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Abstract. The mean compliance minimization in structural topology opti-
mization is solved with the help of a phase field approach. Two steepest
descent approaches based on L2– and H−1–gradient flow dynamics are dis-
cussed. The resulting flows are given by Allen-Cahn and Cahn-Hilliard type
dynamics coupled to a linear elasticity system. We finally compare numerical
results obtained from the two different approaches.
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1. Introduction

Structural topology optimization denotes problems of finding optimal material dis-
tributions in a given design domain subject to certain criteria. It has become a
standard tool of engineering design, in particular in structural mechanics, see [4]
and the literature therein for more details. There are two different problems of
importance: (a) the maximization of material stiffness at given mass, and (b) the
minimization of mass while keeping a certain stiffness. We consider only the first
approach which is known as the minimal compliance problem and is today well
understood with respect to its mathematical formulation, see [1] for an overview.
Various successful numerical techniques have been proposed, which rely on sensitiv-
ity analysis, mathematical programming, homogenization, see [4] for an overview,
or more recently on level-set and phase-field methods [2, 32]. The connection to
level-set and phase-field methods is best seen using a relation to image processing.
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was supported by the EPSRC grant EP/D078334/1.
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In [9] the analogy between basic concepts of image segmentation and structural
topology optimization is clearly illustrated. While level-set methods have become
an accepted tool in structural topology optimization, the use of phase-field meth-
ods in this field has not yet become popular. There are only a few approaches
considered, see [32, 10, 28]. This might be due to the high computational cost of
solving the underlying fourth order Cahn-Hilliard equation. We will here consider
an approach which reduces the cost by replacing the Cahn-Hilliard equation by
a volume conserved second order Allen-Cahn equation. Finally, let us point out
that phase field approaches have the advantage that topology changes can easily
be handled, see Figures 2 and 3.

The outline of the paper is as follows: In Section 2 we describe the phase field
approach. In Section 3 the discretization of the Allen-Cahn and the Cahn-Hilliard
equations with elasticity are discussed. In Section 4 numerical results for both
approaches are shown and compared with each other, and in Section 5 we draw
conclusions.

2. Phase-field approach

We consider a structural topology optimization problem of a statically loaded
linear elastic structure. The goal is to compute the material distribution in a given
bounded design domain Ω ⊂ Rd.

We will describe the material distribution with the help of a phase field
variable ϕ. The phase field ϕ will take values close to 1 in the void and values
close to −1 if material is present. In phase field approaches the interface between
material and void is described by a diffuse interfacial layer of a thickness which
is proportional to a small length scale parameter ε and at the interface the phase
field ϕ rapidly but smoothly changes its value. We can prescribe a given mass by
requiring

∫
Ω

− ϕ = m where m ∈ (−1, 1) and
∫
Ω

− ϕ is the mean value of ϕ. We now

assume a linear elastic material with an elasticity tensor C1 and we model the void
with a very small elasticity tensor C2 where we later choose C2 = ε2C1 but other
choices are possible. In the interfacial region we interpolate the elastic properties
and set

C(ϕ) = C1 + 1
2 (1 + ϕ)(C2 − C1) .

We now denote by u : Ω → Rd the displacement vector and by E(u) := 1
2 (∇u +

∇ut) the strain tensor. Assuming that the outer forces are given by a linear func-
tional F on the Sobolev space H1(Ω,Rd) the goal in classical structural topology
optimization is to minimize the mean compliance F (u) subject to

∫
Ω

− ϕ(x)dx = m

and

〈E(u), E(η)〉C(ϕ) = F (η) (2.1)
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which has to hold for all η ∈ H1(Ω,Rd) such that η = 0 on a given non-empty
Dirichlet boundary ΓD. Here we use the notation

〈A,B〉C :=
∫
Ω

A : CB

where the :–product of matrices G and H is given as G : H :=
∑d
i,j=1 GijHij .

The outer forces F can be given for example by a boundary traction on
ΓF ⊂ ∂Ω \ ΓD and in this case we have

F (η) =
∫

ΓF

f · η (2.2)

where f : ΓF → Rd describes outer forces acting on the structure. The strong
formulation of (2.1) with F of the form (2.2) is now given as

−∇ · [C(ϕ)E(u)] = 0 in Ω ,

u = 0 on ΓD ,

[C(ϕ)E(u)] · n = f on ΓF ,

[C(ϕ)E(u)] · n = 0 on ∂Ω \ (ΓD ∪ FF ) ,

where n is the outer unit normal to ∂Ω. In the above formulation the problem is ill-
posed and unwanted checkerboard patterns and mesh dependencies are well-known
phenomena, see [27].

A possible regularization is to add a perimeter penalization to the functional
which penalizes length for d = 2 and area if d = 3 for the interface between
material and void. This regularization in particular avoids checkerboard patterns
if spatial discretization parameters tend to zero, see [18, 23].

In phase field approaches such a penalization can be modeled with the help
of a Ginzburg-Landau energy

E(ϕ) :=
∫
Ω

(γε2 |∇ϕ|
2 + γ

εψ(ϕ))dx

where γ is a parameter related to the interfacial energy density. The potential
function ψ : R → R+

0 ∪ {∞} is assumed to have two global minima at the points
±1. Examples are ψ(ϕ) = ψ1(ϕ) := c1(1 − ϕ2)2 with c1 ∈ R+ or the obstacle
potential

ψ(ϕ) =

{
ψ0(ϕ) if |ϕ| ≤ 1 ,
∞ if |ϕ| > 1

(2.3)

with e.g. ψ0(ϕ) := 1
2 (1 − ϕ2). It is well known that the energy E converges to a

scalar multiple of the perimeter functional, see [22].
We now want to solve

min J(ϕ,u) := E(ϕ) + F (u) (2.4)

subject to (2.1) and
∫
Ω

− ϕ(x)dx = m. For a given ϕ we can compute a unique

u(ϕ) with u(ϕ) = 0 on ΓD which solves (2.1). We can hence consider the reduced
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problem

min Ĵ(ϕ) subject to
∫
Ω

− ϕ(x)dx = m (2.5)

with the reduced functional

Ĵ(ϕ) := J(ϕ,u(ϕ)) .

In order to compute the first variation of the reduced functional Ĵ we apply a
formal Lagrange approach, see e.g. Hinze et al. [19]. We therefore introduce the
adjoint variable p : Ω→ Rd and define the Lagrangian

L(ϕ,u,p) := E(ϕ) + F (u)− 〈E(u), E(p)〉C(ϕ) + F (p) .

We now seek stationary states (ϕ,u,p) of L. If the first variation for (ϕ,u,p)
vanishes we observe that u and p both solve (2.1). Assuming ΓD 6= ∅ we obtain
that (2.1) has a unique solution with Dirichlet data on ΓD and we hence conclude
u ≡ p. Using this we get

δĴ
δϕ (ϕ) = δL

δϕ (ϕ,u,p) = δE
δϕ (ϕ)− 〈E(u), E(u)〉C′(ϕ) ,

where δĴ
δϕ , δL

δϕ and δE
δϕ denote the first variation with respect to ϕ and u solves

(2.1).
We now want to use a steepest descent approach in order to find (local)

minima of (2.5). We choose a gradient flow dynamics with an artificial time variable
and this leads to a pseudo time stepping approach. Given an inner product 〈., .〉
the gradient flow for (2.5) with respect to 〈., .〉 is given as

〈∂tϕ, ζ〉 = − δĴδϕ (ϕ) = − δLδϕ (ϕ,u,p)(ζ)

= −
∫
Ω

[γε∇ϕ · ∇ζ + γ
εψ
′(ϕ)ζ − E(u) : C′(ϕ)E(u)ζ]

where u solves (2.1). Of course the steepest descent method should take the con-
straint on the total mass given as

∫
Ω

− ϕ(x) = m into account. Furthermore, the

steepest descent direction is given by the gradient and the gradient of course de-
pends on the inner product chosen. As inner product we either choose the L2–inner
product which results in an Allen-Cahn type dynamics or the mass conserving
H−1–inner product leading to a modified Cahn-Hilliard problem.

In the following we briefly discuss how we obtain the Allen-Cahn dynamics
and a modified Cahn-Hilliard equation as gradient flows. For further details we
refer to [29] and [5].

We first formulate the problem in the case that 〈., .〉 is given by a scaled
L2–inner product (., .) leading to an Allen-Cahn type dynamics, where also the
mass constraint

∫
Ω

−ϕ = m has to be enforced. Using the obstacle potential (2.3) we

obtain on an arbitrary time interval (0, T ) (see [6] for further details):
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(P1) Find ϕ ∈ H1(ΩT ) and u ∈ L∞(0, T ;H1(Ω,Rd)) such that∫
Ω

− ϕ(x, t)dx = m,ϕ(., 0) = ϕ0, |ϕ| ≤ 1 a.e. in ΩT ,u = 0 a.e. on ΓD × (0, T ) ,

(ε∂tϕ+ γ
εψ
′
0(ϕ), χ− ϕ) + γε(∇ϕ,∇(χ− ϕ)) ≥ 1

2 〈E(u), E(u)(χ− ϕ)〉C2−C1 ,
〈E(u), E(η)〉C(ϕ) = F (η)

which has to hold for almost all t and all χ ∈ H1(Ω) with |χ| ≤ 1 and
∫
Ω

− χ = m

and all η ∈ H1(Ω,Rd) such that η = 0 on the Dirichlet boundary ΓD.
We now discuss the mass conserving H−1–gradient flow which leads to the

Cahn-Hilliard type dynamics. For functions v1, v2 with mean value zero we define
the inner product

(v1, v2)−1 :=
∫
Ω

∇(−∆)−1v1 · ∇(−∆)−1v2

where y = (−∆)−1v is the weak solution of −∆y = v in Ω with
∫
Ω

− y = 0 and

∂y
∂n = 0 on ∂Ω. The H−1–gradient flow

(∂tϕ, χ)−1 = − δLδϕ (ϕ,u,p)(χ)

can now be rewritten by introducing the chemical potential w = −(−∆)−1∂tϕ+w
where w is an appropriate constant. Considering the smooth potential ψ = ψ1

and a variable diffusivity B, we obtain the following problem which is a modified
Cahn-Hilliard equation, see also [14, 20].

(P2) Find sufficiently regular (ϕ,w,u) such that

ϕ(., 0) = ϕ0, |ϕ| ≤ 1 a.e., u = 0 a.e. on ΓD × (0, T ) and

∂tϕ = ∇ · (B(ϕ)∇w) in the distributional sense , (2.6)
∂w
∂n = 0, ∂ϕ∂n = 0 on ∂Ω× (0, T ) ,

w = −γε∆ϕ+ γ
εψ
′
1(ϕ)− E(u) : C′(ϕ)E(u) in the distributional sense

together with (2.1).
Strictly speaking we obtain (P2) as the gradient flow of (., .)−1 only in the

case that the mobility function B in (2.6) is equal to one. We refer to Taylor and
Cahn [29] who discuss how the definition of (., .)−1 has to be modified for a variable
mobility. With this modification we obtain (2.6) also for a variable mobility. We
also remark that (2.6) together with the Neumann boundary conditions on w imply
that the mass

∫
Ω

ϕ is preserved. For further information on elastically modified

Cahn-Hilliard models we refer to the overview [15].
Stationary states of (P1) and (P2) respectively fulfil the first order necessary

conditions for (2.4). In the following section we describe how we numerically solve
(P1) and (P2) and in Section 4 we will compare numerical results of (P1) and
(P2).
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3. Discretization

In this section we present finite element approximations of (P1) and (P2).

3.1. Notation

For simplicity we assume that Ω is a polyhedral domain. Let Th be a regular
triangulation of Ω into disjoint open simplices, i.e. Ω = ∪T∈Th

T . Furthermore, we
define h := maxT∈Th

{diam T} the maximal element size of Th and we set J to be
the set of nodes of Th and {pj}j∈J to be the coordinates of these nodes. Associated
with Th is the piecewise linear finite element space

Sh :=
{
η ∈ C0(Ω)

∣∣∣ η∣∣
T

∈ P1(T ) ∀ T ∈ Th
}
⊂ H1(Ω),

where we denote by P1(T ) the set of all affine linear functions on T . Furthermore,
we denote the standard nodal basis functions of Sh by χj for all j ∈ J . Then
ϕj for j = 1, . . .J denote the coefficients of the basis representation of ϕh in Sh
which is given by ϕh =

∑
j∈J ϕjχj .

In order to derive a discretization of (P1) we define

Kmh := {η ∈ Sh| |η(x)| ≤ 1 for all x ∈ Ω,
∫
Ω

− ηdx = m}.

We introduce also the lumped mass scalar product (f, g)h =
∫

Ω
Ih(fg) instead of

(f, g), where Ih : C0(Ω) → Sh is the standard interpolation operator such that
(Ih f)(pj) = f(pj) for all nodes j ∈ J . In addition, we employ a quadrature
formula 〈A,B〉hC in place of 〈A,B〉C , with the property that 〈A,B〉hC = 〈A,B〉C for
piecewise affine linear integrands A : CB.

3.2. Finite element approximation of the Allen-Cahn approach with mass conser-
vation and obstacle potential

Taking a fixed time step τ = tn − tn−1 we obtain the following finite element
approximation of (P1):

(Ph
1 ) Given ϕn−1

h ∈ Kmh find (ϕnh,u
n
h) ∈ Kmh × (Sh)d such that

unh = 0 on ΓD ,

〈E(unh), E(η)〉hC(ϕn−1
h )

= F (η) ∀ η ∈ (Sh)d with η = 0 on ΓD , (3.1)

( ετ (ϕnh − ϕ
n−1
h )− γ

εϕ
n
h, χ− ϕnh)h + γε(∇ϕnh,∇(χ− ϕnh))

≥ 1
2 〈E(unh), E(unh)(χ− ϕnh)〉hC2−C1 ∀χ ∈ K

m
h . (3.2)

As (3.1) is independent of ϕnh we use a preconditioned conjugate gradient
solver to compute unh from this equation, see also [17, 16]. Due to the use of
piecewise linear finite elements and mass lumping the reformulation of (3.2) with
Lagrange multipliers µh ∈ Sh and λ ∈ R can be stated as follows, see [6]:

Given (ϕn−1
h ,unh) ∈ Kmh × (Sh)d, find ϕnh ∈ Kmh , µh ∈ Sh and λ ∈ R such that
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( ε
2

τ − γ)(ϕnh, χ)h + γε2(∇ϕnh,∇χ) + (µh, χ)h − λ(1, χ)

= ε2

τ (ϕn−1
h , χ)h + ε

2 〈E(unh), E(unh)χ〉hC2−C1 ∀χ ∈ Sh, (3.3)∫
Ω

− ϕnh = m, (3.4)

(µj)− ≥ 0, (µj)+ ≥ 0, |ϕj | ≤ 1, (3.5)

(ϕj + 1)(µj)− = (ϕj − 1)(µj)+ = 0 ∀ j ∈ J , (3.6)

where (.)+ and (.)− are the positive and negative parts of a quantity in the brackets.
To solve (3.3)-(3.6) we apply the PDAS-method presented in [6], yielding the

following algorithm:

Primal-Dual Active Set Algorithm (PDAS):

0. Set k = 0 and initialize A±0 .
1. Define Ik = J \ (A+

k ∪ A
−
k ).

Set ϕkj = ±1 for j ∈ A±k and µkj = 0 for j ∈ Ik.
2. Solve the discretized PDE (3.3) with the non-local constraint (3.4) to obtain
ϕkj for j ∈ Ik and λk ∈ R.

3. Determine µkj for j ∈ A±k using (3.3).

4. Set A+
k+1 := {j ∈ J : ϕkj + µk

j

c > 1}, A−k+1 := {j ∈ J : ϕkj + µk
j

c < −1}.
5. If A±k+1 = A±k stop, otherwise set k = k + 1 and goto 1.

Remark 3.1. We solve the system arising from Step 2 using MINRES, see [8].

The Allen-Cahn variational inequality with volume constraint is implemented
using the adaptive finite element toolbox Alberta 1.2 [26].

3.3. Finite element approximation of the Cahn-Hilliard approach with smooth
potential

For the case of a fixed time step τ = tn − tn−1 we obtain the following finite
element approximation of (P2):

(Ph
2 ) Given ϕn−1

h ∈ Sh find (ϕnh, w
n
h ,u

n
h) ∈ Sh × Sh × (Sh)d such that

unh = 0 on ΓD, (3.7)

〈E(unh), E(η)〉hC(ϕn−1
h )

= F (η) ∀ η ∈ (Sh)d with η = 0 on ΓD, (3.8)

( ετ (ϕnh − ϕ
n−1
h ), χ)h + (B(ϕn−1

h )∇wnh ,∇χ)h = 0 ∀ χ ∈ Sh, (3.9)

(wnh , χ)h = γε(∇ϕnh,∇χ)h + γ
ε (ψ′1(ϕn−1

h ) + ψ′′1 (ϕn−1
h )(ϕnh − ϕ

n−1
h ), χ)h

− 1
2 〈E(unh), E(unh)χ〉hC2−C1 ∀χ ∈ Sh , (3.10)

where B(ϕ) = 9
4 (1− ϕ2)2.

We solve equation (3.8) as in (P1). Equations (3.9) and (3.10) on the other
hand, define a system of two discretized second order equations for ϕnh and the
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F

Figure 1. The design domain for a cantilever beam

chemical potential wnh . The derivative of the double well potential was linearized
as ψ′1(ϕnh) ≈ ψ′1(ϕn−1

h )+ψ′′1 (ϕn−1
h )(ϕnh−ϕ

n−1
h ) with ψ′1(ϕ) = 9

8 (1−ϕ2)2, see (3.10).
The resulting linear system is solved using BiCGStab, see [25, 31] for details.

The Cahn-Hilliard equation is implemented using the adaptive finite element
toolbox AMDiS [31].

4. Numerics

In this section we present some numerical results for both the Allen-Cahn and the
Cahn-Hilliard approach.

Since the interfacial thickness in both approaches is proportional to ε we need
to choose h � ε in order to resolve the interfacial layer (see [11, 12] for details).
Away from the interface h can be chosen larger and hence adaptivity in space can
heavily speed up computations. We use the same mesh refinement strategy as in
Barrett, Nürnberg and Styles [3], i.e. a fine mesh is constructed where |ϕn−1

h | < 1
with a coarser mesh present in the bulk regions ϕn−1

h = ±1. We set the interfacial
parameters ε = 1

16π and γ = 1 and we take the minimal diameter of an element
hmin = 7.81× 10−3 and the maximal diameter hmax = 6.25 · 10−2. The time step
is chosen as τ = 6.25 · 10−6 for the Allen-Cahn approach. In the Cahn-Hilliard
case an adaptive time step is used.

We use a cantilever beam geometry, see Figure 1, where we pose Dirichlet
boundary conditions on the left boundary ΓD and a vertical force is acting at
the bottom of its free vertical edge. We take Ω = (−1, 1) × (0, 1), and hence
ΓD = {(−1, y) ∈ R2 : y ∈ [0, 1]}. The force F is acting on ΓF := {(x, 0) ∈ R2 : x ∈
[0.75, 1]} and is defined by f(x) = (0, 250)t for x ∈ ΓF . In our computations we
use an isotropic elasticity tensor C1 of the form C1E = 2µ1E + λ1(trE)I with the
Lamé constants λ1 = µ1 = 5000 and choose C2 = ε2C1 in the void. We initialize
the order parameter ϕ with random values between −0.1 and 0.1 for the Allen-
Cahn approach and −0.2 and 0.2 for the Cahn-Hilliard approach. In both cases the
random field ensures that we approximately have the same proportion of material
and void, i.e. m ≈ 0.

Figure 2 shows the results obtained using the Allen-Cahn variational inequal-
ity with volume constraint, where the state at t = 0.160 appears to be a numerical
steady state.
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t = 0.000 t = 0.001 t = 0.002

t = 0.055 t = 0.010 t = 0.160
Figure 2. Allen-Cahn results for the cantilever beam computa-
tion at various times; material in red and void in blue

Figure 3 shows the results obtained using the Cahn-Hilliard equation with a
variable mobility. Again the state at t = 0.168 appears to be a numerical steady
state.

t = 0.000 t = 0.001 t = 0.002

t = 0.053 t = 0.103 t = 0.168

Figure 3. Cahn-Hilliard results for the cantilever beam compu-
tation at various times; material in red and void in blue

A comparison of both simulations gives two results: First the obtained op-
timal shape is almost the same, and second the evolution towards this shape is
very different. Within the Allen-Cahn approach the final structure evolved directly
from the random initial state within the same spatial scale. Also “new material”
can be formed during the evolution in regions which previously have been occu-
pied by void material. Within the Cahn-Hilliard approach such forming of “new
material” was never observed. Instead the evolution always follows a coarsening
process from fine scale structures, as a result of the spinodal decomposition in the
early evolution, to coarser scales.
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5. Conclusions

The use of phase-field methods in structural topology optimization has been lim-
ited due to high computational cost, associated with solving the underlying fourth
order Cahn-Hilliard equation. We have demonstrated on a simple example that
a volume conserved Allen-Cahn equation can be used instead, which reduces the
computational cost and thus makes the phase-field approach more efficient. We
also point out that an obstacle potential together with the primal-dual active set
approach allows us to compute for the phase field only in the interfacial region
which reduces the total size of the problem, see also [5, 6]. We also mention that
phase field approaches can be generalized for multimaterial structural topology
optimization, see [32] for the Cahn-Hilliard case and [7] for the Allen-Cahn case.

We further want to point out, that the use of phase-field methods might
also allow structural topology optimization to be extended to other fields besides
structural mechanics. Due to the flexibility of the phase-field approach it can easily
be coupled with other fields, such as flow, temperature or concentration fields. In
[24, 21, 30, 13] a method is described which allows it to solve general partial
differential equations with general boundary conditions in evolving geometries,
which are implicitly described using a phase-field function. Allowing the phase-
field function to evolve in order to minimize an objective function, which depends
on the variables of the partial differential equation to be solved, will lead to new
structural topology optimization problems.
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