^G)$ [instead of $H_b^{\ell^1}(1;V)$ and $H_b^{\ell^1}(1;V')$].

- Corollary 4.11 on p. 50:

Second part: $H_*^{\ell^1}(G; V) \cong H_*^{\ell^1}(1; V_G)$ instead of $H_*^{\ell^1}(G; V) \cong H_*^{\ell^1}(1; V)$.

- Case of hyperbolic fundamental groups, p. 75:

The argument only applies for aspherical (or rationally essential) manifolds of dimension not equal to 1 (because Mineyev's result is concerned only with the case of dimension not equal to 1); in dimension 1 the statement is not true (the circle S^1 has hyperbolic fundamental group, but has simplicial volume equal to 0).

- *Proof of* 1 ⇒ 2 *of Proposition 6.4 on p. 80:* In the definition of z_k the indices got messed up. Correct is:

$$z_k := z + \sum_{i=0}^{k-1} \partial(b_i) \in C_n(M).$$

- *proof of* 1 ⇒ 2 *of Theorem 6.1 on p. 81:* In the last line, the correct type of q_t is

$$q_t : \partial W \times [0, \infty) \longrightarrow \partial W \times [0, t].$$

- Example 6.9 on p.85f: In order for M to be of dimension n, we have to take N of dimension n-2, and hence we have to assume that $n \ge 6$ [instead of $n \ge 5$].

Bibliography

- [1] T. Bühler. On the duality between ℓ^1 -homology and bounded cohomology. Preprint, 2008. Available online at arXiv:0803.0680v2 [math.KT].
- [2] S. Matsumoto, S. Morita. Bounded cohomology of certain groups of homeomorphisms. *Proc. Amer. Math. Soc.*, 94, no. 3, pp. 539–544, 1985.
- [3] N. Monod. Continuous Bounded Cohomology of Locally Compact Groups. Volume 1758 of Lecture Notes in Mathematics, Springer, 2001.
- [4] W. Rudin. Functional Analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill, 1973.

Clara Löh

March 9, 2010

clara.loeh@uni-muenster.de